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Abstract

Sidorenko’s conjecture states that the number of copies of a bipartite graph H in a graph G
is asymptotically minimised when G is a quasirandom graph. A notorious example where this
conjecture remains open is when H = K5,5 \ C10. It was even unknown whether this graph
possesses the strictly stronger, weakly norming property.

We take a step towards understanding the graph K5,5 \ C10 by proving that it is not weakly
norming. More generally, we show that ‘twisted’ blow-ups of cycles, which include K5,5 \ C10

and C6�K2, are not weakly norming. This answers two questions of Hatami. The method relies
on the analysis of Hessian matrices defined by graph homomorphisms, by using the equivalence
between the (weakly) norming property and convexity of graph homomorphism densities. We
also prove that Kt,t minus a perfect matching, proven to be weakly norming by Lovász, is not
norming for every t > 3.

1 Introduction

In extremal combinatorics, quantifying quasirandomness by using a suitable norm has been an
extremely useful strategy. For instance, the main idea in the proof of the celebrated Szemerédi
regularity lemma is to use an L2-norm increment, the Gowers norms play a central role in additive
combinatorics, and the cut-norm is the key concept in the theory of dense graph limits [15].

It is a natural question to ask what norms can be defined on the space of two-variable real
symmetric functions on [0, 1]2, which appear to be the limit objects of sequences of (weighted) large
graphs. To formalise, a graphon (resp. signed graphon) W is a two-variable symmetric measurable
function from [0, 1]2 to [0, 1] (resp. [−1, 1]). We consider the vector space W of two-variable
symmetric bounded measurable functions on [0, 1]2, which contains the set of (signed) graphons as
a convex subset. Given a graph H and W ∈ W , the homomorphism density of H is defined by the
functional

tH(W ) =

∫ ∏
ij∈E(H)

W (xi, xj)dµ
v(H),

where µ is the Lebesgue measure on [0, 1].
Let ‖W‖H := |tH(W )|1/e(H) and let ‖W‖r(H) := tH(|W |)1/e(H). We then say that a graph H is

(semi-)norming if ‖·‖H defines a (semi-)norm on W , and weakly norming if ‖·‖r(H) is a norm on W .
With this notation, we now state the following central question in the area, asked by Lovász [13]
and Hatami [9]:
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Question 1.1 ([13], Problem 24). What graphs H are (weakly) norming?

A moment’s thought will prove the fact that a weakly norming graph H must be biparitite
and that, as the name suggests, every (semi-)norming graph is weakly norming. The particular
example ‖·‖C2k

, where C2k is the even cycle of length 2k, is already interesting, as it corresponds to
the Schatten–von Neumann norms in operator theory.

Perhaps one of the most important applications of weakly norming graphs is to Sidorenko’s
conjecture, a major open problem in extremal graph theory also proposed by Erdős and Simonovits [7]
in a slightly different form.

Conjecture 1.2 (Sidorenko’s conjecture [17]). Let H be a bipartite graph and let W be a graphon.
Then

tH(W ) ≥ tK2(W )e(H). (1)

If a graph H satisfies (1) for every graphon W , then we say that H is Sidorenko. Szegedy
observed1 that every weakly norming graph is Sidorenko. Moreover, Conlon and the first author [4]
proved that weakly norming graphs can be used as ‘building blocks’ to construct a Sidorenko graph.
On the other hand, there are Sidorenko graphs that are verified to be not weakly norming. For
instance, a bipartite graph that has a vertex adjacent to all the vertices on the other side, proven
to be Sidorenko by Conlon, Fox, and Sudakov [2], is not weakly norming unless it is a complete
bipartite graph. Moreover, Král’, Martins, Pach, and Wrochna [11] recently proved that there exists
an edge-transitive Sidorenko graph that is not weakly norming.

Although the weakly norming property is strictly stronger than being Sidorenko, partial answers
to Question 1.1 have also made significant progress towards Sidorenko’s conjecture. Hatami [9],
who firstly studied Question 1.1, showed that even cycles C2k are norming, and complete bipartite
graphs Km,n and hypercubes Qd are weakly norming. Lovász [14] later proved that Kn,n minus a
perfect matching is weakly norming. Before their work, Qd and Kn,n minus a perfect matching were
unknown to be Sidorenko. Recently, Conlon and the first author [4] obtained a much larger class of
weakly norming graphs, which also added many new examples to the class of Sidorenko graphs that
played a crucial rôle in their subsequent work [5].

Despite a fair amount of recent progress [2, 3, 4, 5, 9, 10, 12, 18], Sidorenko’s conjecture remains
open. In particular, none of the partial results succeeded in determining whether the notorious
Möbius ladder graph K5,5 \ C10, suggested by Sidorenko [16, 17], is Sidorenko or not, although
Conlon and the first author [5] proved that its ‘square’ is Sidorenko. We make some progress in
understanding this mysterious graph, by proving that it is not weakly norming.

Theorem 1.3. The Möbius ladder graph K5,5 \ C10 is not weakly norming.

For a graph H, let H./ be the graph obtained by blowing up every vertex v of H by an
edge v1v2 and putting two edges u2v1 and u1v2 between each pair of blown-up edges u1u2 and v1v2

whenever uv ∈ E(H). The resulting graph H./ is always a bipartite graph whose bipartite adjacency
matrix is the (symmetric) adjacency matrix of H plus the identity. This blow-up was considered
by Kim, Lee, and the first author [10]. They observed (see Figure 1) that C./5 is isomorphic to the
Möbius ladder and, if H is bipartite, H./ is isomorphic to H�K2, where � denotes the Cartesian
product of graphs. In particular, C./4 is the 3-cube graph, proven to be weakly norming by Hatami.
We prove a more general result that implies Theorem 1.3.

Theorem 1.4. For every k > 4, C./k is not weakly norming.
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Figure 1: C./5 (the Möbius ladder) and C./6 .

In [9], Hatami asked whether two particular graphs, the Möbius strip and C2k�K2, are weakly
norming. Theorem 1.4 hence answers both questions at once. We remark that every C./2k is known to
be Sidorenko by [10], but except the case C./3

∼= K3,3 it is still an open question whether every C./2k+1

is Sidorenko or not.

Our proof relies on determining an equivalent condition of the (weakly) norming property. A
function f defined on the set of graphons is a (signed-)graphon parameter if f(W ) = f(W ′) for
(signed) graphons W and W ′ for which there exists a measure-preserving bijection ϕ : [0, 1]→ [0, 1]
satisfying W (ϕ(x), ϕ(y)) = W ′(x, y). In particular, tH(W ) is always a graphon parameter for any
graph H.

Theorem 1.5. Let H be a graph. Then

(i) H is weakly norming if and only if tH(·) is a convex graphon parameter.

(ii) H is norming if and only if tH(·) is a strictly convex signed graphon parameter.

By using Theorem 1.5(ii), we also prove that Kt,t minus a perfect matching, proven to be weakly
norming by Lovász, is not norming if t > 3.

Theorem 1.6. For every t > 3, Kt,t minus a perfect matching is not norming.

As observed by Hatami [9, Observation 2.5(ii)], every norming graph must be eulerian, i.e., every
vertex has even degree. Thus, we only prove Theorem 1.6 for odd integers t, which gives the first
examples of weakly norming graphs that are eulerian but not norming.

2 Preliminaries

Given an n× n symmetric matrix A = (aij), let UA be the two-variable symmetric step function
on [0, 1]2 defined by

UA(x, y) = aij , if (i− 1)/n ≤ x < i/n and (j − 1)/n ≤ y < j/n

and UA = 0 on the measure-zero set x = 1 or y = 1 for simplicity. Trivially, A 7→ UA is a linear
map and UA satisfies the identity

tH(UA) = n−v(H)
∑

φ:V (H)→[n]

∏
uv∈E(H)

aφ(u)φ(v).

1It appeared in [9].
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In other words, tH(UA) is n−v(H) times a homogeneous
(
n+1

2

)
-variable polynomial of degree e(H).

We call the polynomial PH,n(A) for A ∈ Symn, where Symn denotes the
(
n+1

2

)
-dimensional vector

space of n× n real symmetric matrices.

The cut norm ‖·‖� on W is defined by

‖W‖� := sup
S,T⊆[0,1]

∣∣∣∣∫
S×T

W (x, y)dxdy

∣∣∣∣ .
Then the corresponding counting lemma is stated as follows:

Lemma 2.1 ([14], Exercise 10.28). Let U and W be signed graphons and let H be a graph. Then

|tH(U)− tH(W )| ≤ 4e(H) ‖U −W‖� .

The following lemma, which connects a (signed) graphon W to a step function of the form UA,
is an easy consequence of the fact ‖W‖� ≤ ‖W‖1 and the dominated convergence theorem.

Lemma 2.2. Let W be a signed graphon. For every ε > 0, there exists a symmetric matrix A such
that ‖W − UA‖� < ε.

To prove Theorem 1.5(ii), we shall use some facts about norming graphs, appeared in [14].

Lemma 2.3 ([14], Exercise 14.8). Let H be a norming graph. Then tH(W ) is always positive for a
nonzero signed graphon W . In particular, e(H) is even, since tH(−W ) = (−1)e(H)tH(W ).

We follow the standard notion of convexity and related definitions. A convex set is a subset C of
a vector space such that λx+ (1− λ)y ∈ C whenver x, y ∈ C and λ ∈ (0, 1). A function f : C → R
is said to be convex if, for each 0 < λ < 1,

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

We say that a function f is strictly convex if the inequality above is strict whenever x and y are
distinct. We shall use a simple fact about convexity repeatedly in what follows:

Lemma 2.4. Let U be a convex subset of a vector space and let f be a convex nonnegative function
on U . If g : R≥0 → R is an increasing convex function, then g ◦ f is also convex.

Proof. Let u, v ∈ U . Then for each λ ∈ (0, 1).

g(f(λu+ (1− λ)v)) ≤ g(λf(u) + (1− λ)f(v)) ≤ λg(f(u)) + (1− λ)g(f(v)),

where the first inequality uses convexity of f and monotonicity of g and the second uses convexity
of g.

For a real-valued function f(x1, · · · , xn) that is twice differentiable on an open set U ⊆ Rn, the

Hessian of f , denoted by ∇2f , is the n × n matrix H = (hij), where hij = ∂2f
∂xi∂xj

. We will only

consider polynomials f , so its Hessian ∇2f is always a symmetric matrix with polynomial-valued
entries. Standard results in convex analysis, e.g., Section 3.1.4 in [1], imply the following equivalence.

Lemma 2.5. Every n-variable polynomial P is convex on a convex set C ⊆ Rn if and only if its
Hessian ∇2P is positive semidefinite on the interior of C.
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We also recall a basic fact in functional analysis.

Lemma 2.6. Let f be a nonnegative convex function on a vector space V such that f(x) = 0 if and
only if x = 0, and f(λx) = |λ|f(x). If B := {x ∈ V : f(x) ≤ 1} is convex, then f defines a norm
on V .

Proof. It is enough to prove the triangle inequality f(x+ y) ≤ f(x) + f(y). For nonzero x and y,

both x1 := x/f(x) and y1 := y/f(y) lie in the convex set B. Set λ = f(x)
f(x)+f(y) . Then by convexity,

λx1 + (1− λ)y1 ∈ B, and thus,

f

(
x+ y

f(x) + f(y)

)
= f(λx1 + (1− λ)y1) ≤ 1.

This proves subadditivity of f .

3 Convexity and weakly norming graphs

Theorem 1.5(i) is a consequence of the following equivalence.

Theorem 3.1. Let H be a graph. Then the following are equivalent:

(i) H is weakly norming.

(ii) tH(·) is a convex graphon parameter.

(iii) PH,n(·) is a convex polynomial on the positive orthant for every n ∈ N.

Proof. (i)⇒ (ii). If ‖·‖r(H) is convex, then by Lemma 2.4, tH(W ) = ‖W‖e(H)
r(H) is also convex on the

set of graphons.

(ii)⇒(i). Convexity of tH(·) for graphons naturally extends to all U,W ∈ W with nonnegative values.
Thus, for all U,W ∈ W and λ ∈ (0, 1),

tH(|λW + (1− λ)U |) ≤ tH(λ|W |+ (1− λ)|U |) ≤ λtH(|W |) + (1− λ)tH(|U |).

Indeed, 0 ≤W ′ ≤W pointwise implies 0 ≤ tH(W ′) ≤ tH(W ), which gives the first inequality, and
the second follows from convexity of tH(·). Therefore, the set

B := {W ∈ W : tH(|W |) ≤ 1} = {W ∈ W : tH(|W |)1/e(H) ≤ 1}

is convex. Lemma 2.6 now proves the triangle inequality for ‖·‖r(H).

(ii)⇒(iii). Let A = (aij) and B = (bij) be two n× n symmetric matrices with positive entries. We
may assume that max aij ≤ 1 and max bij ≤ 1. Then convexity of PH,n immediately follows from
linearity of the map A 7→ UA and convexity of tH(·) for graphons.

(iii)⇒(ii). Let W1 and W2 be two graphons. By Lemma 2.2, there exist n× n symmetric matrices
A1,n and A2,n such that

∥∥Wi − UAi,n
∥∥
�
→ 0 as n→∞ for each i = 1, 2. Convexity of PH,n gives

tH(λUA1,n + (1− λ)UA2,n) ≤ λtH(UA1,n) + (1− λ)tH(UA2,n).

Letting n→∞ finishes the proof, as tH(Wn)→ tH(W ) if ‖Wn −W‖� → 0 by Lemma 2.1.

5



Remark. After proving the statement, we found that the equivalence between (i) and (ii) in fact
implicitly appeared in Doležal et al. [6] by a different approach using weak∗ limits. We include our
shorter proof for the sake of completeness.

In particular, (iii) enables a computational way of verifying weakly norming property, by using
Lemma 2.5.

Corollary 3.2. A graph H is weakly norming if and only if the Hessian ∇2PH,n(A) is positive
semidefinite for every A ∈ Symn with positive entries and n ∈ N.

To prove Theorem 1.4, we need some auxiliary facts about C./k . For a vertex subset X ⊆ V (H),
let N∗(X) := N(X) \X, where N(X) denotes the union of all neighbours of x ∈ X.

Lemma 3.3. Let H = C./k for k > 4. Then

(i) there is an edge e in H such that N∗(e) induces exactly one edge, i.e., e is contained in exactly
one 4-cycle, and

(ii) if X spans exactly two edges, then N∗(X) contains an edge.

Note that C./3
∼= K3,3 and C./4

∼= Q3 violate (i). We omit the proof, as it is seen by a
straightforward case analysis.

Proof of Theorem 1.4. Let H be the graph C./k . Since ∇2PH,n(A) is a matrix with polynomial
entries, its positive semidefiniteness for A ∈ Symn with positive entries extends to those A ∈ Symn

with nonnegative entries. We analyse a 2× 2 submatrix of the Hessian ∇2PH,3(A), where

A =

 1 1 0
1 0 1
0 1 0

 ,
with respect to the two variables a13 and a33. Namely, we write h(x, y) := PH,3(Ax,y), where

Ax,y :=

 1 1 y
1 0 1
y 1 x

 ,
and claim that ∇2h(x, y) is not positive semidefinite at x = y = 0.

We may decompose h into h(x, y) = q(x, y) + `(x, y) + r(y), where q(x, y) is the sum of all
monomials with x-degree at least two, `(x, y) is the sum of all monomials with x-degree one, and r(y)
is the rest only depending on y. Then the Hessian ∇2h(0, 0) is the matrix[

qxx(0, 0) `xy(0, 0)
`xy(0, 0) ryy(0)

]
and we claim that qxx(0, 0) = 0 and that `xy(0, 0) > 0. We regard Ax,y as a looped, simple, and
edge-weighted graph on {1, 2, 3} with the weight aij for each edge ij. Then q(x, y) counts the weight
on the homomorphisms from H to Ax,y that use the x-edge at least twice.

If a homomorphism uses the x-edge more than twice, then the corresponding monomial is divisible
by x3 and vanishes in qxx(0, 0). Thus, to compute qxx(0, 0), we only count those H-homomorphisms
which use the x-edge exactly twice. Suppose that e1, e2 ∈ E(H) is mapped to the vertex 3 with the
looped x-edge. If a vertex in N∗(e1 ∪ e2) is mapped to the vertex 1, the homomorphism uses y-edge
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and the corresponding monomial vanishes in qxx(0, 0). Otherwise if all the vertices in N∗(e1∪e2) are
mapped to the vertex 2, an edge contained in N∗(e1 ∪ e2), which exists by Lemma 3.3(ii), receives
the loop weight 0. Thus, qxx(0, 0) = 0.

It remains to prove `xy(0, 0) > 0. By Lemma 3.3(i), there is an edge e contained in at most
one 4-cycle. Let e′ = uv be the edge disjoint from e in the 4-cycle that contains e. Consider the
homomorphism that maps an edge e to the x-edge, i.e., both ends of e to 3, exactly one end u of e′

to 1, all vertices in N∗(e) \ {u} to 2, and the other vertices to 1. Since N∗(e) \ {u} is an independent
set by the uniqueness of the 4-cycle containing e, this is a homomorphism that uses both x- and
y-edge exactly once. Thus, the corresponding monomial is xy, which proves that `xy(0, 0) ≥ 1.

4 Strict convexity and norming graphs

Theorem 1.5(ii) follows from a result analogous to Theorem 3.1.

Theorem 4.1. Let H be a graph. Then the following are equivalent:

(i) H is norming.

(ii) tH(·) is a strictly convex parameter for signed graphons.

(iii) PH,n(·) is a strictly convex polynomial on Symn for every n ∈ N.

(iv) PH,n(·)1/e(H) is a norm on Symn.

Proof. (i)⇒(ii). Let U,W ∈ W. Hatami proved the following inequality (see (34) in [9]):

tH(U +W ) + tH(U −W ) ≤ 2e(H)−1(tH(U) + tH(W )).

Since H is norming, tH(U −W ) > 0 unless U = W almost everywhere by Lemma 2.3. This implies
strict convexity of tH(·).

(ii)⇒(iii). This immediately follows from the linearity of the map A 7→ UA.

(iii)⇒(iv). If e(H) is odd, then PH,n(A) + PH,n(−A) = 0 for every A ∈ Symn, which contradicts
strict convexity. Thus, e(H) is even. Again by strict convexity, 2PH,n(A) = PH,n(A)+PH,n(−A) > 0
whenever A 6= 0. Hence, PH,n(A)1/e(H) is well-defined and positive for every nonzero A. Furthermore,
PH,n(λA)1/e(H) = |λ|PH,n(A)1/e(H). Since

B := {A ∈ Symn : PH,n(A) ≤ 1} = {A ∈ Symn : PH,n(A)1/e(H) ≤ 1}

is a convex set, we may apply Lemma 2.6 and conclude that PH,n(A) is a norm on Symn.

(iv)⇒(i). The proof is the same as the part (iii)⇒(ii) of Theorem 3.1.

Indeed, positive definiteness of the Hessian implies strict convexity of a polynomial, but the
converse is not true in general. Thus, the naive analogue of Corollary 3.2 obtained by replacing
weakly norming and positive semidefinite by norming and positive definite, respectively, does not hold.
One might still hope to prove that a graph H is norming by showing that the Hessian ∇2PH,n(A)
is positive definite at each nonzero A ∈ Symn, using the one-sided implication. However, we show
that this is impossible by proving that every norming graph has a singular Hessian ∇2PH,n(A) at
some A 6= 0 whenever n is even.

Proposition 4.2. For every n, There exists a nonzero 2n × 2n symmetric matrix A such that
∇2PH,2n(A) is singular for every norming graph H.
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Proof. Let A =

[
Jn −Jn
−Jn Jn

]
, where Jn denotes the n× n matrix with all entries equal to 1. We

claim that ∇2PH,2n(A) has eigenvalue 0 with the eigenvector 1n = (1, 1, · · · , 1)T ∈ Rn(2n+1). Recall
the folklore fact [14, Example 5.14] that tF (UA) is the indicator function that F is eulerian. In
particular, H is eulerian and e(H) is even. Thus,

tH(UA − ε) + tH(UA + ε) = 2tH(UA) + 2
∑
J

tJ(UA)εe(H)−e(J) = 2 + 2ε2
∑
F

tF (UA) +O(ε4),

where the first sum is taken over all proper subgraphs J of H with even number of edges and
the second is taken over all subgraphs F ⊆ H with e(F ) = e(H) − 2. Since one always obtains
a non-eulerian subgraph F by deleting two edges from an eulerian graph H, tF (UA) = 0. Thus,
tH(UA − ε) + tH(UA + ε) = 2 +O(ε4). On the other hand, by the Taylor expansions of PH,2n at A,

PH,2n(A+ εJ2n) + PH,2n(A− εJ2n) = PH,2n(A) + 2ε21Tn∇2PH,2n(A)1n +O(ε3).

Since PH,2n(A + εJ2n) + PH,2n(A − εJ2n) = (2n)v(H)(tH(UA − ε) + tH(UA + ε)), it follows that
1Tn∇2PH,2n(A)1n = 0. Since ∇2PH,2n(A) is positive semidefinite, ∇2PH,2n(A)1n must be zero. This
completes the proof of the claim.

As already used in the last line of the proof, we are only able to obtain a weaker analogue of
Corollary 3.2.

Corollary 4.3. For a norming graph H, ∇2PH,n(A) is positive semidefinite for every A ∈ Symn.

It is still enough to find A ∈ Symn such that ∇2PH,n(A) is not positive semidefinite to prove
that H is not norming. This is exactly what we do in the proof of Theorem 1.6.

Proof of Theorem 1.6. Let Ht be the graph K2t+1,2t+1 \ (2t + 1) ·K2. As mentioned before, it is
enough to prove that Ht is not norming, as K2t,2t minus a perfect matching is not eulerian and thus
not norming. Let

A =

 x y ε
y 1 1
ε 1 −1


and let h(x, y) := PH,3(A). Here we suppress the dependency on 0 < ε < 1, since ε is a small
constant to be chosen later. We analyse the 2× 2 Hessian matrix ∇2h at (0, 0). As in the proof of
Theorem 1.4, we decompose h(x, y) into three parts, i.e.,

h(x, y) = q(x, y) + `(x, y) + r(y),

where q(x, y) is the sum of monomials divisible by x2, ` is the sum of monomials whose x-degree
is 1, and r is the remaining terms. Then the Hessian ∇2h(0, 0) is the matrix[

qxx(0, 0) `xy(0, 0)
`xy(0, 0) ryy(0)

]
.

We regard A as a looped, simple, and edge-weighted graph on {1, 2, 3} with the weight aij for each
edge ij. For the same reason as in the proof of Theorem 1.4, qxx(0, 0) is equal to the number of
homomorphisms that use the x-edge exactly twice without using the y-edge. Such a homomorphism φ
maps at least three vertices V1 in Ht that induce exactly two edges to the vertex 1 and never maps
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their neighbour to the vertex 2. Thus, N∗(V1) must be embedded to the vertex 3. Since Ht is
2t-regular and V1 contains exactly two edges, e(V1, N

∗(V1)) ≥ 6t− 4 and thus, φ uses the ε-edge at
least 6t− 4 times.

Analogously, `xy(0, 0) counts the number of homomorphisms that use both the x- and y-edges
exactly once and hence, use the ε-edge at least 4t− 3 times. The homomorphisms using the y-edge
exactly twice and avoiding the x-edge must use ε-edge at least 2t− 2 times. Therefore,

∇2h(0, 0) =

[
qxx(0, 0) `xy(0, 0)
`xy(0, 0) ryy(0)

]
=

[
O(ε6t−4) O(ε4t−3)
O(ε4t−3) O(ε2t−2)

]
.

Here O(·) notation includes implicit multiplicative constants depending only on t.
Unfortunately, the product of the diagonal entries and the product of the off-diagonal entries are

in the same order O(ε8t−6). However, we claim that ryy(0) is asymptotically smaller than O(ε2t−2)
and also that |`xy(0, 0)| = Ω(ε4t−3), which implies that ∇2h(0, 0) is not positive semidefinite for a
sufficiently small ε > 0.

Let A ∪ B be the bipartition of Ht and let A = {a1, · · · , a2t+1} and B = {b1, · · · , b2t+1} such
that aibi, 1 ≤ i ≤ 2t + 1, is the missing perfect matching in Ht. Firstly, let Φyy be the set of
homomorphisms that use the y-edge twice and the ε-edge exactly 2t − 2 times while avoiding
the x-edge. Each ϕ ∈ Φyy must map one vertex, say a1, to 1, two neighbours of a1 to 2, and the
other 2t− 2 neighbours of a1 to 3. That is, once we choose the vertex a1 and two of its neighbours
to be mapped to 2, all the embeddings of the neighbours of a1 are fixed. Consider these vertices as
pre-embedded. Let V3 be the set of 2t− 2 vertices mapped to 3 and let U be the vertices that are
not yet embedded. Then U = {a2, · · · , a2t+1} ∪ {b1}. In particular, U induces a star centred at b1
with 2t edges. Also note that by the definition of Φyy, the homomorphisms in Φyy do not map any
other vertex than a1 to 1. For each ϕ ∈ Φyy, denote by Uϕ the subset of U mapped to the vertex 3.
Then the coefficient of the term ε2t−2y2 in r(y) is determined by∑

ϕ∈Φyy

(−1)e(V3,Uϕ)+e(V3)+e(Uϕ). (2)

Suppose b1 ∈ Uϕ. For each ϕ, let bi and bj , i < j, be the two vertices mapped to the vertex 2.
Then both ai and aj have all their 2t− 1 other neighbours than bi and bj mapped to 3. Thus, by
switching the image of ai under ϕ between 2 and 3, we produce another homomorphism ϕ whose
weight (−1)e(V3,Uϕ)+e(V3)+e(Uϕ) has exactly the opposite sign of that of ϕ. This switching is an
involution, and thus, the two terms pair up and cancel each other in (2). If b1 /∈ Uϕ, then one may
do an analogous switching with the minimum indexed vertex amongst a2, · · · , a2t+1 that has an
odd degree to those vertices mapped to 3. Thus, (2) evaluates to zero.

To prove |`xy(0, 0)| = Ω(ε4t−3), let Ψxy be the set of homomorphisms that use each of the x-
and y-edge exactly once. Suppose that, under ψ ∈ Ψxy, ai and bj , i, j > 1 and i 6= j, are mapped
to 1 and bk, i 6= k > 1, is mapped to 2. To avoid using the y-edge more than once, ψ must map
(B \ {bi, bj , bk}) ∪ (A \ {ai, aj}) to the vertex 3. Thus, there are only two vertices aj and bi whose
embedding is not yet determined. Note that aj and bi have 2t− 2 and 2t− 1 neighbours mapped
to 3, respectively, and they are adjacent. Let αψ and βψ be the indicator function that aj and bi
are mapped to 3 by ψ, respectively. Then the coefficient of the term ε4t−3xy in `(x, y) is a nonzero
constant times ∑

ψ∈Ψxy

(−1)(2t−2)αψ+(2t−1)βψ+αψβψ =
∑
ψ∈Ψxy

(−1)βψ+αψβψ .
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Since each choice (αψ, βψ) ∈ {0, 1}2 determines a homomorphism ψ ∈ Ψxy, (αψ, βψ) is uniformly
distributed on {0, 1}2. Hence, the sum above evaluates to a nonzero constant, which proves the
claim.

5 Concluding remarks

Our method using the Hessian matrix ∇2PH,n is reminiscent of [11] in the sense that both rely on
determining positive semidefiniteness of matrices given by homomorphism counts. More precisely,
in [11] they looked at two edges e and e′ in a graph G sharing a vertex and used non-positive
semidefiniteness of the 2× 2 matrix

Ae,e′ =

[
he,e he,e′

he,e′ he′,e′

]
,

where he1,e2 counts the number of those homomorphisms from H to G which map a K1,2 in H to the
homomorphic copy of K1,2’s formed by e1 and e2, to prove that a certain H is not weakly norming.

This is somewhat analogous to the Hessian matrix obtained by evaluating the corresponding
weights of e and e′ to be zero. However, the Hessian does not take the particular K1,2-structure
into account, so it has larger entries than Ae,e′ above. We did not attempt to reprove their result
using our language, but we remark that there are non-weakly norming graphs that satisfy their
positive semidefiniteness condition. For instance, take a vertex-disjoint union of two non-isomorphic
connected weakly norming graphs. This is proven to be not weakly norming in [8], but the
corresponding 2× 2 matrix in [11] is positive semidefinite, since it is a positive linear combination of
the respective matrices of the components. It would be interesting to see if the two distinct positive
semidefiniteness conditions are equivalent for connected graphs H.
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