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ABSTRACT. We investigate the problem of determining how many monochromatic trees
are necessary to cover the vertices of an edge-coloured random graph. More precisely, we
show that for p » n~5(In n)l/ﬁ, in any 3-edge-colouring of the random graph G(n,p)
we can find three monochromatic trees such that their union covers all vertices. This

improves, for three colours, a result of Buci¢, Korandi and Sudakov.

§1. INTRODUCTION

Given a graph G and a positive integer r, let tc,(G) denote the minimum number k
such that in any r-edge-colouring of (G, there are £ monochromatic trees 71, ..., T} such

that the union of their vertex sets covers V(G), i.e.,

We define tp, (G) analogously by requiring the union above to be disjoint.

It is easy to see that tpy(K,) = 1 for all n > 1, and Erdés, Gyérfas and Pyber [8] proved
that tps(K,,) = 2 for all n > 1, and conjectured that tp,(K,) = r — 1 for every n and 7.
Haxell and Kohayakawa [10] showed that tp,(K,) < r for all sufficiently large n = ng(r).
We remark that it is easy to see that tc,(K,,) < r (just pick any vertex v € V(K,,) and
let T;, for i € [r], be a maximal monochromatic tree of colour ¢ containing v), but it is not
even known whether or not tc,(K,,) < r — 1 for every n and r (as would be implied by the
conjecture of Erdds, Gyarfas and Pyber).

Concerning general graphs instead of complete graphs, Gyarfas [9] noted that a well-
known conjecture of Ryser on matchings and transversal sets in hypergraphs is equivalent
to the statement that for every graph G and integer r > 2, we have tc,.(G) < (r — 1)a(G).
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In particular, Ryser’s conjecture, if true, would imply that tc,.(K,) < r — 1, for every
n =1 and r = 2. Ryser’s conjecture was proved in the case r = 3 by Aharoni [1], but
for r = 4 very little is known. For example, Haxell and Scott [11] proved (in the context
of Ryser’s original conjecture) that there exists € > 0 such that for r € {4,5}, we have
te,.(G) < (r — e)a(G), for any graph G.

Bal and DeBiasio [2] initiated the study of covering and partitioning random graphs
by monochromatic trees. They proved that if p « (1“7")1/ ", then with high probability"
we have tc,.(G(n,p)) — o. They conjectured that for any r > 2, this was the correct
threshold for the event tp,(G(n,p)) < r. Kohayakawa, Mota and Schacht [14] proved that
this conjecture holds for » = 2, while Ebsen, Mota and Schnitzer? showed that it does not
hold for more than two colours.

Bucié¢, Kordndi and Sudakov [6] proved that if p « (an)\/?/ a
te,(G(n,p)) = r + 1, which implies that the threshold for the event tc,(G) < r is in fact

, then w.h.p. we have

significantly larger than the one conjectured by Bal and DeBiasio when r is large. Buci¢,
Koréndi and Sudakov also proved that w.h.p. we have tc,.(G(n,p)) < r for p » (lnT")I/QT.
They were also able to roughly determine the typical behaviour of tc,(G(n,p)) in terms of
the range where p lies in (see [6, Theorem 1.3 and Theorem 1.4]).

Considering colourings with three colours, the results from [6] imply that if p »
(mT”)l/g, then w.h.p. we have tc3(G(n,p)) < 3, and if (h‘T”)l/G <K p <« (“‘Tn)w, then w.h.p.

tes(G(n, p)) < 88. Our main result improves these bounds for three colours.

Theorem 1.1. If p = p(n) satisfies p > (h’T”)%, then with high probability we have

th (G(TL, p)) < 3.

It can be easily seen that if 1 —p « n~!, then w.h.p. there is a 3-edge-colouring of G(n, p)
for which 3 monochromatic trees are needed to cover all vertices — it suffices to consider
three non-adjacent vertices x1, x5 and x3, and colour the edges incident to x; with colour ¢
and colour all the remaining edges with any colour. Therefore, the bound for tc;(G(n, p))
in Theorem 1.1 is the best possible as long as p is not too close to 1.

We remark that, from the example described in [14], we know that for p « (an)l/ 4, we
have w.h.p. tcs(G(n,p)) = 4. It would be very interesting to describe the behaviour of
tes(G(n, p)) when ()" « p « (lmn)V

This paper is organized as follows. In Section 2 we present some definitions and auxiliary
results that we will use in the proof of Theorem 1.1, which is outlined in Section 3. The

details of the proof of Theorem 1.1 are given in Section 4.

'We will write shortly w.h.p. for with high probability.

2A description of this construction can be found in [14].
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§2. PRELIMINARIES

Most of our notation is standard (see [3,5,7] and [4,13]). However, we will mention
in the following few definitions regarding hypergraphs that will play a major role in our
proofs just for completeness.

We say that a set A of vertices in a hypergraph H is a vertex cover if every hyperedge of
H contains at least one element of A. The covering number of H, denoted by 7(H), is the
smallest size of a vertex cover in ‘H. A matching in H is a collection of disjoint hyperedges
in H. The matching number of H, denoted by v(H), is the largest size of a matching in
H. An immediate relationship between 7(H) and v(#) is the inequality v(H) < 7(H).
If additionally H is r-uniform, then we have 7(#H) < rv(#H). A conjecture due to Ryser
(which first appeared in the thesis of his Ph.D. student, Henderson [12]) states that for
every r-uniform r-partite hypergraph H, we have 7(H) < (r — 1)v(H). Note that Konig-
Egervary theorem corresponds to Ryser’s conjecture for r = 2. Aharoni [1] proved that
Ryser’s conjecture holds for » = 3, but the conjecture remains open for r > 4.

Given a vertex v in a 3-uniform hypergraph H, the link graph of H with respect to v is
the graph L, = (V, F) with vertex set V = V(H) and edge set F = {zy : {z,y,v} < H}.

We will use the following theorem due to Erdés, Gyarfas and Pyber [8] in the proof of

our main result.

Theorem 2.1 (Erdés, Gyérfas and Pyber). For any 3-edge-colouring of a complete graph

K, there ezists a partition of V(K,,) into 2 monochromatic trees.

We will also use the following lemma, which is a simple application of Chernoft’s
inequality. For a proof of the first item see [15, Lemma 3.8]. The second item is an

immediate corollary of [15, Lemma 3.10].

Lemma 2.2. Lete > 0. If p=p(n) » (ln")l/ﬁ, then w.h.p. G € G(n,p) has the following

properties.

(i) For any disjoint sets X, Y < V(G) with | X|,|Y| » 22 we have

p

|Ec(X,Y)] = (1£e)p|X[]Y].

(7) Every vertex v € V(G) has degree dg(v) = (1 +&)pn and every set of i < 6 vertices

has (1 + €)p'n common neighbours.

§3. A SKETCH OF THE PROOF

In this section we will give an overview of the proof of Theorem 1.1. Let G = G(n, p),
with p » (IHT”)UG
We consider an auxiliary graph F, with V(F) = V(G) and ij € E(F) if and only if there

is, in the colouring ¢, a monochromatic path in G connecting ¢ and j. Then we define

, and let ¢ : E(G) — {red, green, blue} be any 3-edge-colouring of G.

a 3-edge-colouring ¢’ of F' with ¢(ij) being the color of any monochromatic path in G
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connecting ¢ and j. Note that any covering of ' with monochromatic trees with respect
to the colouring ¢’ corresponds to a covering of G with monochromatic trees with respect
to the colouring ¢ with the same number of trees.

Next, we consider different cases depending on the value of a(F). If a(F) = 1, then F
is a complete 3-edge-coloured graph and by a theorem of Erdds, Gyarfas and Pyber
(see Theorem 2.1), there exists a partition of V(F') into 2 monochromatic trees. The

remaining proof now is divided into the cases o(F') = 3 and «a(F') = 2.

Case a(F) = 3. From the condition on the independence number of G, there exist three
vertices 1, b, g € V(G) that pairwise do not have any monochromatic path connecting them.
With high probability, they have a common neighbourhood in G of size at least np3/2.
Let X,4, be the largest subset of this common neighbourhood such that for each i € {r, b, g},
the edges from 7 to X,;, in G are all coloured with one colour. Then, since there are no
monochromatic paths between any two of r, b, g, we have | X,4,| = np?/12 and moreover
we may assume that all edges between r and X, are red, all between b and X, are
blue and those between g and X,,, are green. Now we notice that all vertices that have a
neighbour in X,;, are covered by the union of the spanning trees of the red component
of r, the blue component of b and the green component of g.

We are done in the case where every vertex has a neighbour in X, as the vertices
in X,py3 U Ng(X,4y) are covered by the red, blue and green component containing r, b
and g, respectively. Otherwise, w.h.p. any vertex y € V \ (X,pg U Ng(Xipg)) has many
common neighbours with r, ¢ and b in G that are also neighbours of some vertex in
X,pg- An analysis of the possible colourings of the edges between X, and the common
neighbourhood of the vertices r, b, g and y yields the following: for some i € {r,g,b},
let us say ¢ = r, every vertex y € X,;, can be connected to r by a monochromatic path
in colour red or either to g or b by a monochromatic path in the colour blue or green,
respectively.

This already gives us that all vertices in G' can be covered by 5 monochromatic trees,
since all the vertices in Ng(X,4y) lie in the red component of r, or the green component
of g, or in the blue component of b and every vertex in V' ~ Ng(X,p,) lies in the red
component of 7, in the blue component of g or in the green component of b. By analysing
the colours of edges to the common neighbourhood of carefully chosen vertices, we are

able to show that actually three of those five trees already cover all the vertices of G.

Case o(F') = 2. Let us consider a 3-uniform hypergraph H defined as follows (this definition
is inspired by a construction of Gyarfas [9]). The vertices of H are the monochromatic
components of F' and three vertices form a hyperedge if the corresponding three components
have a vertex in common (in particular, those three monochromatic components must be

of different colours). Hence H is an 3-uniform 3-partite hypergraph.



COVERING 3-EDGE-COLOURED RANDOM GRAPHS WITH MONOCHROMATIC TREES 5

We observe that if A is a vertex cover of H, then the monochromatic components
associated with the vertices in A cover all the vertices of G. This implies that tc3(G) < 7(H).
Also, it is easy to see that v(H) < a(F) = 2. Now, recall that Aharoni’s result [1] (which
corresponds to Ryser’s conjecture for r = 3) states that for every 3-uniform 3-partite
hypergraph H we have 7(H) < 2v(#H). Together with the previous observation, this
implies tcz(G) < 4. But our goal is to prove that te3(G) < 3. To this aim, we analyze
the hypergraph H more carefully, reducing the situation to a few possible settings of
components covering all vertices. In each of those cases, we can again analyse the possible
colouring of edges of common neighbours of specific vertices, inferring that indeed there

are 3 monochromatic components cover all vertices.

§4. PROOF OF THEOREM 1.1

Instead of analysing the colouring of the graph G = G(n, p), it will be helpful to analyse
the following auxiliary graph.

Definition 4.1 (Shortcut graph). Let G be a graph and ¢ be a 3-edge-colouring of G.
The shortcut graph of G (with respect to ¢) is the graph F = F(G, ¢) that has V(G) as

the vertex set and the following edge set:
{uv : u,v € V(G) and u and v are connected in G by a path monochromatic under ¢}.

We can consider a natural edge colouring ¢ of F(G, ) by assigning to an edge uv €
E(F(G,¢)) the colour of any monochromatic path connecting u and v in G' under the
colouring . We will say that ¢’ is an inherited colouring of F(G, p). Let tc(F,¢’) be the
minimum number of monochromatic components (under the colouring ¢’) covering all
the vertices of F'. Note that any covering of F'(G, ) with monochromatic trees under ¢’
corresponds to a covering of G with monochromatic trees under the colouring ¢. In
particular, if we show that for every 3-edge-colouring ¢ of GG, we have tc(F, ¢') < 3, for
every ineherited colouring ¢’, then we have shown that tc3(G) < 3. Therefore, Theorem 1.1

follows from the following lemma.

Lemma 4.2. Let p » (lnT”)l/G and let G = G(n,p). The following holds with high
probability. For any 3-edge-colouring ¢ of G and any inherited colouring ¢ of the shortcut
graph F = F(G, ), we have tc(F, ¢') < 3.

The proof of Lemma 4.2 is divided into two different cases, depending on the independence
number of F'. Subsections 4.1 and 4.2 are devoted, respectively, to the proof of Lemma 4.2
when a(F) = 3 and a(F) < 2.

From now on, we fix ¢ > 0 and assume that p » (1“7")1/ ® and n is sufficiently large.

Then, by Lemma 2.2, we may assume that the following holds w.h.p.:

(1) There is an edge between any two sets of size w ((Inn)/p).
(2) Every vertex v € V(G) has degree dg(v) = (1 + €)pn.
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(3) Every set of ¢ < 6 vertices has (1 & ¢)p'n common neighbours.

4.1. Shortcut graphs with independence number at least three.

Proof of Lemma 4.2 for a(F') = 3. Since a(F') = 3, there exist three vertices r,b,g € V(G)
that pairwise do not have any monochromatic path connecting them in G. In particular,
if v is a common neighbour of r, b and ¢ in G, then the edges vr, vb and vg have all
different colours. The common neighbourhood of 7, b and ¢ in G has size at least np*/2.
Let X,4, be the largest subset of this common neighbourhood such that for each i € {r, b, g},
the edges between 7 and the vertices of X,;, are all coloured with the same colour in G.
Then | X,y = np®/12. Without loss of generality, assume that all edges between r and the
vertices of X, are red, between b and the vertices of X, are blue and those between g
and the vertices of X, are green. Let Creq(7), Chiue(b) and Cgreen(g) be respectively the
red, blue and green components in G containing r, g and b.

Notice that all vertices of F' that have a neighbour in X, are covered by Cred(r), Chiue(b)
oI Cgreen(g). Therefore, the proof would be finished if every vertex had a neighbour in X,,.
If this is not the case, we fix an arbitrary vertex y € V' \ (X,4y U Ng(Xy4g)). By our choice
of p, there are at least np*/2 common neighbours of y, r, b and g. Let Xy, be the largest
subset of the common neighbourhood of y, r, b and ¢ such that for each i € {r, b, g}, the
edges between i and X, are all coloured the same. Then | X,,44| > np*/12. Note that
since y ¢ Ng(Xipg), the sets X4, and X, are disjoint. Furthermore, since | Xy pg/, [ Xoog| >

Inn - we have
p

|EG(Xyrbgv XTbQ)’ = 1.

We now analyse the colours between r, b, g and the set X,,;,. Again, since there is no
monochromatic path connecting any two of r, b and g, all i € {r, b, g} have to connect
to Xy in different colours. Since X4, is disjoint of X, we cannot have r, b and g being
simultaneously connected to X4, by red, blue and green edges, respectively. Assume first
that for each i € {r, b, g}, the edges between i and X, have different colours from the
edges between ¢ and X,4,. Then let uv be an edge between X, and X4, and notice that
whatever the colour of uv is, we will have a monochromatic path connecting two of the
vertices in {r, g,b}. Therefore, we can assume that for some i € {r, g, b}, we have that all
the edges between ¢ and X4, and all the edges between ¢ and X, coloured the same.
Without loss of generality, we may say that such 7 is r. In this case, the edges between b
and X4, are green and the edges between g and X4, are blue. Finally, all the edges
between X4, and X4, are red, otherwise we would be able to connect b and g by some
monochromatic path. Figure 4.1 shows the colouring of the edges that we have analysed
so far.

Let us now consider any further vertex z € V \ (X,4y U Ng(Xypg)) with © # y, if such a

vertex exists. We define X4, analogously to X4, and observe that the colour pattern
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.
X yrbg
b Y
X,
g b9

FIGURE 4.1. Analysis of the colouring of the edges incident on X4, and
on X

yrbg-

FIGURE 4.2. Analysis of the color of the edges incident on X4, and on X,,p,.

from r, b, g to X4y must be the same as the one to X,,,,. Indeed, if this is not the
case, then a similar analysis of the colours of the edges between {r,b, g} and X, yields
that for some i € {b, g}, we know that the edges connecting ¢ to X4, are of the same
colour as the edges connecting 7 to X,4,. Without loss of generality, let us say that ¢ is g.
Then the edges between b and X4, are red and the edges between r and X4, are green,

otherwise X,,4, and X,;, would not be disjoints sets. Figure 4.2 shows the colouring of
Inn
p
some edge uv between X4, and X,,,,. But then however we colour uv, we will get an

the edges incident to X5y and X,py. Since | Xypgls | Xarsg| > =2, we have that there is
monochromatic path connecting two vertices in {r, b, g}, which is a contradiction. Thus,
the colour pattern of edges between {r, b, g} and X,,, is the same as the colour pattern of
the edges between {r,b, g} and X,,4,.

Therefore, we have that each vertex in X4, U Ng(Xpg) belongs to one of the monochro-
matic components Cred(r), Chiue(b) 0 Cgreen(g), While a vertex in V(G)\ (Xypg U Na(Xipg))
belongs to one of the monochromatic components Cieq(7), Cgreen(b) 0 Chiue(g) where the
latter two are the green component containing b and the blue component containing g,
respectively. This gives a covering of G with five monochromatic trees. Next we will show

that actually three of those trees already cover all the vertices.
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Suppose that at least 4 among the components Cieq(7), Chiue(b), Careen(b), Cereen(9),
and Che(g) are needed to cover all vertices. Since there does not exist any monochromatic
path between any two of 7, b, g, we know that for each ¢ € {r,b, g}, any monochromatic
component containing ¢ does not intersect {r, g,b} \ {i}. Hence, among those at least 4
components, we have for each i € {r, b, g} one component containing it and, without loss
of generality, two containing b. That is, three components of those at least 4 components
needed to cover all the vertices are Ciea(7), Chlue(b) and Careen(b). Now there are two
cases regarding the fourth component: we need Cgreen(g) as the fourth component or we
need Cpue(g) (those two cases might intersect).

We begin with the first case, where we need the components Cred(7), Chiue(D); Careen(b)
and Cgreen(g) to cover all the vertices of G. Let

lN) € C’blue(b) AN (Cred(r) U Cgreen(b) U Cgreen(g))

and let

9 € Careen(b) ~ (Crea(r) W Coue(b) U Cyreen(9)) -
Then let Xj;,, be the maximum set of common neighbours of b, g,r,g,b such that for
each i € {b,g,7,b, g}, the edges from i to Xj,,, are all coloured the same. Since | X, | =

np° /240 > IHT", we have

|Ec(Xigmg Xurvg)| = 1 and  |Eg(Xjg,45, Xing)| = 1.

bgrbg?
We will analyse the possible colours of the edges between the specified vertices and Xjg,,,,.
If for each of 7,b,g, the colour it sends to X, is different from the colour it sends
to X,p4, then any edge between X;@Tbg and X,;, ensures a monochromatic path between
two of 7, b, ¢ (in the colour of that edge). Similarly, it cannot happen that for each of r, b, g,

the colour it sends to X;

bgrbg 18 different from the colour it sends to X4 Thus, since r

sends red to both X,;, and X4, while the colours from b (and g) to X,;, and Xy, are

switched, the colour of the edges between r and Xj; ,  is red.

grbg

Now note that, by the choice of b and §, the edges between each of them and Xirbg

can not be red. Further, the choice implies that an edge between b and X3 can not

grbg
be of the same colour (green or blue) as an edge between § and Xigrng- 1t g would send

blue (and hence b would send green) edges to Xj there would either be a blue path

grbg’

between b and g (if the edges between b and Xj, . are blue) or b would lie in Cypeen (D)

grbg
(if the edges between b and Xj;,,, are green). Since both those situations would mean a

contradiction, we may assume that each of r, b, g sends edges with that colour to Xj;,,,
as it does to X,p,. But then Xj, , is actually a subset of X,;, and therefore g, having an

edge to X,pg, lies in one of Cred(7), Chiue(b), or Cgreen(g), a contradiction.
In the case where the forth component that we need is Ch,e(g), we repeat the construction

of Xj. ., similarly as before by letting

b € Chiue(D) ~ (Crea(r) U Cogreen (D) U Chine(9))

grbg
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and
g € Ogreen(b) AN (Cred (T’) Y Cblue(b) % Cblue(g))-

Also as before, we end up with Xj_ , being part of X,;,. From the choice of §, the edges

grbg
it sends to Xj;,,, have to be green, since otherwise it would be in Crea(r) or Che(b). But
that gives a green path between b and ¢, a contradiction.

Summarising, we infer that three components among Cled(7), Chiue(D); Careen (D), Careen(9)

and Chue(g) cover the vertex set of G. O
4.2. Shortcut graphs with independence number at most two.

Proof of Lemma 4.2 for a(F) < 2. We start by noticing that if a(F') = 1, then the graph F’
together with the colouring ¢’ is a complete 3-coloured graph and therefore, by Theorem 2.1,
there exists a partition of V(F') into 2 monochromatic trees. Thus, we may assume
that a(F) = 2.

Let H be the 3-uniform hypergraph with V' (H) being the collection of all the monochro-
matic components of F' under the colouring ¢’ and three monochromatic components
form a hyperedge in H if they share a vertex. Notice that H is 3-partite, since distinct
monochromatic components of the same colour do not have a common vertex and therefore
they can not belong to the same hyperedge. In other words, the colour of each component
give us a 3-partition of the vertex set of H. We denote by Vieq,Voie and Vgreen the set of
vertices of V(H) that correspond to, respectively, red, blue and green components. Such
construction was inspired by a construction due to Gyarfas [9].

Note that every vertex v of F' is contained in a monochromatic component for each one
of the colours (a monochromatic component could consist only of v). Therefore, any vertex
cover of H corresponds to a covering of the vertices of F' with monochromatic trees. Indeed,
if A is a vertex cover of H, then consider the monochromatic components corresponding
to each vertex in A. If any vertex v of F is not covered by those components, then the
vertices in ‘H corresponding to the red, green and blue components in F' containing v do
not belong to A and they form an hyperedge. But this contradicts the fact that A is a

vertex cover of H. Therefore,
te(F,¢") < 7(H). (4.1)

Let L = UseVred L, be the union of the link graphs L, of all vertices s € Viq. Any
vertex cover of this bipartite graph L corresponds to a vertex cover of H of the same size.

Therefore,
T(H) < 7(L). (4.2)

Furthermore, by Konig’s theorem we know that 7(L) = v(L). Thus, if v(L) < 3, then
by (4.1) and (4.2), we have
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Therefore, we may assume that v(L) > 4, and fix a matching M of size at least 4
in L. Let us say that M} consists of the edges G1B;, G3Bs, G3B3, and G4B,, where
{G1, G, Gs, G4} S Vgreen and {By, By, Bs, Ba} < Vige.

Now we give an upper bound for v(H). Note that any matching My, in H gives us an
independent set [ in F'. Indeed, for each hyperedge e € My, let v, € V(F') be any vertex
in the intersection of those monochromatic components associated to the vertices in e and
let I = {v. : e € My}. We claim that [ is an independent set in F. Indeed, if v, and vy
were adjacent vertices in I, then e and f intersect, as the edge connecting v. to vy in F
will connect the monochromatic components containing v, and vy of that colour that is

given to the edge v.vs. Therefore, since a(F) = 2, we have

v(H) < a(F) = 2. (4.3)

Now, if there are three different edges in M that are edges in the link graphs of three
different vertices of V,eq, then there would be a matching of size 3 in H, contradicting (4.3).
Therefore, we may assume that My, is contained in the union of at most two link graphs,
say Lg, and Lg,, of vertices Ry, Ry € Vieq. Now we are left with three cases: (Case 1) two
edges of My, belong to Lg, and two belong to Lg,; (Case 2) three edges of My, belong
to Lg, and one to Lg,; (Case 3) the four edges of My, belong to Lg,. Without loss of

generality, we can describe each of those three cases as follows (see Figures 4.3, 4.4 and 4.5):

Case 1: The edges GG1 By and G3Bs belong to Ly, and the edges G3Bs and G4B, belong

to Lg,. That means that all the following four sets are non-empty:

Ji:=RinGyn By,
Jy := Ri n Gy N By,
J3 := Ry n G5 N Bs,
Jy = Ry n Gy N By.

Case 2: The edges G By, G2 By and G3B3 belong to Ly, and the edge G4By belongs to Lg,.

That means that all the following four sets are non-empty:

Ji:= Ry n Gy n By,
Jo i= R n Gy N B,
J3 := Ry n G3 N Bs,
Jy:= Ry n Gy N By.
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FIGURE 4.3. Case 1

Case 3: The edges G181, G3Bs, G3B3 and G4By belong to Lg,. That means that all the

following four sets are non-empty:

Ji:= Ry n Gy n By,
Js := Ry n Gy N By,
J3 := Ry n G3 N Bs,
Jy = Ry n Gy n By.

In this case, let Ry be any other red component different from R; and let B and G
be, respectively, a blue and a green component with Ry n B n G # &. Suppose that
G ¢ {G1,G9,G3,G4}. Then the three of the edges Gy, By, Ga, By, G5, B3 and G4, By are
not incident to GB (because B must be different of at least three of the sets By, By, Bs and
By) and those three edges together with G B may be analysed just as in Case 2. Therefore,
we may suppose that G € {G1, G2, G3,G4}. Let us say, without loss of generality, that
G = Gy. If B ¢ {By, By, B3}, then the edges G1B;, G5By and G3B3 belong to Lg,, the
edge G'B belongs to Lg, and this case may be analysed, again, just as in Case 2. Therefore,
we may assume that B € {By, By, Bs}. Let us say, without loss of generality that B = Bs.
Then let J5 be the following non-empty set:

J5 = R2 M G4 N Bg. (44)
Let us further remark that, since v(H) < 2, in each of the three cases above, we have
V(F)=R1URQUG;[UGQUGgUG4UB1UBguBguB4.

Otherwise, for any uncovered vertex v € V(F'), the hyperedge given by the red, blue and
green components containing v together with the hyperedges R;B;G; and RyB3G3 (in
Cases 1 and 2) or RyB3G4 (in Case 3) give a matching of size 3 in H.

Let us start with Case 1.

Proof in Case 1: We will prove that Ry and Ry together with possibly one further
monochromatic component cover V(F). For each i € {1,2,3,4}, let B, = B; ~ (Ry U Ry)
and éz = Gz AN (Rl U RQ)
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Pick vertices j; € .J;, with i € {1,2, 3,4}, arbitrarily. Consider a vertex o € By (if such a
vertex exists). Since o(F) = 2, there is an edge connecting two of o, js, j3. Because jp
and j3 belong to different components of each colour, such an edge must be incident to
0. So let us say that such edge is 07;, for some i € {2,3}. Since 0 ¢ Ry U Ry, the edge 0j;
cannot be red. And since o € By, 0j; cannot be blue either, otherwise we would connect
the blue components B; and B;. Now assume that o and j, are not adjacent. Then oj3 is
a green edge in F. By analogously analysing the edge between o, jo and j4 together with
the supposition that ojs is not an edge in F', we get that 0j, must be a green edge in F.
But then we have a green path j30j4 connecting js to js, a contradiction. Therefore 075 is
an edge in F and it is green. That implies that o € G. Therefore B; = Gs. Analogously,

we can conclude the following:
B € Gy, Gy C B,
Byc Gy, Gy< By,
By < Gy, G5 < By,
B, Gy, G,C Bs.

Claim 4.3. W@haveglkJélUBQUéQ:@07"33UG3UB4UG4:®.

Proof. Suppose for a contradiction that there exist o, € By UGy U By UGy and 0y €
B; UG5 U By uGy. Recall that from our choice of p, there is some z € N (41, j2, Js, Ja, 01, 02).
Two of the edges zj;,for i € {1,2,3,4}, have the same colour. Since each j; belongs to
different green and blue components, those two edges are red. Since {j;,j2} € Ry and
{73, 74} € Ro, those two red edges are either zj; and zjs or zj3 and zj,. Let us say that zj;
and zj, are red (the other case is similar). Then one of the edges zj3 and zj; has to be
green and the other blue. Now, since 0; ¢ R;, the edge zo; is either green or blue. Then
one of the paths 01273 or 01274 is green or blue. This implies that 0, € B3 u G5 U By U Gy.
On the other hand, (4.5) implies that 0, € (B; U By) n (G U G2). But then we reached a
contradiction, since that would mean that o; belongs to two different components of the

same colour. 0

We may assume without loss of generality that By U Gy U By U G4 is empty. Then,
recalling that v(#H) < 2 and in view of (4.5), the union of the components Ry, By, G and
R5 covers every vertex of F. If we show that B; < G u Ry u Ry or that Gy € By U Ry U Ry,
then we get three monochromatic components covering the vertices of F'. Our next claim

states precisely that.
Claim 4.4. We have By~ G, =& or Gi~ B, = @.

Proof. Suppose that there exist two distinct vertices b € B; ~ G; and g € Gy ~ B.
Let z € N(j1, j2, j3, ja, b, g). As before, either zj; and zjs or zj; and zj, are red edges.

First assume that zj; and zj, are red. Then one of the edges zj3 and zj; has to be green
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FIGURE 4.4. Case 2

and the other blue. Now, since b ¢ Ry, the edge zb is either green or blue. Then one of
the paths bzj3 or bzj, is green or blue. This implies that b€ Bs u G3 U By U G4. On the
other hand, (4.5) implies that b € B; n G3. Then we reached a contradiction, since that
would mean that b belongs to two different components of the same colour.

Therefore, the edges zj3 and zj4 are red and one of the edges zj; and zjs is green and
the other is blue. First let us say that zj; is green and zjs is blue. Since b ¢ (R U Ry),
the edge zb cannot be red. Also the edge zb cannot be blue otherwise the path bzjs
would connect the components B; and B,. Finally, zb cannot be green, otherwise the
path bzj; would gives us that b € G;. Therefore zj; is blue and zj5 is green. But this case
analogously leads to a contradiction (with g and G; instead of b and B; and green and
blue switched). O

We proceed to the proof of Case 2.

Proof in Case 2: As in Case 1, pick vertices j; € J;, with i € {1, 2, 3,4} arbitrarily. We claim
that V(F) € RyuRyu B, UGy Indeed, let 0 € V(F) N (R; U Rs). Notice that since a(F') =
2, there is an edge in each of the following sets of three vertices: {0, j4,71}, {0, J4, Jo},
and {0, j4,j3}. We claim that oj, is an edge of F. Indeed, if this was not the case,
then since there cannot be an edge between j, and j; for ¢+ = 1,2, 3, we would have the
edges 0j1, 0jo and oj3 and all of them would be coloured green or blue. Thus, two of
them would be coloured the same, connecting two distinct components of one colour in
this colour, a contradiction. So 0j, € F(F') and since o0j, cannot be red, we conclude
that o € (By U G4). Therefore, Ry, Ry, By and G4 cover all vertices of F.

If ByN(RiURyUGy) = @ or Gy~ (Ryu Ry U By) = &, then we get three monochromatic
components covering V(F'). So let us assume that there exist b € By \ (R U Ry U Gy)
and g € G4~ (R1 U Ryu By). If b and g are not adjacent, then since each of the sets {b, g, j;},
for i = 1,2, 3, has to induce at least one edge, there are two edges between b and {j1, jo, j3}
or two edges between g and {ji, J2, j3}. However, from the choice of b, we know that all
the edges between b and {ji, jo, j3} are green, and therefore two of such edges would give
us a green connection between two different green components, a contradiction. Similarly,

from the choice of g, we know that all the edges between b and {j1, jo, j3} are blue, and
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FIGURE 4.5. Case 3

two of such edges would give us a blue connection between two different blue components,
again a contradiction.

Hence, we conclude that bg € F for any b € By ~ (R; U Ry U G4) and any ¢ €
G4~ (Ry U Ry U By) and any such edge bg is red. Therefore, there is a red component R
covering (B4AGy) N\ (R U Ry), where ByAG, denotes the symmetric difference. If (B4 N
G4)~(R1URy) = &, then Ry, Ry and R3 cover V(F) and we are done. Therefore, suppose
there is a vertex x € (By N Gy4) ~ (R1 U Ry). If Ry \ (By u G4) = @, then Ry, By, Gy
cover V(F') and we are done. Therefore, suppose there is a vertex y € Ry~ (Byu Gy). Note
that xy ¢ E(F'), since x and y belong to different components in each of the colours. Also,
xj; ¢ E(F), for i € {1,2,3}, since otherwise two different components of the same colour
would be connected in that colour by the edge zj;. Now «(F) = 2 implies that yj; € E(F),
for i € {1,2,3} (otherwise, {z,y, j;} would be an independent set). But these edges must
all be green or blue, hence two of them are of the same colour, connecting two different
components of one colour in that colour, a contradiction.

We arrived at the last case, Case 3.

Proof in Case 3: Similarly to the previous cases, let us pick vertices j; € J;, with i €
{1,2,3,4,5} arbitrarily. We will show first that we can cover all vertices of F with 4
monochromatic components. Let 01,00 € V(F)\(R1uB3UGy) and let z € N (j1, jo, js, 01, 02, J5)-
At least one of the edges zji, 272 and zj3 is red, as otherwise we would connect two distinct
components of one colour in that colour. Therefore z € R;. Since 01,09, j5 ¢ Ri, the
edges 201, z0o and z7j5 cannot be red. Furthermore, 0,z and 0,z are coloured with a colour
different from the colour of the edge jsz, as otherwise they would belong to Bz or Gjy.
Thus, 0; and o0y are connected by a monochromatic path in green or blue. Hence, we
showed that any two vertices of V(F') \ (R; u B3 U G4) are connected by a monochro-
matic path in green or blue. We infer that there is a green or blue component cov-
ering V(F) ~ (R v B3 U Gy). Therefore, Ry, Bs, G4 and one further blue or green
component C' cover all vertices of G. Let us assume that C'is a green component; the case
where C' is a blue component is analogous.

We claim that Ry U B3 u C, or Ry u Gy U C, or Ry U B3 u Gy covers V(F). Indeed,

suppose for the sake of contradiction that there exist vertices g € G4~ (Ry u B3 u C), be
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B3~ (RiuG uC)and ce C~ (RyuB3zuGy). Let z € N(ji, jo, J3, g, b, ¢) and note that
one of zji1, zjs and zj3 is red. Consequently gz, cz and bz are not red. Notice, however,
that gz and bz can not be both green and neither both blue. Now let us say cz is green.
Since ¢ ¢ G4 and g € G4, we would have gz blue in this case. But then bz must be green
and since ¢ € C and C' is a green component, we have b € C, which is a contradiction.
Therefore ¢z must be blue. Then, since ¢ ¢ By and b € Bs, the edge bz should be green.
Thus the edge gz is blue. Since this argument holds for any g € G4 ~\ (R; u B3 u C)
and ¢ € C' \ (R u By u Gy), we conclude that V(F) ~ (R; u Bs) can be covered by one
blue tree. Hence, G' can be covered by the three monochromatic trees. This finishes the

last case and thereby the proof of Lemma 4.2. 0
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