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Abstract

Turán’s theorem is one of the cornerstones of extremal graph theory today.
The aim of this thesis is to prove a Turán type theorem for sparse random
graphs.

For 0 < γ ≤ 1 and graphs G and H, write G→γ H if any γ-proportion of
the edges of G contains at least one copy of H in G. In this thesis, we prove
that for every d-degenerate graph H and every fixed real γ > 1−1/(χ(H)−1)
asymptotically almost surely a graph G in the binomial random graph model
G(n, q) with q = q(n) � ((log n)4/n)1/d satisfies G →γ H, where as usual
χ(H) denotes the chromatic number of H.

As a corollary we immediately derive that for every l ≥ 2 and every
fixed real γ > 1 − 1/(l − 1) asymptotically almost surely a graph G in
G(n, q) with q = q(n) � ((log n)4/n)1/(l−1) satisfies G →γ Kl, where Kl is
the complete graph on l vertices.
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Chapter 1

Introduction

A classical area of extremal graph theory investigates numerical and struc-

tural problems concerning H-free graphs, namely, graphs that do not contain

a copy of a given fixed graph H as a subgraph. Let ex(n, H), the Turán num-

ber of H, be the maximal number of edges that an H-free graph on n vertices

may have. A basic question is then to determine or estimate ex(n, H) for

any given H. In the special case where H = Kl is the complete graph on l

vertices this question was answered precisely by Turán.

Theorem 1 (Turán [25]). Given integers n ≥ l > 1. Let r = n mod l−1,

then

ex(n, Kl) =
1

2

(
1− 1

l − 1

)(
n2 − r2

)
+

(
r

2

)
.

An asymptotic solution to the general problem (for arbitrary graphs H)

is given by the following celebrated theorem.

Theorem 2 (Erdős–Stone–Simonovits [5, 6]). For every graph H with

chromatic number χ(H)

ex(n, H) =

(
1− 1

χ(H)− 1
+ o(1)

)(
n

2

)
, (1.1)

where o(1) is a function approaching zero as n goes to infinity.
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Furthermore, as proved independently by Erdős [3, 4] and Simonovits [22],

every H-free graph G = Gn that has as many edges as in (1.1) is in fact ‘very

close’ (in a certain precise sense) to the densest n-vertex (χ(H)− 1)-partite

graph. For these and related results, see, for instance, Bollobás [1].

Here we are interested in a variant of the function ex(n,H). Let G and H

be graphs, and write ex(G, H) for the maximal number of edges that an H-

free subgraph of G may have. Formally, ex(G, H) = max{|E(F )| : H 6⊂
F ⊂ G}. For instance, if G = Kn, the complete graph on n vertices, then

ex(Kn, H) = ex(n,H) is the usual Turán number of H.

Our aim here is to study ex(G, H) when G is a random graph. Let 0 <

q = q(n) ≤ 1 be given. The binomial random graph G in G(n, q) has as its

vertex set a fixed set V (G) of cardinality n, and two vertices are adjacent

in G with probability q. All such adjacencies are independent. (For concepts

and results concerning random graphs not given in detail below, see [2, 12].)

As is usual in the theory of random graphs, we say that a property P holds

asymptotically almost surely (abbreviated a.a.s.) if P holds with probability

tending to 1 as n →∞.

Here we wish to investigate the random variable ex(G(n, q), H). Since

Theorem 2 can be viewed as a result for random graphs G(n, q) with q = 1,

naturally, the question arises for which q = q(n) the formula (1.1) remains

true with Kn replaced by G(n, q) and
(

n
2

)
= |E(Kn)| by q

(
n
2

)
(the expected

number of edges in the random graph G(n, q)). We are interested in the

probabilities q = q(n) for which a.a.s.

ex(G(n, q), H) =

(
1− 1

χ(H)− 1
+ o(1)

)
q

(
n

2

)
(1.2)

holds. It follows from [12, Proposition 8.6] that if equality (1.2) holds a.a.s.

for p1, then it does so for each p2 ≥ p1. Thus, we are interested in the

smallest probability q = q(n) such that (1.2) holds.

If q = q(n) is such that the expected number of copies of H in G ∈ G(n, q)
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is much smaller than the expected number of edges of G, then it is not

hard to show that (1.2) fails (see [12, Proposition 8.9]). Conjecture 3, stated

below, demonstrates the belief that this is the only obstacle. The observation

that containing H implies containing every subgraph H ′ of H, leads to the

following definition.

Let H be a graph of order |V (H)| ≥ 3. Let us write m2(H) for the

2-density of H, that is,

m2(H) = max

{
|E(H ′)| − 1

|V (H ′)| − 2
: H ′ ⊂ H, |V (H ′)| ≥ 3

}
.

A general conjecture concerning ex(G(n, q), H), first stated in [15], is as fol-

lows.

Conjecture 3. Let H be a non-empty graph of order at least 3, and let 0 <

q = q(n) ≤ 1 be such that qn1/m2(H) → ∞ as n → ∞. Then a.a.s. G in

G(n, q) satisfies

ex(G, H) =

(
1− 1

χ(H)− 1
+ o(1)

)
|E(G)|.

There are a few results in support of Conjecture 3. A simple appli-

cation of Szemerédi’s regularity lemma for sparse graphs (see Theorem 8

below), gives Conjecture 3 for H a forest. The cases in which H = K3

and H = C4 are essentially proved in Frankl and Rödl [7] and Füredi [8],

respectively, in connection with problems concerning the existence of some

graphs with certain extremal properties. The case for H = K4 was proved

by Kohayakawa,  Luczak and Rödl [15]. Recently Schickinger proved in his

Ph.D. thesis [20] a somewhat stronger conjecture for H = K5 (and H = K4

as well, see also Gerke et al. [9]), which implies Conjecture 3 for this case.

The case in which H is a general cycle was settled by Haxell, Kohayakawa,

and  Luczak [10, 11] (see also Kohayakawa, Kreuter, and Steger [14]).

Our main result relates to Conjecture 3 in the following way: we deal

with the case in which H is arbitrary and q = q(n) � ((log n)4/n)1/d, where
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d = d(H) is the “degeneracy number” of H (defined below) and q(n) �
((log n)4/n)1/d means limn→∞((log n)4/n)1/d/q(n) = 0.

Definition 4 (d-degenerate). A graph H of order h is called d-degenerate if

there exists an ordering of the vertices V (H) = {w1, . . . , wh} such that each

wi (1 ≤ i ≤ h) has at most d neighbours in {w1, . . . , wi−1}. Moreover, we

denote the degeneracy number of H by the minimal integer d = d(H) for

which H is d-degenerate.

For more details concerning d-degenerate graphs see [19, 21]).

The following theorem is the main result of this thesis.

Theorem 5. Let d be a positive integer, H a d-degenerate graph of order h,

and q = q(n) �
(
(log n)4/n

)1/d
. Then for every 1/(χ(H) − 1) > δ > 0 a

graph G in G(n, q) satisfies a.a.s. the following property: If F is an arbitrary,

not necessarily induced subgraph of G with

|E(F )| ≥
(

1− 1

χ(H)− 1
+ δ

)
q

(
n

2

)
,

then F contains H as a subgraph. Moreover, there exists a constant c =

c(δ,H) such that F contains at least cq|E(H)|nh copies of H.

In this thesis we give a proof of Theorem 5. Since Kl, the complete graph

on l vertices, is clearly (l−1)-degenerate and l-chromatic, the following result

is an immediate consequence of Theorem 5.

Corollary 6. Let l ≥ 2, and q = q(n) �
(
(log n)4/n

)1/(l−1)
. Then for every

1/(l− 1) > δ > 0 a graph G in G(n, q) satisfies a.a.s. the following property:

If F is an arbitrary, not necessarily induced subgraph of G with

|E(F )| ≥
(

1− 1

l − 1
+ δ

)
q

(
n

2

)
,

then F contains Kl as a subgraph. Moreover, there exists a constant c =

c(δ, l) such that F contains at least cq(l
2)nl copies of Kl.
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The main result discussed in this thesis (Theorem 5) was already an-

nounced by the author and his advisors in [18]. There a simpler proof for the

case H = Kl for l ≥ 2 was given. In this thesis we give a proof for arbitrary

graphs H, which is based on the ideas of [18].

Very recently Szabó and Vu proved in [23], independently from us, Corol-

lary 6 under slightly weaker assumptions. Their proof is shorter than the

proof of Theorem 5 presented here and does not require the regularity lemma.

On the other hand, their approach does not seem to extend to arbitrary

graphs H, whereas Theorem 5 gives nontrivial results for arbitrary H de-

pending on the “degeneracy number” of the graph H.

This thesis is organized as follows. In Chapter 2 we describe a sparse ver-

sion of Szemerédi’s regularity lemma (Theorem 8) and we state the counting

lemma (Lemma 10), both of which are crucial in our proof of Theorem 5.

We prove Theorem 5 in Chapter 3. Chapter 4 is entirely devoted to the

proof of Lemma 10. The proof of Lemma 10 relies on the ‘Pick-Up Lemma’

(Lemma 18) and on the ‘k-tuple Lemma’ (Lemma 22). We give these pre-

liminary results in Section 4.1–4.2. In Section 4.3 we outline the proof of

Lemma 10 in the case H = K4 − e, the complete graph on four vertices

minus an edge. Finally, the proof of Lemma 10 is given in Section 4.4.

For a general remark about the notation we use throughout this paper

see Remark 9 in Section 2.3.
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Chapter 2

Preliminary results

2.1 Preliminary definitions

Let a graph G = Gn of order |V (G)| = n be fixed. For U , W ⊂ V = V (G),

we write

E(U,W ) = EG(U,W ) =
{
{u, w} ∈ E(G) : u ∈ U, w ∈ W

}
for the set of edges of G that have one end-vertex in U and the other

in W . Notice that each edge in U ∩ W occurs only once in E(U,W ). We

set e(U,W ) = eG(U,W ) = |E(U,W )|, i.e. for the complete graph Kl we have

eKl
= |U ||W | −

(
|U ∩W |+ 1

2

)
.

Suppose ξ > 0, C > 1, and 0 < q ≤ 1.

Definition 7 ((ξ, C)-bounded). For ξ > 0 and C > 1 we say that G = (V, E)

is a (ξ, C)-bounded graph with respect to density q, if for all U , W ⊂ V , not

necessarily disjoint, with |U |, |W | ≥ ξ|V |, we have

eG(U,W ) ≤ Cq

(
|U ||W | −

(
|U ∩W |+ 1

2

))
.

If G is a graph and V1, . . . , Vt ⊂ V (G) are disjoint sets of vertices, we

write G[V1, . . . , Vt] for the t-partite graph naturally induced by V1, . . . , Vt.
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2.2 The regularity lemma for sparse graphs

Our aim in this section is to state a variant of the regularity lemma of Sze-

merédi [24].

For any two disjoint non-empty sets U , W ⊂ V , let

dG,q(U,W ) =
eG(U,W )

q|U ||W |
. (2.1)

We refer to dG,q(U,W ) as the q-density of the pair (U,W ) in G. When there

is no danger of confusion, we drop G from the subscript and write dq(U,W ).

Now suppose ε > 0, U , W ⊂ V , and U ∩ W = ∅. We say that the

pair (U,W ) is (ε, G, q)-regular, or simply (ε, q)-regular, if for all U ′ ⊂ U ,

W ′ ⊂ W with |U ′| ≥ ε|U | and |W ′| ≥ ε|W | we have

|dG,q(U
′, W ′)− dG,q(U,W )| ≤ ε. (2.2)

Below, we shall sometimes use the expression ε-regular with respect to den-

sity q to mean that (U,W ) is an (ε, q)-regular pair.

We say that a partition P = (Vi)
t
0 of V = V (G) is (ε, t)-equitable if |V0| ≤

εn, and |V1| = · · · = |Vt|. Also, we say that V0 is the exceptional class of P .

When the value of ε is not relevant, we refer to an (ε, t)-equitable partition

as a t-equitable partition. Similarly, P is an equitable partition of V if it is a

t-equitable partition for some t.

We say that an (ε, t)-equitable partition P = (Vi)
t
0 of V is (ε, G, q)-regular,

or simply (ε, q)-regular, if at most ε
(

t
2

)
pairs (Vi, Vj) with 1 ≤ i < j ≤ t are

not (ε, q)-regular. We may now state a version of Szemerédi’s regularity

lemma for (ξ, C)-bounded graphs.

Theorem 8. For any given ε > 0, C > 1, and t0 ≥ 1, there exist con-

stants ξ = ξ(ε, C, t0) and T0 = T0(ε, C, t0) ≥ t0 such that any sufficiently

large graph G that is (ξ, C)-bounded with respect to density 0 < q ≤ 1 admits

an (ε, G, q)-regular (ε, t)-equitable partition of its vertex set with t0 ≤ t ≤ T0.
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A simple modification of Szemerédi’s proof of his lemma gives Theorem 8.

For applications of this variant of the regularity lemma and its proof, see [13,

17].

2.3 The counting lemma

Let H be a fixed d-degenerate graph on h vertices and let the vertices of H

be ordered V (H) = {w1, . . . , wh} such that each wi has at most d neighbours

in {w1, . . . , wi−1}. Let t ≥ h be a fixed integer and n a sufficiently large

integer. Let α and ε be constants greater than 0. Let G ∈ G(n, q) be the

binomial random graph with edge probability q = q(n), and suppose J is an

h-partite subgraph of G with vertex classes V1, . . . , Vh. For all 1 ≤ i < j ≤ h

we denote by Jij the bipartite graph induced by Vi and Vj. Consider the

following assertions for J and q.

(I) |Vi| = m = n/t

(II) qdn � (log n)4

(III) for all 1 ≤ i < j ≤ h,

e(Jij) =

T = pm2 {wi, wj} ∈ E(H)

0 {wi, wj} 6∈ E(H)

where 1 > αq = p � 1/n, and

(IV) Jij is (ε, q)-regular.

Remark 9. Strictly speaking, in (I) we should have, say, bn/tc, because m is

an integer. However, throughout this paper we will omit the floor and ceiling

signs b c and d e, since they have no significant effect on the arguments.

Moreover, let us make a few more comments about the notation that we shall
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use. For positive functions f(n) and g(n), we write f(n) � g(n) to mean

that limn→∞ g(n)/f(n) = 0. Unless otherwise stated, we understand by o(1)

a function approaching zero as the number of vertices of a given random

graph goes to infinity.

Finally, we observe that our logarithms are natural logarithms.

We are interested in the number of copies of the fixed graph H in such a

subgraph J satisfying conditions (I)–(IV).

Lemma 10 (Counting lemma). For all reals α, σ > 0, positive integer d

and every d-degenerate graph H on h vertices, there exists a real ε > 0 such

that for every fixed integer t ≥ h a random graph G in G(n, q) satisfies the

following property with probability 1− o(1): Every subgraph J ⊆ G ∈ G(n, q)

satisfying conditions (I)–(IV) contains at least

(1− σ)pe(H)mh

copies of H.

We will prove Lemma 10 in Chapter 4.
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Chapter 3

The main result

In this section we will prove the main result of this thesis, Theorem 5.

This section is organised as follows. First, we state two properties that hold

for almost every G ∈ G(n, q). Then, in Section 3.2, we prove a deterministic

statement about the regularity of certain subgraphs of an (ε, q)-regular α-

dense t-partite graph. Finally, we prove Theorem 5.

3.1 Properties of almost all graphs

We start with a well known fact of random graph theory which follows easily

from the properties of the binomial distribution.

Fact 11. For every real % > 0, if G is a random graph in G(n, q), then

(1− %) q

(
n

2

)
≤ e(G) ≤ (1 + %) q

(
n

2

)
holds with probability 1− o(1).

The next property refers to Definition 7 and will enable us to apply The-

orem 8.

Lemma 12. For every C > 1, ξ > 0 and q = q(n) � 1/n a random graph

G in G(n, q) is (ξ, C)-bounded with probability 1− o(1).



11

We will apply the following one-sided estimate of a binomially distributed

random variable. For the next lemma, recall that all logarithms are to base

e, see the Remark 9 in Section 2.3.

Lemma 13. Let X be a binomially distributed random variable with expec-

tation EX = Nq and let C > 1 be a constant. Then

P(X ≥ CEX) ≤ exp(−τCEX),

where τ = log C − 1 + 1/C > 0 for C > 1.

Proof. The proof is given in [12] (see Corollary 2.4).

Proof of Lemma 12. Let G ∈ G(n, q) and let U , W ⊆ V (G) be two not

necessarily disjoint sets such that |U |, |W | ≥ ξn. Clearly, e(U,W ) is a

binomial random variable with

E[e(U,W )] = q

(
|U ||W | −

(
|U ∩W |+ 1

2

))
.

Observe that E[e(U,W )] � n since q � 1/n. Set τ = log C− 1 + 1/C. Then

Lemma 13 implies

P (e(U,W ) > CE[e(U,W )]) ≤ exp (−τCE[e(U,W )]) .

We now sum over all choices for U and W to deduce that

P(G is not (ξ, C)-bounded) ≤∑
|U |≥ξn

∑
|W |≥ξn

(
n

|U |

)(
n

|W |

)
exp (−τCE[e(U,W )])

≤ 4n exp (−τCE[e(U,W )]) = o(1),

since τC > 0 and E[e(U,W )] � n.



12

3.2 A deterministic subgraph lemma

The next lemma states that every (ε, q)-regular, bipartite graph with at least

αqm2 edges contains a (3ε, q)-regular subgraph with exactly αqm2 edges.

Lemma 14. For every ε > 0, α > 0, and C > 1 there exists m0 such that if

H = (U,W ; F ) is a bipartite graph satisfying

(i) |U | = m1, |W | = m2 and m1, m2 > m0,

(ii) Cqm1m2 ≥ eH(U,W ) ≥ αqm1m2 for some function q = q(m0) �
1/m0, and

(iii) H is (ε, q)-regular,

then there exists a subgraph H ′ = (U,W ; F ′) ⊆ H such that

(ii ′) eH′(U,W ) = αqm1m2 and

(iii ′) H ′ is (3ε, q)-regular.

Proof. We select a set D of

|D| = eH(U,W )− αqm1m2

edges in EH(U,W ) uniformly at random and fix H ′ = (U,W ; F \ D). We

naturally define the density in D with respect to q for sets U ′ ⊆ U and

W ′ ⊆ W by

dD,q(U
′, W ′) =

|EH(U ′, W ′) ∩D|
q|U ′||W ′|

. (3.1)

In order to check the (3ε, H ′, q)-regularity of (U,W ), it is enough to verify

the inequality corresponding to (2.2) for sets U ′ ⊆ U , W ′ ⊆ W such that

|U ′| = 3εm1 and |W ′| = 3εm2. Let (U ′, W ′) be such a pair. We distinguish

three cases depending on |D| and eH(U ′, W ′).
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Case 1 (|D| ≤ ε3qm1m2). The graph H is (ε, H, q)-regular and thus

dH,q(U
′, W ′) ≥ dH,q(U,W )− ε.

Since dH′,q(U
′, W ′) ≥ dH,q(U

′, W ′)− dD,q(U
′, W ′), we have

dH′,q(U
′, W ′) ≥ dH,q(U

′, W ′)− |D|
9ε2qm1m2

≥ dH,q(U,W )− 10

9
ε,

which implies that H ′ is (3ε, q)-regular.

Case 2 (eH(U ′, W ′) ≤ ε3qm1m2). Observe that eH(U ′, W ′) ≤ ε3qm1m2 im-

plies

dH,q(U
′, W ′) ≤ ε

9
. (3.2)

Since H is (ε, H, q)-regular

dH,q(U,W ) ≤ ε + dH,q(U
′, W ′) ≤ 10

9
ε. (3.3)

On the other hand, dH′,q(X, Y ) ≤ dH,q(X, Y ) for arbitrary X ⊆ U and

Y ⊆ W , which combined with (3.2) and (3.3) yields

|dH′,q(U,W )− dH′,q(U
′, W ′)| ≤ 10

9
ε +

ε

9
≤ 3ε.

Up to now, we have not used the fact that D is chosen at random. To deal

with the case that we are left with (that is, the case in which |D| > ε3qm1m2

and eH(U ′, W ′) > ε3qm1m2), we will make use of this randomness. Before

we start, we state the following two-sided estimate for the hypergeometric

distribution.

Lemma 15. Let sets B ⊆ U be fixed. Let |U | = u and |B| = b. Suppose we

select a d-set D uniformly at random from U . Then, for 3/2 ≥ λ > 0, we

have

P
(∣∣∣∣|D ∩B| − bd

u

∣∣∣∣ ≥ λ
bd

u

)
≤ 2 exp

(
−λ2

3

bd

u

)
.
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Proof. For the proof we refer to [12] (Theorem 2.10).

We continue with the proof of Lemma 14.

Case 3 (|D| > ε3qm1m2 and eH(U ′, W ′) > ε3qm1m2). Recall that U ′ ⊆ U

and V ′ ⊆ V are such that |U ′| = 3εm1 and |V ′| = 3εm2. First, we verify

that ∣∣∣∣dD,q(U,W )
dH,q(U

′, W ′)

dH,q(U,W )
− dD,q(U

′, W ′)

∣∣∣∣ ≤ ε (3.4)

implies that

|dH′,q(U,W )− dH′,q(U
′, W ′)| ≤ 3ε. (3.5)

Indeed, straightforward calculation using the (ε, q)-regularity of H and (3.4)

give

|dH′,q(U,W )− dH′,q(U
′, W ′)|

= |(dH,q(U,W )− dD,q(U,W ))− (dH,q(U
′, W ′)− dD,q(U

′, W ′))|

≤ ε + |dD,q(U,W )− dD,q(U
′, W ′)|

≤ ε +

∣∣∣∣dD,q(U,W )− dD,q(U,W )
dH,q(U

′, W ′)

dH,q(U,W )

∣∣∣∣
+

∣∣∣∣dD,q(U,W )
dH,q(U

′, W ′)

dH,q(U,W )
− dD,q(U

′, W ′)

∣∣∣∣
≤ ε +

dD,q(U,W )

dH,q(U,W )
|dH,q(U,W )− dH,q(U

′, W ′)|+ ε

≤ ε +
dD,q(U,W )

dH,q(U,W )
ε + ε

≤ 3ε.

Next, we will prove that (3.4) is unlikely to fail, because of the random choice

of D. We set

λ = min

{
9ε3

C
,
3

2

}
. (3.6)

Then the two-sided estimate in Lemma 15 gives that∣∣∣∣|D ∩ EH(U ′, W ′)| − eH(U ′, W ′)|D|
eH(U,W )

∣∣∣∣ < λ
eH(U ′, W ′)|D|

eH(U,W )
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fails with probability

≤ 2 exp

(
−λ2

3

eH(U ′, W ′)|D|
eH(U,W )

)
. (3.7)

Since∣∣∣∣dD,q(U
′, W ′)− dD,q(U,W )

dH,q(U
′, W ′)

dH,q(U,W )

∣∣∣∣
=

1

9ε2qm1m2

∣∣∣∣|D ∩ EH(U ′, W ′)| − eH(U ′, W ′)|D|
eH(U,W )

∣∣∣∣ ,
and because of (ii) and (3.6), we have

λ
eH(U ′, W ′)

9qε2m1m2

|D|
eH(U,W )

≤ λ
eH(U ′, W ′)

9qε2m1m2

≤ λ
eH(U,W )

9qε2m1m2

≤ ε,

we infer that (3.4) and consequently (3.5) fails with small probability given

in (3.7).

We now sum over all possible choices for U ′ and W ′ and use |D| >

ε3qm1m2, eH(U ′, W ′) > ε3qm1m2 and (ii). We have that

P (H ′ is not (3ε, q)-regular) ≤ 2m1+m2 · 2 exp

(
−λ2ε6

3C
qm1m2

)
< 1

for m1, m2 sufficiently large, since q = q(m0) � 1/m0. This implies that, for

m0 large enough, there is a set D such that H ′ is (3ε, q)-regular, as required.

3.3 Proof of the main result

The proof of Theorem 5 is based on Lemma 10, which we prove later in

Chapter 4. The main idea is to “find” a subgraph J satisfying (I)–(IV) of

the Counting Lemma, in the arbitrary subgraph F with

e(F ) ≥
(

1− 1

χ(H)− 1
+ δ

)
q

(
n

2

)
.
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Proof of Theorem 5. Let H be a fixed d-degenerate graph on h vertices and

let the vertices of H be ordered V (H) = {w1, . . . , wh} such that each wi has

at most d neighbours in {w1, . . . , wi−1}. Let 1/(χ(H) − 1) > δ > 0 be fixed

and suppose q = q(n) � ((log n)4/n)1/d. First we define some constants that

will be used in the proof.

We start by setting

α =
δ

8
, (3.8)

σ = 10−6. (3.9)

(As a matter of fact, our proof is not sensitive to the value of the constant σ;

in fact, as long as 0 < σ < 1, every choice works.) We want to use the

Counting Lemma, Lemma 10, in order to determine the value of ε. Set

αCL = α and σCL = σ, then Lemma 10 yields εCL. We set

ε = min

{
εCL

3
,

δ

80

}
(3.10)

and

C = 1 +
δ

4
. (3.11)

We then apply the sparse regularity lemma (Theorem 8) with εSRL = ε,

CSRL = C and tSRL
0 = max{h, 40/δ}. Theorem 8 then gives ξSRL and we

define

ξ = ξSRL.

Moreover, Theorem 8 yields

T SRL
0 ≥ t = tSRL ≥ tSRL

0 = max

{
h,

40

δ

}
. (3.12)

For the rest of the proof all the constants defined above (α, σ, ε, C, ξ, and t)

are fixed.

Fact 11, Lemma 12, and Lemma 10 imply that a graph G in G(n, q)

satisfies the following properties (P1)–(P3) with probability 1− o(1):
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(P1) e(G) ≥ (1 + o(1)) q
(

n
2

)
,

(P2) G is (ξ, C)-bounded, and

(P3) G satisfies the property considered in Lemma 10.

We will show that if a graph G satisfies (P1)–(P3), then any F ⊆ G

with e(F ) ≥ (1− 1/(χ(H)− 1) + δ)q
(

n
2

)
contains at least cqe(H)nh (for some

constant c = c(δ,H)) copies of H, and Theorem 5 will follow.

To achieve this, we first regularise F by applying Theorem 8 with εSRL =

ε, CSRL = C and tSRL
0 = max{h, 40/δ}. Consequently F admits an (ε, q)-

regular (ε, t)-equitable partition (Vi)
t
0. We set m = n/t = |Vi| for i 6= 0.

Let Fcluster be the cluster graph of F with respect to (Vi)
t
0 defined as

follows

V (Fcluster) = {1, . . . , t},

E (Fcluster) =
{
{i, j} : (Vi, Vj) is (ε, q)-regular ∧ eF (Vi, Vj) ≥ αqm2

}
.

Our next aim is to apply Theorem 2 to guarantee the existence of a copy of

H in Fcluster. For this we define a subgraph F ′ of F . Set

E(F ′) =
⋃
{EF (Vi, Vj) : {i, j} ∈ E(Fcluster)}

We now want to find a lower bound for e(F ′). There are four possible reasons

for an edge e ∈ E(F ) not to be in E(F ′):

(R1) e has at least one vertex in V0,

(R2) e is contained in some vertex class Vi for 1 ≤ i ≤ t,

(R3) e is in E(Vi, Vj) for an (ε, q)-irregular pair (Vi, Vj), or

(R4) e is in E(Vi, Vj) for sparse a pair (i.e., e(Vi, Vj) < αqm2).
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We bound the number of discarded edges of type (R1)–(R3) by applying that

G is (ξ, C)-bounded (Property (P2)):

# of edges of type (R1) ≤ Cqεn2,

# of edges of type (R2) ≤ Cq
(n

t

)2

· t,

# of edges of type (R3) ≤ Cq
(n

t

)2

· ε
(

t

2

)
.

Furthermore, we bound the number of discarded edges of type (R4), by

# of edges of type (R4) ≤ αq
(n

t

)2

·
(

t

2

)
.

This, combined with n ≥ 2, (3.8), (3.10), (3.11), (3.12), and δ < 1 implies

that

|E(F ) \ E(F ′)| ≤
(

C

(
ε +

1

t
+

ε

2

)
+

α

2

)
qn2

≤
(

C

(
2ε +

1

t

)
+

α

2

)
· 4q

(
n

2

)
≤

(
(4 + δ)

(
δ

40
+

δ

40

)
+

δ

4

)
q

(
n

2

)
≤ δ

2
q

(
n

2

)
,

and thus

e(F ′) ≥
(

1− 1

χ(H)− 1
+

δ

2

)
q

(
n

2

)
.

We use the last inequality and once again (P2) to achieve the desired lower

bound for e(Fcluster). Indeed,

e(Fcluster) ≥
e(F ′)

Cq(n/t)2
≥
(

1− 1

χ(H)− 1
+

δ

2

)(
1− 1

n

)(
1 +

δ

4

)−1
t2

2
,

and then, for n large enough (n > 16/δ2), using t ≥ h, we deduce that

e(Fcluster) >

(
1− 1

χ(H)− 1
+

δ

2

)(
1− δ

4

)
t2

2

≥
(

1− 1

χ(H)− 1
+

δ

8

)(
t

2

)
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The last inequality implies, by Theorem 2, that Fcluster contains H as a

subgraph. Let {i1, . . . , ih} be the vertex set of this H in Fcluster. Then we

set J0 = F [Vi1 , . . . , Vih ] ⊆ F . Now, for every edge {wj, wj′} ∈ E(H) the pair

(Vij , Vij′
) satisfies the conditions of Lemma 14 with εLem14 = ε, αLem14 = α,

and CLem14 = C. Thus there is a subgraph J ⊆ J0 ⊆ F that is (3ε, q)-regular

and eJ(Vij , Vi′j
) = αqm2 for every {wj, wj′} ∈ E(H). Observe ε ≤ εCL/3

and J satisfies conditions (I)–(IV) of the Counting Lemma, Lemma 10, with

the constants chosen above (αCL = α, σCL = σ, and εCL ≥ 3ε), and thus

there are at least

(1− σ)pe(H)mh =
(1− σ)αe(H)

th
qe(H)nh ≥ (1− σ)αe(H)

(T SRL
0 )

h
qe(H)nh

different copies of H in J ⊆ F . Observe that α, σ, and T0 depend on δ and H

but not on n. Consequently, there are c(δ,H)qe(H)nh � 1 (where c(δ,H) =

(1− σ)αe(H)/
(
T SRL

0

)h
) copies of H in F , as required by Theorem 5.
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Chapter 4

The counting lemma

Our aim in this section is to prove Lemma 10. In order to do this, we will

need two lemmas (Lemma 18 and 22). We introduce these in the first two

sections. Then, in Section 4.3, we will illustrate the proof of the Counting

lemma on the particular case H = K4 − e. Finally, we give the proof of

Lemma 10 in Section 4.4.

4.1 The pick-up lemma

Before we state the ‘Pick-Up Lemma’, Lemma 18, let us state a simple one-

sided estimate for the hypergeometric distribution, which will be useful in

the proof of Lemma 18.

Lemma 16 (A hypergeometric tail lemma). Let b, d, and u be positive

integers and suppose we select a d-set D uniformly at random from a set U

of cardinality u. Suppose also that we are given a fixed b-set B ⊆ U . Then

we have for λ > 0

P
(
|D ∩B| ≥ λ

bd

u

)
≤
( e

λ

)λbd/u

. (4.1)

Proof. For the proof we refer the reader to [16].

We now state and prove the Pick-Up Lemma. Let k ≥ 2 be a fixed integer

and let m be sufficiently large. Let V1, . . . , Vk be pairwise disjoint sets all of
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size m and let B be a subset of V1 × · · · × Vk. For 1 > p = p(m) � 1/m set

T = pm2 and consider the probability space

Ω =

(
V1 × Vk

T

)
× · · · ×

(
Vk−1 × Vk

T

)
,

where
(

Vi×Vk

T

)
denotes the family of all subsets of Vi × Vk of size T , and all

the R = (R1, . . . , Rk−1) ∈ Ω are equiprobable, i.e., have probability(
m2

T

)−(k−1)

.

For 1 ≤ i < k and Ri ∈
(

Vi×Vk

T

)
the degree with respect to Ri of a vertex

vk in Vk is

dRi
(vk) = |{vi ∈ Vi : (vi, vk) ∈ Ri}|. (4.2)

Definition 17 (Π(ζ, µ, K,B)). For ζ, µ, K with 1 > ζ, µ > 0 and K > 0

and B ⊆ V1 × · · · × Vk, we say that property Π(ζ, µ, K,B) holds for R =

(R1, . . . , Rk−1) ∈ Ω if

Ṽk = Ṽk(K) = {vk ∈ Vk : dRi
(vk) ≤ Kpm, ∀1 ≤ i ≤ k − 1}

and

B(R) = {b = (v1, . . . , vk) ∈ B : vk ∈ Ṽk and (vj, vk) ∈ Rj, ∀ 1 ≤ j ≤ k − 1}

satisfy the inequalities

|Ṽk| ≥ (1− µ)m, (4.3)

|B(R)| ≤ ζpk−1mk. (4.4)

We think of B(R) as the members of B that have been picked-up by the

random element R ∈ Ω. We will be interested in the probability that the

property Π(ζ, µ, K,B) fails for a fixed B in the uniform probability space Ω.
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Lemma 18 (Pick-Up Lemma). For every β, ζ and µ with 1 > β, ζ, µ > 0

there exist 1 > η = η(β, ζ, µ) > 0, K = K(β, µ) > 0 and m0 such that if

m ≥ m0, B ⊆ V1 × · · · × Vk and

|B| ≤ ηmk, (4.5)

then

P(Π(ζ, µ, K,B) fails for R ∈ Ω) ≤ β(k−1)T . (4.6)

For the proof we need a few definitions. Suppose B, β and µ are given.

We define

θ =
1

2
βk−1, (4.7)

K = max

{
3(k − 1) log 1/θ

µ
, e2

}
. (4.8)

Since p � 1/m the definition of K ≥ 3(k − 1) log(1/θ)/µ implies that

(k − 1)

(
m

µm/(k − 1)

)
exp

(
−µTK log K

2(k − 1)

)
≤ θT (4.9)

holds for m sufficiently large.

Using the definition of dRi
in (4.2) we construct for each i = 1, . . . , k − 1

a subset of Vk by putting

V
(i)
k = {vk ∈ V

(i−1)
k : dRi

(vk) ≤ Kpm},

where V
(0)
k = Vk. Observe that Vk = V

(0)
k ⊇ V

(1)
k ⊇ · · · ⊇ V

(k−1)
k = Ṽk. In

the view of Lemma 18 we define the following “bad” events in Ω.

Definition 19 (Ai, B). For each i = 0, . . . , k − 1 and K, µ > 0, ζ > 0, and

B ⊆ V1 × · · · × Vk let Ai = Ai(µ, K), B = B(ζ, K) ⊆ Ω be the events

Ai : |V (i)
k | <

(
1− iµ/(k − 1)

)
m,

B : |B(R)| > ζpk−1mk.
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Observe that the definition of V
(0)
k = Vk implies

P(A0) = 0. (4.10)

We restate Lemma 18 by using the notation introduced in Definition 19.

Lemma 18′ (Pick-up Lemma, event version). For every β, ζ and µ with

1 > β, ζ, µ > 0 there exist 1 > η = η(β, ζ, µ) > 0, K = K(β, µ) > 0 and m0

such that if m ≥ m0, B ⊆ V1 × · · · × Vk and

|B| ≤ ηmk, (4.11)

then

P(Ak−1(µ, K) ∨B(ζ, K)) ≤ β(k−1)T . (4.12)

We need some more preparation before we prove Lemma 18′. Suppose

β, ζ, µ are given by Lemma 18′ and θ, K are fixed by (4.7) and (4.8). For

each i = 1, . . . , k − 1 we consider the set Bi ⊆ B consisting of those k-tuples

b ∈ B which were partially “picked up” by edges of R1, . . . , Ri. For technical

reasons we consider only those k-tuples containing vertices vk ∈ V
(i−1)
k , i.e.,

with dRj
(vk) ≤ Kpm for j = 1, . . . , i− 1. More formally, we let

Bi = {b = (v1, . . . , vk) ∈ B : vk ∈ V
(i−1)
k and (vj, vk) ∈ Rj, ∀ 1 ≤ j ≤ i}.

We also set B0 = B.

The definitions of Ṽk = V
(k−1)
k ⊆ V

(k−2)
k and Bk−1 imply

B(R) ⊆ Bk−1. (4.13)

(Equality may fail in (4.13) because we may have V
(k−2)
k \ V

(k−1)
k 6= ∅.) For

each i = k, . . . , 1 define ζi−1 by

ζk−1 = ζ,

ζi−1 =
k − 1− (i− 1)µ

4(k − 1)Ki−1
ζ2
i θ

4Ki−1/ζi . (4.14)
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Furthermore, consider for each i = 0, . . . , k− 1 the event Bi = Bi(ζi, K) ⊆ Ω

defined by

Bi : |Bi| > ζip
imk. (4.15)

In order to prove Lemma 18′ we need two more claims, which we will prove

later.

Claim 20. For all 1 ≤ i ≤ k − 1, we have

P(Ai) = P
(
|V (i)

k | <
(

1− iµ

k − 1

)
m

)
≤ θT .

Claim 21. For all 1 ≤ i ≤ k − 1, we have

P(Bi | ¬Ai−1 ∧ ¬Bi−1) ≤ θT .

Assuming Claims 20 and 21, we may easily prove Lemma 18′.

Proof of Lemma 18′. Set η = ζ0 where ζ0 is given by (4.14). The definition

of B0 = B and (4.11) implies |B0| ≤ ζ0m
k and consequently by the definition

of the event B0 in (4.15)

P(B0) = 0. (4.16)

Because of (4.13) and ζk−1 = ζ in (4.14) we have

P(B) ≤ P(Bk−1). (4.17)

Using the formal identity

P(Bi) = P(Bi ∧ (¬Ai−1 ∧ ¬Bi−1)) + P(Bi ∧ (Ai−1 ∨Bi−1)),

we observe that

P(Bi) ≤ P(Bi | ¬Ai−1 ∧ ¬Bi−1) + P(Ai−1) + P(Bi−1) (4.18)
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for each i = 1, . . . , k − 1. It follows by applying (4.17) and (4.18) that

P(Ak−1 ∨B) ≤ P(Ak−1) + P(Bk−1)

≤ P(Ak−1) +
k−1∑
i=1

(
P(Bi | ¬Ai−1 ∧ ¬Bi−1) + P(Ai−1)

)
+ P(B0).

Claims 20 and 21, and (4.10), (4.16) and (4.7) finally imply

P(Ak−1 ∨B) ≤ 2(k − 1)θT ≤ 2(k − 1)

(
βk−1

2

)T

≤ β(k−1)T

for m sufficiently large, as required.

We now prove Claim 20 and then Claim 21.

Proof of Claim 20. Fix a set V ∗ ⊆ Vk of size µm/(k − 1). For a fixed j

(1 ≤ j ≤ i) assume that dRj
(vk) > Kpm for every vk in V ∗. This clearly

implies the event

Ej(V
∗) : |Rj ∩ (Vj × V ∗)| > Kpm

µm

k − 1
= K

µT

k − 1
. (4.19)

The T pairs of Rj are chosen uniformly in Vj × Vk, so the hypergeometric

tail lemma, Lemma 16, applies, and using the fact that e ≤ K1/2 by (4.8) we

get

P (Ej(V
∗)) ≤

( e

K

)KµT/(k−1)

≤ exp

(
−µTK log K

2(k − 1)

)
. (4.20)

Set Ej =
∨

Ej(V
∗), where the union is taken over all V ∗ ⊆ Vk of size

µm/(k − 1). Then

P(Ej) ≤
(

m

µm/(k − 1)

)
exp

(
−µTK log K

2(k − 1)

)
(4.21)

holds for each j = 1, . . . , i, and this implies

P

(
i∨

j=1

Ej

)
≤ i

(
m

µm/(k − 1)

)
exp

(
−µTK log K

2(k − 1)

)
.
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Finally, the fact that Ai ⊆
∨i

j=1 Ej and the choice of K with (4.9) gives that

P(Ai) ≤ i

(
m

µm/(k − 1)

)
exp

(
−µTK log K

2(k − 1)

)
≤ θT ,

as required.

Proof of Claim 21. Recall β, ζ and µ are given by Lemma 18′ and θ, K and

ζi are fixed by (4.7), (4.8) and (4.14). In order to prove Claim 21 we fix i

(1 ≤ i ≤ k − 1) and we assume ¬Ai−1 and ¬Bi−1 occur. This means by

Definition 19 and (4.15) that

|V (i−1)
k | ≥

(
1− (i− 1)µ

k − 1

)
m =

(
k − 1− (i− 1)µ

k − 1

)
m, (4.22)

|Bi−1| ≤ ζi−1p
i−1mk. (4.23)

We have to show that

|Bi| ≤ ζip
imk (4.24)

holds for R in the uniform probability space Ω with probability ≥ 1− θT .

First we define the auxiliary constant

Li =

(
1

θ

)4Ki−1/ζi

. (4.25)

The definition of θ in (4.7) and the facts that 0 < ζi < 1 for each i =

1, . . . , k − 1 and K > 1 imply that

Li ≥
(

2

βk−1

)4

> e2 (4.26)

holds.

We define the degree of a pair in Vi × V
(i−1)
k with respect to Bi−1 by

dBi−1
(wi, wk) =

∣∣∣{b = (v1, . . . , vk) ∈ Bi−1 : vi = wi and vk = wk}
∣∣∣.
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We can bound the value of the average degree by (4.22) and (4.23):

avg
{

dBi−1
(vi, vk) : (vi, vk) ∈ Vi × V

(i−1)
k

}
=

|Bi−1|
m|V (i−1)

k |
(4.27)

≤ k − 1

k − 1− (i− 1)µ
ζi−1p

i−1mk−2.

We also can bound ∆Bi−1
(Vi, V

(i−1)
k ) = max{dBi−1

(vi, vk) : (vi, vk) ∈ Vi ×
V

(i−1)
k } by the following observation. Let (vi, vk) be an arbitrary element in

Vi × V
(i−1)
k . Then, by the definition of V

(i−1)
k , we have

dBi−1
(vi, vk) ≤ dR1(vk) · . . . ·dRi−1

(vk) ·mk−2−(i−1) ≤ (Kpm)i−1mk−i−1. (4.28)

Inequality (4.28) implies

∆Bi−1

(
Vi, V

(i−1)
k

)
≤ Ki−1pi−1mk−2. (4.29)

Let F be the set of pairs of “high degree”. More precisely, set

F =

{
(vi, vk) ∈ Vi × V

(i−1)
k : dBi−1

>
ζi

2
pi−1mk−2

}
.

A simple averaging argument applying (4.27) yields

|F | ≤ 2(k − 1)ζi−1

(k − 1− (i− 1)µ)ζi

|Vi||V (i−1)
k | ≤ 2(k − 1)ζi−1

(k − 1− (i− 1)µ)ζi

m2. (4.30)

On the other hand, if we set F̄ = Vi × V
(i−1)
k \ F then the definition of F

and (4.29) imply

|Bi| =
∑

(vi,vk)∈Ri∩F̄

dBi−1
(vi, vk) +

∑
(vi,vk)∈Ri∩F

dBi−1
(vi, vk)

≤ ζi

2
pi−1mk−2|Ri ∩ F̄ | + Ki−1pi−1mk−2|Ri ∩ F |

≤ ζi

2
pi−1mk−2T + Ki−1pi−1mk−2|Ri ∩ F |

=

(
ζi

2
+

Ki−1

T
|Ri ∩ F |

)
pimk. (4.31)
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Next we prove that

P
(
|Ri ∩ F | > ζiT

2Ki−1

)
≤ θT , (4.32)

which, together with (4.31), yields our claim, namely, that

P
(
|Bi| > ζip

imk
)
≤ θT . (4.33)

We now prove inequality (4.32). Without loss of generality we assume equal-

ity holds in (4.30). Then the hypergeometric tail lemma, Lemma 16, implies

that

P
(
|Ri ∩ F | > Li

|F |T
m2

)
= P

(
|Ri ∩ F | > Li

2(k − 1)ζi−1

(k − 1− (i− 1)µ)ζi

T

)

≤
(

e

Li

)Li
2(k−1)ζi−1

(k−1−(i−1)µ)ζi
T

(4.34)

≤ exp

(
−Li(log Li)(k − 1)ζi−1T

(k − 1− (i− 1)µ)ζi

)
,

where in the last inequality we used that Li ≥ e2 (see (4.26)). The definitions

of ζi−1 and Li in (4.14) and (4.25) yield

Li(k − 1)ζi−1

(k − 1− (i− 1)µ)ζi

=
Liζi

4Ki−1
θ4Ki−1/ζi =

ζi

4Ki−1
.

We use the last inequality to derive

Li(log Li)(k − 1)ζi−1

(k − 1− (i− 1)µ)ζi

= log
1

θ
,

Li
2(k − 1)ζi−1

(k − 1− (i− 1)µ)ζi

=
ζi

2Ki−1
,

which, combined with inequality (4.34), gives (4.32).
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4.2 The k-tuple lemma for subgraphs of ran-

dom graphs

Let G ∈ G(n, q) be the binomial random graph with edge probability q =

q(n), and suppose H = (U,W ; F ) is a bipartite, not necessarily induced

subgraph of G with |U | = m1 and |W | = m2. Furthermore, denote the

density of H by p = e(H)/m1m2.

We now consider subsets of W of fixed cardinality k ≥ 1, and classify them

according to the size of their joint neighbourhood in H. For this purpose we

define

B(k)(U,W ; γ) =
{
b = {v1, . . . , vk} ∈ W :

∣∣dH
U (b)− pkm1

∣∣ ≥ γpkm1

}
,

where dH
U (b) denotes the size of the joint neighbourhood of b in H, that is,

dH
U (b) =

∣∣∣∣∣
k⋂

i=1

ΓH(vi)

∣∣∣∣∣ .
The following lemma states that in a typical G ∈ G(n, q) the set B(k)(U,W ; γ)

is “small” for any sufficiently large (ε, q)-regular subgraph H = (U,W ; F ) of a

dense enough random graph G. Recall that if G is a graph and U , W ⊂ V (G)

are two disjoint sets of vertices, then G[U,W ] denotes the bipartite graph

naturally induced by (U,W ).

Lemma 22 (The k-tuple lemma). For any constants α > 0, γ > 0, η > 0,

and k ≥ 1 and function m0 = m0(n) such that qkm0 � (log n)4, there exists a

constant ε > 0 for which the random graph G ∈ G(n, q) satisfies the following

property with probability 1− o(1): If for a bipartite subgraph H = (U,W ; F )

of G the conditions

(i) e(H) ≥ αe(G[U,W ]),

(ii) H is (ε, q)-regular,
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(iii) |U | = m1 ≥ m0 and |W | = m2 ≥ m0

apply, then

|B(k)(U,W ; γ)| ≤ η

(
m2

k

)
(4.35)

also applies.

Proof. The proof of Lemma 22 is given in [16].

4.3 Illustration of the proof of the counting

lemma for H = K4 − e

The proof of the Lemma 10 contains some technical definitions. In order to

make the reading more comprehensible, we first informally illustrate the basic

ideas of the proof for the case where H is the 2-degenerate graph isomorphic

to K4 − e, before we give the proof for a general H in Section 4.4.

We fix an order of the vertices {w1, w2, w3, w4} of K4 − e as pictured in

Figure 4.1(a). Consider the following situation: Let V1, V2, V3, and V4 be

pairwise disjoint sets of vertices of size m. Let J be a 4-partite graph with

vertex set V (J) = V1∪V2∪V3∪V4. We think of J as a not necessarily induced

subgraph of a random graph in G(n, q) with T = pm2 edges between each

Vi and Vj ({wi, wj} ∈ E(H)), where p = αq. We will describe a situation in

which we will be able to assert that J contains the “right” number of H’s.

Here and everywhere below by the “right” number we mean “as expected in

a random graph of density p”; notice that, for the number of H = K4 − e’s,

this means ∼ p5m4. Observe that, however, J is a not necessarily induced

subgraph of a graph in G(n, q), and this makes our task hard. As it turns

out, it will be more convenient to imagine that J is generated in h − 1 = 3

stages. First we choose the edges from V4 to V1∪V3 (since {w4, w2} is not an

edge in H). Then we choose the edges from V3 to V1 ∪ V2, and in the third

stage we disclose the edges between V2 and V1.
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not “picked-up”
3-tuples

“picked-up”
3-tuple

vertices
discarded

H = K4 − e

w4

w3

w2

w1 V1

V2

V3

“bad” 3-tuples

eV3 v3

v2

v1

Pair (v1, v2) is good if it has:
(i) approxiametly expected

number of joint neighbours
v3 such that

(ii) (v1, v2, v3) is not a “bad”
3-tuple

(a) (b) (c)

Figure 4.1: “bad” tuples

The key idea of the proof is to consider “bad” tuples, which we create in

every stage. After we chose the edges from V4 to V1 ∪ V3, we define “bad” 3-

tuples in V1×V2×V3: a 3-tuple (v1, v2, v3) is “bad” if the joint neighbourhood

of v1 and v3 in V4 is much smaller than expected. Then, with the right choice

of constants, Proposition 26 for k = 2 and J = J [V4, V1∪V3] will ensure that

there are not too many “bad” 3-tuples. (Proposition 26 is a corollary of the

the k-tuple lemma, Lemma 22.)

We next generate the edges between V3 and V1 ∪ V2. We want to define

“bad” pairs in V1 × V2. Here it becomes slightly more complicated to distin-



32

guish “bad” from “good”. This is because there are two things that might go

wrong for a pair in V1 × V2. First of all, again the joint neighbourhood (now

in V3) of a pair in V1 × V2 might be too small. On the other hand, it could

have the right number of joint neighbours in V3, but many of these neighbours

“complete” the pair to a “bad” 3-tuple. Here the Pick-Up Lemma comes into

play for k = 3 (see Proposition 25): this lemma will ensure that, given the

set of “bad” 3-tuples (which was already defined in the first stage) is small,

we will not “pick-up” too many of these (see Figure 4.1(b)), while choosing

the edges between V3 and V1 ∪ V2. (We say that a triple (v1, v2, v3) has been

picked-up if (v1, v3) and (v2, v3) are in the edge set generated between V3

and V1 ∪ V2.)

Here the situation complicates somewhat. The Pick-Up Lemma forces us

to discard a small portion (less or equal µPU fraction) of vertices in V3. Thus,

in order to avoid the first type of “badness” (too small joint neighbourhood)

as a 2-tuple in V1 × V2 it is not enough to have the right number of joint

neighbours in V3; we need the right number of joint neighbours in Ṽ3, which

is V3 without the µPUm vertices (at most) we lose by applying the Pick-Up

Lemma (see Figure 4.1(c)). This will be ensured by the the k-tuple lemma

(to be more precise, Proposition 26), now for k = 2 and J = J [Ṽ3, V1 ∪ V2].

Later, in the general case, we will refer to the set of “bad” i-tuples in

V1×· · ·×Vi as Bi (see Definition 23 below). We define Bi as the union of the

sets B(a)
i and B(b)

i , defined as follows. Let Ii+1 = {j ∈ [i] : {wi+1, wj} ∈ E(H)}
We put in B(a)

i the i-tuples (v1, . . . , vi) that are “bad” because the joint

neighbourhood of {vj : j ∈ Ii+1} in Ṽi+1 is too small; the set B(b)
i is defined

as the set of i-tuples in V1 × · · · × Vi that “bad” because they extend to too

many “bad” (i + 1)-tuples (i.e., (i + 1)-tuples in Bi+1).

As described above, we define Bi (i = h− 1, . . . , 1) by reverse induction,

starting with Bh−1, and going down to B1. With the right choice of constants,

there will not be too many “bad” vertices in V1.
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Having ensured that most of the m vertices in V1 are not “bad” (i.e., do

not belong to B1) we are now able to count the number of H = K4− e’s. We

will use the following deterministic argument, which will later be formalised

in Lemma 29. Consider a vertex v1 in V1 that is not “bad”. This vertex

has approximately the expected number of neighbours in Ṽ2 (i.e., ∼ pm),

and not too many of these neighbours constitute, together with v1, a “bad”

2-tuple. In other words, this means that v1 extends to ∼ pm copies of

H2 = H[{w1, w2}] in (V1 × V2) \ B2. This implies that each such H2 has

the right number of joint neighbours in Ṽ3 (i.e., ∼ p2m), and consequently

extends to the right number of H3 = H[{w1, w2, w3}]’s in (V1×V2×V3) \B3.

Repeating the last argument, each of these H3’s extends into ∼ p2m (since

w4 is only adjacent to w1 and w3) different copies of H = K4 − e. Since

we have ensured that most of the m vertices in V1 are not “bad”, we have

∼ m · pm · p2m · p2m = pe(H)m4 copies of H.

4.4 Proof of the counting lemma

In this section we will prove Lemma 10. In Section 4.4.1, we introduce the

key definitions and describe the logic of all important constants which will

appear later in the proof. Afterwards we prove two technical propositions in

Section 4.4.2. These propositions correspond to the lemmas in Sections 4.1

and 4.2, and their use will give a short proof of the Counting Lemma, to be

presented in Section 4.4.3.

4.4.1 Concepts and constants

Let H be a fixed d-degenerate graph on h vertices and let the vertices of H be

ordered V (H) = {w1, . . . , wh} such that each wi hast at most d neighbours

in {w1, . . . , wi−1}. For every 1 ≤ i ≤ h we set Ii to the set of the indices of
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the neighbours of wi in {w1, . . . , wi−1}

Ii = ΓH(wi) ∩ {w1, . . . , wi−1}.

Let t ≥ h be a fixed integer and n a sufficiently large integer. Let α and

ε be constants greater than 0. Let G be in G(n, q) with q = q(n), and

suppose J is an h-partite subgraph of G with vertex classes V1, . . . , Vh. For

all 1 ≤ i < j ≤ h we denote by Jij the bipartite graph induced by Vi and Vj.

Consider the following assertions for J and q.

(I) |Vi| = m = n/t

(II) qdn � (log n)4

(III) for all 1 ≤ i < j ≤ h,

e(Jij) =

T = pm2 {wi, wj} ∈ E(H)

0 {wi, wj} 6∈ E(H)

where 1 > αq = p � 1/n, and

(IV) Jij is (ε, q)-regular.

Let σ > 0 be given. We define the constants

γ = µ = ν =
1

3

(
1− (1− σ)1/h

)
, (4.36)

and, for 1 ≤ i ≤ l − 2, we put

βi+1 =


(

1
2

(
α
e

)Ph
j=i+1 |Ij |

)1/|Ii+1|
Ii+1 6= ∅

0 Ii+1 = ∅
. (4.37)

In order to prove Lemma 10 we need some definitions. These definitions

always depend on a fixed subgraph J of our random graph G ∈ G(n, q)
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satisfying (I)–(IV). However, we will drop references to J because we want

to simplify the notation (e.g., we write Vi instead of V J
i ). Also, for each

i = 1, . . . , h we denote V1 × · · · × Vi by Wi.

In the proof we consider for a fixed J sets of “bad” i-tuples Bi ⊆ Wi

(1 ≤ i ≤ h − 1). We define these sets recursively from Bh−1 to B1. As

mentioned above in the discussion of the H = K4 − e case, there are two

reasons that make a given i-tuple (v1, . . . , vi) in Wi “bad”. First of all, its

joint neighbourhood of {vj : j ∈ Ii+1} in Vi+1 might be too small (see the

definition of B(a)
i in Definition 23) and, secondly, it could extend into too

many “bad” (i+1)-tuples in Bi+1 (see the definition of B(b)
i in Definition 23).

Note that the “bad” (i+1)-tuples have already been defined, as we are using

reverse induction in these definitions.

Next we apply the Pick-Up Lemma for k = |Ii+1| + 1 if |Ii+1| > 0 (1 ≤
i ≤ h − 2) with µPU

i+1 = µ and βPU
i+1 = βi+1 (and yet unspecified ζPU

i+1). As a

result we obtain KPU
i+1 = KPU

i+1(β
PU
i+1, µ

PU
i+1) and the set

Ṽi+1 = Ṽ PU
i+1 (KPU

i+1) ⊆ Vi+1

of undiscarded vertices with

|Ṽi+1| ≥ (1− µ)m

with probability bigger than

1−
(
βPU

i+1

)|Ii+1|T
.

For 2 ≤ i + 1 ≤ h − 1 such that |Ii+1| = 0 we simply set Ṽi+1 = Vi+1 and,

therefore, trivially |Ṽi+1| ≥ (1− µ)m holds.

We need a few more definitions before we define Bi, B(a)
i and B(b)

i (re-

cursively for i = h − 1, . . . , 1). Let Γ̃i+1(b) be the joint neighbourhood of

b = (v1, . . . , vi) ∈ Wi in Ṽi+1 with respect to J , more precisely

Γ̃i+1(b) = {w ∈ Ṽi+1 : {vj, w} ∈ E(Jj,i+1), ∀ j ∈ Ii+1}.
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For a fixed set B ⊆ Wi+1 and b = (v1, . . . , vi) ∈ Wi we denote the degree dB(b)

of b in B with respect to J by

dB(b) =
∣∣∣{v ∈ Γ̃i+1(b) : (v1, . . . , vi, v) ∈ B

}∣∣∣ .
Next we define (still for a fixed J) the sets of “bad” i-tuples Bi =

Bi(γ, µ, ν) ⊆ Wi mentioned earlier. Although we do not apply the Pick-Up

Lemma for k = h, for the sake of convenience we consider the neighbourhood

of elements in Wh−1 in Ṽh, instead of in Vh.

Definition 23 (Bl−1, B(a)
i , B(b)

i , Bi). Let γ, µ, ν be given by (4.36). We define

recursively the following sets of “bad” tuples for i = h− 1, . . . , 1:

Bh−1 = Bh−1(γ, µ) =
{

b ∈ Wh−1 :
∣∣∣Γ̃h(b)

∣∣∣ < (1− γ − µ)p|Ih|m
}

,

B(a)
i = B(a)

i (γ, µ) =
{

b ∈ Wi :
∣∣∣Γ̃i+1(b)

∣∣∣ < (1− γ − µ)p|Ii+1|m
}

,

B(b)
i = B(b)

i (ν) =
{
b ∈ Wi : dBi+1

(b) ≥ νp|Ii+1|m
}

,

Bi = Bi(γ, µ, ν) = B(a)
i (γ, µ) ∪ B(b)

i (ν).

We also consider “bad” events in G(n, q) defined on the basis of the size

of the sets Bh−1(γ, µ), B(a)
i (γ, µ), B(b)

i (ν), and Bi(γ, µ, ν) defined above. In

the following definition we mean by J an arbitrary subgraph of G ∈ G(n, q)

satisfying conditions (I)–(IV).

Definition 24. Let γ, µ, ν be given by (4.36) and let ηi > 0 (i = h−1, . . . , 1)

be fixed. We define the events

Xh−1(γ, µ, ηh−1) : ∃ J ⊆ G s.t. |Bh−1| > (ηh−1/2)mh−1,

X
(a)
i (γ, µ, ηi) : ∃ J ⊆ G s.t.

∣∣∣B(a)
i

∣∣∣ > (ηi/2)mi,

X
(b)
i (γ, µ, ν, ηi, ηi+1) : ∃ J ⊆ G s.t. |Bi+1| ≤ ηi+1m

i+1 ∧ |B(b)
i | > (ηi/2)mi,

Xi(γ, µ, ν, ηi, ηi+1) = X
(a)
i (γ, µ, ηi) ∨ X

(b)
i (γ, µ, ν, ηi, ηi+1).
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For simplicity, we let

X
(a)
h−1 = Xh−1 = Xh−1(γ, µ, ηh−1),

X
(a)
i = X

(a)
i (γ, µ, ηi) for i = 1, . . . , l − 1,

X
(b)
i = X

(b)
i (γ, µ, ν, ηi, ηi+1) for i = 1, . . . , l − 2,

and

Xi = Xi(γ, µ, ν, ηi, ηi+1) for i = 1, . . . , l − 1.

Owing to the special role of X1 later in the proof, we let

Xbad = Xbad(γ, µ, ν, η1, η2) = X1(γ, µ, ν, η1, η2).

We will now describe the remaining constants used in the proof. Notice

that α and σ were given and we have already fixed γ, µ and ν in (4.36) and

βi for 2 ≤ i ≤ h − 1 in (4.37). The (yet unspecified) parameters ηi and ε

will be determined by Propositions 25 and 26. First we set η1 = ν. Then

Proposition 25 (PUi+1) inductively describes ηi+1 = ηi+1(βi+1, γ, µ, ν, ηi) for

i = 1, . . . , h − 2 such that P(X
(b)
i ) = o(1). Finally, for i = 1, . . . , h − 1,

Proposition 26 (TLi) implies the choice for εi = εi(α, γ, µ, ηi) such that

P(X
(a)
i ) = o(1). We set

ε = min{εi : i = 1, . . . , h− 1}.

A diagram illustrating the definition scheme for the constants above is given

in Figure 4.2.

Thus, ε is defined for any given σ and α, as claimed in Lemma 10. From

now on, these constants are fixed for the rest of the proof of Lemma 10.

4.4.2 Tools

We need some auxiliary results before we prove Lemma 10. For this purpose

we state variants of the Pick-Up Lemma, Lemma 18, and of the k-tuple
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α, σ, γ, µ, ν, β2, . . . , βh−1y
η1 = ν

PU2−−−→ η2
PU3−−−→ · · · PUi−−−→ ηi

PUi+1−−−→ · · · PUh−1−−−−→ ηh−1yTL1

yTL2

yTLi

yTLh−1

ε1 ε2 . . . εi . . . εh−1︸ ︷︷ ︸
ε = min εi

Figure 4.2: Flowchart of the constants

lemma, Lemma 22, in the form that we apply these later. These variants will

be referred to as (PUi+1) and (TLi).

The next proposition follows from Lemma 18 for k = |Ii+1| + 1 (1 ≤ i ≤
h− 2).

Proposition 25 (PUi+1). Fix 1 ≤ i ≤ h − 2. Let α, σ > 0 be arbi-

trary, let γ, µ, ν and βi+1 be given by (4.36) and (4.37), and let ηi be de-

fined as stated in Section 4.4.1 (see Figure 4.2). Then there exists ηi+1 =

ηi+1(βi+1, γ, µ, ν, ηi) > 0 such that for every t ≥ h a random graph G in

G(n, q) satisfies the following property with probability 1 − o(1): If J is a

subgraph of G satisfying (I)–(IV) and Bi+1(γ, µ, ν) ⊆ Wi+1 is such that

|Bi+1(γ, µ, ν)| ≤ ηi+1m
i+1, (4.38)

then the number of i-tuples b in Wi with

dBi+1
(b) ≥ νp|Ii+1|m

is less than
ηi

2
mi,

which means ∣∣∣B(b)
i (ν)

∣∣∣ ≤ ηi

2
mi. (4.39)
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Furthermore,

|Ṽi+1| ≥ (1− µ)m

holds.

We restate Proposition 25, by using the events X
(b)
i from Definition 24.

Observe that inequalities (4.38) and (4.39) correspond to the event X
(b)
i , so

that P(X
(b)
i ) = o(1) is equivalent to the first part of Proposition 25′.

Proposition 25′ (PUi+1). Fix 1 ≤ i ≤ h − 2. Let α, σ > 0 be arbi-

trary, let γ, µ, ν and βi+1 be given by (4.36) and (4.37), and let ηi be de-

fined as stated in Section 4.4.1 (see Figure 4.2). Then there exists ηi+1 =

ηi+1(βi+1, γ, µ, ν, ηi) > 0 such that for every t ≥ h

P
(
X

(b)
i (γ, µ, ν, ηi, ηi+1)

)
= o(1)

and

P
(
|Ṽi+1| < (1− µ)m

)
= o(1).

Proof. If |Ii+1| = 0 we simply set ηi+1 = ηiν/2 and Ṽi+1 = Vi+1. Sup-

pose (4.38) holds and (4.39) fails. Then we derive

|Bi+1| >
ηi

2
mi · νp|Ii+1|m = ηi+1p

0mi+1,

which contradicts (4.38).

Therefore, we assume |Ii+1| > 0. We apply Lemma 18 for k = |Ii+1| + 1

and with the following choice of βPU, ζPU, µPU:

βPU = βi+1,

ζPU =
ηiν

2
,

µPU = µ.

Lemma 18 then gives ηPU, from which we define the constant ηi+1 we are

looking for by putting

ηi+1 = ηPU.
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We assume inequality (4.38) holds. In other words, the number of the “bad”

(i + 1)-tuples in Wi+1 is

|Bi+1| ≤ ηi+1m
i+1 = ηPUmi+1. (4.40)

On the other hand, if we assume that (4.39) does not hold (i.e., the event X
(b)
i

occurs), then the number of (i+1)-tuples in Bi+1 that have been “picked-up”

has to exceed
ηi

2
mi · νp|Ii+1|m = ζPUp|Ii+1|mi+1. (4.41)

In particular at least ζPUp|Ii+1|m|Ii+1|+1 different (|Ii+1| + 1)-tuples of B′i+1

were “picked-up”, where

B′i+1 = Bi+1

“Q
j∈Ii+1

Vj

”
×Vi+1

is the restriction of Bi+1 on
(∏

j∈Ii+1
Vj

)
×Vi+1. The Pick-Up Lemma bounds

the number of these configurations in∏
j∈Ii+1

(
Vj × Vi+1

T

)
by (

βPU
)|Ii+1|T ·

(
m2

T

)|Ii+1|

= (βi+1)
|Ii+1|T

(
m2

T

)|Ii+1|

. (4.42)

We now estimate the number of all possible graphs J satisfying (I)–(IV)

for which (4.40) holds but the number of members in Bi+1 that have been

“picked-up” exceeds (4.41). There are less than
(

n
m

)h
different ways to fix

the h vertex classes of J . Furthermore, observe that Bi+1 and, therefore, B′i+1

are determined by all the edges in Jjj′ (i + 1 < j′ ≤ h, 1 ≤ j < j′ ≤ h, which

gives L =
∑h

l=i+2 |Il| different pairs (j, j′) with e(Jjj′) 6= 0. Thus we have

at most
(

m2

T

)L
possibilities to determine Bi+1 (i.e., B′i+1). This, combined
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with (4.42), (III), and (4.37) yields that

P
(
X

(b)
i

)
≤
(

n

m

)h(
m2

T

)L

· (βi+1)
|Ii+1|T

(
m2

T

)|Ii+1|

· q(L+|Ii+1|)T

≤ 2nh

(
em2q

T

)(L+|Ii+1|)T

(βi+1)
|Ii+1|T

≤ 2nh

(( e

α

)Ph
j=i+1 |Ij |

(βi+1)
|Ii+1|

)T

≤ 2nh−T .

Since h is fixed and T � m = n/t, we have

P
(
X

(b)
i

)
= o(1).

Note that the set Ṽi+1 was determined by the application of the Pick-Up

Lemma. Therefore, the second assertion in Proposition 25′ also follows from

the proof above.

The following is an easy consequence of Lemma 22 for k = |Ii+1| (1 ≤ i ≤
h− 1).

Proposition 26 (TLi). Fix 1 ≤ i ≤ h − 1. Let α, σ > 0 be arbitrary,

let γ, µ be given by (4.36), and let ηi be defined as stated in Section 4.4.1

(see Figure 4.2). Then there exists εi = εi(α, γ, µ, ηi) > 0 such that for

every t ≥ h a random graph G in G(n, q) satisfies the following property with

probability 1 − o(1): If ε ≤ εi and J is a subgraph of G satisfying (I)–(IV),

then the number of i-tuples b in Wi with∣∣∣Γ̃i+1(b)
∣∣∣ < (1− γ − µ)p|Ii+1|m

is less than
ηi

2
mi,

which means that ∣∣∣B(a)
i (γ, µ)

∣∣∣ ≤ ηi

2
mi. (4.43)
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We can reformulate Proposition 26 in a shorter way by using the event

X
(a)
i (see Definition 24).

Proposition 26′ (TLi). Fix 1 ≤ i ≤ h − 1. Let α, σ > 0 be arbitrary,

let γ, µ be given by (4.36) and let ηi be defined as stated in Section 4.4.1

(see Figure 4.2). Then there exists εi = εi(α, γ, µ, ηi) > 0 such that for every

t ≥ h and ε ≤ εi

P
(
X

(a)
i (γ, µ, ηi)

)
= o(1).

Proof. The proposition is trivial if |Ii+1| = 0. Therefore, without loss of

generality assume |Ii+1| > 0.

We apply the k-tuple lemma, Lemma 22, with k = |Ii+1|, αTL = α/3,

γTL = γ and

ηTL =
ηi

(2ii)
. (4.44)

The k-tuple lemma gives an εTL and without loss of generality we may assume

εTL ≤ 2

7
. (4.45)

We set

εi = min
{(

εTL
)3

, 1− µ,
α

2

}
.

Let ε ≤ εi and J be a subgraph of G ∈ G(n, q) satisfying (I)–(IV). Set

U = Ṽi+1 and W =
⋃i

j∈Ii+1
Vj. By (IV), the graph Jjj′ (1 ≤ j < j′ ≤ i) is

(ε, q)-regular. Due to Lemma 12 without loss of generality we may assume

G is (ξ, 3/2)-bounded for some ξ < ε Below, we verify that condition (i) and

(ii) of Lemma 22 hold for J [U,W ] with respect to G.

Claim 27.

(i) e(J [U,W ]) ≥ αTLe(G[U,W ]),

(ii) J [U,W ] is (εTL, q)-regular,
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Proof of Claim 27. First we show (i). Since G is (ξ, 3/2)-bounded

e(G[U,W ]) ≤ 3

2
q(1− µ)|Ii+1|m2.

On the other hand, using the (ε, q)-regularity of Jj,i+1 for every j ∈ Ii+1 we

derive

e(J [U,W ]) ≥ (α− ε)q(1− µ)|Ii+1|m2

and, therefore, applying the choice of ε and αTL gives

e(J [U,W ])

e(G[U,W ])
≥ 2(α− ε)

3
≥ α

3
≥ αTL,

which yields (i).

Exploiting the (ε, q)-regularity of Jj,i+1 for every j ∈ Ii+1 again, we ob-

serve

α− ε ≤ dJ,q(U,W ) ≤ α + ε. (4.46)

In order to verify the (εTL, J, q)-regularity of (U,W ) it suffices to show

|dJ,q(U
′, W ′)− dJ,q(U,W )| ≤ εTL (4.47)

for set U ′ ⊆ U , W ′ ⊆ W satisfying

|U ′| = εTL|U | = εTL(1− µ)m

|W ′| = εTL|W | = εTL|Ii+1|m.
(4.48)

For j ∈ Ii+1 we bound the number of edges in J [U ′, W ′∩Vj] depending on the

order of W ′∩Vj. If |W ′∩Vj| ≥ εm we are enabled to use the (ε, q)-regularity

of Jj,i+1 and derive

(α− ε)q|U ′||W ′ ∩ Vj| ≤ e(J [U ′, W ′ ∩ Vj]) ≤ (α + ε)q|U ′||W ′ ∩ Vj|. (4.49)

On the other hand, if |W ′ ∩ Vj| < εm we use the (ξ, 3/2)-boundedness and

infer

0 ≤ e(J [U ′, W ′ ∩ Vj]) ≤
3

2
q|U ′||W ′ ∩ Vj|. (4.50)
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Clearly, we get a lower and an upper bound for e(J [U ′, W ′]) if we assume

the ’worst case scenario’: |W ′ ∩ Vj| < εm for as many as possible j ∈ Ii+1.

But, since εTL ≥ 3
√

ε > ε, at least for one j′ ∈ Ii+1 the order of W ′ ∩ Vj is

bounded from below by |Ii+1|εTLm− (|Ii+1| − 1)εm ≥ εm. This observation

accompanied by (4.48), (4.49), and (4.50) implies

(α− ε)q · εTL(1− µ)m ·
(
|Ii+1|εTLm− (|Ii+1| − 1)εm

)
≤ e(J [U ′, W ′]) ≤

(|Ii+1| − 1) · 3

2
q · εTL(1− µ)m · εm +

(α + ε)q · εTL(1− µ)m ·
(
|Ii+1|εTLm− (|Ii+1| − 1)εm

)
,

which yields

(α− ε)− |Ii+1| − 1

|Ii+1|
ε

εTL
(α− ε)

≤ dJ,q(U
′, W ′) ≤

(α + ε) +
|Ii+1| − 1

|Ii+1|
ε

εTL

(
3

2
− α− ε

)
.

Finally, we compare the lower (upper) bound from above with the upper

(lower) bound from (4.46) to verify (4.47). Therefore, with our choice of
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ε ≤ (εTL)3 and (4.45) we observe

|dj,q(U
′, W ′)− dj,q(U,W )|

≤ max

{∣∣∣∣(α− ε)− |Ii+1| − 1

|Ii+1|
ε

εTL
(α− ε)− (α + ε)

∣∣∣∣,∣∣∣∣(α + ε) +
|Ii+1| − 1

|Ii+1|
ε

εTL

(
3

2
− α− ε

)
− (α− ε)

∣∣∣∣
}

≤
{

2ε +
ε

εTL
, 2ε +

3ε

2εTL

}
≤ 7

2

(
εTL
)2

≤ εTL.

Since H is d-degenerate

|Ii+1| ≤ d

and, thus assertion (II) for q and Claim 27 (i) and (ii) show that all assump-

tions of the k-tuple lemma are satisfied for J [U,W ].

Therefore, the k-tuple lemma implies that, with probability 1− o(1), we

have ∣∣∣{b ∈ Wi :
∣∣∣Γ̃i+1(b)

∣∣∣ ≤ (1− γ)p|Ii+1|(1− µ)m
}∣∣∣ ≤ ηTL

(
im

i

)
.

The choice of ηTL in (4.44) gives∣∣∣{b ∈ Wi :
∣∣∣Γ̃i+1(b)

∣∣∣ ≤ (1− γ − µ + γµ)p|Ii+1|m
}∣∣∣ ≤ ηi

2
mi,

and hence (4.43) holds with probability 1 − o(1), by the simple observation

that∣∣∣Γ̃i+1(b)
∣∣∣ ≤ (1−γ−µ)p|Ii+1|m implies

∣∣∣Γ̃i+1(b)
∣∣∣ ≤ (1−γ−µ+γµ)p|Ii+1|m.
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4.4.3 Main proof

Our proof of the Counting Lemma, Lemma 10, follows immediately from

Lemmas 28 and 29 below. Lemma 28 is a probabilistic statement and asserts

that the probability of the occurrence of the event Xbad = X1 ⊆ G(n, q) is

o(1). On the other hand, Lemma 29 is deterministic and claims that if a

graph G is not in Xbad and J is a not necessarily induced subgraph of G

satisfying (I)–(IV), then J contains the “right” number of copies of H. We

apply the technical propositions from the last section in the proof of the

probabilistic Lemma 28 below.

Lemma 28. For arbitrary α and σ > 0, let γ, µ, ν be given by (4.36), and

let ε and ηi (i = 2, . . . , h− 1) be defined as stated in Section 4.4.1. Let G be

a random graph in G(n, q). Then

P(G ∈ Xbad(γ, µ, ν, η1, η2)) = o(1).

Proof. Formal logic implies

Xbad ⊆ X
(a)
1 ∨ (X

(b)
1 ∧ ¬X2) ∨

∨ X
(a)
2 ∨ (X

(b)
2 ∧ ¬X3) ∨

∨ ... ∨ ... ∨
∨ X

(a)
h−2 ∨ (X

(b)
h−2 ∧ ¬Xh−1) ∨ Xh−1,

and thus, by Propositions 25 and 26 (notice Xh−1 = X
(a)
h−1 by Definition 24),

we have

P (Xbad) ≤
h−2∑
i=1

(
P(X

(a)
i ) + P(X

(b)
i )
)

+ P(Xh−1) = o(1).

Lemma 29. For arbitrary α and σ > 0, let γ, µ, ν be given by (4.36), and

let ε and ηi for (i = 2, . . . , h− 1) be defined as stated in Section 4.4.1. Then
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every subgraph J of a graph G 6∈ Xbad(γ, µ, ν) satisfying conditions (I)–(IV)

contains at least

(1− σ)pe(H)mh

copies of H.

Proof. We shall prove by induction on i that the following statement holds

for all 1 ≤ i ≤ h:

(Si) Let J be a subgraph of G 6∈ Xbad such that (I)–(IV) apply. Then there

are at least (1− γ−µ− ν)ip
Pi

j=1 |Ij |mi different i-tuples in Wi \Bi that

induce Hi = H[{w1, . . . , wi}] in J [V1, . . . , Vi].

Suppose i = 1. Note that ¬Xbad implies that |V1 ∩ B1| ≤ η1m = νm.

Therefore V1 \ B1 contains at least (1− ν)m ≥ (1− γ − µ− ν)p0m1 copies of

H1.

We now proceed to the induction step. Assume i ≥ 2 and (Si−1) holds.

Therefore, Wi−1\Bi−1 contains at least (1−γ−µ−ν)i−1p
Pi−1

j=1 |Ij |mi−1 different

(i− 1)-tuples b = (v1, . . . , vi−1), each constituting the vertex set of a Hi−1 in

J [V1, . . . , Vi−1]. For every b ∈ Wi−1 \ Bi−1, we have

(i) |Γ̃i(b)| ≥ (1− γ − µ)p|Ii|m, and

(ii) dBi
(b) < νp|Ii|m.

Therefore, every such b extends to at least (1 − γ − µ − ν)p|Ii|m different

b′ ∈ Wi \ Bi that correspond to a Hi ⊆ J [V1, . . . , Vi]. This implies (Si), and

hence our induction is complete.

Assertion (Sh) and the choice of γ, µ, and ν in (4.36) give at least

(1− γ − µ− ν)hp
Ph

j=1 |Ij |mh = (1− σ)pe(H)mh

copies of Hh = H in J .

Clearly, Lemmas 28 and Lemma 29 together imply the Counting Lemma,

Lemma 10.
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