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Abstract

We present alternative proofs of density versions of some combinatorial par-
tition theorems originally obtained by E. Szemerédi, H. Furstenberg and
Y. Katznelson. The proofs presented here are based on an extension of the
Regularity Method from graphs to k-uniform hypergraphs.

Szemerédi’s Regularity Lemma for graphs asserts that every graph can
be decomposed into relatively few random-like subgraphs. This random-like
behavior enables one to find and enumerate subgraphs of a given isomor-
phism type. This observation is called Counting Lemma. The interplay of
Szemerédi’s Regularity Lemma and the Counting Lemma, referred to as the
Regularity Method for graphs, has many applications in the area of extremal
graph theory.

Recently, V. Rödl and J. Skokan (based on earlier work of P. Frankl
and V. Rödl) generalized Szemerédi’s Regularity Lemma from graphs to
k-uniform hypergraphs for arbitrary k ≥ 2. In the main part of this disser-
tation we prove a Counting Lemma accompanying the Rödl–Skokan Hyper-
graph Regularity Lemma. Both lemmas together establish a generalization
of the Regularity Method from graphs to k-uniform hypergraphs.

A similar extension of the Regularity Method was independently and
alternatively obtained by W. T. Gowers. His results can also be used to
derive alternative proofs of the density theorems mentioned above.
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A dissertation submitted to the Faculty of the Graduate School
of Emory University in partial fulfillment

of the requirements of the degree of
Doctor of Philosophy

Department of Mathematics and Computer Science

2004



Acknowledgments

First and foremost I would like to express my deep gratitude to my
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Chapter 1

Preface

In 1975 Szemerédi [54] confirmed a long standing conjecture of Erdős and

Turán [13] concerning the upper density of sets containing no arithmetic pro-

gression of fixed finite length. More precisely Szemerédi showed the following

celebrated density theorem.

Theorem 1.1 (Szemerédi’s Density Theorem). For every positive integer t

and every positive real δ, there exist an integer N0 = N0(t, δ) such that for

N ≥ N0 any subset Z ⊆ {1, . . . , N} with |Z| ≥ δN contains an arithmetic

progression of length t.

Shortly after Szemerédi’s combinatorial proof appeared, in 1977 Fursten-

berg [20] gave an alternative proof of Theorem 1.1 based on ergodic the-

ory. Refining the techniques of that proof Furstenberg and Katznelson were

later able to derive several other density versions of combinatorial parti-

tion theorems. The following, which can be viewed as a density version

of Gallai–Witt’s theorem, is one of them. We denote by [−N ;N ] the set

{−N,−N + 1, . . . , N}.

Theorem 1.2 (Furstenberg & Katznelson [21]). Let T be a finite subset

of Rd, and let δ > 0. Then there exists a finite subset C of Rd such that any

subset Z ⊂ C with |Z| > δ|C| contains a homothetic copy of T , i.e., a set of

the form z + λT for some z ∈ Rd and some positive real λ.
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Moreover, if T ⊂ [−t; t]d for some positive integer t, then C = [−N ;N ]d

has the above property for every sufficiently large N ≥ N0(t, d, δ).

Note that the special case of Theorem 1.2 for d = 1 implies Theorem 1.1.

More generally, for a fixed d, the special case of the above result allows us to

find a homothetic copy of a full-dimensional cube [−t; t]d in a dense subset of

a sufficiently large cube [−N ;N ]d. Two other results in a similar vein, also

due to Furstenberg and Katznelson, address the complementary case when

the dimension is allowed to grow.

Theorem 1.3 (Furstenberg & Katznelson [22]). Let Fq be the finite field

with q elements. Then for every positive integer d and every δ > 0, there

exists M0 = M0(q, d, δ) such that, for M ≥ M0, any subset Z ⊂ FM
q with

|Z| > δ|FM
q | = δqM contains a d-dimensional affine subspace.

Theorem 1.4 (Furstenberg & Katznelson [22]). Let G be a finite abelian

group, and let δ > 0. Then there exists M0 = M0(G, δ) such that if M ≥M0

and Z is a subset of GM with |Z| > δ|G|M , then Z contains a coset of a

subgroup of GM isomorphic to G.

The techniques introduced by Furstenberg and Katznelson have been ex-

tended to prove other generalizations of Theorem 1.1–1.4, among which are a

density version of the Hales–Jewett Theorem [27], again due to Furstenberg

and Katznelson [23], and polynomial extensions of Szemerédi’s Theorem, due

to Bergelson and Leibman [3] and Bergelson and McCutcheon [4].

Another area of investigation concerns estimates on N0 and M0 in Theo-

rem 1.1–1.4. Szemerédi’s original proof of Theorem 1.1 used the Regularity

Lemma for graphs [55], Theorem 2.1, which forces (see [25]) the upper bound

on N0 = N0(t, δ) to be bigger than a tower-type function where the height

of the tower is given by a polynomial in 1/δ. (The proof also used van der

Waerden’s Theorem [56] which at that time, before Shelah’s proof in [50],
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was not known to be primitive recursive.) Gowers gave an alternative proof

of Theorem 1.1 in [26] which significantly improved the upper bound on N0.

He proved that

N0 = exp
(
exp

(
(1/δ)22t+9

))
suffices. The proofs by Furstenberg and Katznelson of Theorem 1.1–1.4 and

its generalizations rely on ergodic theory and do not yield any upper bounds

on N0 and M0.

In this dissertation we present new proofs of Theorem 1.2–1.4 (conse-

quently we prove Theorem 1.1, as well). The proofs presented here are

purely combinatorial and based on an extension of the Regularity Method

from graphs to k-uniform hypergraphs. They can be used to give the first

quantitaive bounds on N0 and M0. We make no attempt, however, to give

any bounds.

We also want to mention that in [24] Gowers also developed independently

similar techniques, which also allow quantitative proofs of Theorem 1.2–1.4.

Organization of this dissertation. This dissertation splits into two parts.

In Part I we focus on the Regularity Method for k-uniform hypergraphs.

Roughly speaking, the aforementioned Regularity Lemma for graphs (or 2-

uniform hypergraphs) of Szemerédi, Theorem 2.1, asserts that every graph

can be decomposed into relatively few random-like subgraphs. The Counting

Lemma, Fact 2.2, then states that this random-like behavior enables one to

find and enumerate subgraphs of fixed size. The interplay of Szemerédi’s

Regularity Lemma and the Counting Lemma, referred to as the Regularity

Method for graphs, has many applications in the area of extremal graph the-

ory. In [48] Rödl and Skokan (based on the work of Frankl and Rödl [16])

generalized Szemerédi’s Regularity Lemma from graphs to k-uniform hyper-

graphs for arbitrary k ≥ 2 (see Theorem 4.11 in Section 4.2).

The main objective of Part I of this dissertation is to prove a Count-
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ing Lemma accompanying the Rödl–Skokan Hypergraph Regularity Lemma.

We defer the precise statement of the Counting Lemma, Theorem 3.6, to

Section 3.3.

In Part II we focus on applications of the Rödl–Skokan Hypergraph Reg-

ularity Lemma and the Counting Lemma derived in Part I. In particular we

present a proof of the following extremal hypergraph result.

Theorem 1.5. For all fixed integers ` ≥ k ≥ 2 and every positive real ε

there exist a positive real δ = δ(`, k, ε) and some integer n0 = n0(`, k, ε) so

that the following holds.

Suppose F (k) is a fixed k-uniform hypergraph on ` vertices and H(k) is a

k-uniform hypergraph on n ≥ n0 vertices. If H(k) contains at most δn` copies

of F (k), then one can delete εnk edges of H(k) to make it F (k)-free.

Theorem 1.5 was first conjectured by Erdős, Frankl and Rödl [12] (see

also [16] for similar problems) and it then was essentially proved by Rödl and

Skokan in [46] based on the Hypergraph Regularity Lemma and the Counting

Lemma mentioned above. We, however, feel it is appropriate to reproduce

their short argument in the context of this dissertation and we do so in

Chapter 11. Finally, in Chapter 12 we present the proofs of Theorem 1.2–1.4,

which are solely based on Theorem 1.5. We survey some other applications

of the Regularity Method for Hypergraphs in Chapter 13.

Part I of this dissertation is joint work with Brendan Nagle and my advisor

Vojtěch Rödl. It is mainly drawn from [38]. As mentioned earlier the proof of

Theorem 1.5 presented in Chapter 11 was originally obtained by Vojtěch Rödl

and Jozef Skokan in [46] and we only present it here for completeness. The

reductions of Theorem 1.2–1.4 to Theorem 1.5 presented in the remainder of

Part II were obtained in collaboration with Vojtěch Rödl, Eduardo Tengan,

and Norihide Tokushige in [45].
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Part I

The Regularity Method
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Chapter 2

Introduction

The results presented in this part of this dissertation were obtained in

collaboration with Brendan Nagle and Vojtěch Rödl [38].

Extremal problems are among the most central and most extensively

studied in combinatorics. Many of these problems concern thresholds for

properties concerning deterministic structures and have proven to be difficult

as well as interesting. An important recent trend in combinatorics has been

to consider the analogous problems for random structures. Tools are then

sometimes afforded for determining with what probability a random structure

possesses certain properties.

The study of quasi-random structures, pioneered by the work of Sze-

merédi [54], merges features of deterministic and random settings. Roughly

speaking, a quasi-random structure is one which, while deterministic, mimics

the behavior of random structures in certain important points of view. The

(quasi-random) combinatorial structures we consider in this dissertation are

set systems or hypergraphs. We begin our discussion with graphs.

2.1 Szemerédi’s Regularity Lemma

In the course of proving his celebrated Density Theorem concerning arith-

metic progressions, Szemerédi established a lemma which decomposes the

edge set of any graph into constantly many “blocks”, almost all of which are
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quasi-random (cf. [32, 33, 55]). In what follows, we give a precise account of

Szemerédi’s lemma.

For a graph G = (V,E) and two disjoint sets A, B ⊂ V , let E(A,B)

denote the set of edges {a, b} ∈ E with a ∈ A and b ∈ B and set e(A,B) =

|E(A,B)|. We also set d(A,B) = d(GAB) = e(A,B)/|A||B| for the density

of the bipartite graph GAB = (A ∪B,E(A,B)).

The concept central to Szemerédi’s lemma is that of an ε-regular pair. Let

ε > 0 be given. We say that the pairA, B is ε-regular if |d(A,B)−d(A′, B′)| <
ε holds whenever A′ ⊂ A, B′ ⊂ B, and |A′| > ε|A|, |B′| > ε|B|.

We call a partition V = V1 ∪ · · · ∪ Vt an equitable partition if it satisfies

|V1| ≤ |V2| ≤ · · · ≤ |Vt| ≤ |V1|+ 1; we call an equitable partition ε-regular if

all but ε
(

t
2

)
pairs Vi, Vj are ε-regular. Szemerédi’s lemma may then be stated

as follows.

Theorem 2.1 (Szemerédi’s Regularity Lemma). Let ε > 0 be given and

let t0 be a positive integer. There exist positive integers n0 = n0(ε, t0) and

T0 = T0(ε, t0) such that any graph G = (V,E) with |V | = n ≥ n0 vertices

admits an ε-regular equitable partition V = V1 ∪ · · · ∪ Vt with t satisfying

t0 ≤ t ≤ T0.

Szemerédi’s Regularity Lemma is a powerful tool in the area of extremal

graph theory. One of its most important consequences is that, in appropri-

ate circumstances, it can be used to imply a given graph contains a fixed

subgraph. Suppose that a (large) graph is given along with an ε-regular

partition V = V1 ∪ . . . ∪ Vt and let H be a fixed graph. If an appropriate

collection of pairs IH ⊆
(
[t]
2

)
have each {Vi, Vj}, {i, j} ∈ IH , ε-regular and

sufficiently dense (with respect to ε), one is guaranteed a copy of H within

this collection of bipartite graphs E(Vi, Vj), {i, j} ∈ IH . This observation is

due to the following well-known fact which may be appropriately called the

Counting Lemma.
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Fact 2.2 (Counting Lemma). For every integer ` and positive reals d and γ

there exists δ > 0 so that the following holds. Let G =
⋃

1≤i<j≤`G
ij be an `-

partite graph with `-partition V1∪. . .∪V` where Gij = G[Vi, Vj], 1 ≤ i < j ≤ `,

and |V1| = . . . = |V`| = n. Suppose further all graphs Gij are ε-regular with

density d. Then the number of copies of the `-clique K` in G is within the

interval (1± γ)d(
`
2)n`.

Unlike Szemerédi’s Regularity Lemma, Fact 2.2 is fairly easy to prove.

2.2 Extensions of Szemerédi’s Lemma to hy-

pergraphs

Several hypergraph regularity lemmas were considered, in part, by various

authors [6, 9, 15, 19, 41]. None of these regularity lemmas seemed to admit a

companion counting result (i.e. a corresponding generalization of Fact 2.2).

The first attempt of developing a Hypergraph Regularity Lemma together

with a corresponding Counting Lemma was undertaken in [16]. In that paper,

Frankl and Rödl established an extension of Szemerédi’s Regularity Lemma

to 3-graphs, hereafter called the FR-Lemma (see [10, 11] for an algorithmic

version).

Analogously to the feature that Szemerédi’s Regularity Lemma decom-

poses a given graph into an ε-regular partition, the FR-Lemma decomposes

the edge set of given a 3-graph into constantly many “blocks”, almost all

of which are, in a specific sense, “quasi-random”. The concept of 3-graph

regularity which plays the analogous role of the ε-regular pair is, unfortu-

nately, considerably more technical than its graph counterpart. As well, it

is not necessary at this time to know this precise definition in order to un-

derstand the current Introduction. We therefore postpone precise discussion

until later.



9

Just as Fact 2.2, the Counting Lemma, is an important companion state-

ment to Szemerédi’s Regularity Lemma, most applications of the FR-Lemma

require a similar companion lemma - the “3-graph Counting Lemma”. Anal-

ogously to Fact 2.2, the 3-graph Counting Lemma estimates the number of

copies of the clique K
(3)
` (i.e., the complete 3-graph on ` vertices) contained

in an appropriate collection of “dense and regular blocks” within a regular

partition provided by the FR-Lemma. This 3-graph Counting Lemma was

established in [16] for the special case K
(3)
4 and subsequently fully established

by Nagle and Rödl in [36]. Unlike the case for graphs, the proof of the 3-

graph Counting Lemma in [36] was technical and rather lengthy, suggesting

that the effort to fully develop Hypergraph Regularity Methods may not be

straightforward.

Recently, Rödl and Skokan [48] established a generalization of the FR-

Lemma to k-graphs for k ≥ 3 (see Section 4.2). We will refer to this lemma as

the RS-Lemma. In [47], they also succeeded to prove a companion Counting

Lemma in the special case of K
(4)
5 . In this part of the dissertation,

we prove the k-graph Counting Lemma corresponding to the RS-Lemma.

Our Counting Lemma, the main objective of Part I, requires some notation.

Therefore, we defer its precise statement to Section 3.3 (see Theorem 3.6).

Last, but not least, we mention that a Regularity Lemma as well as

a corresponding Counting Lemma for k-graphs was recently independently

proved by Gowers [24]. The approach taken by Gowers is different from the

one taken in [48] and this dissertation.

2.3 Quasi-random hypergraphs

A related line of research is the study of quasi-random hypergraphs, some

topics of which play a crucial role in our proof. We feel a few words on
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quasi-random hypergraphs at this time are appropriate.

Haviland and Thomason [28] and Chung and Graham [7, 8] were the

first to investigate systematic properties of quasi-random hypergraphs. In

particular, Chung and Graham considered several quite disparate looking

properties of random-like hypergraphs of density 1/2 and proved that they

are, in fact, equivalent. An important concept in their work is the deviation

of a hypergraph. It is proved in [7, 8] that for fixed integers ` ≥ k, a k-

graph of density 1/2 with small deviation contains asymptotically the same

number of copies of the clique K
(k)
` as the random hypergraph of the same

density. This result can be viewed as a Counting Lemma for that notion of

quasi-randomness.

This research was continued by Kohayakawa, Rödl, and Skokan [31] whose

approach was based on the concept of discrepancy of a hypergraph. Discrep-

ancy is more compatible with respect to the type of regularity a typical

“block” exhibits in a partition obtained from the RS-Lemma. One partic-

ularly relevant result in [31] is a ‘dense Counting Lemma’ for hypergraphs

with small discrepancy (cf. Theorem 4.1 in Section 4.1). Unfortunately, the

counting needed to match the RS-Lemma deals with a ‘sparse’ and more

difficult environment. However, the ‘dense’ ancestor of our result plays an

important role in this dissertation.

Our attempt for proving the Counting Lemma (corresponding to the RS-

Lemma) is to reduce, in an appropriate sense, the harder sparse case to the

easier dense case. Our ‘reduction’ employs the RS-Lemma itself.

Finally, we discuss a way to bridge the methods of this dissertation with

the RS-Lemma to produce a new variant of the regularity lemma for k-

uniform hypergraphs in Chapter 10. For a more thorough discussion we refer

to [44].
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Chapter 3

The Counting Lemma

3.1 Basic notation

We denote by [`] the set {1, . . . , `}. For a set V and an integer k ≥ 1, let
(

V
k

)
be the set of all k-element subsets of V . A subset G(k) ⊆

(
V
k

)
is a k-uniform

hypergraph on the vertex set V . We identify hypergraphs with their edge sets.

For a given k-uniform hypergraph G(k), we denote by V
(
G(k)

)
and E

(
G(k)

)
its vertex and edge set, respectively. For U ⊆ V

(
G(k)

)
, we denote by G(k)[U ]

the subhypergraph of G(k) induced on U (i.e. G(k)[U ] = G(k) ∩
(

U
k

)
). A k-

uniform clique of order j, denoted by K
(k)
j , is a k-uniform hypergraph on

j ≥ k vertices consisting of all
(

j
k

)
many k-tuples (i.e., K

(k)
j is isomorphic

to
(
[j]
k

)
).

The central objects of Part I of this dissertation are `-partite hypergraphs.

The underlying vertex partition V = V1 ∪ · · · ∪ V`, |V1| = · · · = |V`| = n, is

fixed. The vertex set itself can be seen as a 1-uniform hypergraph and, hence,

we will frequently refer to the underlying fixed vertex set as G(1). For integers

` ≥ k ≥ 1 and vertex partition V1 ∪ · · · ∪ V`, we denote by K
(k)
` (V1, . . . , V`)

the complete `-partite, k-uniform hypergraph (i.e. the family of all k-element

subsets K ⊆
⋃

i∈[`] Vi satisfying |Vi ∩ K| ≤ 1 for every i ∈ [`]). Then,

an (n, `, k)-cylinder G(k) is any subset of K
(k)
` (V1, . . . , V`). Observe, that∣∣V (G(k)

)∣∣ = ` × n for an (n, `, k)-cylinder G(k). Observe that the vertex
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partition V1 ∪ · · · ∪ V` is an (n, `, 1)-cylinder G(1). (This definition may seem

artificial right now, but it will simplify later notation.) For k ≤ j ≤ ` and

set Λj ∈
(
[`]
j

)
, we denote by G(k)[Λj] = G(k)

[⋃
λ∈Λj

Vλ

]
the subhypergraph of

the (n, `, k)-cylinder G(k) induced on
⋃

λ∈Λj
Vλ.

For an (n, `, j)-cylinder G(j) and an integer i, j ≤ i ≤ `, we denote

by K(j)
i

(
G(j)
)

the family of all i-element subsets of V
(
G(j)
)

which span com-

plete subhypergraphs in G(j) of order i. Note that
∣∣K(j)

i

(
G(j)
) ∣∣ is the number

of all copies of K
(j)
i in G(j).

Given an (n, `, j − 1)-cylinder G(j−1) and an (n, `, j)-cylinder G(j), we say

an edge J of G(j) belongs to G(j−1) if J ∈ K(j−1)
j (G(j−1)), i.e., J corresponds

to a clique of order j in G(j−1). Moreover, G(j−1) underlies G(j) if G(j) ⊆
K(j−1)

j

(
G(j−1)

)
, i.e., every edge of G(j) belongs to G(j−1). This brings us to

one of the main concepts of this dissertation, the notion of a complex.

Definition 3.1 ((n, `, k)-complex). Let n ≥ 1 and ` ≥ k ≥ 1 be integers.

An (n, `, k)-complex G is a collection of (n, `, j)-cylinders {G(j)}k
j=1 such that

(a ) G(1) is an (n, `, 1)-cylinder, i.e., G(1) = V1 ∪ · · · ∪ V` with |Vi| = n for

i ∈ [`],

(b ) G(j−1) underlies G(j) for 2 ≤ j ≤ k.

3.2 Regular complexes

We begin with a notion of density of an (n, `, j)-cylinder with respect to a

family of (n, `, j − 1)-cylinders.

Definition 3.2 (density). Let G(j) be an (n, `, j)-cylinder and let Q(j−1) =

{Q(j−1)
1 , . . . ,Q(j−1)

r } be a family of (n, `, j − 1)-cylinders. We define the den-
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sity of G(j) w.r.t. the family Q(j−1) as

d
(
G(j)
∣∣Q(j−1)

)
=


˛̨̨
G(j)∩

S
s∈[r]K

(j−1)
j

“
Q(j−1)

s

”˛̨̨
˛̨̨S

s∈[r]K
(j−1)
j

“
Q(j−1)

s

”˛̨̨ if
∣∣∣⋃s∈[r]K

(j−1)
j

(
Q(j−1)

s

)∣∣∣ > 0

0 otherwise .

We now define a notion of regularity of an (n, j, j)-cylinder with respect

to an (n, j, j − 1)-cylinder.

Definition 3.3. Let positive reals δj and dj and a positive integer r be

given along with an (n, j, j)-cylinder G(j) and an underlying (n, j, j − 1)-

cylinder G(j−1). We say G(j) is (δj, dj, r)-regular w.r.t. G(j−1) if whenever

Q(j−1) = {Q(j−1)
1 , . . . ,Q(j−1)

r }, Q(j−1)
s ⊆ G(j−1), s ∈ [r], satisfies∣∣∣∣ ⋃

s∈[r]

K(j−1)
j

(
Q(j−1)

s

) ∣∣∣∣ ≥ δj

∣∣∣K(j−1)
j

(
G(j−1)

)∣∣∣ ,
then

d
(
G(j)
∣∣Q(j−1)

)
= dj ± δj .

We now extend the notion of (δj, dj, r)-regularity from (n, j, j)-cylinders

to (n, `, j)-cylinders G(j).

Definition 3.4 ((δj, dj, r)-regular). Let positive reals δj and dj and a posi-

tive integer r be given along with an (n, `, j)-cylinder G(j) and an underlying

(n, `, j−1)-cylinder G(j−1). We say G(j) is (δj, dj, r)-regular w.r.t. G(j−1) if for

every Λj ∈
(
[`]
j

)
the restriction G(j)[Λj] = G(j)

[⋃
λ∈Λj

Vλ

]
is (δj, dj, r)-regular

w.r.t. to the restriction G(j−1)[Λj] = G(j−1)
[⋃

λ∈Λj
Vλ

]
.

We sometimes write (δj, r)-regular to mean
(
δj, d

(
G(j)
∣∣G(j−1)

)
, r
)
-regular

for cylinders G(j) and G(j−1).

Finally, we close this section of basic definitions with the central notion

of a regular complex.
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Definition 3.5 ((δ,d, r)-regular complex). Let vectors δ = (δ2, . . . , δk)

and d = (d2, . . . , dk) of positive reals be given and let r be a positive integer.

We say an (n, `, k)-complex G = {G(j)}k
j=1 is (δ,d, r)-regular if:

(a ) G(2) is (δ2, d2, 1)-regular w.r.t. G(1) and

(b ) G(j) is (δj, dj, r)-regular w.r.t. G(j−1) for 3 ≤ j ≤ k.

3.3 Statement of the Counting Lemma

The following assertion is the main theorem of this dissertation.

Theorem 3.6 (Counting Lemma). For all integers 2 ≤ k ≤ ` the following is

true: ∀γ > 0 ∀dk > 0 ∃δk > 0 ∀dk−1 > 0 ∃δk−1 > 0 . . . ∀d2 > 0 ∃δ2 > 0 and

there are integers r and n0 so that, with d = (d2, . . . , dk) and δ = (δ2, . . . , δk)

and n ≥ n0, whenever G = {G(h)}k
h=1 is a (δ,d, r)-regular (n, `, k)-complex,

then ∣∣∣K(k)
`

(
G(k)

)∣∣∣ = (1± γ)
k∏

h=2

d
(`

h)
h × n` .

For given integers k and ` we shall refer to this theorem by CLk,`.

Observe from the quantification ∀γ, dk ∃δk ∀dk−1 ∃δk−1 . . . ∀d2 ∃δ2, the

constants of Theorem 3.6 can satisfy δh � dh−1 for any 3 ≤ h ≤ k. In

particular, the hypothesis of Theorem 3.6 allows for the possibility that

γ, dk � δk � dk−1 � . . .� dh � δh � dh−1 � . . .� d2 � δ2. (3.1)

Consequently, the Counting Lemma includes the case when complexes G
consists of fairly sparse hypergraphs. It seems that this is the main difficulty

in proving Theorem 3.6.
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3.4 Generalizations of the Counting Lemma

The main result of Part I of this dissertation, Theorem 3.6, allows us to count

complete hypergraphs of fixed order within a sufficiently regular complex. For

some applications, it is more useful to consider slightly more general lemmas.

The first generalization enables us to estimate the number of copies of

an arbitrary hypergraph F (k) with vertices {1, . . . , `} in an (n, `, k)-complex

G = {G(j)}k
j=1 satisfying that G(j)[Λj] is regular w.r.t. G(j−1)[Λj] whenever

Λj ⊆ K for some edge K of F (k). Rather than counting copies of K
(k)
` in an

“everywhere” regular complex, this lemma counts copies of F (k) in the com-

plex G satisfying the less restrictive assumptions above. We introduce some

more notation before we give the precise statement below (see Corollary 3.9).

For a fixed k-uniform hypergraph F (k), we define the j-th shadow for

j ∈ [k] by

∆j(F (k)) = {J : J ⊆ K for some K ∈ F (k) and |J | = j} .

We extend the notion of a (δ,d, r)-regular complex to (δ,≥d, r,F (k))-regular

complex.

Definition 3.7 ((δ,≥d, r,F (k))-regular complex). Let δ = (δ2, . . . , δk)

and d = (d2, . . . , dk) be vectors of positive reals and let r be a positive

integer. Let F (k) be a k-uniform hypergraph on ` vertices {1, . . . , `}. We say

an (n, `, k)-complex G = {G(j)}k
j=1 with G(1) = V1∪· · ·∪V` is

(
δ,≥d, r,F (k)

)
-

regular if:

(a ) for every Λ2 ∈ ∆2(F (k)), the (n, 2, 2)-cylinder G(2)[Λ2] is (δ2, d2, 1)-

regular w.r.t. G(1)[Λ2] ,

(b ) for every Λj ∈ ∆j(F (k)), the (n, j, j)-cylinder G(j)[Λj] is (δj, dj, r)-

regular w.r.t. G(j−1) for 3 ≤ j < k, and
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(c ) for every Λk ∈ F (k), the (n, k, k)-cylinder G(k)[Λk] is (δk, dΛk
, r)-regular

w.r.t. G(k−1) with dΛk
≥ dk.

The ‘≥’ in a (δ,≥d, r,F (k))-regular complex indicates that we only enforce

a lower bound on the densities in the k-th layer of G (cf. part (c ) of the

definition). This is the environment which usually appears in applications.

We also observe that the Definition 3.7 imposes only a regular structure

on those (m, k, k)-subcomplexes of G which naturally correspond to edges

of F (k) (i.e., on a subcomplex induced on Vλ1 , . . . , Vλk
, where {λ1, . . . , λk}

forms an edge in F (k)). We need one more definition before we can state the

corollary.

Definition 3.8 (partite isomorphic). Suppose F (k) is a k-uniform hyper-

graph with V (F (k)) = [`] and G(k) is an (n, `, k)-cylinder with vertex partition

V (G(k)) = V1∪· · ·∪V`. We say a copy F (k)
0 of F (k) in G(k) is partite isomorphic

to F (k) if there is a labeling of V (F (k)
0 ) = {v1, . . . , v`} such that

(i ) vα ∈ Vα for every α ∈ [`], and

(ii ) vα 7→ α is a hypergraph isomorphism (edge preserving bijection of the

vertex sets) between F (k)
0 and F (k).

Corollary 3.9. For all integers 2 ≤ k ≤ ` and ∀γ > 0 ∀dk > 0 ∃δk >

0 ∀dk−1 > 0 ∃δk−1 > 0 . . . ∀d2 > 0 ∃δ2 > 0 and there are integers r

and n0 so that the following holds for d = (d2, . . . , dk), δ = (δ2, . . . , δk), and

n ≥ n0. If F (k) is a k-uniform hypergraph on `-vertices and G = {G(h)}k
h=1

is a
(
δ,≥d, r,F (k)

)
-regular (n, `, k)-complex with G(1) = V1 ∪ · · · ∪ V`, then

the number of partite isomorphic copies of F (k) in G(k) is at least

(1− γ)
k−1∏
h=2

d
|∆h(F(k))|
h ×

∏
Λk∈F(k)

dΛk
× n` ≥ (1− γ)

k∏
h=2

d
|∆h(F(k))|
h × n` .
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Corollary 3.9 can be derived from Theorem 3.6 and we present the tech-

nical details in Section 9.1. Below we briefly outline that proof.

The idea of the proof consists of two basic parts. For 2 ≤ j ≤ k, for each

Λj = {λ1, . . . , λj} 6∈ ∆j(F (k)), we replace the (n, j, j)-cylinder G(j)[Λj] with

the complete j-partite j-uniform system K
(j)
j (Vλ1 , . . . , Vλj

). Doing so over all

2 ≤ j ≤ k and all Λj 6∈ ∆j(F (k)) clearly results in an “everywhere” regular

complex, let us call it H, whose cliques K
(k)
` correspond to copies of F (k) in

G.

One now wishes to apply the Counting Lemma, Theorem 3.6, to the

complex H to finish the job. The only minor technicality in doing so is that,

unlike the hypothesis of Theorem 3.6, the complex H potentially has, for each

2 ≤ j ≤ k, (n, j, j)-cylinders H(j)[Λj], Λj ∈
(
[`]
j

)
, of differing densities. This is

handled, however, by “randomly slicing” the (n, j, j)-cylinders H(j)[Λj], Λj ∈(
[`]
j

)
, into appropriately many pieces of the same density as formally required

in Theorem 3.6. Consequently, we create a series of pairwise K
(k)
` -disjoint

complexes H1,H2, . . . , each of which satisfies the hypothesis of the Counting

Lemma. Theorem 3.6 applies to each of the newly created complexes Hi,

i ≥ 1, and so we add the resulting number of cliques to finish the proof of

Corollary 3.9.

Later in Chapter 11 it will be convenient for us to consider the following

(slightly weakened) rephrasing of Corollary 3.9.

Corollary 3.9′. For all integers 2 ≤ k ≤ ` and every positive real γ there

are functions

δj(Dj, . . . , Dk) for j = 2, . . . , k ,

r(D2, . . . , Dk) , and n0(D2, . . . , Dk)

in variables D2, . . . , Dk so that for every d = (d2, . . . , dk) ∈ (0, 1]k−1 and

n ≥ n0(d) the following holds for δ = (δ2, . . . , δk) with δj = δj(dj, . . . , dk).

If F (k) is a k-uniform `-vertex hypergraph and G = {G(h)}k
h=1 is a

(
δ,≥
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d, r,F (k)
)
-regular (n, `, k)-complex, then the number of copies of F (k) in G(k)

is at least

(1− γ)
k∏

h=2

d
(`

k)
h × n` .

The second extension of the Counting Lemma allows us to estimate the

number of “non-crossing” copies of a fixed hypergraph F (k). For that we

recall the notion of a homomorphic image of a hypergraph.

Definition 3.10 (hypergraph homomorphism). Suppose F (k) and F̃ (k)

are k-uniform hypergraphs. We say F̃ (k) is an homomorphic image of F (k)

if there exist a surjective map ϑ : V (F (k)) � V (F̃ (k)) such that for every

edge K ∈ E(F̃ (k)) we have ϑ(K) =
⋃

v∈K ϑ(v) ∈ E(F̃ (k)). We say ϑ is a

homomorphism from F (k) to F̃ (k).

In other words, ϑ is a homomorphism from F (k) to F̃ (k) if it is an edge-

preserving map between the vertex sets of F (k) and F̃ (k).

Definition 3.11 (ϑ-partite isomorphic). Suppose F (k) is a k-uniform

hypergraph with V (F (k)) = [`], F̃ (k) with V (F̃ (k)) = [˜̀] is a homomorphic

image under ϑ : [`] � [˜̀] and G̃(k) is an (n, ˜̀, k)-cylinder with vertex partition

V (G̃(k)) = Ṽ1 ∪ · · · ∪ Ṽ˜̀. We say a copy F (k)
0 of F (k) in G̃(k) is ϑ-partite

isomorphic to F (k) if there is a labeling of V (F (k)
0 ) = {v1, . . . , v`} such that

(i ) vα ∈ Ṽϑ(α) for every α ∈ [`], and

(ii ) vα 7→ α is a hypergraph isomorphism between F (k)
0 and F (k).

We now state the second extension of Therorem 3.6 considered here.

Corollary 3.12. For all integers 2 ≤ k ≤ ` and ∀γ > 0 ∀dk > 0 ∃δk >

0 ∀dk−1 > 0 ∃δk−1 > 0 . . . ∀d2 > 0 ∃δ2 > 0 and there are integers r and n0

so that the following holds for d = (d2, . . . , dk) and δ =
(
δ2, . . . , δk

)
and

n ≥ n0.
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Suppose F (k) is a k-uniform `-vertex hypergraph and F̃ (k) is a homomor-

phic image with
∣∣V (F̃ (k)

)∣∣ = ˜̀under the homomorphism ϑ. If G̃ = {G̃(h)}k
h=1

is a
(
δ,≥d, r, F̃ (k)

)
-regular (n, ˜̀, k)-complex with G̃(1) = Ṽ1 ∪ · · · ∪ Ṽ˜̀, then

the number of ϑ-partite isomorphic copies of F (k) in G̃(k) is at least

(1− γ)
∏
β∈[˜̀]

1

|ϑ−1(β)|!
×

k−1∏
h=2

d
|∆h(F(k))|
h ×

∏
Λk∈F(k)

dΛk
× n`×

≥ (1− γ)
∏
β∈[˜̀]

1

|ϑ−1(β)|!
×

k∏
h=2

d
|∆h(F(k))|
h × n` .

Corollary 3.12 easily follows from Corollary 3.9. However, the proof is

somewhat technical and we defer it to Section 9.2.

The following is a (slightly weakened) rephrasing of Corollary 3.12.

Corollary 3.12′. For all integers 2 ≤ k ≤ ` and every positive real γ there

are functions

δj(Dj, . . . , Dk) for j = 2, . . . , k ,

r(D2, . . . , Dk) , and n0(D2, . . . , Dk)

in variables D2, . . . , Dk so that for every d = (d2, . . . , dk) ∈ (0, 1]k−1 and

n ≥ n0(d) the following holds for δ = (δ2, . . . , δk) with δj = δj(dj, . . . , dk).

Suppose F (k) is a k-uniform `-vertex hypergraph and F̃ (k) is a homomor-

phic image with
∣∣V (F̃ (k)

)∣∣ = ˜̀. If G̃ = {G̃(h)}k
h=1 is a

(
δ,≥d, r, F̃ (k)

)
-regular

(n, ˜̀, k)-complex, then the number of copies of F (k) in G̃(k) is at least

(1− γ)

`!

k∏
h=2

d
(`

k)
h × n` .
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Chapter 4

Auxiliary results

In this chapter we review a few results that are essential for our proof of

Theorem 3.6 in Chapter 5.

4.1 The Dense Counting Lemma

We recall that Theorem 3.6 is formulated under the involved quantification

∀dk ∃δk ∀dk−1 ∃δk−1 . . . ∀d2 ∃δ2 and that the Counting Lemma owes its dif-

ficulty in proof to the sparseness arising from this quantification. If the

quantification can be simplified so that

min
2≤j≤k

dj � max
2≤j≤k

δj (4.1)

is ensured, then the so-called Dense Counting Lemma (see Theorem 4.1 be-

low) is known to be true. This was proved by Kohayakawa, Rödl, and Skokan

(see Theorem 6.5 in [31]). Observe that (4.1) represents the ‘dense case’ in

contrast to the ‘sparse case’ (3.1), since all densities are bigger then the

measure of regularity max δj.

Theorem 4.1 (Dense Counting Lemma). For all integers 2 ≤ k ≤ ` and

any positive constants d2, . . . , dk, there exist ε > 0 and integer m0 so that,

with d = (d2, . . . , dk) and ε = (ε, . . . , ε) ∈ Rk−1 and m ≥ m0, whenever

H = {H(j)}k
j=1 is a (ε,d, 1)-regular (m, `, k)-complex, then∣∣∣K(k)

`

(
H(k)

)∣∣∣ = (1± gk,` (ε))
k∏

h=2

d
(`

h)
h ×m`
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where gk,` (ε) → 0 as ε→ 0.

While the quantification of the main Theorem, Theorem 3.6, does not

allow us to assume (4.1), Peng, Rödl, and Skokan in [40] used Theorem 4.1

to prove Theorem 3.6 for k = 3 by reducing the harder ‘sparse case’ to the

easier ‘dense case’. This is also the idea of our current proof. The reduction

scheme used here, which is entirely different, is somewhat simpler and allows

an extension for arbitrary k.

4.2 The Regularity Lemma

One of the major tools we use in our proof of Theorem 3.6 is the recently

developed regularity lemma of Rödl and Skokan [48] for k-uniform hyper-

graphs. Our plan is to apply the regularity lemma to the (n, `, k)-cylinder

G(k) in the (n, `, k)-complex G = {G(j)}k
j=1 from the hypothesis of Theo-

rem 3.6. Since G(k) is `-partite with `-partition G(1) = V1 ∪ . . . ∪ V`, the

regularity lemma below is formulated for `-partite hypergraphs.

The regularity lemma of Rödl and Skokan provides well-structured par-

titions of all complete (n, `, j)-cylinders K
(j)
` (V1, . . . , V`) for j ∈ [k − 1].

We later refer to the family of these partitions by R = R (k − 1,a,ϕ) =

{R(j)}k−1
j=1 where ϕ = (ϕ1, . . . , ϕk−1) is a family of functions which describes

the partitions of R and a = (a1, . . . , ak−1) describes the image sets of ϕ. In

what follows, we use the language of [48] to give the precise definitions of

these concepts.

4.2.1 Partitions

Let V1 ∪ · · · ∪ V` be a partition of V with |Vλ| = n for every λ ∈ [`]. Let k be

an integer and for every j ∈ [k− 1], let aj ∈ N and let ϕj be a function such
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that

ϕj : K
(j)
` (V1, . . . , V`) → [aj] .

Note, for every λ ∈ [`], mapping ϕ1 defines a partition Vλ = Vλ,1∪ · · · ∪Vλ,a1 ,

where Vλ,α = ϕ−1
1 (α) ∩ Vλ for all α ∈ [a1]. Here, we only consider functions

ϕ1 such that∣∣|ϕ−1
1 (α) ∩ Vλ| − |ϕ−1

1 (α′) ∩ Vλ|
∣∣ =

∣∣|Vλ,α| − |Vλ,α′|
∣∣ ≤ 1 (4.2)

for every λ ∈ [`] and α, α′ ∈ [a1]. Consequently, we have bn/a1c ≤ |Vλ,α| ≤
dn/a1e.

Remark 4.2. For convenience, we delete all floors and ceilings and simply

write |Vλ,α| = n/a1 for every λ ∈ [`] and α ∈ [a1].

Let
(
[`]
j

)
<

= {(λ1, . . . , λj) ∈ [`]j : λ1 < · · · < λj} be the set of vectors that

naturally correspond to the totally ordered j-element subsets of [`]. More

generally, for a totally ordered set Π of cardinality at least j, let
(
Π
j

)
<

be the

family of totally ordered j-element subsets of Π. For j ∈ [k − 1] we consider

the projection πj of K
(j)
` (V1, . . . , V`) onto [`];

πj : K
(j)
` (V1, . . . , V`) →

(
[`]

j

)
<

,

mapping every J ∈ K
(j)
` (V1, . . . , V`) to the totally ordered set πj(J) =

(λ1, . . . , λj) ∈
(
[`]
j

)
<

satisfying |J ∩ Vλh
| = 1 for every h ∈ [j]. Moreover,

for every h ∈ [|J |], let Φh(J) = (xπh(H) = ϕh(H))H∈(J
h)

. In other words,

Φh(J) is a vector of length
(|J |

h

)
and its entries are indexed by elements from(

πj(J)
h

)
<
. For our purposes it will be convenient to assume that the entries

of Φh(J) are ordered lexicographically w.r.t. their indices. Observe that for

h > 0

Φh(J) ∈ [ah]× · · · × [ah] = [ah]
(j

h) .

We define

Φ(j)(J) = (πj(J),Φ1(J), . . . ,Φj(J)).
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Note that Φ(j)(J) is a vector with j + 2j − 1 entries. Observe that if we set

a = (a1, a2, . . . , ak−1) and

A(j,a) =

(
[`]

j

)
<

×
j∏

h=1

[ah]
(j

h),

then Φ(j)(J) ∈ A(j,a) for every set J ∈ K
(j)
` (V1, . . . , V`). In other words,

to each edge J of cardinality j we assign πj(J) and a vector (xπh(H))H⊂J

with each entry xπh(H) corresponding to a non-empty subset H of J such

that xπh(H) = ϕh(H), where h = |H|.
For two edges J1, J2 ∈ K

(j)
` (V1, . . . , V`), the equality Φ(j)(J1) = Φ(j)(J2)

defines an equivalence relation on K
(j)
` (V1, . . . , V`) into at most

|A(j,a)| ≤
(
`

j

)
×

j∏
h=1

a
(j

h)
h (4.3)

parts. Now we describe these parts explicitly using (j + 2j − 1)-dimensional

vectors from A(j,a).

For each j < k we define a partition R(j) ofK
(j)
` (V1, . . . , V`) with partition

classes corresponding to the equivalence relation defined above. This way

each partition class in R(j) has a unique address x(j) ∈ A(j,a). While x(j)

is a (j + 2j − 1)-dimensional vector, we will frequently view it as a j + 1-

dimensional vector (x0,x1, . . . ,xj), where x0 = (x1, . . . , xj) ∈
(
[`]
j

)
<

is a

totally ordered set and xh = (xΞ)Ξ∈(x0
h )

<

∈ [ah]
(j

h) for 1 ≤ h ≤ j. For each

address x(j) ∈ A(j,a) we denote its corresponding partition class from R(j)

by

R(j)(x(j)) =
{
R ∈ K(j)

` (V1, . . . , V`) : Φ(j)(R) = x(j)
}
.

This way we ensure some structure between the classes from R(j) and R(j−1).

More formally, for each partition classR(j)(x(j)) ∈ R(j) there exist j partition

classes R(j−1)
1 , . . . ,R(j−1)

j ∈ R(j−1) such that for R(j−1)(x(j)) =
⋃

h∈[j]R
(j−1)
h

we have R(j)(x(j)) ⊆ K(j−1)
j

(
R(j−1)(x(j))

)
. In other words R(j−1)(x(j)) forms
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an underlying (j − 1)-uniform j-partite hypergraph of R(j)(x(j)) consisting

of
(

j
j−1

)
classes from R(j−1). Given x(j) ∈ A(j,a) (and the correspond-

ing R(j)(x(j)) ∈ R(j)) we give a formal definition of R(j−1)(x(j)) below. In

fact, for h < j we introduce a notation for the h-uniform j-partite hyper-

graph R(h)(x(j)) which consists of
(

j
h

)
partition classes of R(h) and satisfies

R(j)(x(j)) ⊆ K(h)
j

(
R(h)(x(j))

)
.

To that end, we need the following notation. Let x(j) = (x0, . . . ,xj) ∈
A(j,a) with xu = (xΥ)Υ∈(x0

u )
<

∈ [au]
(j

u) for 1 ≤ u ≤ j. Given an ordered

subset Ξ ⊆ x0 (recall x0 ∈
(
[`]
j

)
<
) where |Ξ| = h ≤ j. For 1 ≤ u ≤ h = |Ξ| ≤

j let

xΞ
u = (xΥ)Υ∈(Ξ

u)<

.

be the
(

h
u

)
-dimensional vector consisting of those entries of xu which are

labeled with the ordered u-element subsets of Ξ. For every vector x(j) =

(x0,x1, . . . ,xj) ∈ A(j,a) and for each h ∈ [j], we then set

R(h)(x(j)) =
⋃

Ξ∈(x0
h )

<

{
R∈K(h)

` (V1, . . . , V`) :Φ(h)(R) = (Ξ,xΞ
1 , . . . ,x

Ξ
h)
}
. (4.4)

Using the language above, the following claim holds.

Claim 4.3. For every j ∈ [k−1] and every x(j) = (x0,x1, . . . ,xj) ∈ A(j,a),

the following is true.

(a) For all h ∈ [j], R(h)(x(j)) is an (n/a1, j, h)-cylinder;

(b) R(x(j)) =
{
R(h)(x(j))

}j

h=1
is an (n/a1, j, j)-complex.

To give a precise description of the family of partitions of K
(j)
` (V1, . . . , V`),

we summarize the notation above in the following Setup in which we work.

Setup 4.4. Let k ≤ ` and n be fixed positive integers, let G(1) = V1 ∪ · · · ∪V`

be a (n, `, 1)-cylinder, and a = aR = (a1, a2, . . . , ak−1) be a vector of positive
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integers. Let

A(j,a) =

(
[`]

j

)
<

×
j∏

h=1

[ah]
(j

h) ,

and for every j ∈ [k − 1] let ϕj : K
(j)
` (V1, . . . , V`) → [aj] be a mapping .

Moreover, suppose that ϕ1 satisfies (4.2) for every λ ∈ [`] and α, α′ ∈ [a1].

Set ϕ = {ϕj : j ∈ [k − 1]}.

We now define the family of partitions of K
(j)
` (V1, . . . , V`).

Definition 4.5 (Partition). Given Setup 4.4, for every j ∈ [k − 1], we

define a partition R(j) of K
(j)
` (V1, . . . , V`) by

R(j) =
{
R(j)(x(j)) : x(j) ∈ A(j,a)

}
.

We also define the family of partitions R = R(k − 1,a,ϕ) = {R(j)}k−1
j=1 and

the rank of R by

rank R = |A(k − 1,a)| .

4.2.2 Polyads

The ε-regular pair played a central role in the definition of a regular partition

for graphs (cf. Szemerédi’s regularity lemma, Theorem 2.1). In order to

define a regular partition R for a k-uniform hypergraph, this concept was

extended in [48] by introducing polyads. Given Setup 4.4, let R(k−1,a,ϕ) be

the family of partitions as defined in Definition 4.5. Polyads are (n/a1, j, j−
1)-cylinders consisting of selected j members of R(j) for j = 2, . . . , k. The

precise definition of a polyad (which we give below) requires some notation.

Recall that for each edge J ∈ K(j)
` (V1, . . . , V`) and h ∈ [j− 1], we defined

Φh(J) as the
(

j
h

)
-dimensional vector Φh(J) = (ϕh(H))H∈(J

h)
. We also defined

πj(J) to be the totally ordered set (λ1, . . . , λj) ∈
(
[`]
j

)
<

such that |J∩Vλh
| = 1

for every h ∈ [j]. We set

Φ̂
(j−1)

(J) = (πj(J),Φ1(J), . . . ,Φj−1(J)) .
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Note that Φ̂
(j−1)

(J) is just the projection of Φ(j)(J) onto its first j vector

coordinates. As such, Φ̂
(j−1)

(J) is a vector having j +
∑j−1

h=1

(
j
h

)
= j + 2j − 2

entries.

We define the set Â(j − 1,a) of (j + 2j − 2)-dimensional vectors for

j ∈ [k − 1] by

Â(j − 1,a) =

(
[`]

j

)
<

×
j−1∏
h=1

[ah]
(j

h) .

Observe that then Φ̂
(j−1)

(J) ∈ Â(j−1,a) for every edge J ∈ K(j)
` (V1, . . . , V`).

Let x̂(j−1) ∈ Â(j − 1,a). We write the vector x̂(j−1) = (x̂0, x̂1, . . . , x̂j−1),

where x̂0 ∈
(
[`]
j

)
<

is an ordered set and x̂u = (x̂Υ)Υ∈(x̂0
u )

<

∈ [au]
(j

u) for

1 ≤ u ≤ j − 1. Given an ordered set Ξ ⊆ x̂0 with 1 ≤ h = |Ξ| < j, we set

for 1 ≤ u ≤ h

x̂Ξ
u = (x̂Υ)Υ∈(Ξ

u)<

. (4.5)

For each j ∈ [k], x̂(j−1) = (x̂0, x̂1, . . . , x̂j−1) ∈ Â(j − 1,a), and h ∈ [j − 1]

we define R̂(h)(x̂(j−1)) by

R̂(h)(x̂(j−1)) =
⋃

Ξ∈(x̂0
h )

<

{
R∈K(h)

` (V1, . . . , V`) :Φ(h)(R) = (Ξ, x̂Ξ
1 , . . . , x̂

Ξ
h)
}
. (4.6)

Note that if x(j) =
(
(x̂(j−1), α)

)
for some α ∈ [aj] and 1 ≤ h < j, then

R(h)(x(j)) defined in (4.4) and R̂(h)(x̂(j−1)) defined in (4.6) are identical.

We also set R̂(x̂(j−1)) =
{
R̂(h)(x̂(j−1))

}j−1

h=1
. Similarly to Claim 4.3, we

can prove the following.

Claim 4.6. For every vector x̂(j−1) = (x̂0, x̂1, . . . , x̂j−1) ∈ Â(j − 1,a), the

following statements are true.

(a) For all h ∈ [j − 1], R̂(h)(x̂(j−1)) is an (n/a1, j, h)-cylinder;

(b) R̂(x̂(j−1)) =
{
R̂(h)(x̂(j−1))

}j−1

h=1
is an (n/a1, j, j − 1)-complex.
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In this dissertation, (n/a1, j, j − 1)-cylinders R̂(j−1)(x̂(j−1)) will play a

special role for 1 < j ≤ k and we will call them polyads.

Definition 4.7 (Polyad). Given the Setup 4.4, let R(k − 1,a,ϕ) be a

family of partitions as defined in Definition 4.5. Then, for each 1 < j ≤ k

and each vector x̂(j−1) ∈ Â(j − 1,a), we refer to the (n/a1, j, j − 1)-cylinder

R̂(j−1)(x̂(j−1)) as polyad.

For every polyad R̂(j−1) there exists a unique vector x̂(j−1) ∈ Â(j −
1,a) such that R̂(j−1) = R̂(j−1)(x̂(j−1)). Hence, each polyad R̂(j−1) uniquely

defines an (n/a1, j, j − 1)-complex R̂(x̂(j−1)) =
{
R̂(h)(x̂(j−1))

}j−1

h=1
such that

R̂(j−1) = R̂(j−1)(x̂(j−1)).

Remark 4.8. For j = 2 the set Â(1,a) consists of 2-dimensional vectors

x̂(1) = (x̂0, x̂1), where x̂0 = (λ1, λ2) ∈
(
[`]
2

)
<

and x̂1 = (α1, α2) ∈ [a1]
2.

Consequently, a polyad R̂(1)(x̂(1)) is the bipartition Vλ1,α1 ∪ Vλ2,α2

Every polyad R̂(j−1)(x̂(j−1)) is an (n/a1, j, j−1)-cylinder that is the union

of j appropriately chosen partition classes of R(j−1). We describe these ele-

ments using the vectors x̂(j−1) ∈ Â(j − 1,a).

Let x̂(j−1) = (x̂0, x̂1, . . . , x̂j−1) ∈ Â(j − 1,a) be given. Then, for every

u ∈ [j−1], vector x̂u can be written as x̂u = (xΥ : Υ ∈
(

x̂0

u

)
<
), i.e. its entries

are labeled by the ordered u-element subsets of the ordered set x̂0 ∈
(
[`]
j

)
<

in

lexicographic order w.r.t. the indices. For every ι ∈ [j], we set

∂ιx̂u =

(
xΥ : Υ ∈

(
x̂0 \ ι
u

)
<

)
. (4.7)

In other words, vector ∂ιx̂u contains precisely those entries of x̂u which are

labeled by the u-element subsets of x̂0 not containing ι. Note that, in view

of (4.5), ∂ιx̂u = x̂Ξ
u with Ξ = x̂0 \ ι. Clearly, ∂ιx̂u has

(
j−1
u

)
entries from [au].

Furthermore, we set

∂ιx̂
(j−1) = (∂ιx̂1, ∂ιx̂2, . . . , ∂ιx̂j−1)
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and observe that ∂ιx̂
(j−1) is a (j−1+2j−1−1)-dimensional vector belonging

to A(j − 1,a).

4.2.3 Regular Partitions and the Regularity Lemma

The regularity lemma of Rödl and Skokan provides a family of partitions R

with nice certain properties. Loosely speaking, for “most” x̂(k−1) ∈ Â(k −
1,a) the (n/a1, k, k − 1)-complex R̂(x̂(k−1)) is regular (cf. Definition 3.5).

In the two definitions, below we introduce two concepts central to regu-

larity. We use the notation δ′, d′ and r′ to be consistent with the context in

which we apply the Regularity Lemma (Theorem 4.11 below).

Definition 4.9 ((µ, δ′,d′, r′)-equitable). Let µ be a number in the interval

(0, 1], let δ′ = (δ′2, . . . , δ
′
k) and d′ = (d′2, . . . , d

′
k) be two arbitrary but fixed

vectors of real numbers between 0 and 1 and let r′ be a positive integer.

We say that a family of partitions R = R(k − 1,a,ϕ) (as defined in Def-

inition 4.5) is (µ, δ′,d′, r′)-equitable if all but µnk edges of K
(k)
` (V1, . . . , V`)

belong to (δ′,d′, r′)-regular complexes R̂(x̂(k−1)) =
{
R̂(j)(x̂(k−1))

}k−1

j=1
where

x̂(k−1) ∈ Â(k − 1,a).

Before finally stating the regularity lemma, we define regular partitions.

Definition 4.10 (regular partition). Let G(k) be a (n, `, k)-cylinder and

let R = R(k − 1,a,ϕ) be a (µ, δ′,d′, r′)-equitable family of partitions.

We say R is a (δ′k, r
′)-regular w.r.t. G(k) if all but at most δ′kn

k edges

of K
(k)
` (V1, . . . , V`) belong to polyads R̂(k−1)(x̂(k−1)) such that G(k) is (δ′k, r

′)-

regular with respect to R̂(k−1)(x̂(k−1)).

We now state the Regularity Lemma of Rödl and Skokan. In what follows,

D = (D2, . . . , Dk−1) is a vector of positive real variables.

Theorem 4.11 (Regularity Lemma (`-partite version)). For all integers ` ≥
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k ≥ 2 and all positive reals δ′k and µ and any positive functions

δ′ (D) =
(
δ′k−1 (Dk−1) , . . . , δ

′
2 (D2, . . . , Dk−1)

)
,

r′ (A1,D) = r′ (A1, D2, . . . , Dk−1) ,

there exist integers nk and Lk such that the following holds.

For every (n, `, k)-cylinder G(k) satisfying n ≥ nk there exists a vector

d′ = (d′2, . . . , d
′
k−1) of positive reals and a

(
µ, δ′(d′),d′, r′(a1,d

′)
)
-equitable(

δ′k, r
′(a1,d

′)
)
-regular family of partitions R = R (k − 1,a,ϕ) such that

rank R = |A (k − 1,a)| ≤ Lk .

In the upcoming Corollary 4.13, we state an easy modification of Theo-

rem 4.11 whose formulation is convenient for us in our proof of Theorem 3.6.

Before stating Corollary 4.13, we outline the main differences between The-

orem 4.11 and its corollary below. For that we need the following definition.

Definition 4.12 (refinement). Let {G(h)}j
h=1 be an (n, `, j)-complex and

let R = R(j,a,ϕ) = {R(h)}j
h=1 be a family of partitions of K

(h)
` (V1, . . . , V`)

for h ∈ [j]. We say R refines {G(h)}j
h=1 if for every h ∈ [j] and every

x(h) ∈ A(h,a) either R(h)(x(h)) ⊆ G(h) or R(h)(x(h)) ∩ G(h) = ∅.

Moreover, adding an additional layer G(j+1) ⊆ K(j)
j+1(G(j)) to {G(h)}j

h=1, we

will also say that R = {R(h)}j
h=1 refines the (n, `, j+1)-complex {G(h)}j

h=1∪
G(j+1) if R refines {G(h)}j

h=1.

It is a well known fact that the proof of Szemerédi’s regularity lemma not

only yields the existence of a regular partition for any graph G = G(2), but

also shows that any given intitial partition G(1) = V1∪· · ·∪V` of the vertex set

V = V
(
G(2)

)
has a regular refinement. Similarily, the proof of Theorem 4.11

(which is proved by induction on k) yields immediately the existence of a reg-

ular and equitable partition R which refines a given partition of the underly-

ing structure. In particular, regularizing the k-th layer G(k) of a given (n, `, k)-
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complex G = {G(j)}k
j=1, one can obtain a partition R = R (k − 1,a,ϕ) satis-

fying the following property: for any 1 ≤ j ≤ k−1 and every x(j) ∈ A (j,a),

either R(j)
(
x(j)
)
⊆ G(j) or R(j)

(
x(j)
)
∩ G(j) = ∅. In other words, R refines

the partitions given by G(j) ∪ G(j) = K(j) (V1, . . . , V`) for every j ∈ [k − 1].

One can maintain yet another property of the (µ, δ′ (d′) ,d′, r′)-equitable

family of partitions R with density vector d′. In the proof of Theorem 4.11

(cf. [48]), the d′ are chosen explicitly and there is a large freedom to choose

them (more precisely there is no necessary lower bound on each d′j, 2 ≤ j ≤
k− 1). Hence, we shall assume, without loss of generality, that for any given

fixed σ2, . . . , σk−1, we may arrange the constants d′j, 2 ≤ j ≤ k − 1, so that

the quotients σj/d
′
j, 2 ≤ j ≤ k − 1, are integers.

Summarizing the discussion above we arrive at the following corollary of

Theorem 4.11, Corollary 4.13 (stated below) The full proof of Corollary 4.13

is identical to the proof of Theorem 4.11 with the two minor adjustments

indicated above.

Corollary 4.13. For all integers ` ≥ k ≥ 2 and all positive real constants

σ2, . . . , σk−1, δ
′
k, and µ and all positive functions

δ′ (D) =
(
δ′k−1 (Dk−1) , . . . , δ

′
2 (D2, . . . , Dk−1)

)
,

r′ (A1,D) = r′ (A1, D2, . . . , Dk−1) ,

there exist integers nk and Lk such that the following holds.

For every (n, `, k)-complex G = {G(j)}k
j=1 satisfying n ≥ nk there exists

a
(
µ, δ′(d′),d′, r′(a1,d

′)
)
-equitable

(
δ′k, r

′(a1,d
′)
)
-regular (w.r.t. G(k)) family

of partitions R = R (k − 1,a,ϕ), d′ = (d′2, . . . , d
′
k−1), such that

(i ) R refines G,

(ii ) σj/d
′
j is an integer for j = 2, . . . , k − 1, and

(iii ) rank R = |A (k − 1,a)| ≤ Lk.
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4.2.4 Statement of Cleaning Phase I

The proof of the main theorem, Theorem 3.6, presented in Chapter 5 uses

the following lemma, Lemma 4.15, which follows from Corollary 4.13 and the

induction assumption on Theorem 3.6.

We use Lemma 4.15 in the proof of Theorem 3.6 instead of Corollary 4.13

since it allows a simpler presentation of the later arguments. For k =

2, Lemma 4.15 is a straightforward reformulation of Szemerédi’s theorem

and reduces to the statement that for any graph G(2) = (V,E), there is a

graph G̃(2) for which
∣∣G(2)4G̃(2)

∣∣ is small and where G̃(2) = (V, Ẽ) admits a

“perfectly equitable” partition, i.e., V = V1 ∪ · · · ∪ Vt with |V1| = · · · = |Vt|
and all pairs (Vi, Vj) are ε-regular for 1 ≤ i < j ≤ t. Lemma 4.15 will

generalize this concept for G(k) with k > 2.

The following definition reflects the ‘almost’ ideal situation when, for each

2 ≤ j < k, there is just one uncontrolable (but very small) ’garbage partition

class’. Similarly to Definition 4.9 and Definition 4.10, we use tilde-notation

in the next definition to be consistent with the context in which it is used.

Definition 4.14 (almost perfect (δ̃, d̃, r̃, b)-family). Let r̃ > 0 be an

integer, δ̃ =
(
δ̃2, . . . , δ̃k−1

)
and d̃ =

(
d̃2, . . . , d̃k−1

)
be vectors of positive

reals, and b = (b1, . . . , bk−1) be a vector of positive integers. Set

b̄ = (b1, b2 + 1, b3, . . . , bk−1) .

We say that a family of partitions P = P(k− 1, b̄,ψ) (as defined in Defini-

tion 4.5) is an almost perfect
(
δ̃, d̃, r̃, b

)
-family of partitions if the following

holds:

(i ) d̃jbj = 1± δ̃j/d̃j for every 2 ≤ j ≤ k − 1, and

(ii ) for every 2 ≤ j ≤ k − 1, for every x̂(j−1) ∈ Â (j − 1, b) and for every

β ∈ [bj], the (n/b1, j, j)-cylinder P(j)
(
(x̂(j−1), β)

)
is
(
δ̃j, d̃j, r̃

)
-regular

w.r.t. P̂(j−1)
(
x̂(j−1)

)
.
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An almost perfect family of partitions P has the property that for ev-

ery x(k−1) ∈ A(k − 1, b) the (n/b1, k − 1, k − 1)-complex P (k−1)(x(k−1)) =

{P(j)(x(k−1))}k−1
j=1 (cf. Claim 4.3) is ’garbage free’, i.e., P (k−1)(x(k−1)) is(

(δ̃2, . . . , δ̃k−1), (d̃2, . . . , d̃k−1), r̃
)
-regular. In other words, all addresses x(k−1)

which give rise to irregular parts of the family of partitions P are in

A(k − 1, b̄) \ A(k − 1, b) .

Lemma 4.15 (Cleaning Phase I). For every vector d = (d2, . . . , dk) of posi-

tive reals, for every choice of δ3, . . . , δk, for any positive real δ̃k and all positive

functions

δ̃
(
D
)

=
(
δ̃k−1

(
Dk−1

)
, . . . , δ̃2

(
D2, . . . , Dk−1

))
,

r̃
(
B1,D

)
= r̃
(
B1, D2, . . . , Dk−1

)
,

there exist integers ñk, L̃k, a vector of positive reals c̃ = (c̃2, . . . , c̃k−1) and a

positive constant δ2 so that the following holds:

For every (d, δ = (δ2, . . . , δk), 1)-regular (n, `, k)-complex G = {G(j)}k
j=1

with n ≥ ñk there exist an (n, `, k)-complex G̃ = {G̃(j)}k
j=1, a positive real

vector d̃ =
(
d̃2, . . . , d̃k−1

)
componentwise bigger than c̃, and an almost perfect(

δ̃(d̃), d̃, r̃(b1, d̃), b
)
-family of partitions P = P

(
k − 1, b̄,ψ

)
= {P(j)}k−1

j=1

refining G̃ so that:

(i ) G̃(k) is
(
δ̃k, r̃(b1, d̃)

)
-regular with respect to P̂(k−1)(x̂(k−1)) for x̂(k−1) ∈

Â (k − 1, b),

(ii ) G̃(1) = G(1), G̃(2) = G(2), and G̃(j) ⊆ G(j) for every 3 ≤ j ≤ k,

(iii ) for every 3 ≤ j ≤ k and every j ≤ i ≤ `, the following holds:

∣∣K(j)
i (G(j))4K(j)

i (G̃(j))
∣∣ =

∣∣K(j)
i (G(j)) \ K(j)

i (G̃(j))
∣∣ ≤ δ̃k

j∏
h=2

d
( i

h)
h × ni ,
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(iv ) for any x̂(1) = ((λ1, λ2), (β1, β2)) ∈ Â(1, b), the graph G̃(2)[Vλ1,β1 , Vλ2,β2 ]

is (L̃2
kδ2, d2, 1)-regular w.r.t. P̂(1)(x̂(1)) = Vλ1,β1 ∪ Vλ2,β2, and

(v ) rank P ≤ L̃k and consequently |Â(k − 1, b)| ≤ (L̃k)
k.

In the proof of Lemma 4.15 (see Chapter 6) we construct an (n, `, k)-

complex G̃ admitting an almost perfect family of partitions P. More-

over, G̃ is almost identical to a given (n, `, k)-complex G (see (ii ) and (iii )

of Lemma 4.15). In particular, G̃(2) = G(2), while we allow a small differ-

ence between G̃(j) and G(j) for j ≥ 3. For the special role of G̃(j) we have

to allow ‘garbage classes’ in P(2). These ‘garbage classes’ are contained in

ψ−1
2 (b2 + 1). Note that the integer vector b̄ differs from b only in the second

coordinate.

On the other hand, note that the partition P given by Lemma 4.15 is

perfect in the sense that for 2 ≤ j ≤ k every j-tuple of G̃(j) belongs to a

regular polyad of P. This feature will later give us a significant notational

advantage. On the other hand, Lemma 4.15 (iii ) ensures that the two com-

plexes G and G̃ differ by few cliques only.

4.2.5 The Slicing Lemma

The following lemma whose proof is based on the fact that randomly chosen

subcylinders of a regular cylinder are regular was proved in [48]. We will find

it useful in this dissertation as well.

Lemma 4.16 (Slicing Lemma). Suppose %, δ are two real numbers such that

0 < δ/2 < % ≤ 1. There is an m0 = m0 (%, δ) such that the following holds.

Let P̂(j−1) be a (m, j, j − 1)-cylinder satisfying
∣∣K(j−1)

j

(
P̂(j−1)

)∣∣ ≥ mj/ lnm

and let F (j) ⊆ K(j−1)
j

(
P̂(j−1)

)
be an (m, j, j)-cylinder which is (δ, %, rSL)-

regular w.r.t. P̂(j−1). Then for every 0 < p < 1, where 3δ < p% and u =

b1/pc, there exists a decomposition of F (j) = F (j)
0 ∪F (j)

1 ∪· · ·∪F (j)
u such that

F (j)
i is (3δ, p%, rSL)-regular w.r.t. P̂(j−1) for 1 ≤ i ≤ u.
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Moreover if 1/p is an integer then F (j)
0 = ∅.
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Chapter 5

Proof of the Counting Lemma

The proof of the Counting Lemma, Theorem 3.6, is based on upcoming

Theorem 5.3 stated in the Section 5.2. In Section 5.2, we prove Theorem 3.6

follows from Theorem 5.3. The remainder of the dissertation is devoted to

the proof of Theorem 5.3, an outline of which is given in Section 5.3.

The proof of Theorem 5.3 splits into four lemmas, Lemmas 4.15, 5.6, 5.7

and 5.9. In Section 5.4, we show how Theorem 5.3 follows from these four

lemmas. We defer the proofs of these lemmas to Chapter 6–8.

The structure of the proof of the Counting Lemma outlined here will be

summarized in Figure 5.1. Some further consequences of Theorem 5.3 are

discussed in Chapter 10.

5.1 Induction assumption on the Counting

Lemma

We prove the Counting Lemma, Theorem 3.6, by induction on k. For k = 2,

the Counting Lemma, i.e, Fact 2.2, is a well known fact (see, e.g., [32, 33])

and for k = 3 it was proved by Nagle and Rödl in [36]. Therefore, from now

on let k ≥ 4 be a fixed integer.

Induction Hypothesis. We assume that

CLj,i holds for 2 ≤ j ≤ k − 1 and i ≥ j . (5.1)
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We prove CLk,` holds for all integers ` ≥ k.

Rather than quoting various forms of our induction hypothesis CLj,i (for

varying 2 ≤ j ≤ k−1 and i ≥ j) involving different δ’s and γ’s, we summarize

all such statements in one. The following statement which we denote by

IHCk−1,` is a reformulation of our Induction Hypothesis.

Statement 5.1 (Induction Hypothesis on Counting). For every integer ` ≥
k − 1 the following is true: ∀η > 0 ∀dk−1 > 0 ∃δk−1 > 0 ∀dk−2 > 0 ∃δk−2 >

0 . . . ∀d2 > 0 ∃δ2 > 0 and there are integers r and mk−1,` so that for all

integers j and i with 2 ≤ j ≤ k − 1 and j ≤ i ≤ ` the following holds.

If G = {G(h)}j
h=1 is a

(
(δ2, . . . , δj), (d2, . . . , dj), r

)
-regular (m, i, j)-complex

with m ≥ mk−1,`, then

∣∣∣K(j)
i

(
G(j)
)∣∣∣ = (1± η)

j∏
h=2

d
( i

h)
h ×mi .

The following fact confirms that Statement 5.1 is an easy consequence of

our Induction Hypothesis.

Fact 5.2. CLj,i ∀ 2 ≤ j ≤ k − 1 , j ≤ i ≤ ` =⇒ IHCk−1,` .

Note that Fact 5.2 is easy to prove and only requires confirming the con-

stants may be chosen appropriately; when given η, dk−1, δk−1, . . . , δj+1 and

dj, choose δj to be the minimum of all δj’s from the statements CLh,i with

j ≤ h ≤ k − 1 and h ≤ i ≤ `, where δj appears.

Proof of Fact 5.2. For given integers k and ` we shall refer to this theorem by

IHCk−1,`. In what follows we will show how CLj,i applied with 2 ≤ j ≤ k−1

and j ≤ i ≤ ` implies IHCk−1,`.

Indeed, let η and dk−1 be given. For all j and i, 2 ≤ j ≤ k − 1, j ≤ i ≤ `

set

γj,i = η .
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We fix

δk−1 = min
k−1≤i≤`

{
δk−1

(
CLk−1,i(γk−1,i, dk−1)

)}
,

where for k−1 ≤ i ≤ ` the constant δk−1

(
CLk−1,i(γk−1,i, dk−1)

)
has the value

of δk−1 given by CLk−1,i for γk−1,i and dk−1. After dk−2 is given we set

δk−2 = min
{

min
k−2≤i≤`

{
δk−2

(
CLk−2,i(γk−2,i, dk−2)

)}
,

min
k−1≤i≤`

{
δk−2

(
CLk−1,i(γk−1,i, dk−1, δk−1, dk−2)

)}}
.

In general, after dk−1, δk−1, dk−2, δk−2, . . . , dj were determined we set

δj = min
j≤h≤k−1

min
h≤i≤`

{
δj
(
CLh,i(γh,i, dh, δh, . . . , dj)

)}
.

With all constants γj,i for 2 ≤ j < k and j ≤ i ≤ ` and dk−1, δk−1, . . . , d2, δ2

disclosed we set the promised

r = max
2≤h≤k−1

max
h≤i≤`

{
r
(
CLh,i(γh,i, dh, δh, . . . , d2, δ2)

)}
,

mk−1,` = max
2≤h≤k−1

max
h≤i≤`

{
n0

(
CLh,i(γh,i, dh, δh, . . . , d2, δ2)

)}
.

Let 2 ≤ j ≤ k− 1 and j ≤ i ≤ ` be arbitrary, and suppose G = {G(h)}j
h=1

is a
(
(δ2, . . . , δj), (d2, . . . , dj), r

)
-regular (m, i, j)-complex with m ≥ mk−1,`.

Then by CLj,i and the choice of γj,i we infer that

∣∣∣K(j)
i

(
G(j)
)∣∣∣ = (1± γj,i)

j∏
h=2

d
( i

h)
h × ni = (1± η)

j∏
h=2

d
( i

h)
h × ni ,

which establishes the promised implication.

As a consequence of the induction assumption stated in (5.1) and Fact 5.2,

we may assume for the remainder of this dissertation that

IHCk−1,` holds for ` ≥ k − 1 . (5.2)
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5.2 Proof of Theorem 3.6

The proof of the Counting Lemma, Theorem 3.6, consists of two main parts.

The first part is Theorem 5.3, stated below, which receives input an (n, `, k)-

complex G = {G(h)}k
h=1 from the hypothesis of the Counting Lemma, The-

orem 3.6. Theorem 5.3 then guarantees the existence of output an (n, `, k)-

complex F = {F (h)}k
h=1 having the following properties.

(a ) The complex F differs only slightly from G. In particular, the number

of `-cliques in G(k) and F (k) are essentially the same (see property (iii )

of Theorem 5.3).

(b ) The complex F is “ready” for an application of the Dense Counting

Lemma, Theorem 4.1.

The proof of the following Theorem 5.3 is based on the induction hypoth-

esis, IHCk−1,` (cf. Statement 5.1). In the formulation below, the integer k

is already fixed (cf. Section 5.1) according to our induction hypothesis.

Theorem 5.3. Let ` ≥ k be a fixed integer. The following is true: ∀γ >

0 ∀dk > 0 ∃δk > 0 ∀dk−1 > 0 ∃δk−1 > 0 . . . ∀d2 > 0, ε > 0 ∃δ2 > 0 and there

are integers r and n0 so that, with d = (d2, . . . , dk) and δ = (δ2, . . . , δk) and

n ≥ n0, whenever G = {G(h)}k
h=1 is a (δ,d, r)-regular (n, `, k)-complex, then

there exists an (n, `, k)-complex F = {F (h)}k
h=1 such that

(i ) F is (ε,d, 1)-regular, with ε = (ε, . . . , ε) ∈ R(k−1),

(ii ) F (1) = G(1) and F (2) = G(2), and

(iii )
∣∣K(k)

`

(
G(k)

)
4K(k)

`

(
F (k)

)∣∣ ≤ (γ/2)
∏k

h=2 d
(`

h)
h × n`.

We mention that Theorem 5.3 has some interesting implications of its own

which we discuss in Chapter 10.
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We present a proof of Theorem 5.3 in Section 5.4. In the immediate

sequel, we give the proof of the Inductive Step for the Counting Lemma based

on Theorem 5.3 and Theorem 4.1. We note that this proof of CLk,` does not

directly use the induction hypothesis IHCk−1,`, but we will use IHCk−1,` in

the proof of Theorem 5.3 (see Figure 5.1).

Proof of Theorem 3.6. We begin by describing the constants involved. With

the exception of ε, Theorem 3.6 and Theorem 5.3 involve the same constants

under the same quantification. Hence, given γ and dk from Theorem 3.6,

we let δk be the δk
(
Thm.5.3(γ, dk)

)
from Theorem 5.3. In general, given dj,

j = k, . . . , 3, we set

δj = δj
(
Thm.5.3(γ, dk, δk, dk−1, . . . , δj+1, dj)

)
.

Having fixed γ, dk, δk, dk−1, . . . , δ4, d3, δ3, now let d2 be given by Theorem 3.6.

Next, we fix ε for Theorem 5.3 so that

ε ≤ ε
(
Thm.4.1(d2, . . . , dk)

)
and gk,`(ε) ≤

γ

2
, (5.3)

where gk,` is given by the Dense Counting Lemma, Theorem 4.1. Moreover,

let m0

(
Thm.4.1(d2, . . . , dk)

)
be the lower bound on the number of vertices

given by Theorem 4.1 applied to d2, . . . , dk.

Then, Theorem 5.3 yields

δ2
(
Thm.5.3(γ, dk, δk, . . . , δ3, d2, ε)

)
, r

(
Thm.5.3(γ, dk, δk, . . . , δ3, d2, ε)

)
,

and n0

(
Thm.5.3(γ, dk, δk, . . . , δ3, d2, ε)

)
. (5.4)

Finally, we set δ2 and r for Theorem 3.6 to its corresponding constants given

in (5.4). Also, we set n0 for Theorem 3.6 to

n0 = max
{
n0

(
Thm.5.3(γ, dk, δk, . . . , δ3, d2, ε)

)
,m0

(
Thm.4.1(d2, . . . , dk)

)}
.

Now, let G be a (δ,d, r)-regular (n, `, k)-complex satisfying n ≥ n0. Then,

Theorem 5.3 yields an (ε,d, 1)-regular (n, `, k)-complex F satisfying (i )–(iii )
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of Theorem 5.3. Consequently, by (5.3) and (i ), we may apply the Dense

Counting Lemma to F . Therefore,

∣∣∣K(k)
`

(
F (k)

)∣∣∣ =
(
1± γ

2

) k∏
h=2

d
(`

h)
h × n`

and Theorem 3.6 follows from (iii ) of Theorem 5.3.

We note that the proof of Theorem 3.6 did not use the full strength of

Theorem 5.3. In particular, we made no use of (ii ) here. However, (ii ) is

important with respect to further consequences of Theorem 5.3 discussed in

Chapter 10.

5.3 Outline of the proof of Theorem 5.3

Given an (n, `, k)-complex G = {G(j)}k
j=1, Theorem 5.3 ensures the exis-

tence of an appropriate (n, `, k)-complex F = {F (j)}k
j=1. This complex is

constructed successively in three phases outlined below.

The first phase we call Cleaning Phase I and is a variant of the RS-

Lemma (see Theorem 4.11). The lemma corresponding to Cleaning Phase I,

Lemma 4.15, was already stated in Section 4.2.4. Given a (δ,d, r)-regular

input complex G with δ = (δ2, . . . , δk) and d = (d2, . . . , dk), we fix

δ̃k � ε′ � min{ε, d2, . . . , dk}. (5.5)

Lemma 4.15 alters G slightly (by a measure of δ̃k) to obtain an (n, `, k)-

complex G̃ = {G̃(j)}k
j=1 together with an almost perfect (δ̃(d̃), d̃, r̃(d̃), b)-

family of partitions which is (δ̃k, r̃(d̃))-regular w.r.t. G̃(k) (cf. Lemma 4.15

and Figure 5.2 in Section 5.4.2). Importantly, Lemma 4.15 will ensure that∣∣∣K(k)
`

(
G(k)

)
4K(k)

`

(
G̃(k)

)∣∣∣ is “small”. (5.6)
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Cleaning Phase I enables us to work with a complex G̃ admitting a par-

tition with almost no irregular polyads. These details are done largely for

convenience to help ease subsequent parts of the proof.

We next proceed to Cleaning Phase II with the newly-acquired com-

plex G̃ and an almost perfect (µ, δ̃(d̃), d̃, r̃(d̃), b)-family of partitions P =

P(k− 1, b̄,ψ), rank P ≤ L̃k (cf. Lemma 4.15). Since G̃ differs from G only

slightly (by a measure of δ̃k), it follows from the choice of constants (argued

in Fact 7.3) that G̃ inherits (2δ,d, r)-regularity from G. Moreover, the choice

of r ensuring r ≥ L̃k (cf. (5.22)) implies that the density d
(
G̃(j)|P̂(j−1)

)
is

close to what it “should be”, namely, dj, w.r.t. to “most” polyads P̂(j−1)

from P with P̂(j−1) ⊆ G̃(j−1).

The goal in Cleaning Phase II is to perfect the small number of polyads

having aberrant density. More specifically, Cleaning Phase II constructs

“unidense” (n, `, k)-complex F = {F (j)}k
j=1 where d

(
F (j)|P̂(j−1)

)
is the same

and equal to dj for every polyad P̂(j−1) from P with P̂(j−1) ⊆ F (j−1). The

importance of “unidensity” is that it allows us to apply the Union Lemma,

Lemma 5.9. Then the “final product” of the Union Lemma, the (n, `, k)-

complex F , will satisfy (i ) of Theorem 5.3. We now further examine the

details of Cleaning Phase II.

Cleaning Phase II splits into two parts. In Part 1 of Cleaning Phase II

(cf. Lemma 5.6), we correct the first k − 1 layers of possible imperfections

of G̃ = {G̃(j)}k
j=1, j < k, by constructing a “unidense” complex (n, `, k − 1)-

complex H(k−1) = {H(j)}k−1
j=1 . For the construction of H(k−1), we need to

count cliques in such a complex and use the powerful tool IHCk−1,` which

we have available by the induction assumption (CLj,` for 2 ≤ j ≤ k − 1).

We next remedy imperfections on the kth layer G̃(k). However, in the ab-

sence of our Induction Assumption herein, we have to proceed more carefully.

We first construct a still “somewhat imperfect” (n, `, k)-cylinder H(k) so

that H = {H(j)}k
j=1 is an (n, `, k)-complex and d

(
H(k)|P̂(k−1)

)
= dk±

√
δk for
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every polyad P̂(j−1) from P with P̂(j−1) ⊆ H(j−1). While G̃(k) satisfies that

for “most” P̂(k−1) ⊆ G̃(k−1), its density is close to dk, the newH(k) has density

close to dk for “all” P̂(k−1) ⊆ H(k−1). Moreover, we can construct H(k) in

such a way that ∣∣∣K(k)
`

(
G̃(k)

)
4K(k)

`

(
H(k)

)∣∣∣ is “small”. (5.7)

Part 2 of Cleaning Phase II deals with H(k), the k-th layer of the com-

plex H. In this part, we construct unidense (w.r.t. H(k−1) and P(k−1))

(n, `, k)-cylinders H(k)
− and H(k)

+ (corresponding to the above dk −
√
δk and

dk +
√
δk, respectively) and F (k) where each of these cylinders, together with

H(k−1) = {H(j)}k−1
j=1 , forms an (n, `, k)-complex. In the construction, we will

also ensure that

H(k)
− ⊆ H(k) ⊆ H(k)

+ H(k)
− ⊆ F (k) ⊆ H(k)

+ . (5.8)

We then set F (j) = H(j) for j < k and F = {F (j)}k
j=1.

We now discuss how we infer (i ) and (iii ) of Theorem 5.3 for F (prop-

erty (ii ) is somewhat technical and we omit it from the outline given here).

For part (i ) of Theorem 5.3, we need to show that F (j) is (ε, dj, 1)-regular

w.r.t. F (j−1), 2 ≤ j ≤ k. To this end, we take the union of all “partition

blocks” from P(j) (which are subhypergraphs of F (j)). Note that all these

blocks are very regular (w.r.t. their underlying polyads (which are subhyper-

graphs of F (j−1))) and have the same relative density (due to the unidensity).

In fact, these blocks will be so regular that their union is (ε′, dj, 1)-regular

and therefore also (ε, dj, 1)-regular (cf. (5.5)). Consequently, as proved in

the Union Lemma, Lemma 5.9, we obtain that F is
(
(ε, . . . , ε),d, 1)-regular

which proves (i ) of Theorem 5.3.
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We now outline the proof of part (iii ). Observe that∣∣∣K(k)
`

(
G(k)

)
4K(k)

`

(
F (k)

)∣∣∣ ≤ ∣∣∣K(k)
`

(
G(k)

)
4K(k)

`

(
G̃(k)

)∣∣∣+
+
∣∣∣K(k)

`

(
G̃(k)

)
4K(k)

`

(
H(k)

)∣∣∣+ (5.9)

+
∣∣∣K(k)

`

(
H(k)

)
4K(k)

`

(
F (k)

)∣∣∣ .
The first two terms of the right-hand side are small as mentioned earlier

(see (5.6) and (5.7)). Let us say a few words on how to bound the third

quantity.

Due to (5.8), we have∣∣∣K(k)
`

(
H(k)

)
4K(k)

`

(
F (k)

)∣∣∣ ≤ ∣∣∣K(k)
`

(
H(k)

+

)
4K(k)

`

(
H(k)
−
)∣∣∣

=
∣∣∣K(k)

`

(
H(k)

+

)∣∣∣− ∣∣∣K(k)
`

(
H(k)
−
)∣∣∣. (5.10)

Since both complexes H+ and H− were constructed to be unidense, we

can show that H∗ is
(
(ε′, . . . , ε′),d∗, 1

)
-regular for ∗ ∈ {+,−} where d∗ =

(d2, . . . , dk−1, d
∗
k) and d∗k = dk +

√
δk for ∗ = + and d∗k = dk −

√
δk for ∗ = −.

Similarly to the proof of (i ) where the Union Lemma was applied to F , we

can use it here for H+ and H−. Consequently, due to (5.5), we can apply the

Dense Counting Lemma, Theorem 4.1 to bound the right-hand side of (5.10)

and thus the right-hand side of (5.9). This yields part (iii ) of Theorem 5.3.

The flowchart in Figure 5.1 gives a sketch of the connection of theorems

and lemmas involved in the proof of CLk,`, Theorem 3.6. Each box represents

a theorem or lemma containing a reference for its proof. Vertical arcs indicate

which statements are needed to prove the statement to which the arc points.

The horizontal arcs indicate the alteration of the involved complexes outlined

above.
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Theorem 3.6
CLj,i, 2 ≤ j < k, j ≤ i ≤ `

induction assumption

Theorem 4.11
RS-Lemma

[48]

Lemma 4.16
Slicing Lemma

[48]

Statement 5.1
IHCk−1,`

Section 5.1

6

Prop. 8.1

Section 8.1

Prop. 8.3

Section 8.1

G .....-
Lemma 4.15

Clean I
Chapter 6

G̃
............-

6

Lemma 5.6
Clean II.1
Section 7.2

H
............-

6

Lemma 5.7
Clean II.2
Section 7.3

H+

H−
............-

6

Lemma 5.9
Union Lemma

Section 8.2
F.....-

6

Theorem 4.1
Dense Counting Lemma

[31]

Theorem 5.3
Section 5.4

6

Theorem 3.6
CLk,`

Section 5.2

6

Figure 5.1: Structure of the proof of Theorem 3.6
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5.4 Proof of Theorem 5.3

In this section, we give all details of the proof of Theorem 5.3 outlined in the

last section. The proof of Theorem 5.3 splits into four parts. We separate

these parts across Sections 5.4.1–5.4.4.

5.4.1 Constants

The hierarchy of the involved constants plays an important role in our proof.

The choice of the constants breaks into two steps.

Step 1. Let an integer ` be given. We first recall the quantification of

Theorem 5.3:

∀γ, dk ∃δk ∀dk−1 . . . ∃δ3 ∀d2, ε ∃δ2, r, n0 .

Given γ and dk we choose δk such that

δk � min{γ, dk} (5.11)

holds. Now, let dk−1 be given, we set

η = 1/4 . (5.12)

(Our proof is not too sensitive to the choice of η, representing the multi-

plicative error for IHCk−1,`.) We choose δk−1 so that δk−1 � min{δk, dk−1}
and δk−1 ≤ δk−1

(
IHCk−1,`(η, dk−1)

)
where δk−1

(
IHCk−1,`(η, dk−1)

)
is the

value of δk−1 given by Statement 5.1 for η and dk−1. We then proceed and

define δj for j = k − 2, . . . , 3 in the similar way. Summarizing the above, for

j = k − 1, . . . , 3 we choose δj such that

δj � min{δj+1, dj} and

δj ≤ δj
(
IHCk−1,`(η, dk−1, δk−1, dk−2, . . . , δj+1, dj)

)
.

(5.13)

We mention that after d2 is revealed we pause before defining δ2.
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Indeed, next we choose the auxiliary constant ε′ so that

ε′ ≤ min
{
ε
(
Thm.4.1(d2, . . . , dk−1, dk − δ

1/2
k )
)
,

ε
(
Thm.4.1(d2, . . . , dk−1, dk + δ

1/2
k )
)}

,

ε′ � min
{
δ3, d2, ε

}
, and gk,`(ε

′) � δk ,

(5.14)

where gk,` is given by the Dense Counting Lemma, Theorem 4.1. We then

fix η̃, ν, and δ̃k to satisfy

ε′ � η̃ � ν � δ̃k and δ̃k ≤ 1/8 . (5.15)

This completes Step 1 of the choice of the constants. We summarize the

choices above in the following flowchart:

dk . . . d3 d2, ε
�

. . .

� �

γ � δk � · · · � δ3 � ε′ � η̃ � ν � δ̃k

(5.16)

Step 2. The definition of the constants determined here is more subtle.

Our goal is to extend (5.16) with the additional constants d̃j, δ̃j (for j =

k − 1, . . . , 2), r̃, L̃2
kδ2 and r so that:

d̃k−1 . . . d̃3 d̃2

�

. . .

� �

δ̃k � δ̃k−1 � · · · � δ̃3 � δ̃2,
1
r̃
� L̃2

kδ2,
1
r

In our proof, we apply Lemma 4.15 to the (n, `, k)-complex G = {G(j)}k
j=1.

Lemma 4.15 has positive functions δ̃j(Dj, . . . , Dk−1) for j = 2, . . . , k − 1

and r̃(D2, . . . , Dk−1) in variables D2, . . . , Dk−1 as part of its input. The

application of Lemma 4.15 results in an almost perfect
(
δ̃(d̃), d̃, r̃(d̃), b

)
-

family of partitions P with some d̃ = (d̃2, . . . , d̃k−1). We want to be able
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to count cliques within the polyads of the family of regular partitions P

by applying IHCk−1,`. Therefore, we choose the functions δ̃j(Dj, . . . , Dk−1)

for Lemma 4.15 in such a way that they comply with the quantification of

IHCk−1,`, Statement 5.1.

To this end let δ̃k−1(Dk−1) be a function so that

δ̃k−1(Dk−1) � min{δ̃k, Dk−1} , δ̃k−1(Dk−1) ≤ δk−1

(
IHCk−1,`(η̃, Dk−1)

)
,

and (1 + δ̃k−1(Dk−1)/Dk−1)
( `

k−1) < (1 + ν)1/k−2 .

We next choose the function δ̃k−2(Dk−2, Dk−1) in a similar way, making sure

that

δ̃k−2(Dk−2, Dk−1) � min
{
δ̃k−1(Dk−1), Dk−2

}
,

δ̃k−2(Dk−2, Dk−1) ≤ δk−2

(
IHCk−1,`(η̃, Dk−1, δ̃k−1(Dk−1), Dk−2)

)
,

and(
1 +

δ̃k−2(Dk−2, Dk−1)

Dk−2

)( `
k−2)

< (1 + ν)1/k−2 .

(Since δ̃k−1(Dk−1) is a function of Dk−1 and η̃ was fixed in (5.15) already, we

indeed also have that the right-hand sides of the first two inequalities above

depend on the variables Dk−2 and Dk−1 only.) In general for j = k− 1, . . . , 2

we choose δ̃j(Dj, . . . , Dk−1) so that

δ̃j(Dj, . . . , Dk−1) � min
{
Dj, δ̃j+1(Dj+1, . . . , Dk−1)

}
,

δ̃j(Dj, . . . , Dk−1) ≤ δj
(
IHCk−1,`(η̃, Dk−1, δ̃k−1(Dk−1), Dk−2, . . .

. . . , δ̃j+1(Dj+1, . . . , Dk−1), Dj)
)

and(
1 +

δ̃j(Dj, . . . , Dk−1)

Dj

)(`
j)

< (1 + ν)1/k−2 .

(5.17)
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We may assume, without any loss of generality, that the functions defined

in (5.17) are componentwise monotone decreasing. Since for every h ≥ j + 1

the δ̃h was constructed as a function of Dh, . . . , Dk−1 only, as before, we

may view the right-hand sides of the first two inequalities of (5.17) as a

function of Dj, . . . , Dk−1 only. Consequently, δ̃j is a function of Dj, . . . , Dk−1,

as promised. Furthermore, we set r̃(D2, . . . , Dk−1) to be a componentwise

monotone increasing function such that

r̃(D2, . . . , Dk−1) � max
{
1/D2, 1/δ̃3(D3, . . . , Dk−1)

}
and

r̃(D2, . . . , Dk−1) ≥ r
(
IHCk−1,`(η̃, Dk−1, δ̃k−1(Dk−1), . . . D2)

)
.

(5.18)

As a result of Lemma 4.15 applied to d = (d2, . . . , dk), δ3, . . . , δk, δ̃k,

and the functions δ̃k−1(Dk−1), . . . , δ̃2(D2, . . . , Dk−1) and r̃(D2, . . . , Dk−1) we

obtain integers ñk, L̃k, a vector of positive reals c̃ = (c̃2, . . . , c̃k−1) and a

constant δLem.4.15
2 . (Here we did not use the variable B1 for the function

r̃(D2, . . . , Dk−1).) Next, we disclose δ2 and r promised by Theorem 3.6. For

that we apply the functions δ̃2(D2, . . . , Dk−1) and r̃(D2, . . . , Dk−1), defined

in (5.17) and (5.18), to c̃. We set δ2 and r so that(
L̃2

kδ2
)
� min

{
δ̃2(c̃), 1/r̃(c̃)

}
δ2 ≤ δ2

(
IHCk−1,`(η, dk−1, δk−1, dk−2, . . . , δ3, d2)

)
,

(5.19)

and

r � max
{

1/δ̃2(c̃), r̃(c̃), 2
`L̃k

k

}
r ≥ r

(
IHCk−1,`(η, dk−1, δk−1, dk−2, . . . , δ3, d2)

)
.

(5.20)

Finally, we set n0 so that

n0 � max
{
ñk, 1/δ2, r, m0, L̃kmk−1,`, L̃km̃k−1,`

}
, (5.21)

where

m0 = max
{
m0

(
Thm.4.1(d2, . . . , dk− δ1/2

k )
)
,m0

(
Thm.4.1(d2, . . . , dk + δ

1/2
k )
)}
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is given by Theorem 4.1 applied to d2, . . . , dk−1 and dk − δ
1/2
k and dk + δ

1/2
k ,

respectively, and similarly

mk−1,` = mk−1,`

(
IHC(η, dk−1, δk−1, . . . , d2, δ2)

)
and

m̃k−1,` = mk−1,`

(
IHC(η̃, c̃k−1, δ̃k−1(c̃k−1), . . . , c̃2, δ̃2(c̃))

)
come from Statement 5.1.

We now defined all constants involved in the statement of Theorem 5.3.

Moreover, we defined the functions and constants needed for Lemma 4.15.

This brings us to the next part of the proof, Cleaning Phase I.

5.4.2 Cleaning Phase I

Let G = {G(j)}k
j=1 be a (δ,d, r)-regular (n, `, k)-complex where n ≥ n0 and

δ = (δ2, . . . , δk), d = (d2, . . . , dk) and r are chosen as described in Sec-

tion 5.4.1. We apply Lemma 4.15 to G with the constant δ̃k, the func-

tions δ̃(D) = (δ̃k−1(Dk−1), . . . , δ̃2(D2, . . . , Dk−1)) and the function r̃(D) as

given in (5.15), (5.17) and (5.18). Lemma 4.15 renders an (n, `, k)-complex

G̃ = {G̃(j)}k
j=1, a real vector of positive coordinates d̃ = (d̃2, . . . , d̃k−1) com-

ponentwise bigger than c̃ and an almost perfect (δ̃(d̃), d̃, r̃, b)-family of parti-

tions P = P(k−1, b̄,ψ) refining G̃ (cf. Definition 4.12 and Definition 4.14).

Note that the choice of r in (5.20) and (v ) of Lemma 4.15 ensures that for

2 ≤ j ≤ k,

r ≥ 2`L̃k
k ≥ 2`

∣∣Â(k − 1, b)
∣∣ ≥ ∣∣Â(j − 1, b)

∣∣ . (5.22)

For 2 ≤ j ≤ k − 1, we finally fix the constants

δ̃j = δ̃j(d̃j, . . . , d̃k−1) and r̃ = r̃(d̃) .

From the monotonicity of the functions δ̃2 and r̃, we infer

δ̃2 = δ̃2(d̃) ≥ δ̃2(c̃) � δ2 and r̃ = r̃(d̃) ≤ r̃(c̃) � r . (5.23)
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dk . . . d3 d2, ε

�

. . .

� �

γ � δk � · · · � δ3 � ε′

�

η̃

�

ν d̃k−1 . . . d̃3 d̃2

� �

. . .

� �

δ̃k � δ̃k−1 � · · · � δ̃3 � δ̃2,
1
r̃�

L̃2
kδ2,

1
r

Figure 5.2: Flowchart of the constants

For future reference, we summarize, in Figure 5.2, (5.11)–(5.20) and(5.23).

For the remainder of the proof of Theorem 5.3 , all constants are fixed as

summarized above in Figure 5.2.

Observe that by the choice of the functions δ̃j in (5.17) and part (i ) of

Definition 4.14, we have for every 2 ≤ j < k and j < i ≤ `

j∏
h=2

(d̃hbh)
( i

h) =

j∏
h=2

(
1± δ̃h/d̃h

)( i
h)

=

j∏
h=2

(1± ν)1/k−2 = 1± ν . (5.24)

Remark 5.4. Observe that the last two “equality signs” in (5.24) are used

in a non-symmetric way. For example, the last equality sign abbreviates the

validity of the two inequalities

(1− ν) ≤
j∏

h=2

(1− ν)1/k−2 and

j∏
h=2

(1 + ν)1/k−2 ≤ (1 + ν) .

We will use this notation occasionally in the calculations throughout this

dissertation.
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Part (iii ) of Lemma 4.15 bounds the difference of the number of K
(k)
` ’s

in G(k) and G̃(k) by

δ̃k

k∏
h=2

d
(`

h)
h × n` � δk

k∏
h=2

d
(`

h)
h × n` . (5.25)

For future reference, we summarize the results of Cleaning Phase I.

Setup 5.5 (After Cleaning Phase I). Let all constants be chosen as summa-

rized in Figure 5.2 so that also (5.22) and (5.24) hold. Let G be the (δ,d, r)-

regular (n, `, k)-complex from the input of the Counting Lemma, Theorem 3.6.

Let G̃ be the (n, `, k)-complex and P = P(k − 1, b̄,ψ) be the almost perfect

(δ̃, d̃, r̃, b)-family of partitions refining G̃ given after Cleaning Phase I, i.e.,

after an application of Lemma 4.15.

We now mention a few comments to motivate our next step in the proof.

The family of partitions P given by Lemma 4.15 (cf. Setup 5.5) is an

almost perfect family (cf. Definition 4.14); moreover, by (i ), G̃(k) is (δ̃k, r̃)-

regular w.r.t. P̂(k−1)(x̂(k−1)) for every x̂(k−1) ∈ Â(k − 1, b). However, while

every component of the partition is regular, it is possible that the densities

d
(
G̃(j)
∣∣P̂(j−1)(x̂(j−1))

)
may vary across different x̂(j−1) ∈ Â(j−1, b) for which

P̂(j−1)(x̂(j−1)) ⊆ G̃(j−1).

The goal of the next cleaning phase is to alter G̃ to form a complex F
where all densities are appropriately uniform. Importantly, we show that

the two complexes G̃ and F share mostly all their respective cliques. (For

technical reasons, we will also need to construct two auxiliary complexes H+

and H−)

5.4.3 Cleaning Phase II

The aim of this section is to construct the complex F = {F (j)}k
j=1 which

is promised by Theorem 5.3. For the proof of part (iii ) of Theorem 5.3, we
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define two auxiliary complexes H+ = {H(j)
+ }k

j=1 and H− = {H(j)
− }k

j=1. Later,

in the final phase (see Section 5.4.4), our goal is to apply the Dense Counting

Lemma to these auxiliary complexes.

The construction of H+, H− and F splits into two parts. First (cf.

upcoming Lemma 5.6), we construct an auxiliary (n, `, k)-complex H =

{H(j)}k
j=1 which will have the required properties for 1 ≤ j < k (we have

H(j)
+ = H(j)

− = F (j) = H(j) for 1 ≤ j < k).

In the second part, we use upcoming Lemma 5.7 to overcome a ‘slight

imperfection’ of H(k) and construct H(k)
+ , H(k)

− , and F (k) so that H+ and H−

(as we will later show in Lemma 5.9) satisfy the assumptions of the Dense

Counting Lemma. Moreover, H(k)
+ and H(k)

− will “sandwich” F (k) and H(k)

(i.e. H(k)
+ ⊇ F (k) ⊇ H(k)

− and H(k)
+ ⊇ F (k) ⊇ H(k)

− ).

We need the following definition in order to state Lemma 5.6. For a (j−1)-

uniform hypergraph H(j−1), we denote by Â
(
H(j−1), j − 1, b

)
⊆ Â(j − 1, b)

the set of polyad addresses x̂(j−1) such that

P̂(j−1)
(
x̂(j−1)

)
⊆ H(j−1) . (5.26)

Lemma 5.6 (Cleaning Phase II, Part 1). Given Setup 5.5, there exists an

(n, `, k)-complex H =
{
H(j)

}k

j=1
such that:

(a ) H(1) = G̃(1) = G(1) (and consequently Â
(
H(1), 1, b

)
= Â (1, b)) and

H(2) = G̃(2) = G(2).

(b ) For every 2 ≤ j < k, the following holds:

(b1 ) For any x̂(j−1) ∈ Â
(
H(j−1), j − 1, b

)
, there exist a set of indices

I
(
x̂(j−1)

)
⊆ [bj] of size

∣∣I(x̂(j−1)
)∣∣ = djbj such that

H(j) ∩ K(j−1)
j

(
P̂(j−1)(x̂(j−1))

)
=

⋃
α∈I(x̂(j−1))

P(j)
((
x̂(j−1), α

))
.
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(b2 ) For every j ≤ i ≤ `,

∣∣∣K(j)
i

(
H(j)

)
4K(j)

i

(
G̃(j)
)∣∣∣ ≤ δ

1/3
j

(
j∏

h=2

d
( i

h)
h

)
ni .

(c ) Finally, the (n, `, k)-cylinder H(k) satisfies the following two properties:

(c1 ) For every x̂(k−1) ∈ Â
(
H(k−1), k − 1, b

)
, H(k) is

(
δ̃k, d̄k(x̂

(k−1)), r̃
)
-

regular w.r.t. P̂(k−1)
(
x̂(k−1)

)
where d̄k

(
x̂(k−1)

)
= dk ±

√
δk.

(c2 ) ∣∣∣K(k)
`

(
H(k)

)
4K(k)

`

(
G̃(k)

)∣∣∣ ≤ δ
1/3
k

(
k∏

h=2

d
(`

h)
h

)
n` .

We prove Lemma 5.6 in Section 7.2.

Consider the subcomplex H(k−1) = {H(j)}k−1
j=1 . The complex H(k−1) is

‘absolutely perfect’ by having the following two properties for every 2 ≤ j <

k:

perfectly equitable (PE ) For every x̂(j−1) ∈ Â(H(j−1), j − 1, b) and every

β ∈ I(x̂(j−1)), the (n/b1, j, j)-cylinder P(j)
(
(x̂(j−1), β)

)
is (δ̃j, d̃j, r̃)-

regular with respect to its underlying polyad P̂(j−1)(x̂(j−1)).

uniformly dense (UD ) For every x̂(j−1) ∈ Â(H(j−1), j − 1, b),

d
(
H(j)

∣∣P̂(j−1)(x̂(j−1))
)

= (djbj)(d̃j ± δ̃j) . (5.27)

The property (PE ) is an immediate consequence of the fact that P is an

almost perfect (δ̃, d̃, r̃, b)-family of partitions. Property (UD ) easily follows

from (b1 ) combined with (PE ).

We now rewrite the right-hand side of (5.27) in a more convenient form

(cf. (5.28)). Using (i ) from Definition 4.14, we infer

d
(
H(j)

∣∣P̂(j−1)(x̂(j−1))
)

= dj(1± δ̃j/d̃j)± bj δ̃j = dj ± (δ̃j/d̃j + bj δ̃j) .
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As a consequence of Definition 4.14 (i ) and d̃j > δ̃j, we have bj < 2/d̃j. Due

to the choice of the constants (cf. Figure 5.2) δ̃j � d̃j. We therefore infer

d
(
H(j)

∣∣P̂(j−1)(x̂(j−1))
)

= dj±(δ̃j/d̃j +bj δ̃j) = dj±3δ̃j/d̃j = dj±
√
δ̃j . (5.28)

For each 2 ≤ j < k consider H(j) as the union

H(j) =
⋃{

H(j) ∩ P̂(j−1)(x̂(j−1)) : x̂(j−1) ∈ Â(H(j−1), j − 1, b)
}
.

From property (PE ) and (5.28) we will infer that H(j) is (δ̃
1/3
j , d̃j, 1)-regular

(and, therefore, also (ε′, d̃j, 1)-regular) w.r.t. H(j−1) (see proof of Lemma 5.9

in Section 8.2). This means, however, that the complex H(k−1) is ‘ready’ for

an application of the Dense Counting Lemma, Theorem 4.1.

The proof of (b2 ) is based on the induction assumption (cf. IHCk−1,`).

The treatment ofH(k) will necessarily have to be different. We shall construct

two (n, `, k)-cylinders H(k)
+ and H(k)

− so that H(k)
+ ⊇ H(k) ⊇ H(k)

− . Moreover,

we construct F (k), incomparable with respect toH(k), but withH(k)
+ ⊇ F (k) ⊇

H(k)
− . To this end, we use the following lemma whose proof we defer to

Section 7.3.

Lemma 5.7 (Cleaning Phase II, Part 2). Given Setup 5.5 and the (n, `, k)-

complex H from Part 1 of Cleaning Phase II, Lemma 5.6, there are (n, `, k)-

cylinders H(k)
− ⊆ F (k) ⊆ H(k)

+ such that:

(α ) H− = {H(i)}k−1
i=1 ∪H

(k)
− , H+ = {H(i)}k−1

i=1 ∪H
(k)
+ , and F = {H(i)}k−1

i=1 ∪
F (k) are (n, `, k)-complexes and H(k)

− ⊆ H(k) ⊆ H(k)
+ .

(β ) For every x̂(k−1) ∈ Â
(
H(k−1), k − 1, b

)
, the following holds:

(β1 ) H(k)
− is

(
3δ̃k, dk −

√
δk, r̃

)
-regular w.r.t. to P̂(k−1)

(
x̂(k−1)

)
and

(β2 ) H(k)
+ is

(
3δ̃k, dk +

√
δk, r̃

)
-regular w.r.t. to P̂(k−1)

(
x̂(k−1)

)
,

(β3 ) F (k) is
(
21δ̃k, dk, r̃

)
-regular w.r.t. to P̂(k−1)

(
x̂(k−1)

)
.
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Cleaning Phase II is now concluded. For future reference, we summarize

the effects of Cleaning Phase II.

Setup 5.8 (After Cleaning Phase II). Let all constants be chosen as sum-

marized in Figure 5.2 so that (5.22) and (5.24) hold.

• Let P = P(k − 1, b̄,ψ) be the almost perfect (δ̃, d̃, r̃, b)-family of

partitions given after Cleaning Phase I, i.e., after an application of

Lemma 4.15.

• Let H be the (n, `, k)-complex given from Part 1 of Cleaning Phase II,

Lemma 5.6. For every 2 ≤ j < k and x̂(j−1) ∈ Â(H(j−1), j − 1, b), let

I(x̂(j−1)) ⊆ [bj] be the index set satisfying (b1 ) of Lemma 5.6.

• Moreover, let H+, H−, and F be the (n, `, k)-complexes given by

Part 2 of Cleaning Phase II, Lemma 5.7.

5.4.4 The Final Phase

We now finish the proof Theorem 5.3. The first goal is to show that H+ and

H− satisfy the assumptions of the Dense Counting Lemma. To this end, we

use the upcoming Union Lemma, Lemma 5.9, stated below. After stating

the Union Lemma, we finish the proof of Theorem 5.3.

Lemma 5.9 (Union lemma). Given Setup 5.8 and let ∗ ∈ {+,−}, the

complex H∗ is (ε′,d∗, 1)-regular where ε′ = (ε′, . . . , ε′) ∈ Rk−1 and d∗ =

(d∗2, . . . , d
∗
k) with

d∗j =


dj if 2 ≤ j ≤ k − 1

dk +
√
δk if j = k and ∗ = +

dk −
√
δk if j = k and ∗ = − .

(5.29)

Similarly, the (n, `, k)-complex F = {H(j)}k−1
j=1 ∪ F (k) is (ε′,d, 1)-regular

where ε′ = (ε′, . . . , ε′) ∈ Rk−1 and d = (d2, . . . , dk).
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We give the proof of Lemma 5.9 in Chapter 8. We now finish this section

with the proof of Theorem 5.3.

Proof of Theorem 5.3. Set F (j) = H(j) for 1 ≤ j < k and let F (k) be given

by Lemma 5.7. Consequently, F = {F (j)}k
j=1 is an (n, `, k)-complex and

Lemma 5.9 gives (i ) of Theorem 5.3. Moreover, due to part (a ) of Lemma 5.6,

we have G(1) = H(1) = F (1) and G(2) = H(2) = F (2) which yields (ii ) of

Theorem 5.3. It is left to verify part (iii ) of the theorem.

As an intermediate step, we first consider K(k)
` (H(k))4K(k)

` (F (k)). Since

H(k)
+ ⊇ H(k) ∪ F (k) and H(k) ∩ F (k) ⊇ H(k)

− (cf. Lemma 5.7), we have∣∣∣K(k)
`

(
H(k)

)
4K(k)

`

(
F (k)

)∣∣∣ ≤ ∣∣∣K(k)
`

(
H(k)

+

)
\ K(k)

`

(
H(k)
−
)∣∣∣ . (5.30)

We infer from Lemma 5.9 and the choice of ε′ in (5.14) and n0 in (5.21)

that H+ and H− satisfy the assumptions of the Dense Counting Lemma,

Theorem 4.1. Consequently,

∣∣∣K(k)
`

(
H(k)

+

)∣∣∣ ≤ (1 +
√
δk

)(
dk +

√
δk

)(`
k)

k−1∏
h=2

d
(`

h)
h × n`

≤
(
1 +

√
δk

)(
1 + 2

(
`

k

)√
δk
dk

) k∏
h=2

d
(`

h)
h × n`

≤
(
1 + δ

1/3
k

) k∏
h=2

d
(`

h)
h × n`.

(5.31)

Similarly, ∣∣∣K(k)
`

(
H(k)
−
)∣∣∣ ≥ (1− δ

1/3
k

) k∏
h=2

d
(`

h)
h × n` . (5.32)

Therefore, from (5.30), (5.31) and (5.32), we infer

∣∣∣K(k)
`

(
H(k)

)
4K(k)

`

(
F (k)

)∣∣∣ ≤ 2δ
1/3
k

k∏
h=2

d
(`

h)
h × n` . (5.33)
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We now prove (iii ) of Theorem 5.3. Using the triangle-inequality, we

infer∣∣∣K(k)
`

(
G(k)

)
4K(k)

`

(
F (k)

)∣∣∣ ≤ ∣∣∣K(k)
`

(
G(k)

)
4K(k)

`

(
G̃(k)

)∣∣∣+
+
∣∣∣K(k)

`

(
G̃(k)

)
4K(k)

`

(
H(k)

)∣∣∣+ (5.34)

+
∣∣∣K(k)

`

(
H(k)

)
4K(k)

`

(
F (k)

)∣∣∣ .
Then (5.25), part (c2 ) of Lemma 5.6, and (5.33) bound the right-hand side

of (5.34) and, hence,

∣∣∣K(k)
`

(
G(k)

)
4K(k)

`

(
F (k)

)∣∣∣ ≤ (δk + 3δ
1/3
k

) k∏
h=2

d
(`

h)
h × n` . (5.35)

Part (iii ) of Theorem 5.3 now follows from γ � δk (cf. Figure 5.2). This

concludes the proof of Theorem 5.3.
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Chapter 6

Proof of Cleaning Phase I

The proof of Lemma 4.15 is organized as follows. We first fix all constants

involved in the proof (as usual). We then inductively construct the almost

perfect family of partitions P and the complex G̃ promised by Lemma 4.15.

Finally, we verify that P and G̃ have the desired properties.

6.1 Constants

Let d = (d2, . . . , dk) be a vector of positive reals and let δ3, . . . , δk satisfy

0 ≤ δj ≤ dj/2 for j = 3, . . . , k. Moreover, let δ̃k be a positive real and

let δ̃(D) and r̃(B1,D) be the arbitrary positive functions in variables D =

(D2, . . . , Dk−1) and B1 given by the lemma. The proof of Lemma 4.15 relies

on the Regularity Lemma, and more specifically, on Corollary 4.13. The proof

also relies on the Induction Hypothesis on the Counting Lemma (IHCk−1,`),

Statement 5.1, with ` = k. Therefore, for the proof of Lemma 4.15 presented

here, we assume that IHCk−1,` holds (cf. (5.2)).

We set

η =
1

4
, σj =

d2 if j = 2

1 if 3 ≤ j ≤ k − 1
and δ′k = µ =

δ̃k
2`+k

k∏
h=2

d
(`

h)
h .

(6.1)
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We also fix functions in variables Dj, . . . , Dk−1 for j = k − 1, . . . , 2 so that

δ′j (Dj, . . . , Dk−1) < min

{
Dj

18
δ̃j (Dj, . . . , Dk−1) ,

D3
j

36

}
<
D2

j

9

δ′j (Dj, . . . , Dk−1) <
Dj

9
δj
(
IHCk−1,`(η,Dk−1, δ

′
k−1(Dk−1), Dk−2, . . .

. . . , Dj+1, δ
′
j+1(Dj+1 . . . , Dk−1), Dj)

)
.

(6.2)

(Observe that the right-hand side of the last inequality is a function in vari-

ables Dj, . . . , Dk−1.) Similarly, we set

r′ (B1,D) ≥ r̃ (B1,D) ,

r′ (B1,D) ≥ r
(

IHCk−1,`

(
η,Dk−1, δ

′
k−1(Dk−1), Dk−2, . . .

. . . , Dj+1, δ
′
j+1(Dj+1 . . . , Dk−1), Dj)

) (6.3)

where, without loss of generality, we may assume that the functions given

in (6.2) and (6.3) are monotone. Corollary 4.13 then yields the integer con-

stants nk and Lk. Next we define the constants promised by Lemma 4.15 as

follows

c̃j =
1

2`+2Lk
k

for j = 2, . . . , k − 1 , c̃ = (c̃2, . . . , c̃k−1) ,

L̃k = 2`+k2

Lk−1
k

k−1∏
j=2

(
1

c̃j

)(k−1
j )

and δ2 =
δ′2(c̃)

L̃2
k

.

(6.4)

Finally, let mk−1,` be the integer given by Statement 5.1 applied to the con-

stants η, c̃k−1, δ
′
k−1(c̃k−1), . . . , c̃2, δ

′
2(c̃) and set ñk = max{nk, Lkmk−1,`}.

6.2 Getting started

Let G = {G(j)}k
j=1 be an (n, `, k)-complex with n ≥ ñk. We apply Corol-

lary 4.13 to G to obtain a
(
µ, δ′(d̃), d̃, r′(d̃)

)
-equitable

(
δ′k, r

′(d̃)
)
-regular
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family of partitions R = R (k − 1,a,ϕ) = {R(j)}k−1
j=1 refining G (cf. Defini-

tion 4.12) where d̃ = (d̃2, . . . , d̃k−1) is the density vector of the partition R.

Note that it follows from our choice of σj in (6.1) that

d2/d̃2 and, for all j = 3, . . . , k − 1, 1/d̃j, are integers. (6.5)

We now make a few preparations concerning notation. Having d̃ =

(d̃2, . . . , d̃k−1) as an outcome of Corollary 4.13, we derive the constants δ′j, δ̃j

for j = 2, . . . , k − 1 and r′ and r̃ from the functions given in (6.2) and (6.3)

by setting

δ′j = δ′j(d̃j, . . . , d̃k−1) < δ̃j = δ̃j(d̃j, . . . , d̃k−1)

and r′ = r′(a1, d̃) ≥ r̃(a1, d̃) = r̃ ,

(the inequalities above follow immediately from (6.2) and (6.3)). Moreover,

we set δ′ = (δ′2, . . . , δ
′
k−1) and δ̃ = (δ̃2, . . . , δ̃k−1).

For every j = 2, . . . , k − 1 and every ŷ(j−1) ∈ Â(j − 1,a), let areg
j =

areg
j (ŷ(j−1)) be the number of (δ′j, d̃j, r

′)-regular (n/a1, j, j)-cylinders belong-

ing to R̂(j−1)(ŷ(j−1)). We then observe that

areg
j = areg

j (ŷ(j−1)) ≤ 1

d̃j − δ′j
≤ 2

d̃j

. (6.6)

Finally, we fix the integer vector b = (b1, . . . , bk−1). We set

b1 = a1, b2 =

⌈
1

d̃2 + 9δ′2/d̃2

⌉
≤ 2

d̃j

, and bj
(6.5)
=

1

d̃j

for j = 3, . . . , k − 1 .

(6.7)

We then define b̄ = (b1, b2 + 1, b3, . . . , bk−1).

Before we begin constructing the promised almost perfect
(
δ̃, d̃, r̃, b

)
-

family of partitions P = P
(
k − 1, b̄,ψ

)
= {P(j)}k−1

j=1 (cf. Definition 4.14)

and the (n, `, k)-complex G̃ = {G̃(j)}k
j=1, we proceed with the following simple

observation.
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Observation regarding ‘bad’ j-tuples. Since R is a (µ, δ′, d̃, r′)-equitable

(δ′k, r
′)-regular partition, all but at most µnk crossing (with respect to G(1))

k-tuples belong to (δ′, d̃, r′)-regular (n/a1, k, k − 1)-complexes R̂(x̂(k−1)) ={
R̂(j)(x̂(k−1))

}k−1

j=1
given by the family of partitions R. We assert that

for each 2 ≤ j ≤ k, at most µ

(
k

j

)
nj crossing j-tuples do not belong to(

(δ′2, . . . , δ
′
j−1), (d̃2, . . . , d̃j−1), r′

)
-regular (n/a1, j, j − 1)-complexes of R.

(6.8)

Indeed, a j-tuple belonging to an irregular (n/a1, j, j − 1)-complex can be

extended to
(

`−j
k−j

)
nk−j crossing k-tuples and at most

(
k
j

)
such j-tuples can be

extended to the same k-tuple. Each such k-tuple necessarily belongs to an

irregular (n/a1, k, k − 1)-complex.

Itinerary. We define complex G̃ and family of partitions P = P(k−1, b̄,ψ)

so that P is an almost perfect family of partitions refining G̃. Our plan is to

alter the family of partitions R = R(k−1,a,ϕ) into the family of partitions

P = P(k−1, b̄,ψ) = {P(j)}k−1
j=1 . The families P and R will overlap in the

regular elements of R. The elements of R which are not regular are replaced

by random cylinders.

We construct P(j) and G̃(j) inductively for j = 1, . . . , k − 1. First set

G̃(1) = G(1). Since b1 = a1, we have A(1,a) = A(1, b) = A(1, b̄) and Â(1,a) =

Â(1, b) = Â(1, b̄). We set ψ1 ≡ ϕ1 and define P(1) = R(1). In other

words, both R and P split the sets Vλ for λ ∈ [`] into the same pieces

Vλ = Vλ,1 ∪ · · · ∪ Vλ,b1 .

For 2 ≤ j < k, we shall define P(j) and G̃(j) in such a way that the

following statement (Cj) holds:

(Cj) There is a partition P(j) = P(j)
orig ∪P(j)

new of K
(j)
` (V1, . . . , V`) where, for

∗ ∈ {orig, new}, we define

P(j)
∗ =

⋃
{P(j) : P(j) ∈ P(j)

∗ },
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and an (n, `, j)-cylinder G̃(j) ⊆ K
(j)
` (V1, . . . , V`) such that (I)–(III) be-

low hold:

(I) P(j)
orig =

{
R(j)(y(j)) : y(j) ∈ A(j,a) and

R(j)(y(j)) = {R(h)(y(j))}j
h=1is a(

(δ′2, . . . , δ
′
j), (d̃2, . . . , d̃j), r

′)-regular complex
}
,

(II) G̃(j) =

G(2) if j = 2

G(j) ∩ P(j)
orig = G(j) \ P(j)

new if 3 ≤ j < k
and

(III) the family of partitions Pj = {P(1), . . . ,P(j)} is an almost

perfect
(
(9δ′2/d̃2, . . . , 9δ

′
j/d̃j), (d̃2, . . . , d̃j), r

′, b
)
-family.

Before we give an inductive proof of statement (Cj), we list a few of its

consequences in Fact 6.1. The properties (1 )–(5 ) of Fact 6.1 will be derived

directly from (Cj). They are utilized in our proof, in particular, we use

Fact 6.1 with j − 1 to establish (Cj).

Fact 6.1 (Consequences of (Cj)). Let 2 ≤ j ≤ k − 1 be fixed. If (Cj′) holds

for 2 ≤ j′ ≤ j and if P(2) refines G̃(2), then the following is true:

(1 ) G̃(j) ⊆ G(j),

(2 ) G̃(j)
= {G̃(h)}j

h=1 is an (n, `, j)-complex, and in particular, for each

2 ≤ h ≤ j, G̃(h) ⊆ K(h−1)
h

(
G̃(h−1)

)
,

(3 ) Pj refines the complex G̃(j)
,

(4 ) for every j ≤ i ≤ `,

∣∣∣K(j)
i (G̃(j))4K(j)

i (G(j))
∣∣∣ ≤ δ̃k

j∏
h=2

d
( i

h)
h × ni

and
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(5 ) for every x̂(j) ∈ Â(j, b),

∣∣∣K(j)
j+1

(
P̂(j)(x̂(j))

)∣∣∣ = (1± η)

j∏
h=2

d̃
(j+1

h )
h ×

(
n

b1

)j+1

>
(n/b1)

j+1

ln(n/b1)
.

Proof of Fact 6.1. Part (1 ) follows clearly from (II). We prove (2 ) by induc-

tion on j. For j = 1 or 2 there is nothing to prove. Let j ≥ 3. Suppose (Ci) is

true for 2 ≤ i ≤ j and suppose, by induction, (2 ) holds for j − 1, i.e, G̃(j−1)

is an (n, `, j − 1)-complex. We show that every j-tuple J ∈ G̃(j) satisfies

J ∈ K(j−1)
j (G̃(j−1)).

Let J ∈ G̃(j) be fixed. It then follows from (II) of (Cj) that

J ∈ G(j) ∩ P(j)
orig . (6.9)

We first confirm

J ∈ K(j−1)
j (P(j−1)

orig ) . (6.10)

To that end, since J ∈ P(j)
orig, it follows from (I) of (Cj) that there ex-

ists y(j) ∈ A(j,a) such that J ∈ R(j)(y(j)) and the complex R(j)(y(j)) =

{R(h)(y(j))}j
h=1 is

(
(δ′2, . . . , δ

′
j), (d̃2, . . . , d̃j), r

′)-regular. Consequently, J ∈
K(j−1)

j

(
R(j−1)(y(j))

)
and by (I) of (Cj−1) we have that R(j−1)(y(j)) ⊆ P(j−1)

orig .

This yields J ∈ K(j−1)
j (P(j−1)

orig ) as claimed in (6.10).

Now from (6.9) and (6.10), we infer that J ∈ K(j−1)
j (G(j−1)∩P(j−1)

orig ) (since

G is a complex), and so by (II) of (Cj−1) we have J ∈ K(j−1)
j (G̃(j−1)). This

completes the proof of (2 ).

Next we show part (3 ), again by induction on j. The statement is trivial

for j = 1. It holds for j = 2 by assumption of Fact 6.1. So let j ≥ 3 and

assume that Pj−1 refines {G̃(h)}j−1
j=1. We have to show that either P(j) ⊆ G̃(j)

or P(j) ∩ G̃(j) = ∅ for every P(j) ∈ P(j). So let P(j) ∈ P(j) be fixed. If

P(j) ∈ P(j)
new, then P(j) ∩ G̃(j) = ∅ by (II) of (Cj). Therefore, we may assume

that P(j) ∈ P(j)
orig. Now, if P(j) ∩G(j) = ∅, then again by (II) of (Cj) we infer

P(j) ∩ G̃(j) = ∅. On the other hand, if P(j) ∩G(j) 6= ∅, then P(j) ⊆ G(j) since
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P(j) ∈ P(j)
orig, (I) of (Cj), and the fact that the original family of partitions

R refines the complex G. Therefore, P(j) ⊆ G(j) ∩ P(j)
orig = G̃(j) by (1 ) of

Fact 6.1. This verifies (3 ) of Fact 6.1.

Next we show (4 ) of Fact 6.1. From (6.8) and (I) and (II) of (Cj) we infer

that ∣∣G(j)4G̃(j)
∣∣ =

∣∣G(j) \ G̃(j)
∣∣ ≤ µ

(
k

j

)
nj .

Consequently, by the choice of µ in (6.1)∣∣∣K(j)
i (G̃(j))4K(j)

i (G(j))
∣∣∣ ≤ µ

(
k

j

)
nj ×

(
`− j

i− j

)
ni−j ≤ δ̃k

j∏
h=2

d
( i

h)
h × ni ,

which yields (4 ).

Finally, we note that (5 ) follows from (III) and IHCk−1,` (cf. (5.2)) since

j ≤ k − 1. In particular, (5 ) is a consequence of the choice of δ′j and r′

in (6.2) and (6.3), (III) of (Ck−1), and (5.2).

6.3 Proof of Statement (Cj)

As mentioned earlier, we verify (Cj) by induction on j.

6.3.1 The Induction Start

In the immediate sequel, we define P(2) = P(2)
new∪P(2)

orig of K
(2)
` (V1, . . . , V`) .

In our construction, we use that due to (6.2) and (6.4), our constants satisfy

a2
1δ2 < L2

kδ2 < L̃2
kδ2 < δ′2 < d̃2 ≤ d2 (6.11)

and also use that d2/d̃2 is an integer (see (6.5)). Before constructing the

partition P(2), we require some notation.

Notation. Recall that the partition R(2) = {R(2)(y(2)) : y(2) ∈ A(2,a)}
refines the partition G(2) ∪ G(2) (here, G(2) = K

(2)
` (V1, . . . , V`) \ G(2)). There-

fore, for each ŷ(1) =
(
(λ, λ′), (β, β′)

)
∈ Â(1,a), there exist disjoint sets of
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indices Ireg
2 = Ireg

2 (ŷ(1)) and I
reg

2 = I
reg

2 (ŷ(1)) so that
{
R(2)

(
(ŷ(1), α)

)}
α∈Ireg

2

and
{
R(2)

(
(ŷ(1), α)

)}
α∈I

reg
2

are the collections of all (δ′2, d̃2, 1)-regular graphs

R(2)(y(2)) = R(2)
(
(ŷ(1), α)

)
whose edge sets are subsets of G(2)(y(1)) =

G(2)[Vλ,β ∪ Vλ′,β′ ] and G(2)(y(1)) = Vλ,β × Vλ′,β′ \ G(2), respectively.

Plan for constructing P(2). We now outline our plan for constructing

P(2) = {P(2)(x(2)) : x(2) ∈ A(2, b̄)}. Later we fill in the technical details.

With x̂(1) = ŷ(1) =
(
(λ, λ′), (β, β′)

)
∈ Â(1,a) = Â(1, b̄) fixed, we define a

partition P(2)(x̂(1)) of K(1)
2

(
P̂(1)(x̂(1))

)
= Vλ,β × Vλ′,β′ . More precisely, with

x̂(1) = ŷ(1) defining a pair of sets Vλ,β, Vλ′,β′ , we consider all regular subgraphs

of Vλ,β × Vλ′,β′ from the partition R(2) and leave them in the “original part”

(P(2)
orig(x̂

(1))) of P(2)(x̂(1)). In other words, for x̂(1) = ŷ(1) we set

P(2)
orig(x̂

(1))

=
{
R(2)

(
(ŷ(1), α)

)}
α∈Ireg

2 (x̂(1))
∪
{
R(2)

(
(ŷ(1), α)

)}
α∈I

reg
2 (x̂(1))

.
(6.12)

This collection of graphs consist of all subgraphs of Vλ,β ×Vλ′,β′ belonging to

R(2) which are (δ′2, d̃2, 1)-regular. In order to simplify the notation, we set

P(2)
orig(x̂

(1)) =
⋃{

P(2) : P(2) ∈ P(2)
orig(x̂

(1))
}
.

For the construction of the partition of Vλ,β × Vλ′,β′ \ P(2)
orig, we will use the

Slicing Lemma to introduce new (9δ′2/d̃2, d̃2, 1)-regular graphs that do not

belong to R(2). We shall call the collection of those graphs P(2)
new(x̂(1)). We

now provide the technical details to the plan described above.

Technical details for constructing P(2). Let x̂(1) =
(
(λ, λ′), (β, β′)

)
∈

Â(1,a) remain fixed. Let

G(2)
reg(x̂

(1)) = P(2)
orig(x̂

(1)) ∩ G(2)

be the union of all graphs P(2) ⊆ G(2) in P(2)
orig(x̂

(1)). Similarly, we define

G(2)
reg(x̂

(1)) = P(2)
orig(x̂

(1)) ∩ G(2) .
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Note that while G(2)
reg(x̂

(1)) and G(2)
reg(x̂

(1)) are disjoint, they are not not nec-

essarily complements of each other. Moreover, observe that G(2)
reg(x̂

(1)) is

the union of αreg
2 = |Ireg

2 (x̂(1))| ≤ areg
2 (x̂(1)) ≤ 2/d̃2 (see (6.6)) (δ′2, d̃2, 1)-

regular graphs. Consequently, G(2)
reg(x̂

(1)) is (2δ′2/d̃2, α
reg
2 d̃2, 1)-regular (cf.

Proposition 8.1). Similarly, G(2)
reg(x̂

(1)) is (2δ′2/d̃2, α
reg
2 d̃2, 1)-regular, where

αreg
2 = |Ireg

2 (x̂(1))|.
Since G(2) is (δ2, d2, 1)-regular by the assumption of Lemma 4.15, we infer

that G(2)(x̂(1)) = G(2)[Vλ,β∪Vλ′,β′ ] is (a2
1δ2, d2, 1)-regular. Therefore, G(2)(x̂(1))

is (δ′2, d2, 1)-regular by (6.11). Consequently, since 2δ′2/d̃2 + δ′2 ≤ 3δ′2/d̃2 we

have that G(2)(x̂(1)) \ G(2)
reg(x̂

(1)) is (3δ′2/d̃2, d2 − αreg
2 d̃2, 1)-regular. We now

apply the Slicing Lemma, Lemma 4.16, to G(2)(x̂(1)) \ G(2)
reg(x̂

(1)).

To this end, recall d2/d̃2 is an integer (see (6.5)) and set p = d̃2(d2 −
αreg

2 d̃2)
−1 so that 1/p = d2/d̃2 − αreg

2 is an integer. We apply the Slicing

Lemma with % = d2 − αreg
2 d̃2, δ = 3δ′2/d̃2, p as above and rSL = 1 to de-

compose G(2)(x̂(1)) \ G(2)
reg(x̂

(1)) into 1/p = d2/d̃2 − αreg
2 pairwise edge-disjoint

(9δ′2/d̃2, d̃2, 1)-regular graphs. Denote the family of these bipartite graphs by

P(2)

new,G(2)(x̂
(1)).

The partition P(2)

new,G(2)
(x̂(1)) of G(2)(x̂(1)) \ G(2)

reg(x̂
(1)) will be defined sim-

ilarly. Indeed, the graph G(2)(x̂(1)) is (a2
1δ2, 1 − d2, 1)-regular since it is

the complement of the (a1δ2, d2, 1)-regular graph G(2)(x̂(1)). By (6.11), the

graph G(2)(x̂(1)) is then also (δ′2/d̃2, 1−d2, 1)-regular. Furthermore, G(2)
reg(x̂

(1))

is (2δ′2/d̃2, α
reg
2 d̃2, 1)-regular (since G(2)

reg(x̂
(1)) is the union of αreg

2 disjoint

(δ′2, d̃2, 1)-regular graphs and αreg
2 ≤ areg

2 ≤ 2/d̃2 by (6.6)). Consequently,

G(2)(x̂(1)) \ G(2)
reg(x̂

(1)) is (3δ′2/d̃2, 1− d2 − αreg
2 d̃2, 1)-regular.

We apply the Slicing Lemma with % = 1−d2−αreg
2 d̃2, δ = 3δ′2/d̃2, p = d̃2/%

and rSL = 1 to decompose G(2)(x̂(1)) \ G(2)
reg(x̂

(1)) into a family P(2)

new,G(2)
(x̂(1))

of bipartite graphs. We conclude that all but at most one of which are

(9δ′2/d̃2, d̃2, 1)-regular. Indeed, note that since (6.5) guaranteed that d2/d̃2

is an integer, we are unable to ensure that 1/p = (1 − d2 − αreg
2 d̃2)/d̃2 is
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an integer as well. Consequently, the application of the Slicing Lemma may

admit at most one sparse bipartite graph.

For x̂(1) =
(
(λ, λ′), (β, β′)

)
, set

P(2)
new(x̂(1)) = P(2)

new,G(2)(x̂
(1)) ∪P(2)

new,G(2)
(x̂(1))

and

P(2)(x̂(1)) = P(2)
new(x̂(1)) ∪P(2)

orig(x̂
(1)) .

Also set z(x̂(1)) = |P(2)(x̂(1))|. The partition P(2)(x̂(1)) has the following

properties:

(A ) P(2)(x̂(1)) is a partition of Vλ,β × Vλ′,β′ .

(B ) z(x̂(1)) ∈ {b2, b2 + 1}. Indeed, since all graphs but at most 1 from

P(2)(x̂(1)) have density within d̃2 ± 9δ′2/d̃2, it therefore follows that

1

d̃2 + 9δ′2/d̃2

≤ z(x̂(1)) ≤ 1

d̃2 − 9δ′2/d̃2

+ 1. (6.13)

It follows from (6.2) that 9δ′2/d̃2 < (d̃2/2)2 yielding (d̃2 − 9δ′2/d̃2)
−1 −

(d̃2 + 9δ′2/d̃2)
−1 < 1. Consequently, z(x̂(1)) ∈ {b2, b2 + 1} follows

from (6.7).

(C ) P(2)(x̂(1)) refines G(2) = G̃(2) in the sense that for every α ∈ [z(x̂(1))]

either P(2)
(
(x̂(1), α)

)
⊆ G(2) or P(2)

(
(x̂(1), α)

)
∩ G = ∅.

(D ) All graphs but at most one from P(2)(x̂(1)) are (9δ′2/d̃2, d̃2, 1)-regular.

Moreover, the exceptional graph belongs to the family P(2)

new,G(2)
(x̂(1)) ⊆

P(2)
new(x̂(1)) and we may assume with an appropriate addressing the

exceptional graph is always P(2)
(
(x̂(1), b2 + 1)

)
.

Now, we set

G̃(2)(x̂(1)) =
⋃{

P(2) ∈ P(2)(x̂(1)) : P(2) ⊆ G(2)
}

G̃(2) =
⋃{

G̃(2)(x̂(1)) : x̂(1) ∈ Â(1, b̄) = Â(1,a)
} (6.14)
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and we set

P(2)
new =

⋃{
P(2)

new(x̂(1)) : x̂(1) ∈ Â(1, b̄)
}
,

P(2)
orig =

⋃{
P(2)

orig(x̂
(1)) : x̂(1) ∈ Â(1, b̄)

}
and P(2) = P(2)

new ∪P(2)
orig .

It is left to verify (I)–(III) of the statement (C2). Due to (6.12) and the

definition of Ireg
2 (x̂(1)) and I

reg

2 (x̂(1)), for every x̂(1) ∈ Â(1, b̄), we infer that

P(2)
orig =

{
R(2)(y(2)) : R(2)(y(2)) is (δ′2, d̃2, 1)-regular

}
,

which yields (I) of (C2). Owing to (C ) from above and (6.14), we have

G̃(2) = G(2) (which is (II)) and

P(2) refines G̃(2) . (6.15)

Finally, from (B ) (cf. (6.13)) and δ′2 ≤ d̃2δ̃2/18 (cf. (6.2)), we infer

1− δ̃2

d̃2

(6.2)

≤ d̃2
2

d̃2
2 + 9δ′2

(6.13)

≤ d̃2b2
(6.13)

≤ d̃2
2

d̃2
2 − 9δ′2

(6.2)

≤ 1 +
δ̃2

d̃2

. (6.16)

Now, (6.16) and (D ) yield that the family of partitions P2 = {P(1),P(2)} is

an almost perfect (9δ′2/d̃2, d̃2, r
′, b)-family (see Definition 4.14), which gives

part (III) of (C2).

We again remind the reader that we choose the addressing of the partition

classes P(2) in such a way that for each x(2) ∈ A(2, b), the graph P(2)(x(2))

is (9δ′2, /d̃2, d̃2, r
′)-regular. The graph P(2)(x(2)) may not be (9δ′2, /d̃2, d̃2, r

′)-

regular if and only if x(2) ∈ A(2, b̄) \ A(2, b).

This concludes the construction of P(2) which satisfies (C2) and, therefore,

we established the induction start of our construction of P and G̃. Also note

that we additionally verified (6.15).

6.3.2 The Inductive Step

We proceed to the inductive step and construct partition P(j+1) and (n, `, j+

1)-cylinder G̃(j+1) which will satisfy (I)–(III) of (Cj+1). Moreover, we assume
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that P(h) and G̃(h) satisfying (Ch), 2 ≤ h ≤ j, are given. Moreover, due

to (6.15), we assume Fact 6.1 holds as well for 2 ≤ h ≤ j.

Our work in constructing P(j+1) will be quite similar, albeit easier, than

our work for constructing P(2). This is in part because we do not require

that G̃(j+1) = G(j+1) for j ≥ 2. It will be necessary to construct P(j+1) before

constructing G̃(j+1) as the partition ends up defining the hypergraph.

Construction of P(j+1) and G̃(j+1). We define the partition P(j+1) =

P(j+1)
new ∪P(j+1)

orig of K
(j+1)
` (V1, . . . , V`) separately for each set K(j)

j+1

(
P̂(j)(x̂(j))

)
of (j + 1)-tuples with x̂(j) ∈ Â(j, b̄).

Fix x̂(j) ∈ Â(j, b̄). We define the partition P(j+1)(x̂(j)) = P(j+1)
new (x̂(j))∪

P(j+1)
orig (x̂(j)) of K(j)

j+1

(
P̂(j)(x̂(j))

)
by distinguishing three cases.

Case 1 (x̂(j) ∈ Â(j, b̄) \ Â(j, b)). Observe that P̂(j)(x̂(j)) touches at least

one of the exceptional graphs from the construction of P(2). For the sake

of consistency only (i.e., the partition P(j+1) should contain a (n/b1, j +

1, j + 1)-cylinder P(j+1)(x(j+1)) for every x(j+1) ∈ A(j + 1, b̄)), we split

K(j)
j+1

(
P̂(j)(x̂(j))

)
arbitrarily into bj+1 possibly empty classes. Clearly, all

the (n/b1, j + 1, j + 1)-cylinders P(j+1)(x(j+1)) constructed in this way sat-

isfy x(j+1) ∈ Â(j + 1, b̄) \ Â(j + 1, b). The collection of these bj+1 disjoint

(n/b1, j + 1, j + 1)-cylinders defines P(j+1)
new (x̂(j)). We set P(j+1)

orig (x̂(j)) = ∅.

Case 2 (x̂(j) ∈ Â(j, b) and there is 1 ≤ s ≤ j + 1 s.t. P(j)(∂sx̂
(j)) ∈ P(j)

new).

We appeal to (5 ) of Fact 6.1 for j. Indeed, observe that K(j)
j+1

(
P̂(j)(x̂(j))

)
is (δ, 1, r)-regular w.r.t. P̂(j)(x̂(j)) for any positive δ and integer r. Conse-

quently, we may apply the Slicing Lemma, Lemma 4.16, with % = 1, p = d̃j+1,

δ = 3δ′j+1/d̃j+1, and rSL = r′ to F (j+1) = K(j)
j+1

(
P̂(j)(x̂(j))

)
. (Observe that

3δ = 9δ′/d̃j+1 < d̃j+1 = p% by (6.2).) Since 1/p = 1/d̃j+1 = bj+1 by (6.7),

we obtain a collection of 1/d̃j+1 pairwise edge-disjoint (9δ′j+1/d̃j+1, d̃j+1, r
′)-

regular (n/b1, j + 1, j + 1)-cylinders P(j+1)
(
x̂(j), α)

)
with α ∈ [bj+1]. Denote
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by

P(j+1)
new (x̂(j)) =

{
P(j+1)

(
(x̂(j), α)

)
: α ∈ [bj+1]

}
the family of (n/b1, j+1, j+1)-cylinders newly created. Set P(j+1)

orig (x̂(j)) = ∅.

This concludes our treatment of Case 2.

Case 3 (x̂(j) ∈ Â(j, b) and P(j)(∂sx̂
(j)) ∈ P(j)

orig for every 1 ≤ s ≤ j + 1).

By the assumption of this case and (I) of (Cj), we infer that there ex-

ists ŷ(j) ∈ Â(j,a) such that R̂(j)(ŷ(j)) = P̂(j)(x̂(j)). Recall the defini-

tion of areg
j+1 = areg

j+1(ŷ
(j)) (preceding (6.6)). Without loss of generality, let{

R(j+1)
(
(ŷ(j), α)

)}
α∈[areg

j+1]
be an enumeration of the (δ′j+1, d̃j+1, r

′)-regular

(n/b1, j + 1, j + 1)-cylinders (regular w.r.t. R̂(j)(ŷ(j)) = P̂(j)(x̂(j))). We set

P(j+1)
orig (x̂(j)) =

{
R(j+1)

(
(ŷ(j), α)

)}
α∈[areg

j+1]
and

P(j+1)
orig (x̂(j)) =

⋃{
P(j+1) : P(j+1) ∈ P(j+1)

orig (x̂(j))
}

(6.17)

=
⋃{

R(j+1)
(
(ŷ(j), α)

)
: α ∈ [areg

j+1]
}
.

Observe that P(j+1)
orig (x̂(j)) is (areg

j+1δ
′
j+1, a

reg
j+1d̃j+1, r

′)-regular w.r.t. P̂(j)(x̂(j))

(cf. Proposition 8.1) and, as a consequence of (6.6), also

(3δ′j+1/d̃j+1, a
reg
j+1d̃j+1, r

′)-regular .

Then, K(j)
j+1

(
P̂(j)(x̂(j))

)
\ P(j+1)

orig (x̂(j)) is (3δ′j+1/d̃j+1, 1− areg
j+1d̃j+1, r

′)-regular.

We apply the Slicing Lemma to K(j)
j+1

(
P̂(j)(x̂(j))

)
\ P(j+1)

orig (x̂(j)) with % =

1 − areg
j+1d̃j+1, p = d̃j+1/%, δ = 3δ′j+1/d̃j+1 (yielding 3δ < p% by (6.2))

and rSL = r′. Note that 1/p = %/d̃j+1 = 1/d̃j+1 − areg
j+1 is an integer

by (6.5). We thus obtain collection P(j+1)
new (x̂(j)) of 1/d̃j+1 − areg

j+1 pair-

wise edge-disjoint (9δ′j+1/d̃j+1, d̃j+1, r
′)-regular (n/b1, j + 1, j + 1)-cylinders

P(j+1)
(
(x̂(j), α)

)
. Setting P(j+1)(x̂(j)) = P(j+1)

new (x̂(j)) ∪ P(j+1)
orig (x̂(j)) yields

a partition of K(j)
j+1

(
P̂(j)(x̂(j))

)
into 1/d̃j+1 − areg

j+1 + areg
j+1 = 1/d̃j+1 = bj+1

(by (6.7)) disjoint (9δ′j+1/d̃j+1, d̃j+1, r
′)-regular (n/b1, j + 1, j + 1)-cylinders.

This concludes our treatment of Case 3.
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Now, we set

G̃(j+1)(x̂(j)) =
⋃{

P(j+1) ∈ P(j+1)
orig (x̂(j)) : P(j+1) ⊆ G(j+1)

}
G̃(j+1) =

⋃{
G̃(j+1)(x̂(j)) : x̂(j) ∈ Â(j, b̄)

} (6.18)

and we set

P(j+1)
new =

⋃{
P(j+1)

new (x̂(j)) : x̂(j) ∈ Â(j, b̄)
}
,

P(j+1)
orig =

⋃{
P(j+1)

orig (x̂(j)) : x̂(j) ∈ Â(j, b̄)
}
,

P(j+1) = P(j+1)
new ∪P(j+1)

orig .

It is left to verify (I)–(III) of statement (Cj+1).

Confirmation of (Cj+1). First we verify (I). To this end, we establish the

equality of sets in (I) by decomposing the equality into its respective ‘⊆’ and

‘⊇’ parts, and begin by considering the former.

We verify the ‘⊆’ component of equality of sets in (I) of (Cj+1). Let

P(j+1) = P(j+1)
(
(x̂(j+1), α)

)
∈ P(j+1)

orig . Owing to the construction of P(j+1)

above, P(j+1) originates from Case 3. By the assumption of Case 3, we know

that P(j)(∂sx̂
(j+1)) ∈ P(j)

orig for every s ∈ [j + 1]. Consequently, from (I) of

(Cj) we infer that for each s ∈ [j+1], there exists y
(j)
s such that R(j)(y

(j)
s ) ={

R(h)(y
(j)
s )
}j

h=1
is a

(
(δ′2, . . . , δ

′
j), (d̃2, . . . , d̃j), r

′)-regular (n/a1, j, j)-complex

and R(j)(y
(j)
s ) = P(j)(∂sx̂

(j+1)). Clearly,{ ⋃
s∈[j+1]

R(h)(y(j)
s )

}j

h=1

is
(
(δ′2, . . . , δ

′
j), (d̃2, . . . , d̃j), r

′)-regular (6.19)

and P̂(j)(x̂(j)) =
⋃

s∈[j+1]R(j)(y
(j)
s ). Moreover, by the construction in Case 3

and P(j+1) ∈ P(j+1)
orig , there exists R(j+1) ∈ R(j+1) such that P(j+1) = R(j+1)

and R(j+1) is (δ′j+1, d̃j+1, r
′)-regular w.r.t.

⋃
s∈[j+1]R(j)(y

(j)
s ) = P̂(j)(x̂(j)).

Then (6.19) yields the ‘⊆’ component of the equality in (I) of (Cj+1).
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We now verify the ‘⊇’ component of the equality in (I). To that end,

let ŷ(j) ∈ Â(j,a) and α ∈ [aj+1] be given so that R(j+1)
(
(ŷ(j), α)

)
={

R(h)
(
(y(j), α)

)}j+1

h=1
is a

(
(δ′2, . . . , δ

′
j+1), (d̃2, . . . , d̃j+1), r

′)-regular complex.

Hence, R(j+1)(∂sŷ
(j)) ∈ P(j)

orig for every s ∈ [j + 1] by the induction assump-

tion (more precisely by (I) of (Cj)). Moreover, the (n, j + 1, j + 1)-cylinder

R(j+1)
(
(ŷ(j), α)

)
is (δ′j+1, d̃j+1, r

′)-regular (i.e., α ∈ [areg
j+1(x̂

(j))]) and, conse-

quently, R(j+1)
(
(ŷ(j), α)

)
∈ P(j+1)

orig (cf. (6.17) in Case 3). This concludes the

proof of (I) of (Cj).

Since j + 1 ≥ 3, part (II) follows directly from (6.18) (recall, that we

defined G̃(2) slightly differently in (6.14) so that G̃(2) = G(2)).

In order to verify (III), we appeal to the induction assumption, and in par-

ticular, to (III) of (Cj). Observe that we only need to consider P(j+1)(x(j+1))

for x(j+1) ∈ A(j + 1, b). Hence, it suffices to consider the constructions from

Case 2 and Case 3. It is clear from the construction that in both of these

cases we partitioned K(j)
j+1

(
P̂(j)(x(j))

)
into bj+1 different (9δ′j+1/d̃j+1, d̃j+1, r

′)-

regular (n/b1, j + 1, j + 1)-cylinders. Consequently, (III) of (Cj+1) holds

and (Cj+1) is verified.

This finishes the inductive proof of statement (Ci) for 2 ≤ i ≤ k − 1.

6.4 Finale

Having inductively defined partitions P(j) and hypergraphs G̃(j), 2 ≤ j ≤
k − 1, we proceed to construct the promised hypergraph G̃(k) (see (6.20)

below). Then we shall show that the conclusions of Lemma 4.15 hold for

P = {P(1), . . . ,P(k−1)} and G̃ = {G̃(j)}k
j=1.

Let Âreg

(
P(k−1)

orig ,G(k), k − 1, b
)

denote the set of x̂(k−1) ∈ Â(k − 1, b)

for which P̂(k−1)(x̂(k−1)) ⊆ P(k−1)
orig and G(k) is (δ̃k, r̃)-regular with respect to
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P̂(k−1)(x̂(k−1)). We set

G̃(k) =
⋃{

G(k) ∩ K(k−1)
k

(
P̂(k−1)(x̂(k−1))

)
:

x̂(k−1) ∈ Âreg

(
P(k−1)

orig ,G(k), k − 1, b
)}

.
(6.20)

It is left to verify that the earlier constructed family of partitions P =

{P(j)}k−1
j=1 and G̃ = {G̃(j)}k

j=1 satisfy the conclusion of Lemma 4.15.

Recall that for 2 ≤ j ≤ k − 1, we constructed P(j) and G̃(j) so that (Cj)

and (6.15) holds. Consequently, by Fact 6.1 assertions (1 )–(5 ) hold for every

j = 2, . . . , k−1. The verification of Lemma 4.15 will rely on these assertions.

We first show that

G̃ is an (n, `, k)-complex . (6.21)

By (2 ) of Fact 6.1 for j = k − 1 we see that {G̃(j)}k−1
j=1 is an (n, `, k − 1)-

complex. Now, let K ∈ G̃(k). We have to show that K ∈ K(k−1)
k (G̃(k−1)).

From (6.20), we infer that K ∈ K(k−1)
k (G(k−1) ∩ P(k−1)

orig ) and, consequently,

by (II) of (Ck−1), we have K ∈ K(k−1)
k (G̃(k−1)). Therefore, G̃(k−1) underlies

G̃(k) and (6.21) follows.

Now we show that

d̃ is componentwise bigger than c̃ . (6.22)

Suppose d̃j ≤ c̃j for some 2 ≤ j ≤ k − 1. Recall, that d̃ was given by

Corollary 4.13 as the density vector of R(k − 1,a,ϕ). Moreover, Lk ≥
|A(k − 1,a)| and hence |Â(j − 1,a)| < 2`Lk

k for j = 2, . . . , k. Therefore,

the assumption d̃j ≤ c̃j = 1/(2`+2Lk
k) (see (6.4)) implies that the number

of j-tuples in (δ′j, d̃j, r
′)-regular polyads of R is at most 2`Lk

k(d̃j + δ′j)n
j ≤

2`+1Lk
kc̃jn

j = nj/2. On the other hand, by (6.8), all but at most µ
(

k
j

)
nj

crossing j-tuples belong to (δ′j, d̃j, r
′)-regular polyads of R. Since (1/2 +

µ
(

k
j

)
)nj ≤

(
`
j

)
nj the assumption d̃j ≤ c̃j must be wrong and we infer that

d̃j > c̃j for every 2 ≤ j ≤ k − 1, as claimed in (6.22).
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Using (III) of (Ck−1) combined with (6.2) and (6.3) yields that

P = Pk−1 is an almost perfect (δ̃, d̃, r̃, b)-family of partitions . (6.23)

Moreover, (3 ) of Fact 6.1 for j = k − 1 states that

P = Pk−1 refines G̃ . (6.24)

From (6.21)–(6.24) we infer that it is left to show (i )–(v ) of Lemma 4.15,

only. We observe that (i ) is immediate from the construction of G̃(k) in (6.20).

Also, due to (6.20), (II) of (Cj) for j = 2, . . . , k− 1 (see also (1 ) of Fact 6.1),

and the definition of G̃(1) = G(1) we have (ii ) of Lemma 4.15.

Now we verify (iii ) of Lemma 4.15. For 3 ≤ j < k it is given by part (4 )

of Fact 6.1. For j = k, we recall the definition of G̃(k) in (6.20) and consider

G(k) \ G̃(k). There are two reasons for a k-tuple K ∈ G(k) to be in G(k) \ G̃(k).

Either K 6∈ K(k−1)
k (P(k−1)

orig ) or K belongs to a polyad P̂(k−1) such that G(k) is

(δ̃k, r̃)-irregular w.r.t. P̂(k−1).

Consider a k-tuple of the first type, i.e., K 6∈ K(k−1)
k (P(k−1)

orig ). Owing

to (I) of (Ck−1) we see that K belongs to a
(
(δ′2, . . . , δ

′
k−1), (d̃2, . . . , d̃k−1), r

′)-

irregular (n/a1, k, k−1)-complex of the original family of partitions R. Con-

sequently, by (6.8) (with j = k) there are at most µnk k-tuples K of the first

type (K 6∈ K(k−1)
k (P(k−1)

orig )).

Now consider a k-tuple K, which is not of the first type, but of the

second type. In particular, K ∈ K(k−1)
k (P(k−1)

orig ) and G(k) is (δ̃k, r̃)-irregular

w.r.t. P̂(k−1), the underlying polyad of K in the family of partitions P.

From (I) of (Ck−1) we infer that P̂(k−1) corresponds to k different (n, k −
1, k − 1)-cylinders, which are all elements of R(k−1). Since R is a (δ′k, r

′)-

regular partition w.r.t. G(k) and δ̃k ≥ δ′k and r̃ ≤ r′ (cf. (6.2) and (6.3)),

there are at most δ′kn
k k-tuples K ∈ G(k) ∩ K(k−1)

k (P(k−1)
orig ) so that G(k) is

(δ̃k, r̃)-irregular w.r.t. to the underlying polyad P̂(k−1) of K.

Summarizing the above, we infer that

|G(k)4G̃(k)| = |G(k) \ G̃(k)| ≤ (µ+ δ′k)n
k (6.1)

= 2δ′kn
k.
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Consequently, by the choice of δ′k in (6.1), the following holds for every k ≤
i ≤ `,

∣∣∣K(k)
i (G̃(k))4K(k)

i (G(k))
∣∣∣ ≤ µnk ×

(
`− k

i− k

)
ni−k

(6.1)

≤ δ̃k

k∏
h=2

d
( i

h)
h × ni

which completes the verification of (iii ) of Lemma 4.15.

We further note that (iv ) of Lemma 4.15 is an immediate consequence of

b1 = a1 ≤ rank R ≤ Lk ≤ L̃k (cf. (6.4)), G̃(2) = G(2) and the assumption of

Lemma 4.15 that G is a (δ,d, 1)-regular complex.

Finally, we show (v ) of Lemma 4.15 as follows:

rank P = |A(k − 1, b̄)| =
(

`

k − 1

)
bk−1
1 (b2 + 1)(

k−1
2 )

k−1∏
j=3

b
(k−1

j )
j

≤
(

`

k − 1

)
ak−1

1 (2b2)
(k−1

2 )
k−1∏
j=3

b
(k−1

j )
j

(6.7)

≤ 2`+2(k−1
2 )Lk−1

k

k−1∏
j=2

(
1

d̃j

)(k−1
j )

.

Then (v ) follows from c̃ ≤ d̃ and the choice of L̃k in (6.4).

This completes the proof of Lemma 4.15.
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Chapter 7

Proofs concerning Cleaning

Phase II

We prove Lemma 5.6 and Lemma 5.7 in this chapter. We work in the

context of Setup 5.5, the environment after Cleaning Phase I (after an ap-

plication of Lemma 4.15) with the constants from Figure 5.2. The main

objective of this chapter is to construct the complexes H+ and H− defined

in Lemma 5.6 and Lemma 5.7. We prove these lemmas in Section 7.2 and

Section 7.3, respectively. The following section, Section 7.1, contains some

preliminary facts, which are immediate consequences of the choice of con-

stants given in Section 5.4.1 (see Figure 5.2).

7.1 Preliminary Facts

We start with the following facts which we apply liberally in the remainder

of this chapter. The first two facts are immediate consequences of IHCk−1,`

and the choice of constants in Section 5.4.1 (applied to differing setups).
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Fact 7.1. For all integers 2 ≤ j < k and j < i ≤ ` and every Λi ∈
(
[`]
i

)
,∣∣∣K(j)

i

(
G(j)[Λi]

)∣∣∣ = (1± η)

j∏
h=2

d
( i

h)
h × ni , (7.1)

∣∣∣K(j)
i

(
G̃(j)[Λi]

)∣∣∣ =
(
1± (η + δ̃k)

) j∏
h=2

d
( i

h)
h × ni . (7.2)

Consequently, by the choice of η in (5.12) and δ̃k ≤ 1/8 in (5.15),∣∣∣K(j)
i

(
G̃(j)[Λi]

)∣∣∣ ≥ 1− 1/4− δ̃k
1 + 1/4

∣∣∣K(j)
i

(
G(j)[Λi]

)∣∣∣ ≥ 1

2

∣∣∣K(j)
i

(
G(j)[Λi]

)∣∣∣ . (7.3)

Proof. Due to the choice of δ = (δ2, . . . , δk−1) and r (cf. (5.13), (5.19),

and (5.20)) for 2 ≤ j < k, the complex G(j) = {G(h)}j
h=1 satisfies the as-

sumption of IHCk−1,`. As such, we conclude that (7.1) holds. Since G̃ is

given by Lemma 4.15, it satisfies (iii ) of that lemma and (7.2) follows.

In the following fact, Ȟ(j−1)
represents an arbitrary regular (n/b1, i, j −

1)-complex arising from an application of Lemma 4.15 (i.e., the complex

Ȟ(j−1)
is “built from blocks” of the partition P).

Fact 7.2. If 1 ≤ j − 1 < k and j ≤ i ≤ ` and Ȟ(j−1)
= {Ȟ(h)}j−1

h=1 is a(
(δ̃2, . . . , δ̃j−1), (d̃2, . . . , d̃j−1), r̃)-regular (n/b1, i, j − 1)-complex, then∣∣∣K(j−1)

i

(
Ȟ(j−1)

)∣∣∣ = (1± η̃)

j−1∏
h=2

d̃
( i

h)
h ×

(
n

b1

)i

. (7.4)

In particular, for every 1 ≤ j − 1 < k and every x̂(j−1) ∈ Â(j − 1, b),∣∣∣K(j−1)
j

(
P̂(j−1)(x̂(j−1))

)∣∣∣ = (1± η̃)

j−1∏
h=2

d̃
(j

h)
h ×

(
n

b1

)j

. (7.5)

Proof. Similarly as in the proof of Fact 7.1, by the choice of η̃ and δ̃ =

(δ̃2, . . . , δ̃k−1) and r̃ (cf. (5.15) and (5.17)), we infer that Ȟ(j−1)
for 2 ≤

j − 1 ≤ k − 1 satisfies the assumptions of IHCk−1,` and, consequently, (7.4)

of Fact 7.2 holds.
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Recall that G is a (δ,d, r)-regular complex where by (ii ) and (iii ) of

Lemma 4.15 (with i = j)

G(1) = G̃(1) , G(2) = G̃(2) and∣∣∣G(j) \ G̃(j)
∣∣∣ ≤ δ̃k

j∏
h=2

d
(j

h)
h × nj for 3 ≤ j ≤ k .

(7.6)

Since δ̃k is significantly smaller than δj, 3 ≤ j ≤ k (cf. Figure 5.2), we infer

the following fact by a standard argument.

Fact 7.3. The (n, `, k)-complex G̃ is (2δ,d, r)-regular.

Proof. By the choice of the constants in Section 5.4.1, we infer that G̃(2) =

G(2) (see Lemma 4.15 (ii )) and hence G̃(2) = G(2) is (δ2, d2, 1)-regular w.r.t.

G̃(1) = G(1).

We now show that G̃(j) is (2δj, dj, r)-regular w.r.t. G̃(j−1) for each j ≥ 3.

Let j and Λj ∈
(
[`]
j

)
be fixed. Let Q(j−1) =

{
Q(j−1)

s

}
s∈[r]

be a family of

subhypergraphs of G̃(j−1) [Λj] ⊆ G(j−1) [Λj] such that∣∣∣∣ ⋃
s∈[r]

K(j−1)
j

(
Q(j−1)

s

) ∣∣∣∣ ≥ 2δj

∣∣∣K(j−1)
j

(
G̃(j−1) [Λj]

)∣∣∣ .
From (7.1) and (7.3), we then infer∣∣∣∣ ⋃

s∈[r]

K(j−1)
j

(
Q(j−1)

s

) ∣∣∣∣ > δj

∣∣∣K(j−1)
j

(
G(j−1) [Λj]

)∣∣∣
≥ δj(1− η)

j−1∏
h=2

d
(j

h)
h × nj.

(7.7)

Since Q(j−1) is a family of subhypergraphs of G(j−1) [Λj] and since G(j) [Λj]

is (δj, dj, r)-regular with respect to G(j−1) [Λj], we see∣∣∣∣G(j) [Λj] ∩
⋃
s∈[r]

K(j−1)
j

(
Q(j−1)

s

) ∣∣∣∣ = (dj ± δj)

∣∣∣∣ ⋃
s∈[r]

K(j−1)
j

(
Q(j−1)

s

) ∣∣∣∣ . (7.8)
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On the other hand, (7.6) and (7.8) imply∣∣∣∣G̃(j) [Λj] ∩
⋃
s∈[r]

K(j−1)
j

(
Q(j−1)

s

) ∣∣∣∣
(7.6)
=

∣∣∣∣G(j) [Λj] ∩
⋃
s∈[r]

K(j−1)
j

(
Q(j−1)

s

) ∣∣∣∣± δ̃k

j∏
h=2

d
(j

h)
h × nj

(7.8)
= (dj ± δj)

∣∣∣∣ ⋃
s∈[r]

K(j−1)
j

(
Q(j−1)

s

) ∣∣∣∣± δ̃k

j∏
h=2

d
(j

h)
h × nj

= (dj ± 2δj)

∣∣∣∣ ⋃
s∈[r]

K(j−1)
j

(
Q(j−1)

s

) ∣∣∣∣ ,
where the last equality uses (7.7) and δ̃kdj ≤ δ2

j (1− η) for j ≥ 3.

7.2 Proof of Lemma 5.6

The proof of Lemma 5.6 will take place in stages. Setting H(1) = G̃(1) and

H(2) = G̃(2) satisfies part (a ) of Lemma 5.6. We prove part (b ) of Lemma 5.6

in Section 7.2.1 and part (c ) in Section 7.2.3.

7.2.1 Proof of Property (b ) of Lemma 5.6

We prove part (b ) by induction on j.

Induction Start. Recall that we set H(2) = G̃(2). Consequently, the sym-

metric difference considered in part (b2 ) of Lemma 5.6 is empty. Hence, (b2 )

holds trivially for j = 2 and it is left to verify (b1 ). To that end, let

x̂(1) = ((λ1, λ2), (β1, β2)) ∈ Â(H(1), 1, b) = Â(1, b) be fixed. From part (iv )

of Lemma 4.15, we infer d
(
G̃(2)

∣∣P̂(1)
(
x̂(1)

))
= d2± L̃2

kδ2. From (ii ) of Defini-

tion 4.14, we then infer

d2 − L̃2
kδ2

d̃2 + δ̃2
≤
∣∣∣I(x̂(1)

)∣∣∣ ≤ d2 + L̃2
kδ2

d̃2 − δ̃2
.
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As such, to verify (b1 ), we may show that the left-hand side of the last

inequality is bigger than d2b2−1 and the right-hand side is less than d2b2 +1.

Consequently, it suffices to verify

(d̃2 + δ̃2)(d2b2−1) < d2− L̃2
kδ2 and d2 + L̃2

kδ2 < (d2b2 +1)(d̃2− δ̃2) . (7.9)

The proofs of both inequalities are similar and we only present the details

for the first one here.

We consider the left-hand side of the first inequality in (7.9) and see

(d̃2 + δ̃2)(d2b2 − 1) < d̃2d2b2 − d̃2 + δ̃2d2b2

≤ d2(1 + δ̃2/d̃2)− d̃2 + δ̃2b2

≤ d2 + δ̃2/d̃2 − d̃2 + δ̃2b2 .

(7.10)

where we use (i ) of Definition 4.14 for the last inequality. Again, from (i )

of Definition 4.14 and d̃2 > δ̃2, we know b2 < 2/d̃2. Therefore, using δ̃2 � d̃2

gives the following bound for the right-hand side of (7.10)

d2 + δ̃2/d̃2 − d̃2 + δ̃2b2 < d2 − d̃2 + 3δ̃2/d̃2 < d2 − d̃2 +

√
δ̃2 . (7.11)

Summarizing (7.10) and (7.11), the first inequality of (7.9) follows from the

choice of constants d̃2 � δ̃2 � L̃2
kδ2 (see Figure 5.2), by

(d̃2 + δ̃2)(d2b2 − 1) < d2 − d̃2 +

√
δ̃2 < d2 − L̃2

kδ2 .

Induction Step. Assume that for 2 ≤ j < k, part (b ) of Lemma 5.6 holds

for j − 1 with inductively defined complex H(j−1) = {H(h)}j−1
h=1. We con-

struct the sets I(x̂(j−1)), x̂(j−1) ∈ Â
(
H(j−1), j − 1, b

)
, and hypergraph H(j)

satisfying (b1 ) and (b2 ). We first define the following set of indices crucial

for our constructions.

For a vector x̂(j−1) ∈ Â
(
H(j−1), j − 1, b

)
, set

J
(
x̂(j−1)

)
=
{
β ∈ [bj] : P(j)

(
(x̂(j−1), β)

)
⊆ G̃(j)

}
. (7.12)
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For x̂(j−1) ∈ Â
(
H(j−1), j − 1, b

)
, observe∣∣∣G̃(j) ∩ K(j−1)

j

(
P(j−1)(x̂(j−1))

)∣∣∣ =
∑

β∈J (x̂(j−1))

∣∣∣P(j)
(
(x̂(j−1), β)

)∣∣∣ . (7.13)

Now we construct the sets I(x̂(j−1)) for every x̂(j−1) in Â(H(j−1), j−1, b).

• If
∣∣J (x̂(j−1))

∣∣ ≥ djbj, then remove
∣∣J (x̂(j−1))

∣∣− djbj arbitrary indices

from J (x̂(j−1)) to construct I(x̂(j−1)).

• If
∣∣J (x̂(j−1))

∣∣ < djbj, then add djbj−
∣∣J (x̂(j−1))

∣∣ arbitrary indices from

[bj] \ J (x̂(j−1)) to J (x̂(j−1)) to construct I(x̂(j−1)).

This defines the sets I(x̂(j−1)).

For upcoming considerations, we define the set B̂(j−1) of addresses x̂(j−1)

in Â(H(j−1), j − 1, b) for which |J (x̂(j−1))4 I(x̂(j−1))| is ‘too big’. More

precisely, we define

B̂(j−1) =
{
x̂(j−1) ∈ Â(H(j−1), j − 1, b) :

∣∣J (x̂(j−1))4 I(x̂(j−1))
∣∣ >√δjdjbj

}
.

We prove the following claim in Section 7.2.2.

Claim 7.4.
∣∣∣B̂(j−1)

∣∣∣ < 2
√
δj
∏j−1

h=2 (dhbh)
(j

h) × bj1 .

We define hypergraph H(j) as

H(j) =
⋃{

P(j)
(
(x̂(j−1), α)

)
:

x̂(j−1) ∈ Â(H(j−1), j − 1, b) and α ∈ I(x̂(j−1))
}
.

(7.14)

We now prove Property (b ) of Lemma 5.6, and to that end, we establish

both parts (b1 ) and (b2 ). Note, however, that with I(x̂(j−1)), x̂(j−1) ∈
Â(H(j−1), j− 1, b), and H(j) constructed above, Property (b1 ) of Lemma 5.6

follows immediately. Thus, it remains to prove Property (b2 ).

Let j ≤ i ≤ ` be fixed and consider the setK(j)
i (H(j))4K(j)

i (G̃(j)). Clearly,

for every i-tuple I0 ∈ K(j)
i (H(j))4K(j)

i (G̃(j)), there exists a j-tuple J0 ∈
(

I0
j

)
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such that J0 ∈ H(j)4G̃(j). We note that one possibility for J0 ∈ H(j)4G̃(j)

is that J0 ∈ K(j−1)
j (H(j−1))4K(j−1)

j (G̃(j−1)). Since we have some control over

the cardinality of K(j−1)
j (H(j−1))4K(j−1)

j (G̃(j−1)) (by the induction assump-

tion on (b1 )), it is natural to split the i-tuples I0 ∈ K(j)
i (H(j))4K(j)

i (G̃(j))

into two parts, K
(j)
i (1) and K

(j)
i (2), depending on whether there is a J0 ∈

(
I0
j

)
as described above. More precisely, we define

K
(j)
i (1) =

{
I0 ∈

(
K(j)

i (H(j))4K(j)
i (G̃(j))

)
:

∃ J0 ∈
(
I0
j

)
so that J0 ∈

(
K(j−1)

j (H(j−1))4K(j−1)
j (G̃(j−1))

)}
and

K
(j)
i (2) =

(
K(j)

i (H(j))4K(j)
i (G̃(j))

)∖
K

(j)
i (1)

=

{
I0 ∈

(
K(j)

i (H(j))4K(j)
i (G̃(j))

)
:

∀ J0 ∈
(
I0
j

)
J0 6∈

(
K(j−1)

j (H(j−1))4K(j−1)
j (G̃(j−1))

)}
.

Observe that we may rewrite K
(j)
i (2) as

K
(j)
i (2) =

{
I0 ∈

(
K(j)

i (H(j))4K(j)
i (G̃(j))

)
:

∀ J0 ∈
(
I0
j

)
J0 ∈

(
K(j−1)

j (H(j−1)) ∩ K(j−1)
j (G̃(j−1))

)}
.

(7.15)

Indeed, for the equality (of sets) in (7.15), the inclusion ‘⊇’ is obvious. The

opposite inclusion ‘⊆’ follows from the fact that K(j)
i (H(j))4K(j)

i (G̃(j)) ⊆
K(j)

i (H(j)) ∪ K(j)
i (G̃(j)) and, consequently, for every considered I0 and J0 ∈(

I0
j

)
, we have J0 ∈ K(j−1)

j (H(j−1)) ∪ K(j−1)
j (G̃(j−1)). The ‘⊆’ inclusion then

follows. Note that from (7.15), we infer

K
(j)
i (2) ⊆ K(j−1)

i (H(j−1))4K(j−1)
i (G̃(j−1)) . (7.16)



83

We now consider a subdivision of K
(j)
i (2). From (7.15), we infer that all

I0 ∈ K
(j)
i (2) only ‘touch’ polyads P̂(j−1)(x̂(j−1)) with x̂(j−1) ∈ Â(H(j−1), j −

1, b). Let K
(j)
i (2, 1) be the set of all I0 ∈ K

(j)
i (2) which ‘touch’ a bad

polyad P̂(j−1)(x̂(j−1)) (bad in the sense of Claim 7.4) with x̂(j−1) ∈ B̂(j−1) ⊆
Â(H(j−1), j − 1, b). Formally, set

K
(j)
i (2, 1) =

{
I0 ∈ K

(j)
i (2) : ∃ J0 ∈

(
I0
j

)
and x̂(j−1) ∈ B̂(j−1)

so that J0 ∈ K(j−1)
j

(
P̂(j−1)(x̂(j−1))

)}
.

The remaining I0 ∈ K
(j)
i (2) \ K

(j)
i (2, 1) ‘touch’ only good polyads. How-

ever, as observed earlier, for every such I0, there exists a J0 ∈
(

I0
j

)
such

that J0 ∈ H(j)4G̃(j). Recall that the union of the sets J (x̂(j−1)) with

x̂(j−1) ∈ Â(H(j−1), j − 1, b) represents G̃(j) ∩ K(j−1)
j (H(j−1)) (cf. (7.12)) and

similarly the union of I(x̂(j−1)) represents H(j) (cf. (7.14)). Consequently,

J (x̂(j−1))4 I(x̂(j−1)) represents the difference of G̃(j) and H(j) on the un-

derlying polyad having address x̂(j−1). Hence, we infer that for every I0 ∈
K

(j)
i (2)\K

(j)
i (2, 1), there exist a J0 ∈

(
I0
j

)
, x̂(j−1) ∈ Â(H(j−1), j− 1, b)\ B̂(j−1)

and α ∈ J (x̂(j−1))4 I(x̂(j−1)) so that J0 ∈ P(j)
(
(x̂(j−1), α)

)
. We therefore

set

K
(j)
i (2, 2) =

{
I0 ∈ K

(j)
i (2) : ∃J0∈

(
I0
j

)
, x̂(j−1)∈ Â(H(j−1), j − 1, b) \ B̂(j−1)

and α∈J (x̂(j−1))4I(x̂(j−1)) so that J0∈ P(j)
(
(x̂(j−1), α)

)}
.

Note that K
(j)
i (2, 1) and K

(j)
i (2, 2) are not necessarily disjoint. However,

K
(j)
i (2) = K

(j)
i (2, 1) ∪ K

(j)
i (2, 2) and therefore∣∣∣K(j)

i

(
H(j)

)
4K(j)

i

(
G̃(j)
)∣∣∣ ≤ ∣∣K(j)

i (1)
∣∣+ ∣∣K(j)

i (2, 1)
∣∣+ ∣∣K(j)

i (2, 1)
∣∣ . (7.17)

In what follows, we derive an upper bound for each term of the right-hand

side of (7.17) which all combined yield part (b2 ) of Lemma 5.6.
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Bounding |K(j)
i (1)|. The upper bound on |K(j)

i (1)| follows from the induction

assumption on part (b ) of Lemma 5.6. First, observe that

K
(j)
i (1) ⊆ K(j−1)

i

(
H(j−1)

)
4K(j−1)

i

(
G̃(j−1)

)
. (7.18)

Indeed, if I0 ∈ K
(j)
i (1), then (immediately) I0 ∈ K(j)

i (H(j))4K(j)
i (G̃(j)). As-

sume, without loss of generality, that I0 ∈ K(j)
i (H(j)) \ K(j)

i (G̃(j)) (the other

case is symmetric). Since, K(j)
i (H(j)) ⊆ K(j−1)

i (H(j−1)) we have

I0 ∈ K(j−1)
i (H(j−1)) . (7.19)

On the other hand, due to the definition of K
(j)
i (1), for each such I0 there

exists J0 ∈
(

I0
j

)
satisfying J0 ∈ K(j−1)

j (H(j−1))4K(j−1)
j (G̃(j−1)). From (7.19),

we also have J0 ∈ K(j−1)
j (H(j−1)) and hence J0 6∈ K(j−1)

j (G̃(j−1)). Conse-

quently, I0 6∈ K(j−1)
i (G̃(j−1)) and thus I0 ∈ K(j−1)

i (H(j−1))4K(j−1)
i (G̃(j−1))

which yields (7.18).

Now the induction assumption on (b2 ), with j replaced by j − 1, gives

the following:∣∣∣K(j)
i (1)

∣∣∣ ≤ ∣∣∣K(j−1)
i

(
H(j−1)

)
4K(j−1)

i

(
G̃(j−1)

)∣∣∣ ≤ δ
1/3
j−1

(
j−1∏
h=2

d
( i

h)
h

)
ni

≤ 1

3
δ
1/3
j

(
j∏

h=2

d
( i

h)
h

)
ni

(7.20)

where the last inequality follows from the choice of constants summarized in

Figure 5.2 ensuring δ
1/3
j−1 � δ

1/3
j d

(i
j)

j .

Bounding |K(j)
i (2, 1)|. By (b1 ), there are

(
`−j
i−j

)(∏j−1
h=2(dhbh)

( i
h)−(j

h)
)
bi−j
1 ways

to complete any given P̂(j−1)(x̂(j−1)) with x̂(j−1) ∈ Â(H(j−1), j − 1, b) to a(
(δ̃2, . . . , δ̃j−1), (d̃2, . . . , d̃j−1), r̃

)
-regular (n/b1, i, j−1)-subcomplex Ȟ(j−1)

=

{Ȟ(h)}j−1
h=1 of H(j−1). Then, (7.4) of Fact 7.2 yields that for each such Ȟ(j−1),∣∣∣K(j−1)
i

(
Ȟ(j−1)

)∣∣∣ ≤ (1 + η̃)

(
j−1∏
h=2

d̃
( i

h)
h

)(
n

b1

)i

≤ 2

(
j−1∏
h=2

d̃
( i

h)
h

)(
n

b1

)i

.
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Using (7.16) and Claim 7.4 (for the second inequality below), we therefore

see ∣∣∣K(j)
i (2, 1)

∣∣∣ ≤ ∣∣∣B̂(j−1)
∣∣∣× (`− j

i− j

)(j−1∏
h=2

(dhbh)
( i

h)−(j
h)

)
bi−j
1 ×

× 2

(
j−1∏
h=2

d̃
( i

h)
h

)(
n

b1

)i

≤ 4

(
`− j

i− j

)√
δj

(
j−1∏
h=2

(dhbh)
( i

h)

)(
j−1∏
h=2

d̃
( i

h)
h

)
ni

≤ 4

(
`− j

i− j

)√
δj

(
j−1∏
h=2

(dhbhd̃h)
( i

h)

)
ni ,

and so, by (5.24) and the choice of δj � dj, we have the upper bound∣∣∣K(j)
i (2, 1)

∣∣∣ ≤ 4

(
`− j

i− j

)
(1 + ν)

√
δj

(
j−1∏
h=2

d
( i

h)
h

)
ni

≤ 1

3
δ
1/3
j

(
j∏

h=2

d
( i

h)
h

)
ni .

(7.21)

Bounding |K(j)
i (2, 2)|. First, let x̂(j−1) ∈ Â(H(j−1), j−1, b)\ B̂(j−1) and α ∈

J (x̂(j−1))4 I(x̂(j−1)) be fixed and consider the (n/b1, j, j)-complex implicitly

given by P(j)
(
(x̂(j−1), α)

)
. By Property (b1 ), there are(

`− j

i− j

)
bi−j
1

(
j−1∏
h=2

(dhbh)
( i

h)−(j
h)

)
b
(i

j)−1

j = d
1−(i

j)
j

(
`− j

i− j

)
bi−j
1

j∏
h=2

(dhbh)
( i

h)−(j
h)

ways to complete P(j)
(
(x̂(j−1), α)

)
to a

(
(δ̃2, . . . , δ̃j), (d̃2, . . . , d̃j), r̃

)
-regular

(n/b1, i, j)-complex Ȟ(j)
= {Ȟ(h)}j

h=1 in such a way that {Ȟ(h)}j−1
h=1 is a

subcomplex of H(j−1).

Then (7.4) of Fact 7.2 yields∣∣∣K(j)
i (Ȟ(j))

∣∣∣ ≤ (1 + η̃)

j∏
h=2

d̃
( i

h)
h ×

(
n

b1

)i
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for every such Ȟ(j). Now, summing over all choices x̂(j−1) ∈ Â(H(j−1), j −
1, b) \ B̂(j−1) ⊆ Â(H(j−1), j − 1, b) and α ∈ J (x̂(j−1))4 I(x̂(j−1)) gives∣∣∣K(j)

i (2, 2)
∣∣∣ (7.16)

≤
∣∣∣Â(H(j−1), j − 1, b

)∣∣∣ ×
× max

{ ∣∣∣J (x̂(j−1)
)
4 I
(
x̂(j−1)

)∣∣∣ : x̂(j−1) 6∈ B̂(j−1)

}
×

× d
1−(i

j)
j

(
`− j

i− j

)
bi−j
1

(
j∏

h=2

(dhbh)
( i

h)−(j
h)

)
× (7.22)

× (1 + η̃)

(
j∏

h=2

d̃
( i

h)
h

)(
n

b1

)i

.

By Property (b1 ),

∣∣∣Â(H(j−1), j − 1, b
)∣∣∣ =

(
`

j

)(j−1∏
h=2

(dhbh)
(j

h)

)
bj1 .

Also note that for each x̂(j−1) 6∈ B̂(j−1),
∣∣J (x̂(j−1))4 I(x̂(j−1))

∣∣ ≤ √δjdjbj.

Consequently, the right-hand side of (7.22) is less than

d
1−(i

j)
j

(
`

j

)(
`− j

i− j

)√
δj(1 + η̃)

(
j∏

h=2

(dhbhd̃h)
( i

h)

)
ni

Now, using (5.24), the choice of η̃ and δj � dj yields

∣∣∣K(j)
i (2, 2)

∣∣∣ ≤ 1

3
δ
1/3
j

(
j∏

h=2

d
( i

h)
h

)
ni . (7.23)

Finally, (7.17) combined with (7.20), (7.21), and (7.23) yields part (b2 )

of Lemma 5.6. In order to complete the proof of part (b ) of Lemma 5.6 we

still have to verify Claim 7.4.
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7.2.2 Proof of Claim 7.4

The proof is rather straightforward in the genre of hypergraph regularity.

We first split the set B̂(j−1) into two parts B̂
(j−1)
+ and B̂

(j−1)
− as follows:

B̂
(j−1)
+ =

{
x̂(j−1) ∈ Â

(
H(j−1), j − 1, b

)
:
∣∣∣J (x̂(j−1)

)∣∣∣ > (1 +
√
δj

)
djbj

}
B̂

(j−1)
− =

{
x̂(j−1) ∈ Â

(
H(j−1), j − 1, b

)
:
∣∣∣J (x̂(j−1)

)∣∣∣ < (1−√δj

)
djbj

}
.

(7.24)

We prove the following claim which in view of Fact 7.3 is a slightly stronger

statement than Claim 7.4.

Claim 7.4′. If for some ∗ ∈ {+,−},∣∣∣B̂(j−1)
∗

∣∣∣ ≥√δj

(
j−1∏
h=2

(dhbh)
(j

h)

)
bj1 ,

then G̃(j) is not (2δj, dj, r)-regular w.r.t. G̃(j−1).

Proof. We prove the case ∗ = − only with the other case very similar. We

assume there exists an ordered set Λj ∈
(
[`]
j

)
<

such that

∣∣∣B̂(j−1)
− [Λj]

∣∣∣ ≥ √δj(
`
j

) (j−1∏
h=2

(dhbh)
(j

h)

)
bj1 (7.25)

where B̂
(j−1)
− [Λj] is the set of x̂(j−1) = (x̂0, . . . , x̂j−1) ∈ B̂

(j−1)
− such that

x̂0 = Λj.

We show that (7.25) implies that G̃(j) is irregular. Note that the polyad

addresses x̂(j−1) in B̂
(j−1)
− [Λj] considered in (7.25) correspond to subhyper-

graphs of H(j−1) and not necessarily to subhypergraphs of G̃(j−1). The set

Γ̂
(j−1)
− [Λj] which we define below is the subset of those polyad addresses of

B̂
(j−1)
− [Λj] which correspond to subhypergraphs of G̃(j−1) as well. Only those

addresses are useful to verify Claim 7.4′. We therefore set

Γ̂
(j−1)
− [Λj] = B̂

(j−1)
− [Λj] ∩ Â

(
G̃(j−1), j − 1, b

)
(7.26)
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and

Q̂(j−1)
=
{
P̂(j−1)

(
x̂(j−1)

)
: x̂(j−1) ∈ Γ̂

(j−1)
− [Λj]

}
=
{
Q̂(j−1)

1 , . . . , Q̂(j−1)
t

}
where t =

∣∣Γ̂(j−1)
− [Λj]

∣∣. In what follows, we show∣∣∣∣ ⋃
s∈[t]

{
K(j−1)

j

(
Q̂(j−1)

s

)}∣∣∣∣ > 2δj

∣∣∣K(j−1)
j

(
G̃(j−1)[Λj]

)∣∣∣ (7.27)

and

d
(
G̃(j)
∣∣Q̂(j−1)

)
< dj − 2δj . (7.28)

From (5.22), we see that r ≥
∣∣Â(j− 1, b)

∣∣ ≥ t. Therefore, establishing (7.27)

and (7.28) proves Claim 7.4′.

We first verify (7.27). Observe that due to the definition of Γ̂
(j−1)
− [Λj]

in (7.26),

B̂
(j−1)
− [Λj] \ Γ̂

(j−1)
− [Λj] ⊆ Â

(
H(j−1), j − 1, b

)∖
Â
(
G̃(j−1), j − 1, b

)
⊆ Â

(
H(j−1), j − 1, b

)
4 Â

(
G̃(j−1), j − 1, b

) (7.29)

and since P(j−1) respects H(j−1) (cf. part (b1 )) and P(j−1) respects G̃(j−1)

(cf. Setup 5.5),⋃{
K(j−1)

j

(
P̂(j−1)(x̂(j−1))

)
: x̂(j−1)∈ Â

(
H(j−1), j − 1, b

)
4Â

(
G̃(j−1), j − 1, b

)}
= K(j−1)

j

(
H(j−1)

)
4K(j−1)

j

(
G̃(j−1)

)
. (7.30)

Combining (7.29) and (7.30) with the induction hypothesis on (b2 ) for j− 1

yields∣∣∣⋃{
K(j−1)

j

(
P̂(j−1)(x̂(j−1))

)
: x̂(j−1) ∈ B̂(j−1)

− [Λj] \ Γ̂
(j−1)
− [Λj]

}∣∣∣
≤
∣∣∣K(j−1)

j

(
H(j−1)

)
4K(j−1)

j

(
G̃(j−1)

)∣∣∣ < δ
1/3
j−1

(
j−1∏
h=2

d
(j

h)
h

)
nj .
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Consequently, we have∣∣∣∣ ⋃
s∈[t]

{
K(j−1)

j

(
Q̂(j−1)

s

)}∣∣∣∣ =
∣∣∣⋃{

K(j−1)
j

(
P̂(j−1)(x̂(j−1))

)
: x̂(j−1) ∈ Γ̂

(j−1)
− [Λj]

}∣∣∣
≥
∑{∣∣∣K(j−1)

j

(
P̂(j−1)(x̂(j−1))

)∣∣∣ : x̂(j−1)∈B̂(j−1)
− [Λj]

}
− δ

1/3
j−1

(
j−1∏
h=2

d
(j

h)
h

)
nj .

Applying (7.5) of Fact 7.2 to each term in the sum above yields the further

lower bound∣∣∣B̂(j−1)
− [Λj]

∣∣∣ (1− η̃)

(
j−1∏
h=2

d̃
(j

h)
h

)(
n

b1

)j

− δ
1/3
j−1

(
j−1∏
h=2

d
(j

h)
h

)
nj .

Finally, from our assumption (7.25) and inequality (5.24), we infer∣∣∣∣ ⋃
s∈[t]

{
K(j−1)

j

(
Q̂(j−1)

s

)}∣∣∣∣
≥
(
`

j

)−1

(1− η̃)
√
δj

(
j−1∏
h=2

(
dhbhd̃h

)(j
h)
)
nj − δ

1/3
j−1

(
j−1∏
h=2

d
(j

h)
h

)
nj

≥

((
`

j

)−1

(1− η̃)(1− ν)
√
δj − δ

1/3
j−1

)(
j−1∏
h=2

d
(j

h)
h

)
nj

≥ δ
3/4
j

(
j−1∏
h=2

d
(j

h)
h

)
nj (7.31)

where the last inequality follows from the choice of η̃, ν, and δj � δj−1.

Now, (7.27) follows from (7.31) combined with (7.2) of Fact 7.1 for j − 1

and i = j.

It is left to verify (7.28). First, observe that from the definition of Q̂(j−1)

and (7.13), we have∣∣∣∣G̃(j) ∩
⋃
s∈[t]

K(j−1)
j

(
Q̂(j−1)

s

)∣∣∣∣
=
∑{∣∣∣G̃(j) ∩ K(j−1)

j

(
P̂(j−1)(x̂(j−1))

)∣∣∣ : x̂(j−1) ∈ Γ̂
(j−1)
− [Λj]

}
(7.32)

=
∑∑{∣∣∣P(j)

(
(x̂(j−1), β)

)∣∣∣ : x̂(j−1) ∈ Γ̂
(j−1)
− [Λj], β ∈ J (x̂(j−1))

}
.
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Recall that by Definition 4.14, part (ii ), every P(j)
(
(x̂(j−1), β)

)
is (δ̃j, d̃j, r̃)-

regular w.r.t. P̂(j)(x̂(j−1)), x̂(j−1) ∈ Γ̂
(j−1)
− [Λj] and β ∈ J (x̂(j−1)). Conse-

quently, from (7.5) of Fact 7.2, we note

∣∣∣P(j)
(
(x̂(j−1), β)

)∣∣∣ ≤ (d̃j + δ̃j

)
(1 + η̃)

(
j−1∏
h=2

d̃
(j

h)
h

)(
n

b1

)j

for every x̂(j−1) and β considered in (7.32). Consequently, we may bound

(7.32) using that for every x̂(j−1) ∈ Γ̂
(j−1)
− [Λj] ⊆ B̂

(j−1)
− , |J (x̂(j−1))| < (1 −√

δj)djbj (cf. (7.24)) as

∣∣∣Γ̂(j−1)
− [Λj]

∣∣∣×(1−√δj

)
djbj×

(
d̃j + δ̃j

)
(1 + η̃)

(
j−1∏
h=2

d̃
(j

h)
h

)(
n

b1

)j

. (7.33)

On the other hand, we infer again from (7.5) of Fact 7.2 that∣∣∣∣ ⋃
s∈[t]

K(j−1)
j

(
Q̂(j−1)

s

)∣∣∣∣ =
∑{∣∣∣K(j−1)

j

(
P̂(j−1)(x̂(j−1))

)∣∣∣ : x̂(j−1) ∈ Γ̂
(j−1)
− [Λj]

}

≥
∣∣∣Γ̂(j−1)

− [Λj]
∣∣∣× (1− η̃)

(
j−1∏
h=2

d̃
(j

h)
h

)(
n

b1

)j

. (7.34)

Comparing (7.33) and (7.34) yields

d
(
G̃(j)
∣∣Q̂(j−1)

)
< dj

(
1−

√
δj
) (
bj d̃j + bj δ̃j

)
(1 + η̃)

1− η̃
.

From (5.24) and η̃ � δj (observe j > 2 here), we infer

d
(
G̃(j)
∣∣Q̂(j−1)

)
< dj

(
1− δ

3/4
j

)(
1 + ν + bj δ̃j

)
. (7.35)

Finally, we observe that by Definition 4.14 (i ) and d̃j > δ̃j we have bj < 2/d̃j.

Therefore, (7.28) follows from (7.35) and the choice of constants δj � ν �
d̃j � δ̃j. This completes the proof of Claim 7.4′.
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7.2.3 Proof of Property (c ) of Lemma 5.6

In this section, we define the promised hypergraphH(k) and confirm the Prop-

erties (c1 ) and (c2 ). We first observe that the hypergraph G̃(k) ‘almost’ satis-

fies the properties of the promisedH(k). In particular, due to Lemma 4.15 (i ),

the hypergraph G̃(k) is (δ̃k, r̃)-regular w.r.t. every polyad P̂(k−1)(x̂(k−1)) for

x̂(k−1) ∈ Â(k − 1, b). However, the relative density d
(
G̃(k)|P̂(k−1)(x̂(k−1))

)
of G̃(k) w.r.t. P̂(k−1)(x̂(k−1)) may be ‘wrong’ (that is, differing substantially

from dk) for some x̂(k−1) ∈ Â(H(k−1), k − 1, b). We intend to replace G̃(k) on

those polyads. To that end, define

B̂(k−1) =
{
x̂(k−1) ∈ Â

(
H(k−1), k−1, b

)
:
∣∣∣d(G̃(k)

∣∣P̂(k−1)
(
x̂(k−1)

))
−dk

∣∣∣ > δ
1/2
k

}
.

Similarly as in Section 7.2.1 (cf. Claim 7.4), we claim
∣∣∣B̂(k−1)

∣∣∣ is small.

Claim 7.5.
∣∣∣B̂(k−1)

∣∣∣ < 2
√
δk
∏k−1

h=2 (dhbh)
(k

h) × bk1 .

Again, we defer the rather technical but standard proof of Claim 7.5 to a

different section, Section 7.2.4.

We prepare to define H(k). To that end, we first define auxiliary hyper-

graphs S(k)(x̂(k−1)) for x̂(k−1) ∈ Â(H(j−1), j − 1, b). While our work below is

straightforward, we do need to distinguish two cases depending on whether

x̂(k−1) ∈ B̂(k−1) or x̂(k−1) ∈ Â(H(j−1), j − 1, b) \ B̂(k−1).

Case 1 (x̂(k−1) ∈ Â(H(k−1), k − 1, b) \ B̂(k−1)). We set

S(k)
(
x̂(k−1)

)
= G̃(k) ∩ K(k−1)

k

(
P̂(k−1)(x̂(k−1))

)
. (7.36)

Case 2 (x̂(k−1) ∈ B̂(k−1)). Observe that∣∣K(k−1)
k

(
P̂(k−1)(x̂(k−1))

)∣∣ > (n/b1)
k

ln(n/b1)

by (7.5) of Fact 7.2. Hence, we may apply the Slicing Lemma, Lemma 4.16,

with m = n/b1, p = dk, % = 1, δ = δ̃k/3 and rSL = r̃, and conclude that for



92

every x̂(k−1) ∈ B̂(k−1) there exists a hypergraph

S(k)
(
x̂(k−1)

)
⊆ K(k−1)

k

(
P̂(k−1)(x̂(k−1))

)
(7.37)

which is (δ̃k, dk, r̃)-regular w.r.t. P̂(k−1)(x̂(k−1)).

We now define the promised hypergraph H(k) as

H(k) =
⋃{

S(k)(x̂(k−1)) : x̂(k−1) ∈ Â(H(k−1), k − 1, b)
}
. (7.38)

With H(k) defined above, we claim that property (c1 ) of Lemma 5.6 is imme-

diately satisfied. Indeed, assertion (c1 ) is clearly satisfied whenever x̂(k−1) ∈
B̂(k−1). On the other hand, by part (i ) of Lemma 4.15, for every x̂(k−1)

in Â
(
H(k−1), k − 1, b

)
, G̃(k) is (δ̃k, r̃)-regular with respect to P̂(k−1)(x̂(k−1)).

Moreover, by the definition of B̂(k−1) above and H(k) in (7.38), for every

x̂(k−1) ∈ Â(H(k−1), k − 1, b) \ B̂(k−1),

d
(
H(k)

∣∣∣P̂(k−1)(x̂(k−1))
)

= d
(
S(k)

∣∣∣P̂(k−1)(x̂(k−1))
)

= d
(
G̃(k)

∣∣∣P̂(k−1)(x̂(k−1))
)

= dk ±
√
δk .

Thus, property (c1 ) is satisfied with H(k) as defined above. The remainder

of this section is therefore devoted to the proof of property (c2 ) for H(k).

The proof of property (c2 ) is similar (but somewhat simpler) than the

proof of (b2 ). Here, we partition the `-tuples L0 ∈ K(k)
` (H(k))4K(k)

` (G̃(k))

into

K
(k)
` (1) =

{
L0 ∈

(
K(k)

` (H(k))4K(k)
` (G̃(k))

)
:

∃K0 ∈
(
L0

k

)
so that K0 ∈

(
K(k−1)

k (H(k−1))4K(k−1)
k (G̃(k−1))

)}
K

(k)
` (2) =

(
K(k)

` (H(k))4K(k)
` (G̃(k))

)∖
K

(k)
` (1) =

=

{
L0 ∈

(
K(k)

` (H(k))4K(k)
` (G̃(k))

)
:

∀K0 ∈
(
L0

k

)
K0 ∈

(
K(k−1)

k (H(k−1)) ∩ K(k−1)
k (G̃(k−1))

)}
.
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The last equality follows from an argument similar to the one given af-

ter (7.15).

Let L0 be in K
(k)
` (2). Note that L0 ∈ K(k−1)

` (H(k−1))∩K(k−1)
` (G̃(k−1)) (i.e.,

every K0 ∈
(

L0

k

)
‘touches’ polyads P̂(k−1)(x̂(k−1)) with x̂(k−1) ∈ Â(H(k−1), k−

1, b) only) and L0 ∈ K(k)
` (H(k))4K(k)

` (G̃(k)). Recall H(k) and G̃(k) only dif-

fer on ‘bad’ polyads (see the construction of H(k) in (7.37)–(7.38)). Hence,

there exists K0 ∈
(

L0

k

)
that ‘touches’ some ‘bad’ polyad P̂(k−1)(x̂(k−1)) with

x̂(k−1) ∈ B̂(k−1). Summarizing the above, we observe

K
(k)
` (2) =

{
L0 ∈

(
K(k)

` (H(k))4K(k)
` (G̃(k))

)
: ∃K0 ∈

(
L0

k

)
and

x̂(k−1) ∈ B̂(k−1) so that K0 ∈ K(k−1)
k

(
P̂(k−1)(x̂(k−1))

)}
.

(7.39)

By definition, K
(k)
` (1)∪K

(k)
` (2) is a partition of K(k)

` (H(k))4K(k)
` (G̃(k)) and so

we have ∣∣∣K(k)
`

(
H(k)

)
4K(k)

`

(
G̃(k)

)∣∣∣ =
∣∣K(k)

` (1)
∣∣+ ∣∣K(k)

` (2)
∣∣ . (7.40)

We now bound
∣∣K(k)

` (1)
∣∣ and

∣∣K(k)
` (2)

∣∣ to obtain part (c ) of Lemma 5.6.

Bounding |K(k)
` (1)|. The upper bound again easily follows from (b2 ) of

Lemma 5.6 for j = k − 1 and i = `. Indeed, observe

K
(k)
` (1) ⊆ K(k−1)

`

(
H(k−1)

)
4K(k−1)

`

(
G̃(k−1)

)
holds by the same argument presented after (7.18). We therefore see

∣∣K(k)
` (1)

∣∣ ≤ δ
1/3
k−1

(
k−1∏
h=2

d
(`

h)
h

)
n` ≤ 1

2
δ
1/3
k

(
k∏

h=2

d
(`

h)
h

)
n` , (7.41)

where the last inequality follows from δ
1/3
k−1 � δ

1/3
k dk as given in Figure 5.2.

Bounding |K(k)
` (2)|. As a consequence of assertion (b1 ) for 2 ≤ j < k and

x̂(k−1) ∈ B̂(k−1), we infer there are
∏k−1

h=2(dhbh)
(`

h)−(k
h)×b`−k

1 ways to complete
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P̂(k−1)
(
x̂(k−1)

)
to a

(
(δ̃2, . . . , δ̃k−1), (d̃2, . . . , d̃k−1), r̃

)
-regular (n/b1, `, k − 1)-

subcomplex Ȟ(k−1)
= {Ȟ(h)}k−1

h=1 of H(k−1). Note that (7.4) of Fact 7.2

applied with i = ` and j = k yields∣∣∣K(k−1)
` (Ȟ(k−1))

∣∣∣ ≤ (1 + η̃)

(
k−1∏
h=2

d̃
(`

h)
h

)(
n

b1

)`

≤ 2

(
k−1∏
h=2

d̃
(`

h)
h

)(
n

b1

)`

for each such Ȟ(k−1). Since this holds for every x̂(k−1) ∈ B̂(k−1), the last

inequality combined with (7.39) and Claim 7.5 yields∣∣∣K(k)
` (2)

∣∣∣ ≤ ∣∣∣B̂(k−1)
∣∣∣×(k−1∏

h=2

(dhbh)
(`

h)−(k
h)

)
b`−k
1 × 2

(
k−1∏
h=2

d̃
(`

h)
h

)(
n

b1

)`

≤ 4
√
δk

(
k−1∏
h=2

(dhbhd̃h)
(`

h)

)
n`

(5.24)

≤ 4
√
δk(1 + ν)

(
k−1∏
h=2

d
(`

h)
h

)
n` ,

(7.42)

and so by the choice of δk � dk we have∣∣∣K(k)
` (2)

∣∣∣ ≤ 1

2
δ
1/3
k

(
k∏

h=2

d
(`

h)
h

)
n` . (7.43)

Combining (7.40) with (7.41) and (7.43) yields part (c2 ) of Lemma 5.6.

Note that to establish (7.42) we used Claim 7.5 to bound |B̂(k−1)|. We prove

this last component of Lemma 5.6 in the section below.

7.2.4 Proof of Claim 7.5

This proof follows the lines of the proof of Claim 7.4 presented in Sec-

tion 7.2.2. We again first split B̂(k−1) as follows (cf. (7.24)):

B̂
(k−1)
+ =

{
x̂(k−1)∈ Â

(
H(k−1), k − 1, b

)
: d
(
G̃(k)

∣∣∣P̂(k−1)
(
x̂(k−1)

))
> dk + δ

1/2
k

}
,

B̂
(k−1)
− =

{
x̂(k−1)∈ Â

(
H(k−1), k − 1, b

)
: d
(
G̃(k)

∣∣∣P̂(k−1)
(
x̂(k−1)

))
< dk − δ

1/2
k

}
.

We verify the following claim which combined with Fact 7.3 immediately

implies Claim 7.5.
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Claim 7.5′. If for some ∗ ∈ {+,−},

∣∣∣B̂(k−1)
∗

∣∣∣ ≥√δk

(
k−1∏
h=2

(dhbh)
(k

h)

)
bk1 ,

then G̃(k) is not (2δk, dk, r)-regular w.r.t. G̃(k−1).

Proof of Claim 7.5 ′. While we showed explicitely the case ∗ = − in the proof

of the similar claim, Claim 7.4′, for a change here we present the details for

∗ = + only. Without loss of generality, we assume that there exists Λk ∈
(
[`]
k

)
such that ∣∣∣B̂(k−1)

+ [Λk]
∣∣∣ ≥ √

δk(
`
k

) (k−1∏
h=2

(dhbh)
(k

h)

)
bk1 (7.44)

where B̂
(k−1)
+ [Λk] is the set of x̂(k−1) = (x̂0, . . . , x̂k−1) ∈ B̂

(k−1)
+ such that

x̂0 = Λk. Similarly as in the proof of Claim 7.4′, we show that (7.44)

implies that G̃(k) is irregular w.r.t. G̃(k−1). However, again the polyad ad-

dresses x̂(k−1) ∈ B̂
(k−1)
+ [Λk] considered in (7.44) correspond to subhyper-

graphs of H(k−1) and not necessarily to subhypergraphs of G̃(k−1). The set

Γ̂
(k−1)
+ [Λk], defined below, is the subset of those polyad addresses of B̂

(k−1)
+ [Λk]

which correspond to subhypergraphs of G̃(k−1) as well. Only these addresses

are useful to verify Claim 7.5′.

We set

Γ̂
(k−1)
+ [Λk] = B̂

(k−1)
+ [Λk] ∩ Â

(
G̃(k−1), k − 1, b

)
and

Q̂(k−1)
=
{
P̂(k−1)

(
x̂(k−1)

)
: x̂(k−1) ∈ Γ̂

(k−1)
+ [Λk]

}
=
{
Q̂(k−1)

1 , . . . , Q̂(k−1)
t

}
for t =

∣∣Γ̂(k−1)
+ [Λk]

∣∣. In what follows, we show∣∣∣∣ ⋃
s∈[t]

{
K(k−1)

k

(
Q̂(k−1)

s

)}∣∣∣∣ > 2δk

∣∣∣K(k−1)
k

(
G̃(k−1)[Λk]

)∣∣∣ (7.45)
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and

d
(
G̃(k)

∣∣Q̂(k−1)
)
> dk + 2δk. (7.46)

From (5.22), we see r ≥
∣∣Â(k − 1, b)

∣∣ ≥ t. Therefore, establishing (7.45)

and (7.46) proves Claim 7.5′.

We first verify (7.45). Observe that from (b2 ) (for j = k − 1),

K(k−1)
k (H(k−1))4K(k−1)

k (G̃(k−1))

⊇
⋃{

K(k−1)
k (P̂(k−1)(x̂(k−1))) : x̂(j−1) ∈ B̂(k−1)

+ [Λk] \ Γ̂
(k−1)
+ [Λk]

}
and so∣∣∣∣ ⋃

s∈[t]

{
K(k−1)

k

(
Q̂(k−1)

s

)}∣∣∣∣ =
∣∣∣⋃{

K(k−1)
k (P̂(k−1)(x̂(k−1))) : x̂(j−1) ∈ Γ̂

(k−1)
+ [Λk]

}∣∣∣
≥
∑{∣∣∣K(k−1)

k (P̂(k−1)(x̂(k−1)))
∣∣∣ : x̂(j−1) ∈ B̂(k−1)

+ [Λk]
}
− δ

1/3
k−1

(
k−1∏
h=2

d
(k

h)
h

)
nk.

Applying (7.5) of Fact 7.2 to every term in the sum above yields the further

lower bound∣∣∣B̂(k−1)
+ [Λk]

∣∣∣ (1− η̃)

(
k−1∏
h=2

d̃
(k

h)
h

)(
n

b1

)k

− δ
1/3
k−1

(
k−1∏
h=2

d
(k

h)
h

)
nk .

Hence, from our assumption (7.44), we infer∣∣∣∣ ⋃
s∈[t]

{
K(k−1)

k

(
Q̂(k−1)

s

)}∣∣∣∣
≥
(
`

k

)−1

(1− η̃)
√
δk

(
k−1∏
h=2

(
dhbhd̃h

)(k
h)
)
nk − δ

1/3
k−1

(
k−1∏
h=2

d
(k

h)
h

)
nk

(5.24)

≥

((
`

k

)−1

(1− η̃)(1− ν)
√
δk − δ

1/3
k−1

)(
k−1∏
h=2

d
(k

h)
h

)
nk . (7.47)

Finally, the choice of η̃, ν, and δk � δk−1 applied to (7.47) and inequality (7.2)

of Fact 7.1 for j = k − 1 and i = k imply (7.45).
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It is left to verify (7.46). We set, for every x̂(k−1) ∈ Γ̂
(k−1)
+ [Λk],

G̃(k)
(
x̂(k−1)

)
= G̃(k) ∩ K(k−1)

k

(
P̂(k−1)

(
x̂(k−1)

))
.

We now apply (7.5) of Fact 7.2 with j = k to each x̂(k−1) ∈ Γ̂
(k−1)
+ [Λk] and

the assumption on B̂
(k−1)
+ ⊇ Γ̂

(k−1)
+ [Λk] to infer∣∣∣∣G̃(k) ∩

⋃
s∈[t]

K(k−1)
k

(
Q̂(k−1)

s

)∣∣∣∣ =
∑{∣∣∣G̃(k)

(
x̂(k−1))

)∣∣∣ : x̂(k−1) ∈ Γ̂
(k−1)
+ [Λk]

}

>
∣∣∣Γ̂(k−1)

+ [Λk]
∣∣∣× (dk +

√
δk

)
× (1− η̃)

(
k−1∏
h=2

d̃
(k

h)
h

)(
n

b1

)k

. (7.48)

On the other hand, again from (7.5) we infer∣∣∣∣ ⋃
s∈[t]

K(k−1)
k

(
Q̂(k−1)

s

)∣∣∣∣ =
∑{∣∣∣K(k−1)

k

(
P̂(k−1)(x̂(k−1))

)∣∣∣ : x̂(k−1) ∈ Γ̂
(k−1)
+ [Λk]

}

≤
∣∣∣Γ̂(k−1)

+ [Λk]
∣∣∣× (1 + η̃)

(
k−1∏
h=2

d̃
(k

h)
h

)(
n

b1

)k

(7.49)

Comparing (7.48) and (7.49) yields

d
(
G̃(k)

∣∣Q̂(k−1)
)
>
(
dk +

√
δk

) 1− η̃

1 + η̃

which yields (7.46), since dk � δk � η̃. This finishes the proof of Claim 7.4′.

7.3 Proof of Lemma 5.7

Lemma 5.7 follows from a simple and straightforward application of the Slic-

ing Lemma, Lemma 4.16. Recall Setup 5.5 and that H = {H(h)}k
h=1 is the

(n, `, k)-complex given by Lemma 5.6.
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Proof of Lemma 5.7. Recall that by (c ) of Lemma 5.6, for every x̂(k−1) ∈
Â(H(k−1), k − 1, b), the (n, `, k)-cylinder

H(k)(x̂(k−1)) = H(k) ∩ K(k−1)
k

(
P̂(k−1)(x̂(k−1))

)
is (δ̃k, d̄(x̂

(k−1)), r̃)-regular w.r.t. P̂(k−1)(x̂(k−1))
(7.50)

where d̄(x̂(k−1)) = dk ±
√
δk.

Construction of H−. For x̂(k−1) ∈ Â(H(k−1), k − 1, b), apply the Slicing

Lemma, Lemma 4.16, with % = d̄(x̂(k−1)), p = (dk −
√
δk)/%, δ = δ̃k and

rSL = r̃ to H(k)(x̂(k−1)) to obtain a (3δ̃k, dk −
√
δk, r̃)-regular hypergraph

S(k)
− (x̂(k−1)).

Note that the assumptions of the Slicing Lemma are satisfied. This is due

to the fact that the family of partitions P is an almost perfect (δ̃, d̃, r̃, b)-

family and, consequently, P̂(k−1)(x̂(k−1)) is
(
(δ̃2, . . . , δ̃k−1), (d̃2, . . . , d̃k−1), r̃

)
-

regular. Hence, by (7.5) of Fact 7.2 (with j = k),∣∣∣K(k−1)
k

(
P̂(k−1)(x̂(k−1))

)∣∣∣ > (n/b1)
k

ln(n/b1)

for every x̂(k−1) ∈ Â(H(k−1), k − 1, b).

We then set

H(k)
− =

⋃{
S(k)
−
(
x̂(k−1)

)
: x̂(k−1) ∈ Â(H(k−1), k − 1, b)

}
.

Obviously, H(k)
− has the desired properties (α ) and (β1 ) by construction.

Construction of H+. The construction of H(k)
+ is similar and follows by an

application of the Slicing Lemma to the complement of H(k). More precisely,

for every x̂(k−1) ∈ Â(H(k−1), k− 1, b), set H(k)
(x̂(k−1)) = K(k−1)

k

(
P̂(x̂(k−1))

)
\

H(k). Note that, due to (7.50), H(k)
(x̂(k−1)) is (δ̃k, 1 − d̄(x̂(k−1)), r̃)-regular.

Consequently, we can apply the Slicing Lemma to H(k)
(x̂(k−1)) with % =

1− d̄(x̂(k−1)), p = (1− dk −
√
δk)/%, δ = δ̃k and rSL = r̃ to obtain a (3δ̃k, 1−
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dk −
√
δk, r̃)-regular hypergraph S(k)

+ (x̂(k−1)). We then set S(k)
+ (x̂(k−1)) =

K(k−1)
k

(
P̂(x̂(k−1))

)
\ S(k)

+ (x̂(k−1)). Clearly, S(k)
+ (x̂(k−1)) is (3δ̃k, dk +

√
δk, r̃)-

regular and S(k)
+ (x̂(k−1)) ⊇ H(k)(x̂(k−1)). Finally, we define H(k)

+ to be the

union of all S(k)
+ (x̂(k−1)) constructed that way.

Construction of F . The construction of F (k) is more involved owing to

the requirement H(k)
− ⊆ F (k) ⊆ H(k)

+ .

Let H(k)
− and H(k)

+ be given as constructed above and for ∗ ∈ {+,−} and

x̂(k−1) ∈ Â(H(k−1), k−1, b), let H(k)
∗ (x̂(k−1)) = H(k)

∗ ∩K(k−1)
k

(
P̂(k−1)(x̂(k−1))

)
.

Due to (β1 ) and (β2 ),H(k)
∗ (x̂(k−1)) is (3δ̃k, d

∗
k, r̃)-regular where d−k = dk−

√
δk

and d+
k = dk+

√
δk. Moreover, H(k)

+ (x̂(k−1)) ⊇ H(k)
− (x̂(k−1)) and, consequently,

H(k)
+ (x̂(k−1))\H(k)

− (x̂(k−1)) is (6δ̃k, 2
√
δk, r̃)-regular. We now apply the Slicing

lemma to H(k)
+ (x̂(k−1)) \ H(k)

− (x̂(k−1)) with % = 2
√
δk, p =

√
δk/% = 1/2, δ =

6δ̃k and rSL = r̃ to obtain a (18δ̃k,
√
δk, r̃)-regular hypergraph S(k)

F (x̂(k−1)).

Now define F (k)(x̂(k−1)) to be the disjoint union H(k)
− (x̂(k−1)) ∪ S(k)

F (x̂(k−1)).

Clearly, H(k)
− (x̂(k−1)) ⊆ F (k)(x̂(k−1)) ⊆ H(k)

+ (x̂(k−1)). Moreover, it is straight-

forward to verify that F (k) is (21δ̃k, dk, r̃)-regular w.r.t. P̂(k−1)(x̂(k−1)) and,

consequently,

F (k) =
⋃{

F (k)
(
x̂(k−1)

)
: x̂(k−1) ∈ Â(H(k−1), k − 1, b)

}
,

has the desired properties.
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Chapter 8

Proof of the Union Lemma

8.1 Union of regular hypergraphs

Below we present some useful facts regarding regularity properties of the

union of regular (m, j, j)-cylinders. We distinguish two cases depending

whether the (m, j, j)-cylinder in question has the same underlying polyad

or not.

The first proposition says that we may take the union of disjoint regu-

lar (m, j, j)-cylinders of the same density which share the same underlying

(m, j, j − 1)-cylinder without spoiling the regularity too much.

Proposition 8.1. Let j ≥ 2, t and m be fixed positive integers, let δ and d

be positive reals and let P(j)
1 , . . . ,P(j)

t be a family of pairwise edge disjoint

(m, j, j)-cylinders with the same underlying (m, j, j − 1)-cylinder P̂(j−1). If

for every s ∈ [t], the hypergraph P(j)
s is (δ, d, 1)-regular with respect to P̂(j−1),

then P(j) =
⋃

s∈[t]P
(j)
s is (tδ, td, 1)-regular with respect to P̂(j−1).

The proof of Proposition 8.1 is straightfoward and short and we therefore

omit it. The next proposition gives us control when we unite hypergraphs

having different underlying polyads. Before we make this precise, we define

the setup for our proposition.
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Setup 8.2. Let j ≥ 3, t and m be fixed positive integers and let δ and d be

positive reals. Let
{
P̂(j−1)

s

}
s∈[t]

be a family of (m, j, j−1)-cylinders such that

K(j−1)
j

( ⋃
s∈[t]

P̂(j−1)
s

)
=
⋃
s∈[t]

K(j−1)
j

(
P̂(j−1)

s

)
and

K(j−1)
j

(
P̂(j−1)

s

)
∩ K(j−1)

j

(
P̂(j−1)

s′

)
= ∅ for 1 ≤ s < s′ ≤ t .

(8.1)

From (8.1),
⋃

s∈[t]K
(j−1)
j

(
P̂(j−1)

s

)
is a partition of the j-cliques of

⋃
s∈[t] P̂

(j−1)
s .

Let
{
P(j)

s

}
s∈[t]

be a family of (m, j, j)-cylinders such that P̂(j−1)
s underlies P(j)

s

for any s ∈ [t]. Set P̂(j−1) =
⋃

s∈[t] P̂
(j−1)
s and P(j) =

⋃
s∈[t]P

(j)
s .

Proposition 8.3. Let
{
P(j)

s

}
s∈[t]

and
{
P̂(j−1)

s

}
s∈[t]

satisfy Setup 8.2. If P(j)
s

is (δ, d, 1)-regular w.r.t. P̂(j−1)
s for every s ∈ [t], then P(j) is (2

√
δ, d, 1)-

regular w.r.t. P̂(j−1).

Proof. Let Q̂(j−1) ⊆ P̂(j−1) be such that∣∣K(j−1)
j

(
Q̂(j−1)

)∣∣ ≥ √
δ
∣∣K(j−1)

j

(
P̂(j−1)

)∣∣ . (8.2)

For every s ∈ [t], set Q̂(j−1)
s = Q̂(j−1)∩P̂(j−1)

s . Since
⋃

s∈[t]K
(j−1)
j

(
P̂(j−1)

s

)
is a

partition of the j-cliques of
⋃

s∈[t] P̂
(j−1)
s ,

⋃
s∈[t]K

(j−1)
j

(
Q̂(j−1)

s

)
is a partition

of the j-cliques of Q̂(j−1) =
⋃

s∈[t] Q̂
(j−1)
s . As such,∑

s∈[t]

∣∣∣K(j−1)
j

(
Q̂(j−1)

s

)∣∣∣ =
∣∣∣K(j−1)

j

(
Q̂(j−1)

)∣∣∣ . (8.3)

Define

T =
{
s ∈ [t] :

∣∣∣K(j−1)
j

(
Q̂(j−1)

s

)∣∣∣ ≥ δ
∣∣∣K(j−1)

j

(
P̂(j−1)

s

)∣∣∣} .
Observe that∑

s 6∈T

∣∣∣K(j−1)
j

(
Q̂(j−1)

s

)∣∣∣ < δ
∣∣∣K(j−1)

j

(
P̂(j−1)

)∣∣∣ (8.2)

≤
√
δ
∣∣∣K(j−1)

j

(
Q̂(j−1)

)∣∣∣ . (8.4)
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Consequently 8.2, (8.3) and (8.4) give∑
s∈T

∣∣∣K(j−1)
j

(
Q̂(j−1)

s

)∣∣∣ ≥ ∣∣∣K(j−1)
j

(
Q̂(j−1)

)∣∣∣− δ
∣∣∣K(j−1)

j

(
P̂(j−1)

)∣∣∣
≥
(
1−

√
δ
) ∣∣∣K(j−1)

j

(
Q̂(j−1)

)∣∣∣ . (8.5)

If s ∈ T , then the (δ, d, 1)-regularity of P(j)
s w.r.t. P̂(j−1)

s implies∣∣∣P(j)
s ∩ K(j−1)

j

(
Q̂(j−1)

s

)∣∣∣ = (d± δ)
∣∣∣K(j−1)

j

(
Q̂(j−1)

s

)∣∣∣ .
Consequently,∣∣∣P(j) ∩ K(j−1)

j

(
Q̂(j−1)

)∣∣∣ (8.3)
=
∑
s∈[t]

∣∣∣P(j) ∩ K(j−1)
j

(
Q̂(j−1)

s

)∣∣∣
=
∑
s∈T

∣∣∣P(j)
s ∩ K(j−1)

j

(
Q̂(j−1)

s

)∣∣∣+∑
s 6∈T

∣∣∣P(j)
s ∩ K(j−1)

j

(
Q̂(j−1)

s

)∣∣∣
= (d± δ)

∑
s∈T

∣∣∣K(j−1)
j

(
Q̂(j−1)

s

)∣∣∣+∑
s 6∈T

∣∣∣P(j)
s ∩ K(j−1)

j

(
Q̂(j−1)

s

)∣∣∣ .
We then see

(d− δ)
∑
s∈T

∣∣∣K(j−1)
j

(
Q̂(j−1)

s

)∣∣∣
≤
∣∣∣P(j) ∩ K(j−1)

j

(
Q̂(j−1)

)∣∣∣ ≤
(d+ δ)

∣∣∣K(j−1)
j

(
Q̂(j−1)

)∣∣∣+∑
s 6∈T

∣∣∣K(j−1)
j

(
Q̂(j−1)

s

)∣∣∣ .
In view of (8.4) and (8.5), we infer

(d− δ)(1−
√
δ) ≤ d

(
P(j)

∣∣Q̂(j−1)
)
≤ d+ δ +

√
δ

from which Proposition 8.3 follows.
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8.2 Proof of Lemma 5.9

Before proving Lemma 5.9, we recall some notation. For ∗ ∈ {+,−}, let

H∗ = {H(j)}k−1
j=1 ∪ H

(k)
∗ = {H(j)

∗ }k
j=1 be given by Lemma 5.7. It follows that

for each j = 2, . . . , k− 1, the set Â(H(j−1)
∗ , j − 1, b) of polyad addresses with

P̂(x̂(j−1)) ⊆ H(j−1) satisfies that for each x̂(j−1) ∈ Â(H(j−1)
∗ , j − 1, b), there

is an index set I(x̂(j−1)) ⊆ [bj] of size djbj such that

H(j)
∗ ∩ K(j−1)

j

(
P̂(j−1)(x̂(j−1))

)
=

⋃
α∈I(x̂(j−1))

P(j)
(
(x̂(j−1), α)

)
.

Moreover, d
(
H(k)
∗
∣∣P̂(k−1)(x̂(k−1))

)
= d∗k, where d∗k is defined in (5.29). Recall

that for Λj = (λ1, . . . , λj) ∈
(
[`]
j

)
<
, we denote by H(j)

∗ [Λj] the subhypergraph

of H(j)
∗ induced on Vλ1 ∪ · · · ∪ Vλj

.

Due to Lemma 5.6, we know that for j = 2, . . . , k − 1, for every x̂(j−1) ∈
Â(H(j−1), j − 1, b), the set I(x̂(j−1)) satisfies |I(x̂(j−1))| = djbj; moreover,

for every α ∈ I(x̂(j−1)), the (n/b1, j, j)-cylinder P(j)
(
x̂(j−1), α)

)
is (δ̃, d̃, r̃)-

regular w.r.t. P̂(j−1)(x̂(j−1)). Inductively on j, we aim to show that H(j)
∗ [Λj],

which is the union of all P(j)(x̂(j−1), α), with x̂(j−1) = (x̂0, x̂1, . . . , x̂j−1),

x̂0 = Λj and α ∈ I(x̂(j−1)), is regular w.r.t. H(j−1)
∗ [Λj].

Proof of Lemma 5.9. We only prove the statement about H∗ here. The proof

for F is identical. Consider the following statement:

(Sj) For every Λj ∈
(
[`]
j

)
<

then H(j)
∗ [Λj] is a

(
(ε′, . . . , ε′), (d∗2, . . . , d

∗
j), 1

)
-

regular (n, j, j)-complex.

Lemma 5.9 then follows from (Sk).

We prove statement (Sj) by induction on j. Suppose j = 2 and let

Λ2 ∈
(
[`]
2

)
<

be given. By (a ) of Lemma 5.6, we have G̃(2) = H(2) = H(2)
∗ .

Consequently, H(2)
∗ [Λ2] is (δ2, d2, 1)-regular w.r.t. H(1)

∗ [Λ2] and (S2) follows

from δ2 � ε′ (cf. Figure 5.2).
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We now proceed to the induction step. Assume 3 ≤ j ≤ k and (Sj−1)

holds. Let Λj = (λ1, . . . , λj) ∈
(
[`]
j

)
<

be arbitrary but fixed. The proof of

(Sj) consists of three steps and we begin with the easiest.

Step 1. Let X̂(Λj) ⊆ Â(H(j−1)
∗ , j − 1, b) be the set of all polyad addresses

x̂(j−1) = (x̂0, x̂1, . . . , x̂j−1) with x̂0 = Λj. In Step 2, we consider

H(j)
∗ (x̂(j−1)) = H(j)

∗ ∩ K(j−1)
j

(
P̂(j−1)(x̂(j−1))

)
(8.6)

for every x̂(j−1) ∈ X̂(Λj). To that end, fix a x̂(j−1) ∈ X̂(Λj). This (and only

this) step splits into two cases, depending on whether j = k or not.

Case 1 (3 ≤ j < k). We apply Proposition 8.1 to

P̂(j−1)(x̂(j−1)) and
{
P(j)

(
(x̂(j−1), α)

)
: α ∈ I(x̂(j−1))

}
with δ = δj, d = d̃j (since j < k), and t =

∣∣I(x̂(j−1))
∣∣ = djbj = d∗jbj.

Consequently, for every x̂(j−1) ∈ X̂(Λj),

H(j)
∗ (x̂(j−1)) =

⋃
α∈I(x̂(j−1))

P(j)
(
(x̂(j−1), α)

)
= H(j)

∗ ∩ K(j−1)
j

(
P̂(j−1)(x̂(j−1))

)
is
(
(d∗jbj)δ̃j, (d

∗
jbj)d̃j, 1

)
-regular w.r.t. P̂(j−1)(x̂(j−1)). Since bj δ̃j ≤ 2δ̃j/d̃j �

ν and from (5.24), eachH(j)
∗ (x̂(j−1)) is

(
2ν, d∗j , 1

)
-regular w.r.t. P̂(j−1)(x̂(j−1)).

Case 2 (j = k). Here, we infer directly from conclusion (β ) of Lemma 5.7

that H(k)
∗ (x̂(k−1)) = H(k)

∗ ∩K(k−1)
k

(
P̂(k−1)(x̂(k−1))

)
is (3δ̃k, d

∗
k, 1)-regular w.r.t.

P̂(k−1)(x̂(k−1)). Consequently, H(k)
∗ (x̂(k−1)) is also

(
2ν, d∗k, 1

)
-regular w.r.t.

P̂(k−1)(x̂(k−1)).

Summarizing the two cases, we conclude that for every x̂(j−1) ∈ X̂(Λj),

the (n/b1, j, j)-cylinder H(j)
∗ (x̂(j−1)), as given in (8.6), is(

2ν, d∗j , 1
)
-regular w.r.t. P̂(j−1)(x̂(j−1)) . (8.7)
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Step 2. In this step, we apply the induction assumption (Sj−1). For every

ι ∈ [j], set Λj (ι) = (λ1, . . . , λι−1, λι+1, . . . , λj). We apply (Sj−1) to the

(n, j, j−1)-complex H(j−1)
∗ [Λj(ι)] for every ι ∈ [j]. As a result, we infer that

H(j−1)
∗ [Λj] =

⋃
ι∈[j]

H(j−1)
∗ [Λj (ι)] =

{ ⋃
ι∈[j]

H(h)[Λj (ι)]

}j−1

h=1

is an
(
(ε′, . . . , ε′), (d∗2, . . . , d

∗
j−1), 1

)
-regular (n, j, j − 1)-complex.

Step 3. Finally, as the last step, we show that the disjoint union⋃
x̂(j−1)∈X̂(Λj)

H(j)
∗ (x̂(j−1)) = H(j)

∗ [Λj]

is
(
ε′, d∗j , 1

)
-regular w.r.t. H(j−1)

∗ [Λj] (cf. (8.6)). Recall that H(j)
∗ (x̂(j−1)) is

(2ν, d∗j , 1)-regular w.r.t. P̂(j−1)(x̂(j−1)) for each x̂(j−1) ∈ X̂(Λj), as shown

in Step 1 (cf. (8.7)). It is easy to see that
{
P̂(j−1)(x̂(j−1))

}
x̂(j−1)∈X̂(Λj)

sat-

isfies (8.1). Consequently, the assumptions of Proposition 8.3 are satisfied

with δ = 2ν, d = d∗j , and t =
∣∣X̂(Λj)

∣∣ for the families{
P̂(j−1)(x̂(j−1))

}
x̂(j−1)∈X̂(Λj)

and
{
H(j)
∗ (x̂(j−1))

}
x̂(j−1)∈X̂(Λj)

.

Therefore, it follows from Proposition 8.3 that

H(j)
∗ [Λj] =

⋃
x̂(j−1)∈X̂(Λj)

H(j)
∗ (x̂(j−1))

is (2
√

2ν, d∗j , 1)-regular w.r.t.
⋃

x̂(j−1)∈X̂(Λj)
P̂(j−1)(x̂(j−1)) = H(j−1)

∗ [Λj]. Then

(Sj) follows from 2
√

2ν < ε′ (cf. Figure 5.2).
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Chapter 9

Proofs of the generalizations of

the Counting Lemma

In this chapter we prove the corollaries, Corollary 3.9 and Corollary 3.12,

discussed in Section 3.4 of Theorem 3.6.

9.1 Proof of Corollary 3.9

Let ` and k be given. We first fix all constants involved in the proof of the

corollary.

Recall the quantification of constants in Corollary 3.9 is

∀γ, dk ∃δk ∀dk−1 ∃δk−1 . . . ∀d2 ∃δ2, r .

The corollary is trivially true for γ ≥ 1. Hence, let 1 > γ > 0 be given. Set

an auxiliary constant γ̄ so that

(1− γ/2) = (1− γ̄)2`

. (9.1)

Next, for every given dj, we define auxiliary constants d̃j and δ̃j and then
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the required δj inductively for j = k, . . . , 2 as follows:

d̃j = γ̄dj (9.2)

δ̃j = min
{
δj
(
CLk,`(γ/2, d̃k, δ̃k, . . . , d̃j)

)
,

δj
(
IHCk−1,k(1/2, d̃k, δ̃k, . . . , d̃j

)} (9.3)

δj = min

{
δ̃j
9
γ̄2k

,
d̃j

3
, δj
(
CLk,`(1/2, dk, δk, . . . , dj)

)}
. (9.4)

Finally, we set r to

r = max
{
r
(
CLk,`(γ/3, d̃k, δ̃k, . . . , δ̃2)

)
,

r
(
IHCk−1,k(1/2, d̃k, δ̃k, . . . , δ̃2)

)
,

r
(
IHCk−1,k(1/2, dk, δk, . . . , δ2)

)}
.

(9.5)

Let F (k) be a fixed k-uniform hypergraph on ` vertices {1, . . . , `} and let G =

{G(j)}k
j=1 be a (δ,≥d, r,F (k))-regular (n, `, k)-complex with δ = (δ2, . . . , δk)

and d = (d2, . . . , dk). We show G contains the desired number of copies of

F (k) by using the original Counting Lemma, Theorem 3.6.

Our first step is to construct an “everywhere regular” (n, `, k)-complex

G̃ = {G̃(j)}k
j=1 from G. To do so, set G̃(1) = G(1) = V1 ∪ · · · ∪ V` and for every

j = 2, . . . , k and Λj = {λ1, . . . , λj} ∈
(
[`]
j

)
, set

G̃(j)[Λj] =

G(j)[Λj] if Λj ∈ ∆j(F (k))

K
(j)
j (Vλ1 , . . . , Vλj

) if Λj 6∈ ∆j(F (k)) .
(9.6)

Observe that the densities dΛj
= d(G̃(j)[Λj]|G̃(j−1)[Λj]), Λj ∈

(
[`]
j

)
, of the

complex G̃ satisfy

dΛj
=


dj if j < k and Λj ∈ ∆j(F (k))

d
(
G(k)[Λk]

∣∣G(k−1)[Λk]
)

if j = k and Λk ∈ F (k) = ∆k(F (k))

1 otherwise .
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Clearly, all (n, j, j)-cylinders G̃(j)[Λj] are (δj, dΛj
, r)-regular w.r.t G̃(j−1)[Λj],

2 ≤ j ≤ k. As well, observe that owing to the construction of G̃ and

Definition 3.8,

the number of partite isomorphic copies of F (k) in G(k)

is equal |K(k)
` (G̃(k))| .

(9.7)

Unfortunately, the complex G̃ is not ready for an application of the Count-

ing Lemma, Theorem 3.6, since the densities dΛj
, Λj ∈

(
[`]
j

)
, vary depending

on whether Λj ∈ ∆j(F (k)), 2 ≤ j ≤ k. We circumvent this minor technicality

by (inductively) decomposing G̃ into a family S (k)
` of K

(k)
` -disjoint (δ̃, d̃, r)-

regular (n, `, k)-subcomplexes, δ̃ = (δ̃2, . . . , δ̃k), d̃ = (d̃2, . . . , d̃k), using the

Slicing Lemma, Lemma 4.16. We then apply the Counting Lemma to each

such subcomplex and then add the cliques up over the family S (k)
` .

We inductively apply the Slicing Lemma to G̃ to first produce a family

S (2)
` of (δ̃2, d̃2, 1)-regular (n, `, 2)-subcomplexes. Indeed, from the construc-

tion of G̃, it follows that G̃(2)[Λ2] is (δ2, dΛ2 , 1)-regular w.r.t. G̃(1)[Λ2] for every

Λ2 ∈
(
[`]
2

)
. As such, we may apply the Slicing Lemma to slice these bipartite

graphs into the desired family.

Fix Λ2 ∈
(
[`]
2

)
. We apply the Slicing Lemma to G̃(2)[Λ2] with δ = δ2,

% = dΛ2 , rSL = 1, and p = d̃2/% to obtain a family of bdΛ2/d̃2c pairwise

edge-disjoint regular bipartite subgraphs of G̃(2)[Λ2].

Repeating this procedure over all Λ2 ∈
(
[`]
2

)
yields at least

∏
Λ2∈([`]

2 )

⌊
dΛ2

d̃2

⌋
=

⌊
d2

d̃2

⌋|∆2(F(k))|

×
⌊

1

d̃2

⌋(`
2)−|∆2(F(k))|

(δ̃2, d̃2, 1)-regular (n, `, 2)-subcomplexes of G̃. Let S (2)
` be the family of

all (δ̃2, d̃2, 1)-regular (n, `, 2)-subcomplexes constructed above and let Ŝ (2)

be the family of all (δ̃2, d̃2, 1)-regular (n, 3, 2)-subcomplexes implicitly con-

structed.
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We now proceed with the induction step of the construction. For 3 ≤
j ≤ k, assume the family S (j−1)

` of
(
(δ̃2, . . . , δ̃j−1), (d̃2, . . . , d̃j−1), r

)
-regular

(n, `, j − 1)-subcomplexes was constructed with size at least

j−1∏
h=2

∏
Λh∈([`]

h )

⌊
dΛh

d̃h

⌋
=

j−1∏
h=2

⌊
dh

d̃h

⌋|∆h(F(k))|

×
j−1∏
h=2

⌊
1

d̃h

⌋(`
h)−|∆h(F(k))|

. (9.8)

Let Ŝ (j−1) be the collection of all
(
(δ̃2, . . . , δ̃j−1), (d̃2, . . . , d̃j−1), r

)
-regular

(n, j, j−1)-subcomplexes implicitly constructed. We now construct a families

S (j)
` and Ŝ (j).

Fix (n, j, j − 1)-complex Ŝ(j−1)
= {Ŝ(h)}j−1

h=1 ∈ Ŝ (j−1) and suppose Λj ∈(
[`]
j

)
is such that Ŝ(1) =

⋃
λ∈Λj

Vλ. We slice G̃(j)[Λj] ∩ K(j−1)
j (Ŝ(j−1)) into

regular pieces of density d̃j. In order to do so, however, we must first verify

the following claim to see that the Slicing Lemma applies.

Claim 9.1. G̃(j)[Λj]∩K(j−1)
j (Ŝ(j−1)) is (δ̃j/3, dΛj

, r)-regular w.r.t. Ŝ(j−1) for

every Ŝ(j−1) ∈ Ŝ (j−1).

Proof. Note that this claim is trivial if Λj 6∈ ∆j(F (k)) and so it suffices to

consider Λj ∈ ∆j(F (k)). In this case, the claim is still easy to prove because,

as we show below, Ŝ(j−1) ⊆ G̃(j−1)[Λj] contains a large portion of the cliques

of G̃(j−1)[Λj], and so, Ŝ(j−1) inherits (most of) the regularity G̃(j)[Λj] has with

respect to G̃(j−1)[Λj].

In fact, since Ŝ(j−1)
is
(
(δ̃2, . . . , δ̃j−1), (d̃2, . . . , d̃j−1), r

)
-regular and by the

choice of the constants in (9.3) and (9.5), we may apply IHCk−1,k to infer∣∣∣K(j−1)
j (Ŝ(j−1))

∣∣∣ ≥ 1

2

j−1∏
h=2

d̃
(j

h)
h × nj .

On the other hand, since Λj ∈ ∆j(F (k)) and G is a (δ,d, r,F (k))-regular

complex, we infer from (9.4), (9.5), and (9.6) combined with IHCk−1,k that∣∣∣K(j−1)
j (G̃(j−1)[Λj])

∣∣∣ ≤ 3

2

j−1∏
h=2

d
(j

h)
h × nj .
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Consequently, if Q = {Q(j−1)
1 , . . . ,Q(j−1)

r } is a family of r distinct (n, j, j −
1)-subcylinders of Ŝ(j−1) ⊆ G̃(j−1)[Λj] such that

∣∣⋃
s∈[r]K

(j−1)
j (Q(j−1)

s )
∣∣ ≥

(δ̃j/3)
∣∣K(j−1)

j (Ŝ(j−1))
∣∣, then we see from from (9.2) and (9.4), that, in fact,∣∣∣∣ ⋃

s∈[r]

K(j−1)
j (Q(j−1)

s )

∣∣∣∣ ≥ δ̃j
3

∣∣∣K(j−1)
j (Ŝ(j−1))

∣∣∣ ≥ δ̃j
6

j−1∏
h=2

d̃
(j

h)
h × nj

=
δ̃j
6

j−1∏
h=2

(
d̃h

dh

)(j
h)

×
j−1∏
h=2

d
(j

h)
h × nj

≥ 3

2
δj

j−1∏
h=2

d
(j

h)
h × nj ≥ δj

∣∣∣K(j−1)
j (G̃(j−1)[Λj])

∣∣∣.
Consequently, from the (δj, dΛj

, r)-regularity of G̃(j)[Λj] w.r.t. G̃(j−1)[Λj], we

infer ∣∣∣∣G̃(j)[Λj] ∩
⋃
s∈[r]

K(j−1)
j (Q(j−1)

s )

∣∣∣∣ = (dΛj
± δj)

∣∣∣∣ ⋃
s∈[r]

K(j−1)
j (Q(j−1)

s )

∣∣∣∣
and so we proved the claim.

Claim 9.1 allows us to apply the Lemma 4.16 to G̃(j)[Λj] ∩K(j−1)
j (Ŝ(j−1))

on Ŝ(j−1) with δ = δ̃j/3, % = dΛj
, rSL = r, and p = d̃j/%. As such, we create

bdΛj
/d̃jc pairwise edge-disjoint (n, j, j)-cylinders, each of which is (δ̃j, d̃j, r)-

regular with respect to Ŝ(j−1).

Repeating this process for all (n, j, j−1)-complexes Ŝ(j−1)
= {Ŝ(h)}j−1

h=1 ∈
Ŝ (j−1), we see from (9.8) that we construct at least

j∏
h=2

∏
Λh∈([`]

h )

⌊
dΛj

d̃j

⌋
(9.9)

(
(δ̃2, . . . , δ̃j), (d̃2, . . . , d̃j), r

)
-regular (n, `, j)-subcomplexes of G̃. Let S (j)

` de-

note the family of all such and, moreover, let Ŝ (j) denote the family of all(
(δ̃2, . . . , δ̃j), (d̃2, . . . , d̃j), r

)
-regular (n, j+1, j)-subcomplexes implicitly con-

structed. This finishes the induction step of the decomposition of G̃.
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Observe from (9.9) that in the case of j < k,

∣∣∣S (j)
`

∣∣∣ ≥ j∏
h=2

∏
Λh∈([`]

h )

⌊
dΛj

d̃j

⌋
≥

j∏
h=2

⌊
dh

d̃h

⌋|∆h(F(k))|

×
j∏

h=2

⌊
1

d̃h

⌋(`
h)−|∆h(F(k))|

and, in the case of j = k,∣∣∣S (k)
`

∣∣∣ ≥ k∏
h=2

∏
Λh∈([`]

h )

⌊
dΛj

d̃j

⌋
(9.10)

≥

k−1∏
h=2

⌊
dh

d̃h

⌋|∆h(F(k))|

×
∏

Λk∈F(k)

⌊
dΛk

d̃k

⌋×
k∏

h=2

⌊
1

d̃h

⌋(`
h)−|∆h(F(k))|

,

by the assumption that G is a (δ,≥d, r,F (k))-regular complex (cf. Defini-

tion 3.7).

Note that ∣∣K(k)
` (G̃(k))

∣∣ ≥ ∑
S={S(h)}k

h=1∈S
(k)
`

∣∣K(k)
` (S(k))

∣∣ (9.11)

where we may apply the Counting Lemma to each such (δ̃, d̃, r)-regular

(n, `, k)-complex S ∈ S (k)
` . Fix S ∈ S (k)

` . By the choice of the constants

in (9.3) and (9.5) we can apply CLk,` to S to conclude

∣∣K(k)
` (S(k))

∣∣ ≥ (1− γ

2

) k∏
h=2

d̃
(`

h)
h × n`. (9.12)

Applying (9.12) and (9.10) to (9.11) then yields that
∣∣K(k)

` (G̃(k))
∣∣ is at least

(
1− γ

2

)( k∏
h=2

d̃
(`

h)
h × n`

)
×

×

k−1∏
h=2

⌊
dh

d̃h

⌋|∆h(F(k))|

×
∏

Λk∈F(k)

⌊
dΛk

d̃k

⌋×
k∏

h=2

⌊
1

d̃h

⌋(`
h)−|∆h(F(k))|

.
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Also, note that (9.2) yields that

bdh/d̃hc ≥ (1− γ̄)dh/d̃h for h = 2, . . . , k − 1 ,

bdΛk
/d̃hc ≥ (1− γ̄)dΛk

/d̃h for Λk ∈ F (k) , and

b1/d̃hc ≥ (1− γ̄)/d̃h for h = 2, . . . , k .

Consequently, we see |K(k)
` (G̃(k))

∣∣ is at least

(1− γ̄)2`
k∏

h=2

(
1

d̃h

)(`
h) k−1∏

h=2

d
|∆h(F(k))|
h

∏
Λk∈F(k)

dΛk
×
(
1− γ

2

) k∏
h=2

d̃
(`

h)
h × n`

≥ (1− γ)
k−1∏
h=2

d
|∆h(F(k))|
h ×

∏
Λk∈F(k)

dΛk
× n` ,

which yields the corollary by (9.7).

9.2 Proof of Corollary 3.12

We now use Corollary 3.9 to infer Corollary 3.12.

Let `, k and γ > 0 be given. We inductively fix the constants δj according

to Corollary 3.9 applied with γ/2. More precisely, for j = k, . . . , 2 and given

dj we set

δj = δj
(
Cor.3.9(γ/2, dk, δk, . . . , dj)

)
.

In the same way we fix r and n0. Let n be sufficiently large (bigger than n0

and satisfying one condition mentioned below).

Let F (k) with V (F (k)) = [`] be a k-uniform hypergraph and suppose F̃
(with V (F̃ (k)) = [˜̀]) is a homomorphic image of F (k) under ϑ. In other

words, ϑ is an edge-preserving map satisfying

ϑ : [`] � [˜̀] .

Moreover, let G̃ = {G̃(h)}k
h=1 with G̃(1) = Ṽ1 ∪ · · · ∪ Ṽ˜̀ be a

(
δ,≥d, r, F̃ (k)

)
-

regular (n, ˜̀, k)-complex, where δ = (δ2, . . . , δk) and d = (d2, . . . , dk).
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Through ϑ we may view F (k) as an ˜̀-partite hypergraph on the vertex

set

V (F (k)) = [`] ∼= U = U1 ∪ · · · ∪ U˜̀ where Uβ = β × ϑ−1(β) for β ∈ [˜̀] .

We construct a
(
δ,≥d, r,F (k)

)
-regular (n, `, k)-complex G = {G(h)}k

h=1

which is a “homomorphic preimage” of G̃. For that, we set G = G̃ ×ϑ F (k),

where the product “×ϑ” is defined as follows.

(a ) G(1) =
⋃

β∈[˜̀]Wβ where Wβ =
⋃

α∈ϑ−1(β) Vα and Vα = Ṽβ × α, i.e., for

every vertex (β, α) ∈ U of F (k) we introduce in G(1) a vertex class

Ṽβ × α = Vα of n vertices which is a copy of Ṽβ or, equivalently, for

every α ∈ [`] we introduce a vertex class Vα which corresponds to Ṽβ,

where β = ϑ(α). Consequently,⋃
α∈[`]

Vα = G(1) =
⋃

β∈[˜̀]

⋃
α∈ϑ−1(β)

Vα where Vα = Ṽβ × α .

(b ) For j = 2, . . . , k − 1 we set

G(j) =
{{

(ṽβ1 , α1), . . . , (ṽβj
, αj)

}
: {ṽβ1 , . . . , ṽβj

} ∈ G̃(j) and

(α1, . . . , αj) ∈ ϑ−1(β1)× · · · × ϑ−1(βj)
}
.

Below we observe some facts concerning G = G̃×ϑF (k). All are straight-

forward consequences of the definition in (a ) and (b ) above.

(i ) G = {G(h)}k
h=1 is an (n, `, k)-complex with G(1) = V1 ∪ · · · ∪ V`.

(ii ) G is
(
δ,≥d, r,F (k)

)
-regular.

(iii ) If F (k)
0 is a partite isomorphic copy (see Definition 3.8) of F (k) in G(k)

with V (F (k)) = {(ṽβ1 , α1), . . . , (ṽβ`
, α`)} (where due to (a ) ϑ(αi) = βi

for i = 1, . . . , `), then {ṽβ1 , . . . , ṽβ`
} spans a copy of some homomor-

phic image of F (k) in G̃(k). Moreover, if |{ṽβ1 , . . . , ṽβ`
}| = `, then
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{ṽβ1 , . . . , ṽβ`
} spans a ϑ-partite isomorphic copy (see Definition 3.11)

of F (k) in G̃(k).

(iv ) The number of partite isomorphic copies F (k)
0 of F (k) in G(k) with

V (F (k)) = {(ṽβ1 , α1), . . . , (ṽβ`
, α`)} for which |{ṽβ1 , . . . , ṽβ`

}| = `′ < `

is less than ∏
β∈[˜̀]

|ϑ−1(β)|!× n`′ = o(n`) .

(v ) For every ϑ-partite isomorphic copy F (k)
1 of F (k) in G̃(k) with V (F (k)

1 ) =⋃
β∈[˜̀] V (F (k)

1 ) ∩ Ṽβ and V (F (k)
1 ) ∩ Ṽβ =

⋃
α∈ϑ−1(β) ṽβ,α there exist pre-

cisely ∏
β∈[˜̀]

|ϑ−1(β)|!

corresponding distinct partite isomorphic copies of F (k) in G(k), namely,{ ⋃
β∈[˜̀]

⋃
α∈ϑ−1(β)

(
ṽβ,α, σβ(α)

)
: σβ is a permutation on ϑ−1(β) for β ∈ [˜̀]

}
.

Due to (i ) and (ii ), G = G̃ ×ϑ F̃ (k) (defined in (a ) and (b )) is a
(
δ,≥

d, r,F (k)
)
-regular (n, `, k)-complex. Consequently, by the earlier choice of

constants we may apply Corollary 3.9 and infer that the number of partite

isomorphic copies of F (k) in G(k) is at least(
1− γ

2

) k−1∏
h=2

d
|∆h(F(k))|
h ×

∏
Λk∈F(k)

dΛk
× n` .

Then (iii ) and (iv ) yield that (for n sufficiently large) at least

(
1− γ

2

) k−1∏
h=2

d
|∆h(F(k))|
h ×

∏
Λk∈F(k)

dΛk
× n` − o(n`)

≥ (1− γ)
k−1∏
h=2

d
|∆h(F(k))|
h ×

∏
Λk∈F(k)

dΛk
× n`
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partite isomorphic copies of F (k) in G(k) correspond to a ϑ-partite isomorphic

copy of F (k) in G̃(k). Finally, (v ) then implies the existence of at least

(1− γ)
∏
β∈[˜̀]

1

|ϑ−1(β)|!

k−1∏
h=2

d
|∆h(F(k))|
h ×

∏
Λk∈F(k)

dΛk
× n`

ϑ-partite isomorphic copy of F (k) in G̃(k) and we conclude the proof of Corol-

lary 3.12.
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Chapter 10

Concluding Remarks

concerning the Counting

Lemma

The methods used here, combined with the result of [48], yield a Hy-

pergraph Regularity Lemma that would be simpler to state and likely more

convenient to use. For 3-uniform hypergraphs, such a result immediately

follows from Theorem 5.3 and the RS-Lemma with k = 3 (equivalently, the

FR-Lemma). We focus first on the case k = 3 but later continue for general k.

10.1 The 3-uniform case

We prove the following theorem.

Theorem 10.1. For every positive real ν and a positive real-valued func-

tion ε(D2), there exist integers L3 and n3 such that for any 3-uniform hyper-

graph H(3) on n ≥ n3 vertices there exists a 3-uniform hypergraph F (3) and a(
ν, ε(d2), d2, 1

)
-equitable family of partitions R = R (2,a,ϕ) = {R(1),R(2)}

such that

(i ) for every x̂(2) ∈ Â(2,a)∣∣∣(H(3)4F (3)
)
∩ K(2)

3

(
R̂(2)(x̂(2))

)∣∣∣ ≤ νd3
2

(
n

a1

)3

, (10.1)
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(ii ) all but at most νn3 edges of K
(3)
n belong to some polyad R̂(2)(x̂(2)) where

F (3) is (ε(d2), 1)-regular w.r.t. R̂(2)(x̂(2)), and

(iii ) rank R ≤ L3.

We give the proof of Theorem 10.1 momentarily. We proceed first with some

general discussion.

There is an important single difference between Theorem 10.1 and the FR-

Lemma (or, equivalently, RS-Lemma with k = 3); Theorem 10.1 provides an

environment sufficient for a direct application of the Dense Counting Lemma,

Theorem 4.1. Indeed, unlike the the output of the FR-Lemma where one has

constants δ3, d2, δ2(d2) and r, so that δ3 � d2 � δ2(d2), 1/r, Theorem 10.1

admits sufficiently small ε(d2) with ε(d2) � d2 and no formulation of r such

that both the 3-uniform hypergraph F (3) and the graphs from the underlying

partition R(2) are ε(d2)-regular.

The only cost of the cleaner environment Theorem 10.1 renders is that

our original input hypergraph H(3) is slightly (albeit negligibly) altered to

the output hypergraph F (3). We proceed to the proof of Theorem 10.1.

Proof of Theorem 10.1. Theorem 10.1 follows from consecutive applications

of Theorem 4.11 and Theorem 5.3. Since Theorem 4.11 is formulated for

`-partite hypergraphs, we assume that H(3) is `-partite for some fixed `. The

formulation of Theorem 10.1 for arbitrary H(3) can be derived in precisely

the same way by replacing Theorem 4.11 with the main result from [48], or,

equivalently, the FR-Lemma.

We mention another allowance we make in our proof. While not stated

explicitly earlier, the conclusion of Theorem 5.3 also holds for an (n, 3, 3)-

complex G = {G(j)}3
j=1 satisfying d

(
G(3)

∣∣G(2)
)
≥ d3 (cf. Definition 3.2 with

r = 1), rather than d
(
G(3)

∣∣G(2)
)

= d3. We use this conclusion in our proof

below.
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We begin by fixing the constants involved in the proof of Theorem 10.1.

As our proof depends on Theorem 4.11 and Theorem 5.3, our constants are

determined by these two theorems. As such, we recall that the quantifications

of Theorem 4.11 (for k = 3) and Theorem 5.3 (for k = ` = 3) are, respectively,

∀l, µ, δ′3, δ′2(D2), r
′(A1, D2) ∃L′3, n′3

and

∀γ, d3 ∃δ3 ∀d2, ε ∃δ2, r, n0.

Given ν > 0 and a positive real-valued function ε(D2), set

2µ = γ/2 = 2dlow
3 = ν. (10.2)

We appeal to Theorem 5.3 to define δ3 and functions δ2(D2), r(D2) and

n0(D2) in the variable D2

δ3 = δ3
(
Thm.5.3(γ, dlow

3 )
)

δ2(D2) = δ2
(
Thm.5.3(γ, dlow

3 , δ3, D2, ε(D2))
)

r(D2) = r
(
Thm.5.3(γ, dlow

3 , δ3, D2, ε(D2))
)

n0(D2) = n0

(
Thm.5.3(γ, dlow

3 , δ3, D2, ε(D2))
)

where, w.l.o.g., we assume that the functions defined above are monotone

in D2. We then set

δ′3 = min{δ3, ν/2} , δ′2(D2) = min{δ2(D2), ε(D2), D
3
2/10} ,

and r′(a1, D2) = r(D2) .
(10.3)

Having defined µ, δ′3, δ
′
2(D2), and r′(A1, D2), Theorem 4.11 determines

two integers L′3 and n′3. We fix L3 and n3 (promised by Theorem 10.1) as

L3 = L′3 and n3 = max{n′3, a1n0(1/(2L3))} . (10.4)

This concludes our determination of the promised constants. We now begin

our proof of Theorem 10.1.
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Now, let H(3) be an (n, `, 3)-cylinder with n ≥ n3 and vertex partition

V1 ∪ · · · ∪ V`. We apply Theorem 4.11 to obtain a
(
µ, δ′2(d2), d2, r

′(d2)
)
-

equitable partition R = R(2,a,ϕ) = {R(1),R(2)} with

rank R ≤ L′3 = L3 . (10.5)

Accordingly, all but (µ + δ′3)n
3 ≤ νn3 edges of K

(3)
` (V1, . . . , V`) belong to

(n/a1, 3, 2)-complexes R̂ =
{
R̂(j)(x̂(2))

}2

j=1
which are

(α )
(
δ′2(d2), d2, r

′(d2)
)
-regular where

(β ) H(3) is (δ′3, r
′(d2))-regular w.r.t. R̂(2)(x̂(2)).

Observe that it must be the case that

d2 > 1/(2L3) (10.6)

since otherwise there is a contradiction to the (µ, δ′2(d2), d2, r
′(d2))-equitability

of R. For a somewhat simpler notation in what follows, we set d3(x̂
(2)) =

d
(
H(3)

∣∣R̂(2)(x̂(2))
)
.

To define the promised hypergraph F (3), we define, for every x̂(2) ∈
Â(2,a), an (n/a1, 3, 3)-cylinder F (3)(x̂(2)) ⊆ K(2)

3

(
R̂(2)(x̂(2))

)
. We distin-

guish three cases.

(A ) If x̂(2) ∈ Â(2,a) so that either (α ) or (β ) fails, then we set F (3)(x̂(2)) =

H(3) ∩K(2)
3

(
R̂(2)(x̂(2))

)
. Note, in this case, we don’t alter H(3) on such

polyads R̂(2)(x̂(2)).

(B ) If x̂(2) ∈ Â(2,a) such that (α ) and (β ) hold but d3(x̂
(2)) < dlow

3 , then

we set F (3)(x̂(2)) = ∅.

(C ) If x̂(2) ∈ Â(2,a) such that (α ) and (β ) hold and d3(x̂
(2)) ≥ dlow

3 ,

then we apply Theorem 5.3 to define F (3)(x̂(2)). To this end, consider

the (n/a1, 3, 3)-complex G(x̂(2)) = {G(j)(x̂(2))}3
h=1 with G(j)(x̂(2)) =
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R̂(j)(x̂(2)) for j ∈ {1, 2} and G(3)(x̂(2)) = H(3) ∩K(2)
3

(
R̂(2)(x̂(2))

)
. Note,

that n/a1 ≥ n0(d2) due to n ≥ n3, the monotonicity of n0(D2), (10.6),

and (10.4). Also, due to the assumption on this case and the choice

of constants, G(x̂(3)) is a
(
(δ2(d2), δ3), (d2, d3(x̂

(2))), r(d2)
)
-regular com-

plex satisfying the assumptions of Theorem 5.3. Therefore, there is an(
(ε(d2), ε(d2)), (d2, d3(x̂

(2))), 1)-regular (n/a1, 3, 3)-complex F(x̂(2)) =

{F (j)(x̂(2))}3
h=1 such that

F (j)(x̂(2)) = G(j)(x̂(2)) = R̂(j)(x̂(2)) (10.7)

for j ∈ {1, 2} (by (ii ) of Theorem 5.3) and∣∣∣G(3)(x̂(2))4F (3)(x̂(2))
∣∣ =

∣∣∣(H(3) ∩ K(2)
3

(
R̂(2)(x̂(2))

))
4F (3)(x̂(2))

∣∣∣
≤ γ

2
d3(x̂

(2))d3
2

(
n

a1

)3

≤ νd3
2

(
n

a1

)3

.

(10.8)

Set

F (3) =
⋃{

F (3)(x̂(2)) : x̂(2) ∈ Â(2,a)
}
.

We verify that F (3) admits the required properties. Recall that the family of

partitions R is
(
µ, δ′2(d2), d2, r

′(d2)
)
-equitable. It therefore follows from the

choice of µ in (10.2), δ′2(D2) in (10.3), and r′ ≥ 1 that the family of partitions

R is (ν, ε(d2), d2, 1)-equitable. It is left to show (i )–(iii ) of Theorem 10.1

for F (3) and R.

We first confirm property (i ). We have to verify (10.1) for every x̂(2) ∈
Â(2,a). If x̂(2) satisfies the assumption in (A ), then the symmetric difference

considered in (10.1) is empty.

If F (3)(x̂(2)) = F (3)∩K(2)
3

(
R̂(2)(x̂(2))

)
was constructed in (B ) (this means

F (3)(x̂(2)) = ∅), then∣∣∣(H(3)4F (3)
)
∩K(2)

3

(
R̂(2)(x̂(2))

)∣∣∣ =
∣∣∣(H(3)∩K(2)

3

(
R̂(2)(x̂(2))

))
4F (3)(x̂(2))

∣∣∣
=
∣∣∣H(3) ∩ K(2)

3

(
R̂(2)(x̂(2))

)∣∣∣ ≤ dlow
3

∣∣∣K(2)
3

(
R̂(2)(x̂(2))

)∣∣∣
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due to the assumption of (B ). We then use the Counting Lemma for k = 2

and ` = 3, or more precisely Fact A from [16] combined with δ′2(d2) ≤ d3
2/10

from (10.3), to bound the right-hand side of the last inequality by

dlow
3 × 2d3

2

(
n

a1

)3 (10.2)

≤ νd3
2

(
n

a1

)3

,

which yields (10.1) for x̂(2) satisfying the assumption on (B ).

Finally, if x̂(2) ∈ Â(2,a) satisfies the assumption of (C ), then (10.8)

yields (10.1). This concludes the proof of property (i ) of Theorem 10.1.

Next we verify part (ii ) of Theorem 10.1. For x̂(2) ∈ Â(2,a) considered

in (B ) and (C ) the (n/a1, 3, 3)-cylinder F (3)(x̂(2)) is (ε(d2), 1)-regular w.r.t.

R̂(2)(x̂(2)) by construction. Consequently, for any triple from K
(3)
` (V1, . . . , V`)

belonging to some polyad R̂(2)(x̂(2)), the hypergraph F (3) is (ε(d2), 1)-regular

w.r.t. R̂(2)(x̂(2)) if x̂(2) satisfies the assumption of (B ) or (C ). Therefore,

in order to show (ii ) of Theorem 10.1 it suffices to estimate the number

of triples belonging to polyads R̂(2)(x̂(2)) considered in (A ). Since R was(
µ, δ′2(d2), d2, r

′(d2)
)
-equitable and (δ′3, r

′(d2))-regular w.r.t. H(3), it follows

(as observed above) that all but at most νn3 triples from K(3)
` (V1, . . . , V`)

belong to complexes of the partition R not satisfying (α ) or (β ). Conse-

quently,∣∣∣∣⋃{
K(2)

3

(
R̂(2)(x̂(2))

)
: x̂(2) ∈ Â(2,a) satisfies assumption of (A )

}∣∣∣∣ ≤ νn3 ,

which yields part (ii ) of Theorem 10.1.

We conclude our proof of Theorem 10.1 by confirming property (iii ).

Note, however, that (iii ) holds trivially due to (10.5).
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10.2 Extending Theorem 10.1 to k-uniform

hypergraphs

We now present a generalization of Theorem 10.1 to k-uniform hypergraphs.

In this generalization, we give a slight improvement to Theorem 10.1. We

begin with the following definition.

Definition 10.2 ((ε,d,a)-perfect family of partitions). Let ε > 0 and

d =
(
d2, . . . , dk−1

)
be a vector of positive reals and a = (a1, . . . , ak−1) be a

vector of positive integers. We say that a family of partitions R = R(k −
1,a,ϕ) (as defined in Definition 4.5) is a perfect (ε,d,a)-family of partitions

if the following holds for every 2 ≤ j ≤ k − 1:

(i ) djaj = 1 and

(ii ) for every x̂(j−1) ∈ Â (j − 1,a) and for every α ∈ [aj], the (n/a1, j, j)-

cylinder R(j)
(
(x̂(j−1), α)

)
is
(
ε, dj, 1

)
-regular w.r.t. R̂(j−1)

(
x̂(j−1)

)
.

Recall that an equitable partition may contain a few irregular parts. In

the definition above, observe that an (ε,d,a)-perfect family of partitions

admits no irregular parts. We now state the generalization of Theorem 10.1

with this one slight improvement.

Theorem 10.3. Let k ≥ 2 be an integer. For every positive real ν and any

positive real-valued function ε(D2, . . . , Dk−1), there exist integers Lk and nk

such that for any k-uniform hypergraph H(k) on n ≥ nk vertices there exists

a k-uniform n-vertex hypergraph F (k) and an
(
ε(d),d,a

)
-perfect family of

partitions R = R (k − 1,a,ϕ) such that

(i ) for every x̂(k−1) ∈ Â(k − 1,a),∣∣∣(H(k)4F (k)
)
∩ K(k−1)

k

(
R̂(k−1)(x̂(k−1))

)∣∣∣ ≤ ν

(
k−1∏
h=2

d
(k

h)
h

)(
n

a1

)k
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(ii ) all but at most νnk edges of K
(k)
n belong to some polyads R̂(k−1)(x̂(k−1))

where F (k) is (ε(d), 1)-regular w.r.t. R̂(k−1)(x̂(k−1)), and

(iii ) rank R ≤ Lk.

Observe, as was the case with Theorem 10.1, that Theorem 10.3 provides

an environment sufficient for a direct application of the Dense Counting

Lemma. This convenience for k-uniform hypergraphs, k ≥ 3, is at least

as appealing as it is for k = 3. Indeed, rather than having a vector of

k−1 regularity measures δ(d) =
(
δ2(d2, . . . , dk−1), . . . , δk−1(dk−1)

)
, we have a

single ε(d2, . . . , dk−1) � min{d2, . . . , dk−1}, no formulation of the parameter

r and direct access to the Dense Counting Lemma. As was the case with

Theorem 10.1, the cleaner formulation of Theorem 10.3 is at the cost of

slightly (albeit negligibly) altering the original input hypergraph H(k) to the

output hypergraph F (k).

The proof of Theorem 10.3 is more technical than that of Theorem 10.1.

We prove Theorem 10.3 in [44], where we proceed along different lines than

that of Theorem 10.1.
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Part II

Applications of the Regularity

Method
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Chapter 11

An Extremal Problem

In this chapter we apply the Hypergraph Regularity Lemma of [48] (cf.

Theorem 4.11) and the main result of Part I, Theorem 3.6 to prove The-

orem 1.5. The proof presented here follows the work of Rödl and Skokan

in [46] and we include it here for completeness only.

Proof of Theorem 1.5. Let `, k and ε > 0 be given by Theorem 1.5. Keep-

ing in mind that we intend to apply the Hypergraph Regularity Lemma in

conjunction with th Counting Lemma in form of Corollary 3.9′, we introduce

the auxiliary constants:

γ =
1

4
, d′k =

ε

4
. (11.1)

We also define a constant δ′k and functions δ′j(Dj, . . . , Dk−1) for j = 2, . . . , k−
1 in variables D2, . . . , Dk−1 in terms of the functions given by Corollary 3.9′

(applied with `, k, γ, and d′k) as follows

δ′k = min

{
δk
(
Cor.3.9′(d′k)

)
,
1

8

}
,

δ′j(Dj, . . . , Dk−1) = min

{
δj
(
Cor.3.9′(Dj, . . . , Dk−1, d

′
k)
)
,
Dj

2

}
.

(11.2)

Moreover, we consider functions r′(A1, D2, . . . , Dk−1) and n0(D2, . . . , Dk−1)

given by Corollary 3.9′

r′(A1, D2, . . . , Dk−1) = r
(
Cor.3.9′(D2, . . . , Dk−1, d

′
k)
)
, (11.3)

n0(D2, . . . , Dk−1) = n0

(
Cor.3.9′(D2, . . . , Dk−1, d

′
k)
)
. (11.4)
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(We may assume w.l.o.g. that the function n0(D2, . . . , Dk−1) is monotone in

each variable.) We also fix constants

µ =
1

8
, `reg = max

{
1

ε
,

(
k

bk/2c

)
+ k

}
. (11.5)

We recall the quantification of Theorem 4.11, which for fixed constants `reg

(` in Theorem 4.11), k, δ′k, µ and functions δ′2(D2, . . . , Dk−1), . . . , δ
′
k−1(Dk−1),

and r′(A1, D2, . . . , Dk−1) defined in (11.2)–(11.5) yields constants nk and Lk.

Finally, we define the promised δ and n0 as

δ =
1

2`!
×
(

1

2`reg+1Lk
k

)2`

× (d′k)
(`

k) ×
(

1

`regLk

)`

, (11.6)

n0 = max
{
`regnk, `regLkn0

(
(2`reg+1Lk)

−1, . . . , (2`reg+1Lk)
−1︸ ︷︷ ︸

(k−2)-times

)}
. (11.7)

Having all constants determined we are ready to give a proof of Theo-

rem 1.5. Let F (k) be some k-uniform hypergraph on `-vertices and H(k) be a

k-uniform hypergraph on n ≥ n0 vertices which contains at most δn` copies

of F (k). We want to apply the Regularity Lemma to H(k). In Part I it was

of some notational advantage to state the Regularity Lemma for (n, `reg, k)-

cylinders. At this place we have to pay a little tribute to this earlier conve-

nience and we first artificially partition the vertex set of H(k) into `reg classes

V1, . . . , V`reg of size n/`reg (we may ignore floors and ceilings again, since they

have no effect on the arguments). Deleting all non-crossing k-tuples from

H(k) w.r.t. to the artificial vertex partition into `reg classes, we obtain an

(n/`reg, `reg, k)-cylinder H(k)
1 ⊆ H(k), where n/`reg ≥ nk due to (11.7). More-

over,∣∣H(k) \ H(k)
1

∣∣ ≤ `reg ×
(
n/`reg

2

)
×
(

n

k − 2

)
≤ nk

2`reg

(11.5)

≤ ε

2
nk . (11.8)

We apply the Regularity Lemma, Theorem 4.11, to H(k)
1 with `reg, k, δ

′
k,µ,

δ′2(D2, . . . , Dk−1), . . . , δ
′
k−1(Dk−1), and r′(A1, D2, . . . , Dk−1) defined in (11.2)–

(11.5). Theorem 4.11 yields a vector of positive reals d′ = (d′2, . . . , d
′
k−1) and
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a family of partitions R = R(k − 1,a,ϕ) such that for

δ′j = δ′j(d
′
j, . . . , d

′
k−1) for j = 2, . . . , k − 1 ,

δ′ = (δ′2, . . . , δ
′
k−1) , and

r′ = r′(a1, d
′
2, . . . , d

′
k−1)

the following holds:

(i ) R is (µ, δ′,d′, r′)-equitable,

(ii ) R is (δ′k, r
′)-regular w.r.t. H(k)

1 , and

(iii ) rank R ≤ Lk.

Next we define a subhypergraph H(k)
2 of H(k)

1 by deleting those edges of

H(k)
1 which which either belong to irregular or sparse polyads of R. (Note

that all edges of H(k)
1 are crossing w.r.t. R(1) since H(k)

1 is `reg-partite and

R(1) refines that given vertex partition of H(k)
1 .) More precisely, let K be

a k-tuple in H(k)
1 and R̂ = {R̂(j)}k−1

j=1 be the underlying polyad of K, i.e.,

K ∈ K(k−1)
k (R̂(k−1)). We then delete K if at least one of the following applies:

(a ) R̂ is not a (δ′,d′, r′)-regular complex,

(b ) R̂(k−1) is not (δ′k, r
′)-regular w.r.t. H(k)

1 , or

(c ) d
(
H(k)

1

∣∣R̂(k−1)
)
≤ d′k.

We bound the number of deleted edges. Due to (i ) and Definition 4.9 at

most µ × (n/`reg)
k edges K of the (n/`reg, `reg, k)-cylinder H(k)

1 are deleted

because of (a ). Moreover, (ii ) and Definition 4.10 give that at most δ′k ×
(n/`reg)

k edges fail to be in H(k)
2 due to (b ). Finally, at most d′kn

k edges can

be deleted because of (c ). Summarizing the above considerations then gives∣∣H(k) \ H(k)
2

∣∣ ≤ ∣∣H(k) \ H(k)
1

∣∣+ (µ+ δ′k
`kreg

+ d′k

)
nk ≤ εnk , (11.9)
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where we used (11.8), (11.5), (11.2) and (11.1) for the last inequality.

Consequently, it suffices to show that H(k)
2 is F (k)-free in order to verify

the theorem. To the contrary, suppose there is a copy F (k)
0 of F (k) in H(k)

2 .

Let V (F (k)
0 ) = {v1, . . . , v`} ⊆ V (H(k)

2 ) and suppose vα ∈ Vhα for α = 1, . . . , `.

Unfortunately, for different vertices vα 6= vα′ the set Vhα may still equal to

Vhα′
and Corollary 3.9′ is not equipped to directly address this problem.

To this end we construct an auxilliary (n, `, k)-complex G = {G(j)}k
j=1,

which satisfies the assumptions of Corollary 3.9′. More precisely, for each

α = 1, . . . , ` let Wα be a copy of the set Vhα such that for all α 6= α′ we have

Wα 6= Wα′ . Let ϑα : Wα → Vhα be a bijection and for every edge K ∈ F (k)
0 ⊆

H(k)
2 let R̂(k−1)

(K)∪{H(k)
2 ∩Kk(R̂(k−1)(K))} be the unique (n/(`rega1), k, k)-

complex determined by the partition R and H(k)
2 , which contains K. We

denote this (n/(`rega1), k, k)-complex by H2(K,R). Consider a copy GK of

H2(K,R) on the vertex set
⋃

α∈K Wα with

ϑK =
⋃

α∈K

ϑα :
⋃

α∈K

Wα →
⋃

α∈K

Vhα

being an isomorphism between GK and H2(K,R), i.e., an edge preserving

bijection for every layer of both complexes. We then set

G =
⋃

K∈F(k)
0

GK .

It follows from the defintion of G, that G is a (δ′,≥ d′, r′,F (k))-regular

(n/(`rega1), `, k)-complex and owing to the choices of the functions in (11.2)–

(11.4) we see that this
(
δ′,≥d′, r′,F (k)

)
-regular (n/(`rega1), `, k)-subcomplex

satisfies the assumptions of Corollary 3.9′. (Note that it follows from up-

coming Claim 11.1 below, the monotonicity of the function n0(D2, . . . , Dk−1)

in (11.4), and the final choice of n0 in (11.7) that n/(`rega1) is sufficiently

large.) Moreover, all but at most `(n/(`rega1))
`−1 crossing copies of F (k) in

the G, correspond to labeled copies of F (k) in
⋃

K∈F(k) H2(K,R) and hence
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to labeled copies in H2. (Possible exceptions are those copies which con-

tain two distinct vertices w ∈ Wα and w′ ∈ Wα′ for which Vhα = Vhα′
and

ϑα(w) = ϑα′(w
′).) Consequently, H(k)

2 ⊆ H(k) contains at least

3

4`!

k∏
h=2

(d′h)
(`

h) ×
(

n

`rega1

)`

− `

(
n

`rega1

)`−1

≥ 1

2`!

k∏
h=2

(d′h)
(`

h) ×
(

n

`rega1

)`

unlabeled copies of F (k), where the last inequality holds, in view of Claim 11.1,

for sufficiently large n. If we show that

1

2`!

k−1∏
h=2

(d′h)
(`

h) × (d′k)
(`

k) ×
(

1

`rega1

)`

> δ , (11.10)

we derive a contradiction to the assumption that H(k) contains at most δn`

copies of F (k).

Consequently, in order to prove Theorem 1.5 it is left to verify (11.10).

For that we first observe that a1 < |A(k− 1,a)| = rank R ≤ Lk by (4.3) and

Definition 4.5. Then in view of the choice of δ in (11.6) inequality (11.10)

follows from the following claim.

Claim 11.1. d′j >
1

2`reg+1Lk
k

for every j = 2, . . . , k − 1 .

Proof. Let 2 ≤ j ≤ k − 1 and suppose d′j ≤ 1/(2`reg+1Lk
k). Recall, that

rank R ≤ Lk and hence |Â(j − 1,a)| ≤
(

`reg
j−1

)
Lk

k ≤ 2`regLk
k . Also the number

of j-tuples in (δ′j, d
′
j, r

′)-regular polyads is at most

(d′j + δ′j)×
(

n

`rega1

)j

× |Â(j − 1,a)| (11.11)

≤
3d′j
2
×
(

n

`rega1

)j

× 2`regLk
k ≤

3

4

(
n

`reg

)j

.

On the other hand, we show that at most

µ

(
n

`reg

)j (
k

j

)/(
`reg − j

k − j

)
(11.5)

≤ µ

(
n

`reg

)j

(11.12)
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different j-tuples are in irregular (n/(`rega1), j, j)-complexes of the parti-

tion R.

Indeed, every crossing (w.r.t. R(1)) j-tuple which belongs to a

((δ′2, . . . , δ
′
j−1), (d

′
2, . . . , d

′
j−1), r

′)-irregular (n/(`rega1), j, j − 1)-complex

can be extended to
(

`reg−j
k−j

)
(n/`reg)

k−j k-tuples in K(k)
`reg

(V1, . . . , V`reg) and at

most
(

k
j

)
different j-tuples extend to the same k-tuple. Each such k-tuple

necessarily belong to a (δ′,d′, r′)-irregular polyad. Due to (i ), there are at

most µ× (n/`reg)
k such k-tuples.

Since for j = 2, . . . , k − 1 every edge of K(j)
`reg

(V1, . . . , V`reg) belongs to a

(n/(`rega1), j, j − 1)-complex of the partition R which is either regular or

irregular, combining (11.11) and (11.12) yields the following contradiction

∣∣K(j)
`reg

(V1, . . . , V`reg)
∣∣ ≤ (3

4
+ µ

)(
n

`reg

)j
(11.5)

≤ 7

8

(
n

`reg

)j

.

Consequently, the claim follows.

We close this chapter with the following immediate corollary of Theo-

rem 1.5. Corollary 11.2 will be useful in Chapter 12.

Corollary 11.2. Let H(k) be a k-uniform hypergraph on n vertices. Suppose

that for each edge H of H(k) there exists precisely one clique K
(k)
k+1 in H(k)

which contains H. Then |E(H(k))| = o(nk) (where E(H(k)) denotes the edge

set of the hypergraph H(k)).

Proof. Since every edge ofH(k) sits in precisely one copy of K
(k)
k+1, the number

of copies of K
(k)
k+1 in H(k) is |E(H(k))|/(k + 1) ≤

(
n
k

)
/(k + 1) = o(nk+1). By

Theorem 1.5 (applied with t = k+1), we can delete only o(nk) edges of H(k)

in order to make it K
(k)
k+1-free. On the other hand, we need to remove at

least one edge per clique, that is, at least |E(H(k))|/(k+1) edges. Therefore,

|E(H(k))| = o(nk).
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Chapter 12

Density Theorems

The results in this Chapter were obtained in collaboration with Vojtěch

Rödl, Eduardo Tengan and Norihide Tokushige in [45].

Here we present the proofs of Theorem 1.2–1.4. Consequently we prove

Theorem 1.1, as well, as it is a special case of Theorem 1.2. The proofs given

here are solely based on Theorem 1.5 and its Corollary 11.2. The arguments

given below combined with the combinatorial proof of Theorem 1.5 give the

first quantitative proofs of Theorem 1.2–1.4.

The essential part of the reduction of Theorem 1.2 to Corollary 11.2 was

already discovered by Solymosi in [53]. We present this proof in Section 12.1

(see also [24]).

Our proof of Theorem 1.3 and Theorem 1.4 extends an idea of Frankl and

Rödl from [16].

12.1 Proof of Theorem 1.2

In this section we present a proof of Theorem 1.2. We first prove the special

case when the finite configuration T is a subset of the integer lattice (see

Lemma 12.1 below). This proof of Lemma 12.1 is based on Corollary 11.2 of

Theorem 1.5. This reduction was first considered by Solymosi in [53].
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Lemma 12.1. For all positive integers t, d and every δ > 0, there exists

N0 = N0(t, d, δ) such that for N ≥ N0 any subset Z ⊂ [−N ;N ]d with |Z| >
δ(2N + 1)d contains a homothetic copy of [−t; t]d.

Proof. Suppose, on the contrary, that there exists Z ⊂ [−N ;N ]d with |Z| >
δ(2N + 1)d which contains no homothetic copy of [−t; t]d. Set k = (2t +

1)d − 1 and W = Z × [−N ;N ]k−d. Then |W | > δ(2N + 1)k. We shall show

that W contains no homothetic copy of a simplex S defined below, but this

contradicts Corollary 11.2 as we will see.

Let e0, e1, . . . , ek denote all the elements of [−t; t]d where

e0 = (0, 0, . . . , 0), e1 = (1, 0, . . . , 0), . . . , ed = (0, 0, . . . , 1) .

(We do not need to specify ei for i > d.) For i = 0, . . . , k−d, set (k−d)-tuples

f 0 = (0, 0, . . . , 0), f 1 = (1, 0, . . . , 0), . . . , fk−d = (0, 0, . . . , 1) .

Let us define a k-dimensional simplex S with points {s0, . . . , sk} by

si =

(ei,f 0) if i = 0, . . . , d ,

(ei,f i−d) if i = d+ 1, . . . , k .

Since Z contains no homothetic copy of [−t; t]d, W contains no homothetic

copy of S. Let {F0, . . . , Fk} be the facets of S, and for i = 0, . . . , k let Vi

be the set of all hyperplanes in Rk which are parallel to Fi and intersect

[−N ;N ]k.

Let us show that for every 0 ≤ i ≤ k the cardinality of Vi satisfies

|Vi| = O(N). A normal vector w = (w1, . . . , wk) of a facet (which is an affine

span of k vectors among s0, . . . , sk) is a non-zero solution of the system

ri ·w = 0, i = 1, . . . , k − 1

where each ri is a difference of 2 distinct sj’s and hence is an integer vector

whose coordinates have absolute value less than 2t.
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Therefore we may assume that the wj are given, up to sign, by determi-

nants of integer matrices whose entries are coordinates of ri’s. Hence |wj|
does not exceed (k − 1)!(2t)k−1. Consequently the hyperplanes of the form

w · ξ = w1ξ1 + w2ξ2 + · · ·+ wkξk = b ,

where b is an integer so that |b| ≤ k!(2t)k−1N , cover all the points ξ =

(ξ1, . . . , ξk) ∈ [−N ;N ]k. We conclude that at most 2k!(2t)k−1N + 1 = O(N)

hyperplanes parallel to the given facet are needed to cover all the points of

[−N ;N ]k.

Next we are going to define a (k + 1)-partite k-uniform hypergraph H(k)

with vertex partition V0 ∪ · · · ∪ Vk. Let H be a set of k vertices of H(k) with

the property |H ∩ Vi| ≤ 1 for all i. Then those k hyperplanes corresponding

to H determine a point p ∈ Rk. We put H in H(k) if and only if p ∈ W .

Each H ∈ E(H(k)) determines a point p ∈ W . On the other hand, for

each i = 0, . . . , k, each point p ∈ W determines a vertex v ∈ Vi, which

corresponds to a hyperplane parallel to Fi and passing through p. In this

way, p determines the k + 1 vertices of a clique K
(k)
k+1 in H(k).

Suppose that k+1 hyperplanes determined by a clique K
(k)
k+1 do not meet

one point. Then these planes define a simplex homothetic to S in W , which

is a contradiction. Thus every clique K
(k)
k+1 must determine a point p ∈ W .

This means that for every H ∈ E(H(k)) there is precisely one clique K
(k)
k+1

which contains H. This implies that |E(H(k))| = (k + 1)|W |. Finally, we

have |W | = o(Nk) by Corollary 11.2. This contradicts our earlier assumption

|W | > δ(2N + 1)k.

We now deduce Theorem 1.2 from Lemma 12.1.

Proof of Theorem 1.2. Let δ > 0 be given. Let T be a finite subset of Rd.

Let r = r(T ) be the Q-dimension of T , i.e., the largest number of linearly

independent vectors of T over Q. Choose r such vectors ω1, . . . ,ωr ∈ Rd so
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that T ⊂ Zω1 + · · ·+ Zωr. We define the map ψ : Zr → Rd

(a1, . . . , ar) 7→ a1ω1 + · · ·+ arωr .

Since ω1, . . . ,ωr are linearly independent over Q, the map ψ is injective.

Now choose a positive integer t large enough so that ψ−1(T ) ⊂ [−t; t]r and

define N = N0(t, r, δ) by Lemma 12.1. Let C = ψ([−N ;N ]r); if Z ⊂ C and

|Z| = |ψ−1(Z)| > δ|C| = δ(2N+1)r, then ψ−1(Z) contains a homothetic copy

of [−t; t]r, say z′ + λ[−t; t]r for some z′ ∈ [−N ;N ]r and some λ > 0. Thus

Z ⊃ ψ(z′ + λ[−t; t]r) = ψ(z′) + λψ([−t; t]r) ⊃ ψ(z′) + λT , as required.

12.2 Proof of Theorem 1.3 and Theorem 1.4

The following lemma, Lemma 12.2, is more general than Theorem 1.3 and

Theorem 1.4. Its proof elaborates on a construction first considered by Frankl

and Rödl [16, Proposition 2.3].

Lemma 12.2. Let A be a finite, commutative ring with q elements. Then

for every δ > 0, there exists M0 = M0(q, δ) such that, for M ≥ M0, any

subset Z ⊂ AM with |Z| > δ|AM | = δqM contains a coset of an isomorphic

copy (as an A-module) of A.

In other words, there exist r, u ∈ AM such that r + ϕ(A) ⊆ Z, where

ϕ : A ↪→ AM , ϕ(α) = αu for α ∈ A, is an injection.

Remark 12.3. We later only use Lemma 12.2 for a commutative ring A. We

remark that commutativity of the ring A is not used in the proof below. In

fact, the proof below works verbatim for an arbitrary finite non-commutative

ring and left modules, as well.

Proof of Lemma 12.2. Let q = |A| and let α0 = 0, α1 = 1, α2, . . . , αq−1

be the elements of the ring A. Let V = Am and suppose Z is a subset
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of V which does not contain a coset of an isomorphic copy of A. We shall

define a q-partite, q-uniform hypergraph H(q) whose vertex partition classes

V0, . . . , Vq−1 are disjoint copies of V . For v2, . . . ,vq−1 ∈ V and z ∈ Z, let

H(v2, . . . ,vq−1, z) = (h0, . . . ,hq−1) ∈
q−1∏
i=0

Vi , where

hi =


z +

∑q−1
j=2 αjvj if i = 0

z +
∑q−1

j=2(αj − 1)vj if i = 1

vi if i = 2, 3, . . . , q − 1 .

Set

E(H(q)) = {H(v2, . . . ,vq−1, z) : v2, . . . ,vq−1 ∈ V and z ∈ Z}. (12.1)

(Since, H(q) is q-partite and q-uniform we may view its edges as ordered

q-tuples as defined above.) Clearly, H(q) has q|V | = qm+1 vertices and

qm(q−2)|Z| edges. Consequently, Lemma 12.2 follows from Claim 12.4 be-

low.

Claim 12.4. Let H(q) be the hypergraph defined in (12.1), then |E(H(q))| =
o(qm(q−1)).

Proof. First we verify that

|H1 ∩H2| ≤ q − 2 for any distinct edges H1, H2 ∈ E(H(q)) . (12.2)

For that let H1 = H(v2, . . . ,vq−1, z1) and H2 = H(w2, . . . ,wq−1, z2) be a

pair of distinct edges in H(q). It is easy to see that if they intersect in q − 1

points, we must have vi = wi, 2 ≤ i ≤ q − 1, and z1 = z2, which implies

H1 = H2.

Let F(q) be the q-uniform hypergraph having 2q vertices a0, . . . , aq−1,

b0, . . . , bq−1 and q edges Fi = {a0, . . . , ai−1, bi, ai+1, . . . , aq−1} for i = 0, . . . , q−
1. We shall show that H(q) contains only “few” copies of F(q) (see (12.14)).
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Suppose that a0, . . . ,aq−1, b0, . . . , bq−1 are the vertices of some copy of

F(q) in H(q), with ai, bi ∈ Vi.

We first consider F0 = {b0,a1, . . . ,aq−1}. There are v2, . . . ,vq−1 ∈ V

and z′ ∈ Z such that F0 = {b0,a1, . . . ,aq−1} = H(v2, . . . ,vq−1, z
′) and

consequently

b0 = z′ +
∑q−1

j=2
αjvj , (12.3)

a1 = z′ +
∑q−1

j=2
(αj − 1)vj , (12.4)

ai = vi for i = 2, . . . , q − 1 . (12.5)

Next, we consider F1 = {a0, b1,a2, . . . ,aq−1}. Since F0∩F1 = {a2, . . . ,aq−1}
by (12.5) we have F1 = H(v2, . . . ,vq−1, z

′′) for some z′′ ∈ Z such that

a0 = z′′ +
∑q−1

j=2
αjvj , (12.6)

b1 = z′′ +
∑q−1

j=2
(αj − 1)vj . (12.7)

Similarly, for 2 ≤ i < q, we see that Fi = {a0, . . . ,ai−1, bi,ai+1, . . . ,aq−1} =

H(v2, . . . ,vi−1,wi,vi+1, . . . ,vq−1, zi) for some wi ∈ V and zi ∈ Z such that

a0 = zi + αi(wi − vi) +
∑q−1

j=2
αjvj , (12.8)

a1 = zi + (αi − 1)(wi − vi) +
∑q−1

j=2
(αj − 1)vj , (12.9)

bi = wi . (12.10)

From (12.6) and (12.8) we infer that for 2 ≤ i ≤ q − 1 we have

z′′ = zi + αi(wi − vi) ⇐⇒ z′′ − zi = αi(wi − vi) . (12.11)

Moreover, comparing (12.4) and (12.9) yields

z′ = zi + (αi − 1)(wi − vi) ⇐⇒ z′ − zi = (αi − 1)(wi − vi) (12.12)



137

for 2 ≤ i ≤ q − 1. Combining equation (12.11) and (12.12) for 2 ≤ i ≤ q − 1

gives

αi(z
′ − zi) = (αi − 1)(z′′ − zi) ⇐⇒ zi = αi(z

′ − z′′) + z′′ . (12.13)

Note that the last equation also holds for i = 0, 1 with z0 = z′′ and z1 = z′,

since α0 = 0 and α1 = 1. We also observe that due to (12.3), (12.6), and

a0 6= b0 we have z′ 6= z′′.

Now let

Airreg = {a ∈ A : ab = 0 for some b ∈ A, b 6= 0}

be the set of zero-divisors in A and set t = |Airreg|. Since 1 6∈ Airreg, t < q.

If u = z′ − z′′ 6∈ Am
irreg, then ϕ : A ↪→ AM given by ϕ(α) = αu is an

injective A-module homomorphism, and hence (12.13) implies z′′+ϕ(A) ⊆ Z,

which contradicts our assumption on Z. Hence if H(q) contains some F(q) =

{F0, . . . , Fq−1}, there exist v2, . . . ,vq−1 ∈ V and z′, z′′ ∈ Z with z′ − z′′ ∈
Am

irreg such that (12.3)–(12.10) hold. Conversely, given such quantities, at

most one F(q) is determined: from (12.4) and (12.6), we find a0 and a1;

subtracting (12.9) from (12.8), we obtain a0 − a1 = wi − vi +
∑

2≤j≤q−1 vj,

whence the wi’s are determined. Finally (12.8) determines the zi’s. Hence

the number #{F(q) ⊂ H(q)} of copies of F(q) in H(q) is bounded by the

number of tuples (v2, . . . ,vq−1, z
′, z′′) satisfying the above conditions, and

therefore

#{F(q) ⊂ H(q)} ≤ qm(q−2) × |Z| × tm = o(qmq) , (12.14)

where the last assertion used |Z| ≤ |V | = |Am| = qm and t < q.

Let H(q−1) be the (q − 1)-th shadow of H(q)

H(q−1) =
{
H ′ : |H ′| = q − 1 and H ′ ⊂ H for some H ∈ E(H(q))

}
.

Due to (12.2) for any set Q of q vertices spanning a clique K
(q−1)
q in H(q−1)

the following holds: either Q is an edge inH(q) or Q ⊂ V (F(q)) for some copy
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of F(q) in H(q). Therefore, due to the definition of H(q) in (12.1) and (12.14),

the number of cliques K
(q−1)
q in H(q−1) is bounded by |E(H(q))| + o(qmq) =

|Z|qm(q−2) + o(qmq). Since |Z| ≤ qm and |V (H(q−1))| = |V (H(q))| = qm+1,

we infer that the number of copies of K
(q−1)
q in H(q−1) is o(qmq) which is

o(q(m+1)q) = o(|V (H(q−1))|q).
Hence, Theorem 1.5 (applied for ` = q, k = q− 1 to H(q−1) with F (q−1) =

K
(q−1)
q and n = |V (H(q−1))| = qm+1) yields that it suffices to delete at most

o(|V (H(q−1))|(q−1)) = o(q(m+1)(q−1)) = o(qm(q−1)) edges from H(q−1) to make

it clique free. But due to (12.2) each deleted edge destroys at most one

copy of K
(q−1)
q in H(q−1) originating from an edges of H(q) and, therefore,

|E(H(q))| = o(qm(q−1)) as claimed.

In the rest of this chapter we derive Theorem 1.3 and Theorem 1.4 from

Lemma 12.2.

Proof of Theorem 1.3. Consider the ring A = Fq⊕· · ·⊕Fq =
⊕d

i=1 Fq. Then

Am ∼= Fmd
q as an Fq-vector space, and a submodule of Am isomorphic to A is a

d-dimensional subspace of Fmd
q . Therefore, Lemma 12.2 implies Theorem 1.3

for every sufficiently large M ≡ 0 (mod d).

In general, if M = md + r, 0 ≤ r < d, FM
q is the disjoint union of

|FM
q /Fmd

q | = qr copies of Fmd
q ; therefore one of these translates, say V , inter-

sects Z in more than δqM/qr = δqmd elements and hence Z ∩V (thus Z) will

contain a d-dimensional subspace.

Finally, we close this chapter with the proof of Theorem 1.4.

Proof of Theorem 1.4. Since G is abelian, we may write

G ∼= Z/pe1
1 × · · · × Z/per

r

where pi are (not necessarily distinct) primes and ei are positive integers.

Using this isomorphism, we want to view G as the additive group of the ring

A = Z/pe1
1 × · · · × Z/per

r .
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Then Am and Gm are isomorphic abelian groups. Similarly, a submod-

ule A of Am is isomorphic to G, also as an abelian group. The theorem then

follows from Lemma 12.2.
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Chapter 13

Other Applications

Szemerédi’s Regularity Lemma, Theorem 2.1, together with its corre-

sponding Counting Lemma, Fact 2.2, has numerous applications (see [32, 33]

for excellent surveys). The FR-Lemma [16] and the companion 3-graph

Counting Lemma [36] were exploited in a variety of extremal hypergraph

problems (cf. [16, 29, 30, 35, 42, 43, 53]).

We believe that the main theorem of Part I, the Counting Lemma (The-

orem 3.6), enables one to apply the RS-Lemma, Theorem 4.11, to a variety

of hypergraph problems. Some applications of the Regularity Method for

hypergraphs were already discussed in Chapter 11 and Chapter 12. In par-

ticular, there we proved Theorem 1.1–1.5 based on the RS-Lemma and the

Counting Lemma. Below we briefly discuss some other applications of those

theorems.

13.1 Combinatorial Number Theory and Ge-

ometry

In [51] Solymosi gives an alternative proof of the Balog–Szemerédi Theo-

rem [2] which implied the affirmative answer to a conjecture of Erdős.

Theorem 13.1 (Balog & Szemerédi [2]). For every δ > 0 and integer t > 3

there is an n0 = n0(δ, t) so that the following holds. If A ⊆ Z contains
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δ|A|2 arithmetic progressions of length 3 and |A| > n0, then A contains an

arithmetic progression of length t.

Unlike the original proof of Balog and Szemerédi, Solymosi’s proof is

entirely based on Theorem 1.5 and does not use the well-known theorem of

Freiman [17, 18] (see also [49] for a shorter proof of Freiman’s Theorem).

In [46] it was shown that Theorem 1.5 also implies the affirmative answer

to a geometric problem of Székely [34, p.226], which can be stated as follows.

For a point c = (c1, c2, . . . , ck) ∈ {1, 2, . . . , n}k we define a jack J(c) with

center c as the set of points that differ from c in at most one coordinate.

For i, 1 ≤ i ≤ k, and fixed c1, c2, . . . , ci−1, ci+1, . . . , ck ∈ {1, 2, . . . , n}, we also

define a line as a set of n points of the form

{(c1, c2, . . . , ci−1, x, ci+1, . . . , ck), 1 ≤ x ≤ n}.

Let LS(n, k) be the maximum cardinality of a system J of jacks for which

(1 ) no two distinct jacks share a common line, and

(2 )
⋂k

i=1 Ji = ∅ for all distinct jacks J1, . . . , Jk ∈ J .

Clearly LS(n, k) ≤ nk−1. Székely conjectured that LS(n, k)/nk−1 tends to 0

as n→∞. In [46] this conjecture was verified.

Theorem 13.2 (Rödl & Skokan [46]). For every positive integer k and every

ε > 0 there exist an n0 = n0(k, ε) such that for every n ≥ n0

LS(n, k) ≤ εnk−1 .

In [52] Solymosi applies Theorem 1.5 to a geometric problem. Roughly

speaking he proves that if the number of incidences between hyperplanes

and points in dimension d is “close” to the maximum possible, then there

are always “dense” subsets, i.e., large point sets such that any d of them are

incident to a hyperplane from the arrangement.



142

13.2 Extremal Hypergraph Results

In [37] we give a few applications of the Regularity Method for Hypergraphs.

We give an alternative proof of the following Ramsey-type theorem due

to Nešetřil and Rödl.

Theorem 13.3 (Nešetřil & Rödl [39]). For every integer χ ≥ 2 and every

fixed k-uniform hypergraph F (k) there exists a k-uniform hypergraph H(k)

such that every χ-coloring of the edges of H(k) yields a monochromatic and

induced copy of F (k).

We also extend Turán-type results from [12, 14, 35] concerning the asymp-

totic number of labeled hypergraphs not containing any copy of a hyper-

graph from a fixed family. Let F (k) = {F (k)
1 , . . . ,F (k)

s } be a fixed family

of k-uniform hypergraphs. For an integer n we denote by Forb(n,F (k)) the

family of all distinct labeled k-uniform hypergraphs on [n] which are F (k)
t -free

for every t ∈ [s]. We set

ex
(
n,F (k)

)
= max

{∣∣H(k)
∣∣ : H(k) ∈ Forb

(
n,F (k)

)}
.

Theorem 13.4 (Nagle, Rödl & Schacht [37]). For every integer k ≥ 2,

every positive real ε and every finite family F (k), there exist an integer n0 =

n0(k, ε,F (k)) such that for every n ≥ n0∣∣Forb
(
n,F (k)

)∣∣ = 2ex(n,F (k))+εnk

.

We also discuss an induced version of Theorem 13.4. This was done for

graphs in [1, 5, 41] and for 3-uniform hypergraphs in [30].
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We hope that there will be further applications of the Regularity Method for

hypergraphs in the future.
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