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Abstract. In this work, we develop a unified framework for establishing sharp thresh-

old results for various Ramsey properties. To achieve this, we view such properties as

non-colourability of auxiliary hypergraphs. Our main technical result gives sufficient

conditions on a sequence of such hypergraphs that guarantee that this non-colourability

property has a sharp threshold in subhypergraphs induced by random subsets of the

vertices.

Furthermore, we verify these conditions in several cases of interest. In the classical

setting of Ramsey theory for graphs, we show that the property of being Ramsey for

a graph H in r colours has a sharp threshold in Gn,p, for all r ⩾ 2 and all H in a class

of graphs that includes all cliques and cycles. In the arithmetic setting, we establish

sharpness of thresholds for the properties corresponding to van der Waerden’s theorem

and Schur’s theorem, also in any number of colours.
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1. Introduction

A typical result in Ramsey theory states that, given a structure A and an integer r ⩾ 2,

every colouring of the elements of any sufficiently ‘rich’ set V with r colours must contain

a monochromatic copy of A. The most prominent example is Ramsey’s theorem [19],

which states that, for any graph H and any integer r ⩾ 2, every r-colouring of the edges

of a sufficiently large complete graph must yield a monochromatic copy of H. Two other

famous instances, which actually predate [19], include van der Waerden’s theorem [28]

on arithmetic progressions and Schur’s theorem [27] on additive triples.

This research was supported by the grant I-1358-304.6/2016 from the German–Israeli Foundation for

Scientific Research and Development (GIF).
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In the 1980s, researchers have turned to studying Ramsey properties of random sets

while trying to better understand what ‘richness’ assumptions a set V needs to satisfy so

that it contains a monochromatic copy of a given structure A in every r-colouring. The

seminal work of Frankl and Rödl [7] proves the existence of a K4-free graph whose every

2-colouring contains a monochromatic triangle by considering the binomial random graph

Gn,p for an appropriately chosen edge density p. Soon afterwards,  Luczak, Ruciński, and

Voigt [16] initiated the systematic study of Ramsey properties of random graphs, which

has quickly become one of the central topics in probabilistic combinatorics.

Given a finite set V and a p ∈ [0, 1], we will write Vp to denote the random subset of

V obtained by independently retaining each of its elements with probability p. While

investigating, for a sequence of sets V whose sizes grow to infinity, the probability that Vp
has a given property P, one naturally encounters threshold phenomena. We say that a

sequence of probabilities p̂ is a threshold for a property P if the following two statements

hold: On the one hand, for any p≪ p̂, the probability that Vp ∈ P tends to zero; on the

other hand, for any p≫ p̂, the same probability tends to one. These two statements are

aptly termed the 0-statement and the 1-statement, respectively. Thresholds have been

a central theme in probabilistic combinatorics since its very inception and date back to

the seminal paper of Erdős and Rényi [5] which initiated the systematic study of random

graphs.

The celebrated theorem of Bollobás and Thomason [4] asserts the existence of a thresh-

old for any property of sets that is monotone and nontrivial; this includes all Ramsey

properties. However, this general theorem provides little clue regarding the location of

this threshold. As a result, the main focus of the vast majority of the many works on

Ramsey properties of random sets was locating the corresponding threshold. In par-

ticular, the locations of the thresholds for all of the aforementioned Ramsey properties

were discovered in a series of papers by Graham, Rödl, and Ruciński [14], Rödl and

Ruciński [20, 21, 22, 23], and Friedgut, Rödl, and Schacht [13]. Actually, these papers

went one step further and showed that the 0-statement and the 1-statement hold already

when p ⩽ c0 · p̂ and p ⩾ c1 · p̂, respectively, for some sequence p̂ and positive constants

c0 and c1.

It is very natural to ask whether this gap can be reduced even further. A property

is said to have a sharp threshold if, for some threshold p̂ and every positive ε, the

0-statement holds for p ⩽ (1 − ε)p̂ whereas the 1-statement holds for p ⩾ (1 + ε)p̂;

otherwise, we say that the property has a coarse threshold. The notion of sharpness is

closely reminiscent of the physical phenomenon of phase transition, where certain types

of matter undergo a profound change in behaviour when their temperature crosses a

certain point. Sharpness of thresholds has been established for several natural graph

properties, such as connectivity, the existence of a perfect matching, and Hamiltonicity.

On the other hand, many properties have been shown to have only a coarse threshold.

The presence of a sharp threshold, or a lack thereof, was demystified in the work of

Friedgut [8]. Roughly speaking, the main result of [8] states that a property has a coarse

threshold if in only if it is ‘local’ in the sense that it correlates with the property of con-

taining a subset of a bounded size. Friedgut’s criterion, and Bourgain’s formulation [8,

Appendix] that extends it to a more general setting, have been an instrumental tool in

proving that various properties have a sharp threshold.
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Even though more than twenty years have passed since the work of Friedgut was

published, only a handful of Ramsey properties have been shown to (or not to) have a

sharp threshold: First, Friedgut and Krivelevich [11] showed that for any tree T (bar

stars) and for any number of colours r (except for r = 2 in the case where T is the

path of length three), the property that any r-colouring of the edges of Gn,p contains a

monochromatic copy of T has a sharp threshold. Next, Friedgut, Rödl, Ruciński, and

Tetali [12] established sharpness of the threshold for the corresponding property of the

triangle, but only in the case where the number of colours r is equal to two. Much

later, Friedgut, Hàn, Person, and Schacht [10] proved sharpness of the threshold in the

context of van der Waerden’s theorem, again only in the two-colour case. Building

on ideas from [10], Schacht and Schulenburg [25] returned to the setting of Ramsey’s

theorem and managed to extend the result of [12] from triangles to all nearly-bipartite

graphs (see below) whereas Schulenburg [26] showed sharpness of the threshold in the

context of Schur’s theorem; both these results apply only to the two-colour case.

The main result of this paper is a common generalisation of all the above works,

save for [11]. We view Ramsey properties of random subsets as statements about non-

r-colourability of subhypergraphs that these random subsets induce in the hypergraph

H that represents copies of a given structure A in the ground set V . Our main re-

sult supplies sufficient conditions on a sequence of uniform hypergraphs that guarantee

that non-r-colourability of the random induced subhypergraph H[Vp], and thus the cor-

responding Ramsey property of random sets, has a sharp threshold. We postpone the

exact statement of our theorem to Section 2 and, in the remainder of this section, present

several interesting corollaries of this general result.

1.1. Graph properties. Given graphs G and H and an integer r ⩾ 2, we write G →
(H)r if every r-colouring of the edges of G contains a monochromatic copy of H. For the

vast majority of pairsH and r, the location of the threshold for the propertyGn,p → (H)r
is determined by a simple parameter of H, called the 2-density, defined by

m2(H) := max

{
eF − 1

vF − 2
: ∅ ≠ F ⊆ H

}
∪
{

1

2

}
.

The following statement was proved in a series of papers of Rödl and Ruciński [20, 21, 22].

(The necessity for the special treatment of paths of length three in the case r = 2,

originally missed by Rödl and Ruciński, was noticed by Friedgut and Krivelevich [11].)

Theorem 1.1 ([22]). Let r ⩾ 2 be an integer and suppose that H is a nonempty graph

whose at least one component is not a star or (in the case r = 2) a path of length three.

There exist positive constants c0 and c1 such that

lim
n→∞

P
(
Gn,p → (H)r

)
=

{
1 if p ⩾ c1 · n−1/m2(H),

0 if p ⩽ c0 · n−1/m2(H).

In other words, Theorem 1.1 states that, for most pairs H and r, the function

n−1/m2(H) is a threshold for the property Gn,p → (H)r. In the case where H is a

tree, Friedgut and Krivelevich [11] gave a complete characterisation of those pairs for

which the corresponding threshold is coarse (when H is a star or when r = 2 and H is a

path of length three) or sharp (all other pairs H and r). Deciding the sharpness of the

threshold for the property Gn,p → (H)r turned out to be much harder in the case where
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H contains a cycle. Here, our knowledge is only fragmentary. The monumental work of

Friedgut, Rödl, Ruciński, and Tetali [12] established sharpness of the threshold in the

case where H is the triangle and r = 2 using a very elaborate, long, and technical argu-

ment. The authors of [12] speculated that the threshold is sharp whenever H contains

a cycle, for any number of colours, but so far this has been confirmed only when H is

nearly-bipartite1 and strictly-2-balanced2 and r = 2 in the recent work of Schacht and

Schulenburg [25].

We prove that the threshold is sharp for a much broader family of graphs that includes

all cliques and for any number of colours. We call a graph H collapsible if, for every

edge e of H and every endpoint a of e, there is an edge f of H and a homomorphism

from H \f to H \e that maps both endpoints of f to a. It is is not difficult to verify (see

Section 7.1) that every graph that is either complete or nearly-bipartite is collapsible.

Unfortunately, not every graph is collapsible; for example, the Petersen graph is not

collapsible (see Appendix C).

Theorem 1.2. Suppose that H is a strictly 2-balanced, collapsible graph that is not a

forest and r ⩾ 2 is an integer. There exist positive constants c0 and c1 and a function

c(n) satisfying c0 ⩽ c(n) ⩽ c1 such that, for every positive ε,

lim
n→∞

P
(
Gn,p → (H)r

)
=

{
1 if p ⩾ (1 + ε)c(n) · n−1/m2(H),

0 if p ⩽ (1− ε)c(n) · n−1/m2(H).

Remark. In fact, when r = 2, we may replace the assumption that H is collapsible with

a seemingly weaker assumption that H is semi-collapsible (see Defintion 7.8). However,

we did not find an example of a graph that is semi-collapsible and not collapsible.

It would be extremely interesting to extend Theorem 1.2 to a broader class of graphs

as well as to verify whether or not the function c from the statement of the theorem has

a limit as n→∞.

1.2. Arithmetic properties. We say that a set Y of elements of some ambient additive

group is r-Schur, for some integer r ⩾ 2, and write that Y ∈ Sr if every r-colouring of the

elements of Y admits a monochromatic sum, by which we mean three distinct elements

a, b, c ∈ Y such that a + b = c, all coloured the same way. Schur’s theorem [27] states

that, for any fixed r, the set JNK := {1, . . . , N} is r-Schur whenever N is sufficiently

large. Similarly, given integers k ⩾ 3 and r ⩾ 2 and a set Y of elements of some

additive group, we say that Y is (k, r)-van der Waerden and write Y ∈ W(k, r) if every

r-colouring of the elements of Y admits a monochromatic k-term arithmetic progression.

The well-known theorem of van der Waerden [28] states that, for all k and r, the set

JNK is (k, r)-van der Waerden provided that N is sufficiently large (as a function of k

and r).

Rödl and Ruciński [22] proved that, for any k ⩾ 3 and any number of colours r ⩾ 2,

the function N−1/(k−1) is a threshold for the property W(k, r) in the set JNKp. Soon

afterwards, Graham, Rödl, and Ruciński [14] showed that the function N−1/2 is a thresh-

old for the property Sr, for any r ⩾ 2. Friedgut, Hàn, Person, and Schacht [10] showed

1A graph H is nearly-bipartite if χ(H \ e) ⩽ 2 for some edge e of H.
2A graph H is strictly 2-balanced if m2(F ) < m2(H) for every strict, nonempty subgraph F ⊆ H.
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that the former threshold is sharp whereas Schulenburg [26] proved the analogous state-

ment for the latter threshold. Both of these results are valid only for random subsets

of the cyclic group ZN and, crucially, only in the case r = 2. Even though the results

of [14, 22] are established for random subsets of JNK, their proofs can be easily adapted

to yield analogus statements for subsets of ZN . (In fact, the 1-statements in the non-

modular setting imply the 1-statements in the modular setting. As for the 0-statements,

the results presented in Section 1.3 below generalise and strengthen both these results.)

We establish sharpness of the thresholds for W(k, r) and Sr in random subsets of ZN
(in the case of Schur’s theorem, we additionally require N to be prime) for all k ⩾ 3

and all r ⩾ 2. As in [25, 26], the reason for replacing JNK with ZN is that our approach

requires the ground set to have a transitive group of symmetries that preserves the

structure defining the property (Schur triples or k-APs).

Theorem 1.3. For all integers k ⩾ 3 and r ⩾ 2, there are constants c0 ⩽ c1 and a

function c0 ⩽ c(N) ⩽ c1 such that for all ε > 0,

lim
N→∞

P
(
(ZN )p ∈ W(k, r)

)
=

{
1, p ⩾ (1 + ε)c(N) ·N−1/(k−1),

0, p ⩽ (1− ε)c(N) ·N−1/(k−1).

Theorem 1.4. For any integer r ⩾ 2, there are constants c0 ⩽ c1 and a function

c0 ⩽ c(N) ⩽ c1 such that for all ε > 0,

lim
N→∞
is prime

P
(
(ZN )p ∈ Sr

)
=

{
1, p ⩾ (1 + ε)c(N) ·N−1/2,

0, p ⩽ (1− ε)c(N) ·N−1/2.

1.3. List Ramsey problems. A main new theme in our analysis that paves the way

to proving sharp threshold results in the case where the number of colours is larger

than two is a list-colouring generalisation of the Ramsey problem. The main result of

this work views Ramsey results, such as Ramsey’s theorem, van der Waerden’s theo-

rem, or Schur’s theorem mentioned above, as statements about non-r-colourability of

certain hypergraphs. In the proof of this result, however, we encounter the more general

problem of list colouring a hypergraph from a given assignment of lists (of size two)

to its vertices, which can be viewed as a list Ramsey problem. Let us mention that a

list colouring variant of Ramsey’s theorem that is closely related to the one considered

here was recently introduced by Alon, Bucić, Kalvari, Kuperwasser, and Szabó [1] and

subsequently studied by Fox, He, Luo, and Xu [6].

In this section, we consider threshold phenomena associated with such list Ramsey

problems in the context of van der Waerden’s and Schur’s theorems. We say that a set Y

of elements of an additive group is list-Schur if there exists an assignment of two-element

lists to the elements of Y such that every colouring of the elements of Y with colours

from their lists must admit a monochromatic sum. We define the notion of a list-k-van

der Waerden sets analogously. Note that every 2-Schur (resp. (2, k)-van der Waerden)

set is also list-Schur (resp. list-van der Waerden), but the converse is not necessarily

true. Our arguments yield, with very little extra work, the following strengthenings of

the 0-statements of the aforementioned results of [14, 22] that establish the location of

the threshold for van der Waerden’s and Schur’s theorems in random sets of integers.

Theorem 1.5. For every integer k ⩾ 3, there is a constant c such that, for every

sequence X of sets of elements of an additive group such that |X| → ∞ and every
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p ⩽ c · |X|−1/(k−1),

P
(
Xp is list-k-van der Waerden

)
→ 0.

Theorem 1.6. There is a constant c such that, for every sequence X of sets of elements

of an additive group such that |X| → ∞ and every p ⩽ c · |X|−1/2,

P
(
Xp is list-Schur

)
→ 0.

In fact, both Theorems 1.5 and 1.6 are straightforward consequences of the following

more general statement, whose short (two and a half pages) proof is given in Section 7.4.

Theorem 1.7. Suppose that s ⩾ 3 and that a sequence of s-uniform hypergraphs H
satisfies ∆2(H) = O(1). There is a positive c such that, for every p ⩽ c · v(H)−1/(s−1),

P
(
H[Vp] is 2-choosable

)
→ 1.

1.4. Organisation. The rest of the paper is organised as follows. In Section 2, we

introduce our general theorem, which gives a sufficient conditions (which we discuss in

detail) on a sequence of hypergraphs that guarantee a sharp threshold for the property

of r-colourability. Section 3 offers an outline of the proof of this general theorem. At

the end of that section, we formulate two key statements that imply our result.

The bulk of the work is spent proving these statements. Section 4 provides some

external tools, such as the sharp threshold criterion and the hypergraph container lemma,

which we then spend some time honing to our needs. Subsequently, we prove both

statements in Sections 5 and 6.

Finally, having wrapped up the proof of the main result, Section 7 turns to applying

the theorem in the various settings we mentioned previously: for graphs, arithmetic

progressions, and Schur triples.

2. The main result

As we have mentioned above, we will view Ramsey properties of random sets as

statements about non-r-colourability of random hypergraphs. Given a hypergraph H
with vertex set V and a real p ∈ [0, 1], we will denote by Hp the subhypergraph of H
induced by the random set Vp. If the edges of H are all copies of a structure A in a set

V (for example, the edge sets of all copies of a graph H in Kn), then non-r-colourability

of Hp is equivalent to the random set Vp having the corresponding r-colour Ramsey

property with respect to A (in our example, the property Gn,p → (H)r). Since we are

interested in threshold phenomena, we will almost always consider infinite sequences of

hypergraphs whose sizes tend to infinity.

Our main result supplies a sufficient condition on a sequenceH of uniform hypergraphs

that guarantees that the property thatHp is not r-colourable has a sharp threshold. This

sufficient condition is a conjunction of five assumptions. We first give a brief overview

of these five assumptions and state our result and return to discussing them in detail in

the remainder of this section.

2.1. Overview. Suppose that H is a sequence of s-uniform hypergraphs and let r ⩾ 2

be an integer. The following function takes centre stage in our considerations:

pH :=

(
v(H)

e(H)

)1/(s−1)

.



SHARP THRESHOLDS FOR RAMSEY PROPERTIES 7

In order to phrase the five assumptions on the sequence H that guarantee that non-r-

colourability has a sharp threshold in Hp, we need to introduce three simple notions. A

star in H is a collection of r−1 edges that pairwise intersect in a single vertex called the

centre of the star. A constellation is a collection of s disjoint stars whose centres form

an edge of H. A star formed by edges A1, . . . , Ar−1 and centred at v is rainbow if there

are distinct colours i1, . . . , ir−1 ∈ JrK such that, for each j, all vertices of Aj \ {v} are

coloured ij . A constellation is rainbow if its s constituent stars are rainbow and have

the same colour pattern (the set {i1, . . . , ir−1}). The conjunction of the following five

assumptions implies that non-r-colourability has a sharp threshold in Hp:

(A1) Symmetry. The hypergraph H is symmetric in the sense that its group of auto-

morphisms Aut(H) acts transitively on the vertex set of H.

(A2) Non-clusteredness. The hypergraph H is non-clustered, which means (roughly

speaking) that H satisfies the assumptions of the hypergraph container lemma

with density parameter pH. (See Section 2.2.)

(A3) Weak threshold. The function pH is a threshold for the property that Hp is not

r-colourable.

(A4) Choosability of typical bounded-sized subsets. The random set V (H)pH a.a.s. does

not contain any set W with O(1) vertices for which H[W ] is not choosable from

2-element lists of colours in JrK. (See Section 2.3.)

(A5) The rainbow star-constellation property. Every partial r-colouring of the vertices

of H that makes a constant proportion of its stars rainbow must make a constant

proportion of its constellations rainbow as well. (See Section 2.4.)

Theorem 2.1. Let s ⩾ 3 and r ⩾ 2 be integers and and let H be a sequence of s-

uniform hypergraphs. It H satisfies assumptions (A1)–(A5), then there exists a function

p̂ = Θ(pH) such that the following holds for every positive ε:

P (Hp is r-colourable)→

{
1 if p ⩽ (1− ε)p̂,
0 if p ⩾ (1 + ε)p̂.

Verifying assumptions (A1) and (A2) for our applications of the theorem will be com-

pletely straightforward. Assumption (A3) is not at all easy to check, but, for the three

applications of the main theorem we consider in this work, it had been established by

earlier works. Moreover, it is now standard to derive the 1-statement in (A3) from

assumption (A2) and a property we term robust non-colourability, see Section 2.5. Veri-

fying assumption (A4), which is closely related to establishing the 0-statement in (A3),

takes the most effort. Assumption (A5) holds trivially when every set of Ω(v(H)) vertices

induces Ω(e(H)) edges, which is the case in the context of van der Waerden’s theorem

and Ramsey’s theorem for bipartite graphs. In the two remaining applications of the

theorem discussed here—Schur’s theorem and Ramsey’s theorem for nonbipartite, col-

lapsible graphs—establishing this assumption requires a nontrivial argument. Finally,

let us mention that there are natural sequences of hypergraphs, for which one would ex-

pect non-r-colourability to have a sharp threshold, that satisfy assumptions (A1)–(A4),

but fail to satisfy (A5), see Appendix C.
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2.2. Non-clusteredness. Given a hypergraph H and a set T ⊆ V (H), we will denote

by degH(T ) the degree of T in H, that is,

degH(T ) := |{A ∈ H : T ⊆ A}|.

Further, for an integer t ⩾ 1, we let ∆t(H) be the maximum degree of a t-element set of

vertices, defined by

∆t(H) := max{degH(T ) : T ⊆ V (H) and |T | = t}.

We are now ready to define the notion of non-clusteredness from assumption (A2).

Definition 2.2. A sequence of nonempty, s-uniform hypergraphs H is called non-

clustered if

∆1(H) = O

(
e(H)

v(H)

)
and ∆t(H)≪ pt−1

H · e(H)

v(H)
for t ∈ {2, . . . , s− 1}.

Fact 2.3. Suppose that H is a non-clustered sequence of s-uniform hypergraphs.

(i) We have

∆s(H) = 1 = ps−1
H · e(H)

v(H)
.

(ii) If s ⩾ 3, then pH → 0.

Fact 2.4. The following sequences of hypergraphs are non-clustered:

• The hypergraph of (the edge sets of) copies of a strictly 2-balanced graph in Kn.

• The hypergraph of k-term arithmetic progressions in the cyclic group ZN .
• The hypergraph of Schur triples in any Abelian group.

2.3. Choosability of typical bounded-sized subsets. Recall that a hypergraph G is

2-choosable from a set C of colours if, for every assignment L : V (G)→
(
C
2

)
of 2-element

lists of colours to the vertices of G, there exists a proper colouring of G that assigns to

each vertex v ∈ V (G) a colour from its list Lv. Given a hypergraph H and integers k ⩾ 1

and r ⩾ 2, define

Nk(H) :=
{
W ⊆ V (H) : |W | ⩽ k and H[W ] is not 2-choosable from JrK

}
.

The precise statement of assumption (A4) is that, for every k ⩾ 1,

P
(
V (H)pH ⊇W for some W ∈ Nk(H)

)
→ 0. (1)

In fact, our argument may require that (1) holds also when we replace pH with some

p = Θ(pH). Fortunately, these two statements are completely equivalent, see Lemma 4.6.

Finally, it is worth pointing out that the assumption on choosability of typical bounded-

sized subsets is necessary for non-2-colourability of Hp to have a sharp threshold at some

p̂ = Θ(pH). Indeed, if (1) fails for some constant k, then the probability that V (H)p
contains some W ∈ Nk(H), which clearly makes Hp not 2-colourable, is bounded away

from zero for every p = Ω(pH).
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2.4. The rainbow star-constellation property. Our final assumption (A5) has a

much less obvious connection to the problem at hand, but it conveniently fits into our

framework.

Definition 2.5. A collection A1, . . . , Ak of edges of a hypergraph H is called a k-star

(or simply a star) if there exists a vertex v of H such that Ai ∩Aj = {v} for every pair

of distinct i, j ∈ JkK; the vertex v is called the centre of the star and A1 ∪ · · · ∪ Ak is

called the support of the star.

Definition 2.6. A collection of stars with pairwise-disjoint supports whose centres form

an edge of H is called a constellation. The edge induced by the centres of the stars

forming a constellation is called the base of the constellation.

Definition 2.7. Suppose that some vertices of a hypergraph H are coloured with the

elements of JrK, for some integer r ⩾ 2, and let i ∈ JrK be an arbitrary colour. We say

that an (r − 1)-star {Aj}j∈JrK\{i} centred at v is i-rainbow if, for every j ∈ JrK \ {i}, all

vertices of Aj \ {v} are coloured j. A constellation is i-rainbow if all stars comprising it

are i-rainbow. Finally, a star/constellation is rainbow if it is i-rainbow for some i ∈ JrK.

A fairly straightforward calculation (Lemma 6.3) shows that every non-clustered se-

quence of s-uniform hypergraphs H contains Θ
(
e(H)r−1/v(H)r−2

)
many (r − 1)-stars

and Θ
(
e(H)s(r−1)+1/v(H)s(r−1)

)
constellations of (r − 1)-stars. We will say that such

a sequence H has the rainbow star-constellation property for r colours if every partial

r-colouring of the vertices of H that makes a constant proportion of all its (r − 1)-stars

rainbow also makes a constant proportion of all its constellations rainbow.

Definition 2.8. Given an integer r ⩾ 2 and a sequence of s-uniform hypergraphs H,

we say that H has the rainbow star-constellation property for r colours if every partial

colouring of V (H) with elements of JrK that induces Ω
(
e(H)r−1/v(H)r−2

)
rainbow stars

must also induce Ω
(
e(H)s(r−1)+1/v(H)s(r−1)

)
rainbow constellations.

2.5. The weak threshold assumption. We conclude this section with a short discus-

sion on how assumption (A3) might possibly be derived from (A2) and (A4) and yet

another ‘supersaturation’ assumption on H that we term robust non-r-colourability.

Definition 2.9. Given an integer r ⩾ 2, we say that a sequence of hypergraphs H
is robustly non-r-colourable if every r-colouring of the vertices of H makes a constant

proportion of the edges of H monochromatic, that is, if every c : V (H)→ JrK satisfies

r∑
i=1

e
(
H[c−1(i)]

)
= Ω

(
e(H)

)
.

The following facts can be derived from the corresponding Ramsey statements using

simple averaging arguments and are thus considered folklore.

Fact 2.10. The following sequences of hypergraphs are robustly non-r-colourable:

• The hypergraph of (the edge sets of) copies of a fixed nonempty graph in Kn.

• The hypergraph of k-term arithmetic progressions in the cyclic group ZN .
• The hypergraph of Schur triples in any Abelian group.
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(a) A star

(b) A rainbow constellation

If a sequence of hypergraph is non-clustered and robustly non-r-colourable, then

O(pH) is an upper bound on any threshold function of non-r-colourability. This fact

can be shown by a straightforward adaptation of the argument of Nenadov and Ste-

ger [18], who showed that robust (r+ 1)-colourability of the sequence H of hypergraphs

representing copies of a given graph H in Kn implies non-r-colourability of a typical

Hp for all p ≫ n−1/m2(H). (See also [3, Section 8] for a slightly different version of this

argument that shows the exact statement of the proposition below.) For the sake of

completeness, we recreate this argument in Appendix A.

Proposition 2.11. Let r ⩾ 2 and s ⩾ 2 be integers. For every non-clustered, robustly

non-r-colourable sequence H of s-uniform hypergraphs, there exists a constant C such

that, for every p ⩾ CpH,

P
(
Hp is r-colourable

)
⩽ exp

(
−Ω
(
p · v(H)

))
.

Remark. If s ⩾ 3, then Fact 2.3 implies that p · v(H)→∞ when p = Ω(pH).

It would be worth looking into the following problem, motivated by [18, Lemma 6]

and [17, Meta-Theorem].

Problem 2.12. Does assumption (A4), with r = 2, imply that Ω(pH) is a lower bound

on the threshold for every non-clustered sequence of s-uniform hypergraphs, provided that

s = 3?

Perhaps one could show this after strengthening the assumption of being non-clustered

by further assuming that, for each t ∈ {2, . . . , s− 1}, the inequality ∆t(H)≪ pt−1
H · e(H)

v(H)

hides some polynomial (in v(H)) factor. We remark that the three families of sequences of

hypergraphs from the statement of Fact 2.4 all enjoy such strengthened non-clusteredness

property.
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3. An outline of the proof

Assume that r ⩾ 2 and s ⩾ 3 and suppose that H is a sequence of s-uniform hyper-

graphs that satisfies assumptions (A1)–(A5). For the sake of brevity, we will denote the

vertex set of H by V , its cardinality by N , and write that a set W ⊆ V is r-colourable

if and only if the induced subhypergraph H[W ] is. Finally, assume to the contrary that

the threshold for Vp not being r-colourable is coarse.

3.1. Boosters and dichotomy. Our point of departure will be Friedgut’s criterion, in

Bourgain’s formulation, which tells us that there is a positive constant c, a sequence p

satisfying

c ⩽ P (Vp in not r-colourable) ⩽ 1− c, (2)

and a family B of constant-sized subsets of V such that

P (∃B ∈ B s.t. B ⊆ Vp) > c (3)

and every B ∈ B is a booster.

Definition 3.1. Given δ > 0 and p ∈ [0, 1], a set B ⊆ X is called a (p, δ)-booster if

P (Vp is not r-colourable | B ⊆ Vp) > P (Vp is not r-colourable) + δ.

Observe that assumption (A3) and (2) imply that p = Θ(pH). Using the symmetry

assumption (A1), we will expand on Friedgut’s criterion and show that a typical sample

Z ∼ Vp exemplifies a sort of dichotomy, in the following precise sense.

Step I. There are constants α, ε > 0, an integer K, and p = Θ(pH) such that, for any

family F ⊆
( H
⩽K

)
with

P (∃B ∈ F s.t. B ⊆ Vp) < α, (4)

there is a set B0 ∈
(V (H)

⩽K

)
\F such that the following holds. For infinitely many values N ,

the set Z ∼ Vp satisfies the following with probability larger than α:

P (Z ∪ h(B0) is not r-colourable | Z) > α,

where h is taken u.a.r. from the set of symmetries of H, and

P (Z ∪ Vεp is not r-colourable | Z) ⩽ 1/2.

Remark. Note that the second part of the dichotomy, stating that the probability that

Z ∪Vεp is not r-colourable is strictly less than one, implies that Z must be r-colourable.

In other words, we are guaranteed the existence of two sets, B0 and Z, with two

properties that seem at odds. While a positive proportion of the symmetric copies of

the constant-sized B0 interact with Z—that is, Z ceases to be r-colourable once we add

them—the probability that the random set Vεp interacts with Z is bounded away from

one. We will call these interacting symmetric copies of B0 activated boosters.

Furthermore, we are allowed to trim some undesirable properties from both B0 and

Z. In the case of B0, this can be done by requiring that B0 /∈ F whereas in the case

of Z, this can be done as Z ∼ Vp satisfies the assertion with probability bounded away

from zero. We should remark at this point that the family F we are going to choose

will be symmetric, i.e., if B ∈ F , then h(B) ∈ F for every h ∈ Aut(H). Therefore, if

B0 /∈ F , then the same is true for every other symmetric copy of it.
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Our aim is to use these two statements to get a contradiction. Specifically, we will show

that, with a suitable choice of properties for B0 and Z that exploit assumptions (A2)–

(A5), the existence of many activated boosters implies that Z ∪ Vεp is not r-colourable

with probability arbitrarily close to one. The methodology of the argument will be

very much in tune with the previous works of Friedgut, Hán, Person, and Schacht [10],

Schacht and Schulenburg [25], and Schulenburg [26], who established the existence of

sharp thresholds for various Ramsey properties in the case where there are only two

colours. However, in order to argue for sharpness in three or more colours, we require

several novel ideas.

We will present our proof in two rounds. The first round will be a (spoiler alert) failed

attempt, which will still show in essence how to utilise the assumption about choosability

of typical subsets of bounded size (which we will enforce on B0 via an appropriate choice

of F) to gain structural information on proper r-colourings of Z. The second round

will address the breaking point of that approach, a very large union bound over r-

colourings of Z, and remedy it using the Hypergraph Container Lemma of Saxton and

Thomason [24] and also of Balogh, Morris, and Samotij [2]. This approach will, in turn,

require us to strengthen one of the claims made in the first round.

3.2. First attempt. We start with Step I and get Z and a family of interacting boosters,

all of which are symmetric copies of B0. Define the hypergraph B on the vertex set V

whose edges are all symmetric copies of B0, that is, all h(B0) with h ∈ Aut(H). Since

H is symmetric, B is regular and, therefore,

∆1(B) = |B0| ·
e(B)

v(H)
⩽ K ·N−1 · e(B).

We will impose some structural assumptions on B0. It is natural to require that B0 is

r-colourable, since otherwise Z ∪ h(B0) would be not r-colourable with probability one,

which would in turn suggest that the threshold is actually coarse. (This was the only

assumption on B0 imposed in previous works [10, 25, 26].) We will go one step further.

Instead of ensuring that B0 is only r-colourable, we will make use of assumption (A4)

and require that it is 2-choosable from lists in JrK. We may do so as (A4) implies that the

family F comprising all non-2-choosable subsets of V with at most K vertices satisfies

the condition (4) in Step I. Note that this property is symmetric, so requiring it from

B0 guarantees that it is fulfilled by all B ∈ B.

Let BZ ⊆ B comprise only the copies of B0 that interact with Z, that is,

BZ :=
{
B ∈ B : Z ∪B is not r-colourable

}
.

The first assertion of Step I translates to e(BZ) > α·e(B). One of the desirable properties

of Z would allow us to find a subfamily B′Z ⊆ BZ of our activated boosters—satisfying

e(B′Z) ⩾ α/2 · e(B)—whose members interact with Z in a very well-behaved manner.

First, if B ∈ B′Z , then B and Z are disjoint. Further, suppose that some activated

booster B ∈ BZ does not intersect Z. Since both Z and B are r-colourable, the fact that

Z ∪B is not means that there is an edge of H[Z ∪B] that intersects both B and Z. Call

the set of all such edges the interface between B and Z. The second desirable property,

which we may impose using assumption (A2), is that, if B ∈ B′Z , then each edge in

the interface between B and Z has exactly one vertex in B (and the remaining vertices

in Z).
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Definition 3.2. Given U ⊆ V , let Col(U) denote the set of all proper r-colourings of

U , i.e., colourings that do not admit a monochromatic edge.

Definition 3.3. A set U ⊆ V threatens a vertex v ∈ V if there are u1, . . . , us−1 ∈ U
such that {u1, . . . , us−1, v} is an edge of H.

Let ψ ∈ Col(Z) be a proper colouring of Z. We say that ψ forces a vertex v ∈ V to

the colour i ∈ JrK if v is threatened by ψ−1(j) for every j ̸= i. (Equivalently, ψ forces

v to the colour i if and only if v is the centre of an i-rainbow star.) The motivation

behind the definition is the following fact: If ψ forces v to the colour i, then every proper

colouring of Z ∪ {v} that extends ψ must assign the colour i to v. Let Fi(ψ) denote the

set of vertices that ψ forced to the colour i and let F (ψ) := F1(ψ) ∪ · · · ∪ Fr(ψ) be the

set of forced vertices.

Step II (first attempt). There is some λ > 0 such that |F (ψ)| ⩾ λN for all ψ ∈ Col(Z).

We prove this statement in two steps. First, we show that in order to force a constant

fraction of the vertices, it is enough to force at least one vertex in a constant fraction of

the activated boosters. Second, we show that every colouring ψ ∈ Col(Z) forces a vertex

inside every activated booster.

Lemma 3.4 (Many forced boosters → many forced vertices). If F is a set which inter-

sects a constant fraction of the activated boosters, then |F | = Ω(N).

Proof. Let β > 0 be some constant such that F intersects β · e(B′Z) activated boosters.

Since each vertex belongs to at most ∆1(B) boosters, we have

β · α/2 · e(B) ⩽ β · e(B′Z) ⩽ |F | ·∆1(B) ⩽ |F | ·K ·N−1 · e(B),

which implies that F has Ω(N) elements. □

Lemma 3.5 (Activated booster → forced booster). Every ψ ∈ Col(Z) forces at least

one vertex in every booster.

Proof. Suppose that this is not true and there is a booster B ∈ B′Z whose every vertex is

not threatened by at least two colour classes of ψ. Since B is 2-choosable, we would be

able to find a colouring ϕ ∈ Col(B) using only these non-threatening colours. However,

since Z ∪ B is not r-colourable, there must be an edge {u1, . . . , us−1, b} ∈ H, where

u1, . . . us−1 ∈ Z and b ∈ B, such that ψ(u1) = · · · = ψ(us−1) = ϕ(b). (Indeed, since

B ∈ B′Z , every edge in the interface between B and Z has exactly one vertex in B.) This

would mean that, contrary to our assumption, ψ−1(ϕ(b)) threatens b. □

By the pigeonhole principle, one of the forced sets, say Fi(ψ), has Ω(N) vertices. We

would like to show that this set induces Ω(e(H)) edges. (This is essentially equivalent to

Ω(e(H)) edges being the base edge of an i-rainbow constellation.) Such a claim is always

true when H describes a ‘degenerate’ structure; e.g., if H is the hypergraph of copies of a

bipartite graph or when H is the hypergraph of arithmetic progressions. Unfortunately,

some hypergraphs of interest (e.g., the hypergraph of copies of any non-bipartite graph)

contain independent sets of cardinality Ω(N). However, using the assumption that H
has the rainbow star-constellation property, we will be able to argue that a.a.s. Z ∼ Vp
has the property that, for every ψ ∈ Col(Z), every large set Fi(ψ) must induce many

edges. With foresight, we state a stronger version of this property that extends also to

partial r-colourings of Z.
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Step III. For any β > 0, there exists a γ > 0 such that a.a.s. Z ∼ Vp has the following

property: For any partial r-colouring ψ of Z and any i ∈ JrK, if |Fi(ψ)| ⩾ βN , then

Fi(ψ) induces at least γ · e(H) edges.

The proof of this statement will appear in Section 6. We will just mention that it

employs the Hypergraph Container Lemma to transfer the supersaturation statement

given by the rainbow star-constellation assumption into the sparse regime.

Note now that if e ⊆ Fi(ψ) is an edge, then ψ cannot be extended to e while staying

proper. This is because the elements of Fi(ψ) must all be coloured i, but this makes e

monochromatic. The fact that Fi(ψ) contains Ω(e(H)) edges, together with the assump-

tion that the hypergraph H is not clustered, makes it extremely unlikely that such an

edge will fail to appear in Vεp. The following estimate follows from Janson’s inequality

(Theorem 4.9).

Lemma 3.6. Suppose that A ⊆ V induces Ω(e(H)) edges. The probability that Vεp
avoids all edges of A is bounded from above by exp(−Ω(pN)).

Thus far, we have demonstrated that the probability that a given ψ ∈ Col(Z) could

be extended to Z ∪ Vεp is bounded from above by exp(−Ω(pN)). However, in order

to get the desired contradiction to the first assertion of Step I, we would like to show

that the probability that some proper colouring of Z can be extended to Vεp tends to

zero. To this end, let us take the union bound over all proper colourings. Alas, the only

bound we have at our disposal is |Col(Z)| = exp(O(|Z|)) = exp(O(pN)), which is not

good enough. Moreover, we cannot significantly improve the upper bound established

by Lemma 3.6, since the set Vεp is empty with probability approximately exp(−εpN).

3.3. Second attempt. Since the breaking point of our first attempt was the union

bound over all proper colourings of Z, we will try to make this union bound more

efficient by excluding many colourings in Col(Z) at once. To this end, note that if ψ0

were a partial colouring of Z that forced Ω(N) vertices to some colour, we could still

apply Step III and Lemma 3.6 to learn that the probability that ψ0 can be extended to

Vεp is at most exp(−Ω(pN)). Moreover, if ψ0 cannot be extended to Vεp, then neither

can any proper colouring ψ ∈ Col(Z) that extends ψ0. It thus suffices to find a family of

exp(o(|Z|)) = exp(o(pN)) partial colourings of Z, each forcing a constant proportion of

the vertices to some colour, such that every element of Col(Z) is an extension of some

member of the family.

As was hinted before, we will employ the Container Lemma [2, 24] to find such a family.

To this end, we will identify every colouring ψ : Z → JrK with the set {(z, ψ(z)) : z ∈ Z}
and define a hypergraph T on the vertex set Z × JrK such that every ψ ∈ Col(Z) will

correspond to an independent set of T . The Container Lemma will allow us to construct

a family C of subsets of Z × JrK, which we will call containers, such that:

(C1) Any independent set of T , and thus every ψ ∈ Col(Z), is contained in some

C ∈ C.
(C2) Every container C ∈ C induces only a small fraction of the edges of T .

We will say that a set C ⊆ Z × JrK is a restricted colouring if every z ∈ Z has at least

one ‘available’ colour in C, i.e., if (z, i) ∈ C for some i ∈ JrK. Note that a set C ⊆ Z×JrK
that is not a restricted colouring cannot contain any colouring of Z. Given a restricted

colouring C ⊆ Z × JrK, we define its determined colouring ψC to be the maximal partial
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colouring agreed upon by all the colourings contained by C. (That is, ψC(z) = i if

and only if i is the unique colour such that (z, i) ∈ C.) Note that (C1) implies that

every ψ ∈ Col(Z) extends the determined colouring ψC of some C ∈ C. The crux of our

argument is showing that one may define T in such a way that condition (C2) implies

that, for every C ∈ C, the determined colouring ψC forces many vertices to some colour,

so that we can apply Step III.

The precise definition of the hypergraph T is somewhat technical, but the idea behind

it is fairly straightforward. Given a booster B ∈ B′Z , we will say that colourings ψ : Z →
JrK and ϕ : B → JrK are consistent if no edge in the interface between B and Z is

monochromatic under ψ ∪ ϕ. Since each such interface edge has exactly one vertex in

B (by the definition of B′Z), two colourings ψ and ϕ are consistent if and only if no

vertex b ∈ B is threatened by ψ−1(ϕ(b)). A key observation is that the fact that two

colourings ψ and ϕ as above are consistent always has a small ‘witness’ set in Z × JrK.
Indeed, for a given ϕ, one can certify that ψ is consistent with ϕ by specifying the values

of ψ on vertices of Z that belong to edges of the interface between B and Z. Such

minimal ‘witness’ sets for all B ∈ B′Z and all proper colourings ϕ ∈ Col(B) are the edges

of our hypergraph T . The fact that every B ∈ B′Z is an activated booster means that

no two colourings ψ ∈ Col(Z) and ϕ ∈ Col(B) are consistent and, consequently, every

ψ ∈ Col(Z) is an independent set of T .

We say that a restricted colouring C inter-activates a booster B ∈ B′Z if every proper

colouring ϕ ∈ Col(B) is inconsistent with each colouring of Z contained in C. Our

definition of T guarantees that a restricted colouring C will induce an edge in T for

every booster B ∈ B′Z which it fails to inter-activate. (This edge will be a witness to

some pair ϕ ∈ Col(B) and ψ ⊆ C being consistent.) Since every container C ∈ C induces

only a small proportion of all edges of T , it must therefore inter-activate all but a small

fraction of all boosters in B′Z . Finally, an argument similar to the one used in the proof

of Lemma 3.5 shows that if C inter-activates a booster B, then ψC must force at least

one vertex in B to some colour. (A key insight here is realising that the property that C

inter-activates a booster depends only on the determined colouring ψC .) This implies,

by Lemma 3.4, that ψC must force Ω(N) vertices.

Our final concern is that the family C of containers will have at most exp(o(|Z|))
elements. In order to guarantee this, we will need to demonstrate some control over the

edge set of T . In fact, it will be sufficient to bound the largest size of an edge of T by

an absolute constant and to show that ∆1(T ) · |Z| = O(e(T )) and ∆2(T ) · |Z| ≪ e(T ).

Luckily, this will be possible yet again by trimming further undesirable properties from Z

in Step I. For example, the expected number of interacting edges between Vp and B is

bounded by some constant and consequently the witness sets will also be constant sized.

Using this and other related properties of Z and the booster family, we will be able to

show that the hypergraph T is ‘well-behaved’, which will allow us to use the Container

Lemma to derive the following.

Step II (refined). There is a family C of exp(o(|Z||)) subsets of Z×JrK with the following

properties:

(1) Every proper colouring of Z is an extension of the determined colouring ψC of

some container C ∈ C.
(2) For every container C ∈ C, the determined colouring ψC forces Ω(N) vertices.
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Our union bound argument is now brought back to life and the proof is finally settled.

3.4. Finalising the argument. Our goal for the next three sections is to tie up the

loose ends of the proof, by filling in the gaps in the outline presented above. Recall that

we want to show that, assuming non-r-colourability does not have a sharp threshold in

Hp, the following statements hold for Z ∼ Vp with probability bounded away from zero:

(I) For some constant ε > 0, the hypergraph H
[
Z ∪ Vεp

]
is r-colourable with prob-

ability at least 1/2.

(II) Each proper r-colouring of Z extends one of exp(o(|Z|)) partial colourings, each

of which forces Ω(N) elements in V to some colour.

(III) Each of our partial colourings admits a set of Ω(e(H)) edges whose all vertices

are forced to the same colour.

As we argued above, this would lead to a contradiction. Indeed, each individual partial

colouring from the family cannot be extended to any set that contains one of the Ω(e(H))

‘forced’ edges. By Lemma 3.6, the probability that Vεp omits all these edges is at most

exp
(
−Ω(pN)

)
. A union bound over all partial colourings yields that H

[
Z ∪ Vεp

]
is not

r-colourable with probability tending to one.

We prove statements (I), (II), and (III) over the course of Sections 4, 5, and 6. More

precisely, Section 4 contains the formal statements of Friedgut’s sharp threshold cri-

terion, along with a routine corollary thereof (Step I in the proof outline), as well as

the statements of the Hypergraph Container Lemma and Janson’s inequality, of which

Lemma 3.6 is a simple corollary.

Next, in Section 5, we show how the abundance of boosters can be used to construct

the efficient family of partial colourings (the refined version of Step II in the proof

outline). In order to formally phrase this result using the notions from assumption (A5),

we shift the terminology from forced vertices to (centres of) rainbow stars. The result

is the following theorem.

Theorem 3.7. Suppose that s ⩾ 3 and r ⩾ 2 and let H be a sequence of s-uniform

hypergraphs that satisfies assumptions (A1)–(A4). If non-r-colourability does not have

a sharp threshold in Hp, then there exist a constant ε > 0 and a subsequence p = Θ(pH)

such that, letting Z ∼ V (H)p, the following holds with probability at least ε:

(i) The hypergraph H
[
Z ∪ V (H)εp

]
is r-colourable with probability at least 1/2.

(ii) There exists a family Ψ of exp
(
o(|Z|)

)
partial JrK-colourings of Z such that

(a) every proper JrK-colouring of H[Z] extends some partial colouring in Ψ and

(b) for every colouring in Ψ, some Ω
(
v(H)

)
vertices of H are centres of rainbow

stars.

Finally, Section 6 provides a proof of the following sparse analogue of the rainbow

star-constellation property (Step III in the proof outline). We remark again that this

theorem is trivial if the hypergraph H is ‘degenerate’ in the sense that every subset of

Ω(N) vertices induces Ω(e(H)) edges. As a result, we are spared from a bulk of the proof

when H is the hypergraph of copies of a bipartite graph or the hypergraph of arithmetic

progressions of a prescribed length.

Theorem 3.8. Suppose that s ⩾ 3, r ⩾ 2, and ε > 0. Let H be a sequence of s-uniform

hypergraphs that satisfies assumptions (A2) and (A5) and suppose that Z ∼ V (H)p for



SHARP THRESHOLDS FOR RAMSEY PROPERTIES 17

some p = Θ(pH). With probability at least 1− ε, for every partial colouring ψ of Z with

elements of JrK, if Ω
(
v(H)

)
vertices of H are centres of rainbow stars, then Ω

(
e(H)

)
edges of H are bases of rainbow constellations.

Theorems 3.7 and 3.8, supplemented with Lemma 3.6, imply Theorem 2.1.

4. Preliminaries and tools

4.1. Coarse thresholds. The first piece of machinery that we require is a character-

isation of properties with coarse thresholds. In the proof outline, this was captured

by Step I, which we aim to formalise and prove here. In general, Friedgut’s work [8]

and Bourgain’s subsequent extension of it [8, Appendix] provide a criterion for the ap-

pearance of a sharp threshold. The criterion states that every property that fails to

have a sharp threshold must correlate with a ‘local’ property, i.e., the appearance of

a bounded-sized subset. In other words, if a property P has a coarse threshold, then

there is another, local, property P ′—with the same threshold as P— such that both are

positively correlated.

For our purpose, we use a reformulation of Bourgain’s aforementioned result, which

appears in [9]. We will introduce a relevant definition and then state the theorem.

Definition 4.1 (Boosters). Suppose that P is a property of subsets of a finite set V .

Given a p ∈ [0, 1] and a positive number δ, we call a set B ⊆ V a (p, δ)-booster if

P(Vp ∪B ∈ P) ⩾ P(Vp ∈ P) + δ.

Theorem 4.2 (The Sharp Threshold Criterion). For all positive α and C, there exist

positive δ, η, p0, and K such that the following holds. Suppose that P is a monotone

property of subsets of a finite set V and, for each p ∈ [0, 1], let µ(p) := P(Vp ∈ P). If,

for some 0 < p ⩽ p0

α ⩽ µ(p) ⩽ 1− α and µ′(p) ⩽ C/p,

then there is a family B ⊆
(
V
⩽K

)
satisfying

P(B ⊆ Vp for some B ∈ B) > η

such that every B ∈ B is a (p, δ)-booster for P.

We will now use the criterion to derive a general result in the spirit of Step I of the

proof outline. First, it guarantees the existence of boosters with ‘typical’ characteristics.

Second, it asserts the following dichotomy for properties P with coarse thresholds: while

there are many (constant-sized) boosters whose addition to Vp lands us immediately in

P, adding to Vp a random set of density εp does not increase the probability of being

in P substantially. We again introduce a definition and move on to stating and proving

the result.

Definition 4.3. We say that a set B ⊆ V is an active booster for a set Z ⊆ V if

Z ∪B ∈ P.

Proposition 4.4. Let P be a nontrivial, monotone property of subsets of a (sequence

of) finite set(s) V . For each p ∈ [0, 1], let µ(p) := P(Vp ∈ P) and let p̂ := µ−1(1/2). If

P does not have a sharp threshold and p̂ = o(1), then there exist positive constants δ, ε,

and K and an infinite subsequence p = Θ(p̂) such that:
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(1) For every family F of subsets of V satisfying

P
(
Vp ⊇W for some W ∈ F

)
< ε,

there is a (p, δ)-booster in
(
V
⩽K

)
\ F .

(2) For any family B of (p, δ)-boosters, letting Z ∼ Vp, the following holds with

probability at least ε:

(a) P(Z ∪ Vεp ∈ P | Z) ⩽ 1/2 and

(b) at least ε|B| elements of B are active boosters for Z.

Proof. Suppose that P does not have a sharp threshold. This means that there are

constants c1 < c2 and α > 0 such that

α ⩽ µ(c1 · p̂) ⩽ µ(c2 · p̂) ⩽ 1− α

on some infinite subsequence. Let C := 4c2/(c2 − c1).

Claim 4.5. For every γ > 0, there is a p ∈ (c1 · p̂, c2 · p̂) such that

(a) µ′(p) ⩽ C/p and

(b) µ(p+ γp)− µ(p) ⩽ C · γ

Proof. Fix an arbitrary γ′ satisfying 0 < γ′ < (c2 − c1)/2. Since 0 ⩽ µ ⩽ 1, we have∫ c2−γ′

c1

(
µ((x+ γ′) · p̂)− µ(x · p̂)

)
dx ⩽

∫ c2

c2−γ′
µ(x · p̂) dx ⩽ γ′.

In particular, there must be a p′ satisfying c1 · p̂ < p′ < (c2 − γ′) · p̂ such that

µ(p′ + γ′ · p̂)− µ(p′) ⩽
γ′

c2 − c1 − γ′
⩽

2γ′

c2 − c1
.

Further, as µ is increasing, there must be a p ∈ (p′, p′ + (γ′/2) · p̂) ⊆ (c1 · p̂, c2 · p̂) with

µ′(p) ⩽
µ(p′ + (γ′/2) · p̂)− µ(p′)

(γ′/2) · p̂
⩽

4

(c2 − c1) · p̂
⩽

4c2
(c2 − c1) · p

=
C

p
,

as required. Finally, we show that the value p chosen above also satisfies inequality (b).

If γ ⩾ 1/C, then the inequality is vacuous. Otherwise, if γ < 1/C, we let γ′ = 2c2γ.

Since γ′ < (c2 − c1)/2, by the definition of C, we have

p+ γp ⩽ p+ γ · c2p̂ = p+ (γ′/2) · p̂ ⩽ p′ + γ′ · p̂.

Since p > p′ and µ is increasing, we have

µ(p+ γp)− µ(p) ⩽ µ(p′ + γ′ · p̂)− µ(p′) ⩽
2γ′

c2 − c1
= Cγ,

as desired. □

Let B be an arbitrary nonempty subset of the family of (p, δ)-boosters supplied by

Theorem 4.2. Fix a small positive constant γ, let B be a uniformly chosen random

element of B, and, for each Z ⊆ V , define

f(Z) = P(Z ∪B ∈ P) and g(Z) = P(Z ∪ Vγp ∈ P).

Our goal is to show that, for some positive constant ε,

P
(
f(Vp) ⩾ ε and g(Vp) ⩽ 1/2

)
⩾ ε.



SHARP THRESHOLDS FOR RAMSEY PROPERTIES 19

To this end, note first that Markov’s inequality and the definition of a (p, δ)-booster

imply

P
(
f(Vp) < ε

)
= P

(
1− f(Vp) > 1− ε

)
⩽

1− E[f(Vp)]

1− ε
⩽

1− µ(p)− δ
1− ε

.

Since g(Z) = 1 when Z ∈ P and since Vp ∪Vγp is stochastically dominated by Vp+γp, we

have, again by Markov’s inequality,

P
(
g(Vp) > 1/2

)
= P(Vp ∈ P) + P

(
g(Vp)− 1Vp∈P > 1/2

)
⩽ µ(p) + 2

(
E[g(Vp)]− E[1Vp∈P ]

)
⩽ 2µ(p+ γp)− µ(p) ⩽ µ(p) + 2Cγ.

Finally,

P
(
g(Vp) ⩽ 1/2 and g(Vp) ⩾ ε

)
⩾ 1− P

(
g(Vp) > 1/2

)
− P

(
g(Vp) < ε

)
⩾ 1− µ(p)− 1− µ(p)− δ

1− ε
− 2Cγ

⩾ δ − ε

1− ε
− 2Cγ ⩾ δ/2 ⩾ ε,

where the last two inequalities hold provided that ε and γ are sufficiently small (as

functions of δ and C only). □

Finally, we will make use of the following simple lemma, which formalises the fact

that all ‘local’ properties (i.e., properties of containing a bounded-sized subset from a

given family) have coarse thresholds.

Lemma 4.6 (Local coarseness). Let F be a family of subsets of a set V , all of which

have at most K elements, and let µ(p) := P(∃B ∈ F : B ⊆ Vp). Then, for any c ∈ (0, 1),

we have µ(cp) ⩾ cKµ(p).

Proof. We couple Vp and Vcp by viewing Vcp as the random subset (Vp)c ⊆ Vp. Therefore,

µ(cp)

µ(p)
= P(∃B ∈ F : B ⊆ (Vp)c | ∃B ∈ F : B ⊆ Vp) ⩾ cK . □

4.2. Containers. Our second main tool is a hypergraph container lemma for almost

independent sets. The standard versions of the container lemma, proved independently

by Balogh, Morris, and Samotij [2] and by Saxton and Thomason [24], assert that every

uniform hypergraph G admits a relatively small collection of containers for independent

sets, that is, a family C of subsets of V (G), each containing only few edges of G, such

that every independent set of G is contained in some member of C. Here, we will require

a strengthening of this result that supplies a small collection of containers for the larger

family of almost independent sets. Such stronger version of the container lemma was

proved by Saxton and Thomason. Since the precise phrasing of this result that best

fits our framework, Theorem 4.7 below, differs somewhat from [24, Corollary 3.6], we

include a short derivation of the former from the latter in Appendix B.

Theorem 4.7. For every positive integer k and all positive reals ε and K, there exist

an integer t and a positive real δ such that the following holds. Suppose that a nonempty

k-uniform (multi)hypergraph G with vertex set V and a positive real τ satisfy

∆ℓ(G) ⩽ Kτ ℓ−1 · e(G)

v(G)



SHARP THRESHOLDS FOR RAMSEY PROPERTIES 20

for every ℓ ∈ JkK. Then, there exists a function f : P(V )t → P(V ) with the following

properties:

(i) For every set I ⊆ V satisfying e(G[I]) ⩽ δτke(G), there are S1, . . . , St ⊆ I with

at most τv(G) elements each such that I ⊆ f(S1, . . . , St).

(ii) For every S1, . . . , St ⊆ V , the set f(S1, . . . , St) induces fewer than εe(G) edges

in G.

4.3. Janson’s inequality. The final auxiliary result required by our argument is the

well-known concentration inequality of Janson, which gives strong upper bounds on

the lower tail probabilities of random variables counting how many sets from a given

collection are contained in a binomial random subset. The version of Janson’s inequality

stated below differs from [15, Theorem 1] in the choice of notation, but it is otherwise

equivalent.

Definition 4.8. Suppose that A = (A1, . . . , Ak) is a sequence of (not necessarily dis-

tinct) events. The pseudo-variance of A is

Var′(A) :=
∑
i∼j

P(Ai ∩Aj),

where the sum ranges over all ordered pairs i, j ∈ JkK such that Ai and Aj are not

independent.

Remark. Note that Var′(A1, . . . , Ak) is an upper bound on the variance of 1A1 + · · ·+
1Ak , hence the name pseudo-variance.

Theorem 4.9 (Janson’s inequality [15]). Suppose that Ω is a finite set, let B1, . . . , Bk be

a sequence of (not necessarily distinct) subsets of Ω, and let R ∼ Ωp for some p ∈ [0, 1].

For each i ∈ [k], let Xi be the indicator of the event Ai that Bi ⊆ R and let X :=
∑

iXi.

Then, for any 0 ⩽ t ⩽ E[X],

P
(
X ⩽ E[X]− t

)
⩽ exp

(
− t2

2Var′(A1, . . . , Ak)

)
.

We finish this section by deriving the following generalisation of Lemma 3.6.

Lemma 4.10. Suppose that s ⩾ 2 and let H be a sequence of s-uniform hypergraphs that

satisfies assumption (A2). If p = Θ(pH), then, for every H′ ⊆ H with Ω(e(H)) edges,

P
(
e(H′

p) = 0
)

= exp
(
−Ω
(
p · v(H)

))
.

Proof. Write V for V (H) and X for the number of edges of H′
p = H′[Vp]. We bound the

expectation of X from below as follows:

µ := E[X] = pse(H′) = Ω
(
pse(H)

)
.

Further, we bound the pseudo-variance of the sequence A of events B ⊆ Vp for all edges

B ∈ H′ from above:

Var′(A) =

s∑
i=1

∑
B,B′∈H′

|B∩B′|=i

P(B ∪B′ ⊆ Vp) = O

(
s∑
i=1

p2s−i · e(H) ·∆i(H)

)
.
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Since p = Θ(pH) and H is non-clustered,

µ2

Var′(A)
= Ω

(
min
i∈JsK

piH · e(H)

∆i(H)

)
= Ω

(
pH · v(H)

)
.

Thus, Janson’s inequality gives us that P(X = 0) = exp
(
−Ω
(
p · v(H)

))
. □

5. Containers for colourings

In this section, we prove the following theorem, which encapsulates Steps I and II

from the proof outline.

Theorem 3.7. Suppose that s ⩾ 3 and r ⩾ 2 and let H be a sequence of s-uniform

hypergraphs that satisfies assumptions (A1)–(A4). If non-r-colourability does not have

a sharp threshold in Hp, then there exist a constant ε > 0 and a subsequence p = Θ(pH)

such that, letting Z ∼ V (H)p, the following holds with probability at least ε:

(i) The hypergraph H
[
Z ∪ V (H)εp

]
is r-colourable with probability at least 1/2.

(ii) There exists a family Ψ of exp
(
o(|Z|)

)
partial JrK-colourings of Z such that

(a) every proper JrK-colouring of H[Z] extends some partial colouring in Ψ and

(b) for every colouring in Ψ, some Ω
(
v(H)

)
vertices of H are centres of rainbow

stars.

5.1. Setup. Suppose that s, r, and H are as in the statement of the theorem. For the

sake of brevity, throughout this section, we shall write V in place of V (H). Assume

that non-r-colourability does not have a sharp threshold in Hp. Since pH is a threshold

function for this property, by assumption (A3), Proposition 4.4 supplies constants δ, ε,

and K and an infinite sequence p = Θ(pH) satisfying (1) and (2) in the proposition.

Since H satisfies assumption (A4), invoking (1) in Proposition 4.4 with F being the

family NK(H) defined in Section 2.3, we obtain a (p, δ)-booster B0 ⊆ V of cardinality

at most K such that H[B0] is 2-choosable from JrK.
Let B be the (multi)hypergraph on V whose edges are the images of B0 via all au-

tomorphisms of H. Since non-r-colourability is preserved under automorphisms of H,

every edge of B is also a (p, δ)-booster. Moreover, since H is symmetric, the hypergraph

B is degree-regular and, consequently,

∆1(B) = |B0| ·
e(B)

v(H)
⩽ K · e(B)

v(H)
.

Let Z be the family of all subsets Z ⊆ V such that H[Z ∪ Vεp] is r-colourable with

probability at least 1/2, but, for at least ε-proportion of B ∈ B, the hypergraph H[Z∪B]

is not r-colourable. Property (2) in Proposition 4.4 states that P(Vp ∈ Z) ⩾ ε.

Finally, we define several constants. Let KH be a constant satisfying

∆1(H) ⩽ KH ·
e(H)

v(H)
and

p

pH
⩽ KH.

Further, pick λ = ε2/8 and let L be an integer satisfying(
K ·Ks

H
)L

L!
⩽ λ. (5)
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5.2. A recap of the proof outline. Our goal now is to utilize the boosters in B in

order to construct, for a typical Z ∈ Z, a family Ψ of exp
(
o(|Z|)

)
partial colourings of

Z that satisfies (a) and (b) from the statement of the theorem.

Given a Z ∈ Z, let

BZ :=
{
B ∈ B : H[Z ∪B] is not r-colourable

}
be the family of boosters from B that are active for Z. By definition, no proper JrK-
colouring of Z can be extended to Z ∪ B, for any B ∈ BZ . The assumption that H[B]

is 2-choosable from JrK implies that, if a proper partial JrK-colouring ψ0 of Z cannot be

extended to a booster in B ∈ BZ , then at least one vertex of B must be the centre of a

rainbow star (equivalently, it must be forced to some colour), see Lemma 3.5. Therefore,

it will be sufficient to make sure that our partial colourings do not extend to a constant

proportion of the boosters in BZ .

We say that A ∈ H is an interacting edge between two sets if A is contained in their

union and intersects both of them. Note that a proper partial colouring ψ0 cannot be

extended to B if and only if, for every proper colouring φ of B, some edge is monochro-

matic under ψ0 ∪ φ. This monochromatic edge cannot be fully contained in either Z

or B, because both ψ0 and φ are proper, and is therefore an interacting edge.

Define the interface of Z with B to be the set3

I(B,Z) := {A \B : A ∈ H is an interacting edge between Z and B}.

We will say that a partial colouring ψ0 of Z and a colouring φ of B are consistent

if no edge that is interacting between Z and B is monochromatic under ψ0 ∪ φ. In

this language, a partial colouring ψ0 of Z can be extended to B precisely when ψ0 is

consistent with some proper colouring φ of B. Note that the interface I(B,Z) contains

all the information about ψ0 that is needed to determine whether this is the case.

We say that C ⊆ Z×JrK is a restricted colouring of Z if, for every z ∈ Z, there is some

colour i ∈ JrK for which (z, i) ∈ C. Recall that, in this context, we identify colourings

ψ of Z with the restricted colouring {(z, ψ(z)) : z ∈ Z}. Given a restricted colouring C,

we define its determined colouring to be the partial colouring ψC , where ψC(z) = i if

every proper colouring ψ ⊆ C has ψ(z) = i (equivalently, if i ∈ JrK is the unique colour

such that (z, i) ∈ C).

As we wrote in the outline, we will first define a hypergraph T on the vertex set

Z × JrK in such a way that proper colorings of Z will be independent in T . We will

then let the family Ψ of partial colourings be the determined colourings of a family of

(restricted colourings that are) containers for the independent sets of T . The edges of

T will correspond to colourings of interfaces I(B,Z), with B ∈ BZ , that are consistent

with some proper colouring of B. In particular, we need to exercise control over the

interfaces that Z has with the boosters in order to invoke the container lemma in an

efficient way.

The rest of the section is organised as follows. We first prove that Z is disjoint from

almost all boosters in BZ and that the interface between Z and these boosters is bounded

in size and well-behaved. Next, we will formally define the hypergraph T whose contain-

ers provide the family of partial colourings satisfying the first two properties. Finally,

3This is a minor departure from the terminology used in the proof outline, where the interface between

Z and B was the family of all edges A that are interacting between Z and B.
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we will bound the degree sequence of T in order show that the family of containers, and

therefore partial colourings, is small.

5.3. Active boosters and interactions. Let B′Z be the hypergraph obtained from BZ
by retaining only those B ∈ BZ that satisfy all of the following:

(B1) The sets B and Z are disjoint.

(B2) Every nonempty set in I(B,Z) has s− 1 elements.

(B3) The sets in I(B,Z) are pairwise disjoint.4

(B4) The family I(B,Z) contains at most L sets.

The following two lemmas show that BZ \ B′Z is small for a typical Z ∼ Vp.

Lemma 5.1. If Z ∼ Vp, then the expected number of B ∈ B that fail one of (B1)–(B3)

is o
(
e(B)

)
.

Lemma 5.2. If Z ∼ Vp, then the expected number of B ∈ B that satisfy (B2) and (B3)

but fail (B4) is at most λe(B).

Finally, let

Z ′ =
{
Z ∈ Z : e(B′Z) ⩾ (ε/2) · e(B)

}
.

By Lemmas 5.1 and 5.2 and since λ = ε2/8, we have, for Z ∼ Vp,

P(Z ∈ Z ′) ⩾ P(Z ∈ Z)− P
(
e(BZ \ B′Z) ⩾ (ε/2) · e(B)

)
⩾ ε−

E
[
e(BZ \ B′Z)

]
(ε/2) · e(B)

⩾ ε− 4λ/ε ⩾ ε/2.

Proof of Lemma 5.1. Suppose that Z ∼ Vp and let X1, X2, and X3 denote the numbers

of sets B that fail conditions (B1), (B2), and (B3), respectively. We have

E[X1] =
∑
B∈B

P(B ∩ Z ̸= ∅) ⩽
∑
B∈B

E[|B ∩ Z|] =
∑
v∈V

p degB(v) ⩽ v(H) · p∆1(B)≪ e(B),

since p ≪ 1 and ∆1(B) = O
(
e(B)/v(H)

)
. Since X2 is at most the number of pairs

(A,B) ∈ H × B such that A \B ⊆ Z and 1 ⩽ |A \B| ⩽ s− 2, we have

E[X2] ⩽
∑
B∈B

s−2∑
t=1

(
|B|
s− t

)
·∆s−t(H) · pt ⩽ e(B) ·

s−1∑
r=2

2K ·∆r(H) · ps−rH ,

where we used the fact that every edge of B contains at most K vertices. Since H is

non-clustered, we have, for every r ∈ {2, . . . , s− 1},

∆r(H) · ps−rH ≪ ps−1
H · e(H)

v(H)
= 1,

implying that E[X2] ≪ e(B). Finally, we can bound X3 −X2 by the number of triples

(A,A′, B) ∈ H2 × B such that A ∪ A′ ⊆ B ∪ Z, 1 ⩽ |(A ∩ A′) \ B| ⩽ s − 2, and

|A ∩ B| = |A′ ∩ B| = 1. We therefore get the following upper bound by counting the

options for picking B, then A, then the size of the intersection (A ∩A′) \B, and finally

A′:

E[X3 −X2] ⩽
∑
B∈B
|B| ·∆1(H) ·

s−2∑
r=1

(
s− 1

r

)
· |B| ·∆r+1(H) · p2s−2−r

H .

4However, there could still be pairs of different A,A′ ∈ H such that A \B = A′ \B ∈ I(B,Z).
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Using our assumptions that every edge of B contains at most K vertices, ∆1(H) ⩽
O
(
e(H)/v(H)

)
, and ∆r+1(H)≪ prH · e(H)/v(H) for all r ∈ {1, . . . , s− 2}, we have

E[X3 −X2]≪ e(B) · p2s−2
H ·

(
e(H)

v(H)

)2

= e(B).

The proof of the lemma is now complete. □

Proof of Lemma 5.2. For B ∈ B and Z ⊆ V , let i(B,Z) be the largest integer ℓ such

that there are A1, . . . , Aℓ ∈ H satisfying:

(i) A1 ∪ · · · ∪Aℓ ⊆ B ∪ Z,

(ii) |Ai ∩B| = 1 for every i ∈ JℓK,
(iii) A1 \B, . . . , Aℓ \B are pairwise disjoint.

Observe that, if B satisfies (B2) and (B3), then |I(B,Z)| = i(B,Z). In particular, the

assertion of the lemma will follow if we show that P
(
i(B,Z) > L

)
⩽ λ.

To this end, for a positive integer ℓ, let Aℓ denote the collection of all sequences

A1, . . . , Aℓ ∈ H that satisfy (ii) and (iii) above and note that

|Aℓ| ⩽
(
|B| ·∆1(H)

)ℓ
⩽
(
K ·∆1(H)

)ℓ
.

Since, for every (A1, . . . , Aℓ) ∈ Aℓ, the set (A1 ∪ · · · ∪ Aℓ) \ B has precisely (s − 1)ℓ

elements, we have

P
(
A1 ∪ · · · ∪Aℓ ⊆ B ∪ Z

)
= p(s−1)ℓ.

Let Xℓ be the number of sequences in Aℓ that satisfy (i). Since each such sequence

has distinct coordinates and (i)–(iii) are invariant under any permutation of the se-

quence (A1, . . . , Aℓ), we may conclude that

P
(
i(B, Vp) ⩾ ℓ

)
⩽

E[Xℓ]

ℓ!
=
|Aℓ| · p(s−1)ℓ

ℓ!
⩽

(
K ·∆1(H) · ps−1

)ℓ
ℓ!

.

The assertion of the lemma follows because our assumptions imply that

K ·∆1(H) · ps−1 ⩽ K ·Ks
H ·

e(H)

v(H)
· ps−1

H = K ·Ks
H,

see (5). □

5.4. The hypergraph of transversals. We will now formally define the hypergraph T .

Our goal is the following: For every restricted colouring C, if its determined colouring

ψC is consistent with some proper colouring of a booster B ∈ B′Z , then this fact will be

evidenced by an edge of T inside C.

Let us discuss what that should mean. Suppose that φ is a proper colouring of a

booster B ∈ B′Z . We will show that, for every restricted colouring C, its determined

colouring ψC is consistent with φ if and only if there is a colouring ψC,φ :
⋃
I(B,Z)→ JrK

that is consistent with φ and further satisfies ψC,φ ⊆ C. Since
⋃
I(B,Z) contains at

most (s−1) ·L vertices, see (B2), these colourings ψC,φ can serve as the kind of witnesses

we are looking for. As a result, one could actually stop here, and take the edges of the

hypergraph to be all such sets
{

(z, ψC,φ(z)) : z ∈
⋃
I(B,Z)

}
. However, we will carry on

and find witnesses that are minimal/irredundant.

To this end, suppose that an edge A interacting between B and Z is not monochro-

matic. Obviously, this means that two of its elements are coloured differently. However,
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we will use the fact that A intersects B in exactly one vertex (see (B2)) to conclude that

either:

(1) ψ coloured two of the vertices of A \B in different colours, or

(2) ψ coloured some vertex of A \B in a colour different from φ(A ∩B).

One might be tempted to ignore the first case, which seems superfluous. Indeed, even if

two vertices are coloured in different colours, one of these colours must be different from

the one in φ(A∩B). However, for a given T ∈ I(B,Z), there can be many edges A ∈ H
with A \B = T and picking a colour that is different from the one in φ(A∩B) for every

such A might not always be possible.

We will define the edges of T using transversals of I(B,Z). Given a proper colouring

φ of B, we will pick one of two obstructions for every T ∈ I(B,Z): either two coloured

vertices (z, c), (z′, c′), where z, z′ ∈ T and c ̸= c′, or just one coloured vertex (z, c), where

z ∈ T and c different from the colour in φ(A∩B) for every A ∈ H such that A \B = T .

We now define the hypergraph T formally. For every (s− 1)-element set T ⊆ Z, let

NH(T ;B) := {b ∈ B : T ∪ {b} ∈ H}

and note that I(B,Z) comprises precisely those sets T ⊆ Z\B for which |NH(T ;B)| ⩾ 1.

In particular, given ψ and φ, there is an element T ∈ I(B,Z) that ψ colours monochro-

matically from the colours in φ
(
NH(T ;B)

)
.

Definition 5.3. We let T be the (multi)hypergraph with vertex set Z × JrK whose

(multi)set of edges is defined as follows. For every:

• active booster B ∈ B′Z ,

• proper colouring φ : B → JrK of H[B],

• set I ′ ⊆ I(B,Z) satisfying I ′ ⊇
{
T ∈ I(B,Z) : φ

(
NH(T ;B)

)
= JrK

}
, and

• disjoint transversals5 {vT : T ∈ I(B,Z)} of I(B,Z) and {v′T : T ∈ I ′} of I ′,

where vT ∈ T for every T ∈ I(B, T ) and v′T ∈ T for every T ∈ I ′,
we add to T all edges of the form{

(vT , cT ) : T ∈ I(B,Z)
}
∪
{

(v′T , c
′
T ) : T ∈ I ′

}
,

where:

• for each T ∈ I(B,Z)\I ′, the colour cT is an arbitrary element of JrK\φ
(
NH(T ;B)

)
;6

• for each T ∈ I ′, the colours cT and c′T are two arbitrary, distinct elements of JrK.

An immediate consequence of the definition should be that every proper colouring ψ

of Z, when viewed as a restricted colouring, is an independent set of T . This is because

the determined colouring of ψ, which is just ψ itself, cannot be extended to any B ∈ B′Z .

Lemma 5.4. Every proper colouring ψ : Z → JrK of H[Z], viewed as a subset of Z× JrK,
is an independent set in T .

Proof. Suppose that some proper colouring ψ of H[Z] contains an edge of T . This means

that there are an active booster B ∈ B′Z , a proper colouring φ ofH[B], a set I ′ ⊆ I(B,Z),

and disjoint transversals {vT : T ∈ I(B,Z)} and {v′T : T ∈ I ′} such that, for every

T ∈ I(B,Z), either ψ(vT ) /∈ φ
(
NH(T ;B)

)
or ψ(vT ) ̸= ψ(v′T ). In particular, there is

5A transversal of a family F of sets is a subset X of
⋃

F such that |X ∩ F | = 1 for every F ∈ F .
6The choice of I ′ guarantees that the set JrK \ φ

(
NH(T ;B)

)
is nonempty for every T ∈ I(B,Z) \ I ′.
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no T ∈ I(B,Z) whose all elements receive the same colour from the set φ
(
NH(T ;B)

)
.

On the other hand, since B is disjoint from Z, see (B1), one may naturally define the

colouring ψ ∪ φ : B ∪ Z → JrK. Since B is an active booster, this colouring ψ ∪ φ is

not a proper colouring of H[Z ∪ B], which means that there is an A ∈ H[Z ∪ B] that

ψ ∪φ makes monochromatic. Since ψ and φ are proper colourings of H[Z] and of H[B],

respectively, every such A must have a nonempty intersection with both Z and B. Our

choice of B′Z , see (B2), implies that |A∩B| = 1 and, consequently, that A\B ∈ I(B,Z).

Moreover,

(ψ ∪ φ)(A) = ψ(A \B) = φ(A ∩B),

which means that all elements of A \B receive the same colour as the unique vertex in

A ∩B, which belongs to NH(A \B;B), a contradiction. □

More importantly, the definition implies that, for every restricted colouring C that

induces a small number of edges in T , its determined colouring ψC forces a constant

fraction of the vertices of H to some colour. Recall that we denote the set of vertices

that ψC forces to some colour by F (ψC).

Lemma 5.5. If C ⊆ Z × JrK is a restricted colouring, then

e(T [C]) ⩾ e(B′Z)− |F (ψC)| ·∆1(B).

Proof. It suffices to find, for every active booster B ∈ B′Z that does not contain any

vertex of F (ψC), an edge of T [C] that corresponds to B, as in Definition 5.3. For every

b ∈ B, let L(b) ⊆ JrK be a list of some two colours that do not threaten b; there are at

least two such colours since b is not forced to any colour. Let φ : B → JrK be a proper

colouring of H[B] from these lists; such a colouring exists by our assumption that H[B]

is 2-choosable from JrK, see (A4).

Fix an arbitrary T ∈ I(B,Z) and let N(T ) = NH(T ;B). If ψC colours all of T with a

colour cT , then cT threatens every b ∈ N(T ) and hence cT /∈
⋃
b∈N(T ) L(b) ⊇ φ(N(T )).

In this case, we do not include T in I ′, we pick an arbitrary vT ∈ T and add (vT , cT ) ∈ C
to the edge we construct. In the complementary case, either:

(i) ψC is not defined on all of T , which means that there is some vertex v in T and

colours c, c′ ∈ JrK such that (v, c), (v, c′) ∈ C (this is because π1(C) = Z and

hence the only reason why ψC(v) is not defined is that |{v} × JrK ∩ C| > 1); or

(ii) ψC is defined on all of T but there are distinct vertices v, v′ ∈ T such that

ψC(v) ̸= ψC(v′).

Either way, since |T | = s − 1 ⩾ 2, there must be distinct vT , v
′
T ∈ T and cT , c

′
T ∈ JrK

such that (vT , cT ), (v′T , c
′
T ) ∈ C; we include T in I ′ and add (vT , cT ) and (v′T , c

′
T ) to the

edge we construct. □

5.5. The distribution of edges of T . The key step in the proof of Theorem 3.7 will

be to construct a small family of containers for proper JrK-colourings of H[Z] using the

information provided by the hypergraph T . In order to do this, we will first show that,

for a typical choice of Z ∼ Vp, we may find a subhypergraph T ′ ⊆ T that contains

almost as many edges as T and satisfies

∆1(T ′) = O

(
e(T ′)

|Z|

)
and ∆2(T ′) = o

(
e(T ′)

|Z|

)
.
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We will then split T ′ into uniform hypergraphs T1, . . . , T2L, where, for each u ∈ J2LK,
the u-uniform hypergraph Tu comprises all edges of T ′ of cardinality u. Finally, we will

apply the hypergraph container lemma, Theorem 4.7, to each of the Tu in order to build

containers for independent sets of T : the container for an independent set I will be the

intersection of the 2L containers for I in the hypergraphs T1, . . . , T2L. The assumptions

on ∆1(T ′) and ∆2(T ′) will guarantee that there are only exp(o(|Z|)) different containers.

Lemma 5.5 provides a useful, structural description of all such containers.

In order to guarantee the existence of a T ′ ⊆ T with the required properties, we shall

estimate the ℓ2-norm of the sequences of vertex degrees and vertex-pair degrees of T
and invoke the following simple proposition.

Proposition 5.6. Suppose that G is a (multi)hypergraph with vertex set V . For all

positive integers t and m, there is a subhypergraph G′ ⊆ G with e(G′) ⩾ e(G)−m and

∆t(G′) ⩽
1

m
·
∑
T∈(Vt )

degG(T )2.

Proof. We may assume that m ⩽ e(G); indeed, if m > e(G), we may simply take G′
to be the empty hypergraph. We obtain G′ from G by iteratively removing m edges

that contain some set T ∈
(
V
t

)
with largest degree. Since each of the m removed edges

contained a t-element subset of degree at least ∆t(G′), we have∑
T∈(Vt )

degG(T )2 ⩾ m ·∆t(G′),

as claimed. □

The following two crucial lemmas give upper bounds on the expectations of the ℓ2-

norms of the sequences of vertex degrees and vertex-pair degrees of T .

Lemma 5.7. If Z ∼ Vp, then

E

 ∑
v∈V (T )

degT (v)2

 ⩽
Γ · e(B)2

pH · v(H)
,

where Γ is a constant that depends only on K, KH, L, r, and s.

Lemma 5.8. If Z ∼ Vp, then

E

 ∑
T∈(V (T )

2 )

degT (T )2

 ⩽
σ · e(B)2

pH · v(H)

for some σ = o(1).

Proof of Lemma 5.7. For every v ∈ V , define

γ(v) :=
∣∣{A ∈ H : v ∈ A and |(A \ {v}) ∩ Z| = s− 2

}∣∣ .
We claim that, for all v ∈ Z and i ∈ JrK,

degT (v, i) ⩽ γ(v) ·∆1(B) · (rs)2L+K , (6)
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where degT counts edges with multiplicities. Indeed, if v ∈ Z, then γ(v) ·∆1(B) is an

upper bound on the number of B ∈ B′Z such that v ∈ T for some T ∈ I(B,Z). Every

such B gives rise to at most

rK ·
(
(s− 1)r

)L · L∑
i=0

(
(s− 2)r

)i
⩽ (rs)2L+K

edges of T , counting multiplicities; indeed, there are at most rK proper JrK-colourings

of B, at most (s − 1)r choices for the pair (vT , cT ) for every T ∈ I(B,Z), and at most

(s−2)r further choices for the pair (v′T , c
′
T ) for every T ∈ I ′ ⊆ I(B,Z), see Definition 5.3.

Moreover, all edges of T that contain (v, i) must come from one such set B.

Since V (T ) = Z × JrK, inequality (6) implies that∑
v∈V (T )

degT (v)2 ⩽ r ·
∑
v∈Z

γ(v)2 ·∆1(B)2 · (rs)4L+2K

⩽
K · e(B)2

v(H)2
· (rs)4L+2K+1 ·

∑
v∈Z

γ(v)2.

(7)

In the remainder of the proof, we will bound the expected value of the sum in the

right-hand side of (7).

Fix an arbitrary v ∈ V and observe that

E[γ(v)2] =
∑

A,A′∈H
v∈A∩A′

P
(
|A ∩ (Z \ {v})| = s− 2 and |A′ ∩ (Z \ {v})| = s− 2

)︸ ︷︷ ︸
P (A,A′)

;

note that P (A,A) ⩽ (s− 1) · ps−2 and that, if A ̸= A′, then

P (A,A′) ⩽ (s− 1)2 · p|A∪A′|−3 = (s− 1)2 · p2s−3−|A∩A′|.

Consequently,

E[γ(v)2] = degH(v) · (s− 1) · ps−2 ·

(
1 +

s−1∑
t=1

(
s− 2

t− 1

)
· (s− 1) ·∆t(H) · ps−1−t

)
.

Our assumption that H is non-clustered implies that, for every t ∈ Js− 1K,

∆t(H) · ps−1−t ⩽ Ks−1
H ·∆t(H) · ps−1−t

H ⩽ Ks
H ·

e(H)

v(H)
· ps−2

H =
Ks

H
pH

.

and thus

E[γ(v)2] ⩽ Γ · degH(v) · ps−3
H

for some constant Γ that depends only on KH and s. Since the variable γ(v) is indepen-

dent of the event v ∈ Z, we have

E

[∑
v∈Z

γ(v)2

]
=
∑
v∈V

p · E[γ(v)2] ⩽ Γ ·KH · ps−2
H ·

∑
v∈V

degH(v)

= Γ ·KH · ps−2
H · s · e(H) =

Γ ·KH · s · v(H)

pH
.

Taking expectations of both sides of (7) and substituting the above inequality yields the

assertion of the lemma. □

Proof of Lemma 5.8. For every pair of distinct v, w ∈ V , let γ2(v, w) be the number of

triples (Av, Aw, B) ∈ H2 × B satisfying the following:
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(i) v ∈ Av \B and w ∈ Aw \B,

(ii) |Av ∩B| = |Aw ∩B| = 1,

(iii) Av ∩Aw ⊆ B or Av \B = Aw \B,

(iv) (Av ∪Aw) \ (B ∪ {v, w}) ⊆ Z.

We claim that, for every pair of distinct v, w ∈ Z and all i, j ∈ JrK,

degT {(v, i), (w, j)} ⩽ γ2(v, w) · (rs)2L+K . (8)

Indeed, if v, w ∈ Z, then γ2(v, w) is an upper bound on the number of B ∈ B′Z such

that v ∈ Tv and w ∈ Tw for some Tv, Tw ∈ I(B,Z). Every such B gives rise to at most

(rs)2L+K edges of T , counting multiplicities, and all edges of T that contain both (v, i)

and (w, j) must come from one such set B.

Since V (T ) = Z × JrK and no edge of T contains a pair of vertices {(v, i), (v, j)} with

i ̸= j, inequality (8) implies that∑
T∈(V (T )

2 )

degT (T )2 ⩽ r2 ·
∑
v,w∈Z

γ2(v, w)2 · (rs)4L+2K . (9)

In the remainder of the proof, we will bound the expected value of the sum in the

right-hand side of (9).

Claim 5.9. For every pair of distinct vertices v, w ∈ V ,

E[γ2(v, w)2]≪ e(B)

pH · v(H)
· E[γ2(v, w)].

Proof. Let X denote the family of all triples (Av, Aw, B) that satisfy (i)–(iii) above and

observe that

γ2(v, w) =
∑

(Av ,Aw,B)∈X

1(Av∪Aw)\(B∪{v,w})⊆Z ,

see (iv). Therefore, it suffices to show that, for each (Av, Aw, B) ∈ X ,

E
[
γ2(v, w) | (Av ∪Aw) \ (B ∪ {v, w}) ⊆ Z

]
≪ ∆1(B)

pH
. (10)

We partition the family X according to the intersection pattern with our chosen triple

(Av, Aw, B). First, for every t ∈ {0, . . . , s − 3}, denote by Xt the family of all triples

(A′
v, A

′
w, B

′) such that A′
v \ B = A′

w \ B and A′
v intersects (Av ∪ Aw) \ (B ∪ {v, w})

in exactly t elements. Second, for every (tv, tw) ∈ {0, . . . , s − 2}2, denote by Xtv ,tw the

family of all triples (A′
v, A

′
w, B

′) such that A′
v ∩A′

w ⊆ B and, for u ∈ {v, w}, the set A′
u

intersects (Av ∪Aw) \ (B ∪ {v, w}) in exactly tu elements. Observe that

X =
s−3⋃
t=0

Xt ∪
s−2⋃

tv ,tw=0

Xtv ,tw .

Further, note that, for every t ∈ {0, . . . , s− 3},

|Xt| ⩽ ∆t+2(H) ·∆1(B) ·max
B∈B
|B| ≪ pt+1

H · e(H)

v(H)
·∆1(B) = pt+2−s

H ·∆1(B).

Crucially, we claim that, for every tv, tw ∈ {0, . . . , s− 2},
|Xtv ,tw | ⩽ min

{
∆tv+1(H) ·∆tw+2(H),∆tw+1(H) ·∆tv+2(H)

}
·∆1(B)

≪ ptv+tw+1
H ·

(
e(H)

v(H)

)2

·∆1(B) = ptv+tw−2s+3
H ·∆1(B).
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Indeed, ∆t(H) ⩽ Kpt−1
H · e(H)/v(H) for all t ∈ JsK and ∆t(H)≪ pt−1

H · e(H)/v(H) when

2 ⩽ t ⩽ s−1 and one of max{tv, tw}+ 1 or min{tv, t2}+ 2 must belong to {2, . . . , s−1}.
Since p = O(pH), estimate (10) follows after noting that, first, for every t ∈ {0, . . . , s−3}
and every (A′

v, A
′
w, B

′) ∈ Xt,

P
(
(A′

v ∪A′
w) \ (B′ ∪ {v, w}) ⊆ Z | (Av ∪Aw) \ (B ∪ {v, w}) ⊆ Z

)
= ps−3−t,

and, second, for all (tv, tw) ∈ {0, . . . , s− 2}2 and every (A′
v, A

′
w, B

′) ∈ Xtv ,tw ,

P
(
(A′

v ∪A′
w) \ (B′ ∪ {v, w}) ⊆ Z | (Av ∪Aw) \ (B ∪ {v, w}) ⊆ Z

)
= p2s−4−tv−tw .

Since p ⩽ KH ·pH and ∆1(B) ⩽ K ·e(B)/v(H), this concludes the proof of the claim. □

Claim 5.10. We have

E

 ∑
v,w∈Z

γ2(v, w)

 = O
(
e(B)

)
.

Proof. Let X1 denote the family of all pairs (A,B) ∈ H×B such that |A∩B| = 1 and let

X2 denote the family of all triples (A′, A′′, B′) ∈ H2×B such that |A′∩B′| = |A′′∩B′| = 1

and A′ ∩A′′ ⊆ B′. Note that∑
v,w∈Z

γ2(v, w) =

(
s− 1

2

)
·
∣∣{(A,B) ∈ X1 : A \B ⊆ Z

}∣∣
+ (s− 1)2 ·

∣∣{(A′, A′′, B′) ∈ X : (A′ ∪A′′) \B′ ⊆ Z
}∣∣ . (11)

The claim now follows as

|X1| ⩽
∑
B∈B
|B| ·∆1(H) = O

(
e(B) · e(H)

v(H)

)
,

|X2| ⩽
∑
B∈B
|B|2 ·∆1(H)2 = O

(
e(B) · e(H)2

v(H)2

)
,

and, for all (A,B) ∈ X1 and (A′, A′′, B′) ∈ X2,

P
(
A \B ⊆ Z

)
= ps−1 = O

(
ps−1
H
)
,

P
(
(A′ ∪A′′) \B′ ⊆ Z

)
= p2s−2 = O

(
p2s−2
H

)
.

Indeed, since ps−1
H · e(H) = v(H), taking expectations of both sides of (11) and substi-

tuting the above estimates yields the claimed estimate. □

Since the variable γ2(v, w) is independent of the event {v, w} ⊆ Z, we have

E

 ∑
v,w∈Z

γ2(v, w)2

 = p2 ·
∑
v,w∈V

E[γ2(v, w)2]≪ p2 · e(B)

pH · v(H)
·
∑
v,w∈V

E[γ2(v, w)]

=
e(B)

pH · v(H)
· E

 ∑
v,w∈Z

γ2(v, w)

 = O

(
e(B)2

pH · v(H)

)
,

where the first inequality follows from Claim 5.9 and the second inequality follows from

Claim 5.10. The assertion of the lemma follows by taking expectations of both sides

of (9) and substituting the above inequality. □
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5.6. Containers for colourings. Let σ be the sequence from the statement of Lemma 5.8

and let τ = σ1/(2L+1) = o(1). Let Z ′′ be the collection of all Z ∈ Z ′ such that∑
v∈V (T )

degT (v)2 ⩽ ΓH ·
e(B)2

|Z|
and

∑
T∈(V (T )

2 )

degT (T )2 ⩽ τ2L · e(B)2

|Z|
.

Since Z ′′ ⊆ Z, the set Z satisfies (i) in the statement of Theorem 3.7.

Lemma 5.11. Every Z ∈ Z ′′ satisfies (ii) in the statement of Theorem 3.7.

Before we prove the lemma, let us point out that it implies the assertion of the theorem.

Indeed, it follows from Lemmas 5.7 and 5.8, Markov’s inequality, and standard estimates

for the tails of the binomial distribution that, when Z ∼ Vp,

P(Z ∈ Z ′′) ⩾ P(Z ∈ Z ′)− P
(
|Z| ⩾ 2pHv(H)

)
− 2Γ/ΓH − 2σ · τ−2L

⩾ ε/2− o(1)− 2Γ/ΓH − 2τ ⩾ ε/4.

Proof of Lemma 5.11. Suppose that Z ∈ Z ′′. We will construct the desired family of

partial colourings of Z by applying the container lemma, Theorem 4.7, to a collection of

uniform subhypergraphs of the hypergraph T .

To this end, note first that Proposition 5.6, invoked twice, implies that T contains a

subhypergraph T ′ with at least e(T )− 2 · (ε/16) · e(B) edges that satisfies

∆1(T ′) ⩽
16ΓH
ε
· e(B)

|Z|
and ∆2(T ′) ⩽

16τ2L

ε
· e(B)

|Z|
⩽ τ2L−1 · e(B)

|Z|
.

Fix one such hypergraph T ′ and note that

e(T ′) ⩽ r · |Z| ·∆1(T ′) ⩽
16ΓHr

ε
· e(B). (12)

Let T1, . . . , T2L be the subhypergraphs of T ′ that comprise all edges of T ′ of cardinal-

ities 1, . . . , 2L, respectively, and note that T ′ = T1 ∪ · · · ∪ T2L, since every edge of T has

cardinality at most

2 · max
B∈B′

Z

|I(B,Z)| ⩽ 2L,

see Definition 5.3. Define

U :=
{
u ∈ J2LK : e(Tu) ⩾ ε/(16L) · e(B)

}
and fix an arbitrary u ∈ U . Since

∆1(Tu) ⩽ ∆1(T ′) ⩽
16ΓH
ε
· e(B)

|Z|
⩽

256ΓHLr

ε2
· e(Tu)

v(Tu)

and, for every ℓ ∈ {2, . . . , u},

∆ℓ(Tu) ⩽ ∆2(T ′) ⩽ τ2L−1 · e(B)

|Z|
⩽

16Lr

ε
· τ ℓ−1 · e(Tu)

v(Tu)
,

we may apply Theorem 4.7, with k4.7 := u,

K4.7 := max

{
256ΓHLr

ε2
,

16Lr

ε

}
, and ε4.7 :=

ε2

256ΓHLr

(12)

⩽
ε/(16L) · e(B)

e(T ′)
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to get an integer t (that depends only on ε, ΓH, r, and L) and a collection Cu of at mostτr|Z|∑
i=0

(
r|Z|
i

)t

⩽

(
er|Z|
τr|Z|

)tτr|Z|
= exp

(
o(|Z|)

)
subsets of Z × JrK with the following properties:

(i) Every proper colouring ψ : Z → JrK of H[Z], viewed as a subset of Z × JrK, is

contained in a member of Cu.

(ii) Every member of Cu induces fewer than ε/(16L) · e(B) edges in Tu.

Finally, we let Ψ to be the collection of all partial colourings ψC , where C is a set of

the form

C =
⋂
u∈U

Cu,

where, for each u ∈ U , the set Cu is a member of Cu, such that π1(C) = Z; note that

|Ψ| ⩽
∏
u∈U
|Cu| = exp

(
o(|Z|)

)
.

It follows from (i) that, for each u ∈ U , every proper colouring ψ : Z → JrK of H[Z]

is contained in some set Cu ∈ Cu and, consequently, in some set C of the above form;

in particular ψ extends the partial colouring ψC ∈ Ψ. We now show that, for every

partial colouring ψC ∈ Ψ, we have |F (ψC)| = Ω
(
v(H)

)
; this will conclude the proof of

the lemma, as every vertex in F (ψC) is the centre of a rainbow star.

To this end, choose an arbitrary set C of the above form. Since e(Tu[C]) ⩽ e(Tu[Cu]) ⩽
ε/(16L) · e(B) when u ∈ U , see (ii) above, and e(Tu[C]) ⩽ e(Tu) < ε/(16L) · e(B) when

u /∈ U , we have

e(T ′[C]) =
2L∑
u=1

e(Tu[C]) ⩽ 2L · ε/(16L) · e(B) = (ε/8) · e(B).

Consequently,

e(T [C]) ⩽ e(T ′[C]) + e(T )− e(T ′) ⩽ (ε/4) · e(B)

and thus Lemma 5.5 implies that

|F (ψC)| ⩾
e(B′Z)− e(T [C])

∆1(B)
⩾

ε · e(B)

4 ·∆1(B)
⩾

ε

4K
· v(H),

since Z ∈ Z ′ implies that e(B′Z) ⩾ (ε/2) · e(B). □

6. Rainbow stars and constellations

In this section, we prove Theorem 3.8, which encapsulates Step III from the proof

outline. We restate the theorem here for the reader’s convenience.

Theorem 3.8. Suppose that s ⩾ 3, r ⩾ 2, and ε > 0. Let H be a sequence of s-uniform

hypergraphs that satisfies assumptions (A2) and (A5) and suppose that Z ∼ V (H)p for

some p = Θ(pH). With probability at least 1− ε, for every partial colouring ψ of Z with

elements of JrK, if Ω
(
v(H)

)
vertices of H are centres of rainbow stars, then Ω

(
e(H)

)
edges of H are bases of rainbow constellations.
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The heart of the proof will be transferring the rainbow star-constellation property

from H to Hp. We will make use of the container lemma (Theorem 4.7) to prove the

following sparse random analogue of the rainbow star-constellation property.

Theorem 6.1. Suppose that r ⩾ 2, s ⩾ 3, and H is a sequence of s-uniform hypergraphs

that satisfies assumptions (A2) and (A5). For every positive βs, there exists a positive βc
such that the following holds: Suppose that p = Ω(pH) and let Z ∼ V (H)p. With probabil-

ity 1−o(1), every partial JrK-colouring of Z that admits at least βs ·(p/pH)(r−1)(s−1)v(H)

rainbow stars must also admit at least βc · (p/pH)(r−1)(s−1)se(H) rainbow constellations.

The above theorem will be combined with the following technical lemma, which implies

that, in a typical set Z ∼ V (H)p, a family of Ω
(
(p/pH)(r−1)(s−1)se(H)

)
rainbow constel-

lations has to determine Ω(e(H)) different base edges. We will say that a set Z ⊆ V (H)

admits a (non-coloured) star {A1, . . . , Ak} with centre v if (A1 ∪ · · · ∪ Ak) \ {v} ⊆ Z; a

set Z admits a constellation if it admits each of the s stars that comprise it. Given a

set Z ⊆ V (H) and an edge A ∈ H, we denote by con(A,Z) the number of constellations

with base edge A that are admitted by Z.

Lemma 6.2. Suppose that r ⩾ 2, s ⩾ 3, and H is a sequence of s-uniform hypergraphs

that satisfies assumption (A2). For every c > 0, there exists a constant Γ such that the

following holds: If p ⩾ c · pH and Z ∼ V (H)p, then, for every A ∈ H,

E

[∑
A∈H

con(A,Z)2

]
⩽ Γ ·

(
p

pH

)2(r−1)(s−1)s

· e(H).

We postpone the proofs of Theorem 6.1 and Lemma 6.2 to later subsections and first

show how they imply Theorem 3.8.

Proof of Theorem 3.8. Suppose that s ⩾ 3, r ⩾ 2, and ε > 0 and let H be a sequence of

non-clustered, s-uniform hypergraphs that satisfies the star-constellation property with

r colours. Assume that p = Θ(pH) and Z ∼ V (H)p. It follows from Lemma 6.2 and

Markov’s inequality that, for some constant C,∑
A∈H

con(A,Z)2 ⩽ Ce(H)

with probability at least 1− ε/2. By Theorem 6.1, as p/pH = Θ(1), with probability at

least 1− ε/2, every partial JrK-colouring of Z that admits Ω
(
v(H)

)
rainbow stars must

also admit Ω
(
e(H)

)
rainbow constellations. Assume that the random set Z has both

these properties, which happens with probability at least 1 − ε. Fix any colouring ψ

with Ω
(
v(H)

)
rainbow stars and let Hψ comprise all edges of H that are the base of at

least one rainbow constellation. On the one hand, since every A ∈ Hψ is the base of at

most con(A,Z) rainbow constellations, our assumption on Z implies that∑
A∈Hψ

con(A,Z) ⩾ Ω
(
e(H)

)
.

On the other hand, the Cauchy–Schwarz inequality yields ∑
A∈Hψ

con(A,Z)

2

⩽ e(Hψ) ·
∑
A∈Hψ

con(A,Z)2 ⩽ e(Hψ) ·
∑
A∈H

con(A,Z)2.

Combining the three displayed inequalities gives e(Hψ) = Ω
(
e(H)

)
, as desired. □
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6.1. The hypergraphs of stars and constellations. Assume from now on that s ⩾ 3

and r ⩾ 2 are integers and that H is a sequence of s-uniform hypergraphs that satisfies

assumptions (A2) and (A5). In order to use the container lemma in the context of

Theorem 6.1, let us define two (multi)hypergraphs with vertex set V (H)× JrK:
• the (r − 1)(s− 1)-uniform hypergraph R⋆ of rainbow stars,

• the (r − 1)(s− 1)s-uniform hypergraph R⋆⋆ of rainbow constellations.

The edges of R⋆ are all sets of the form

Ei
(
(Aj)j∈JrK\{i}

)
=

⋃
j∈JrK\{i}

(
Aj \ {v}

)
× {j},

where i ∈ JrK and {Aj : j ∈ JrK \ {i}} is an (r − 1)-star with centre v. We add such sets

to the multihypergraph R⋆ with their proper multiplicities, that is, Ei(A1, . . . , Ar−1) is

added to R⋆ once for every ordering of the edges of each (r − 1)-star {A1, . . . , Ar−1}.7
The edges of R⋆⋆ are all sets of the form

Ei(A1) ∪ · · · ∪ Ei(As),

where A1, . . . ,As are arbitrary orderings of the edge sets of some s stars that form

a constellation. As in the case of R⋆, every edge of R⋆⋆ appears with its proper multi-

plicity, that is, once for every choice of a base edge formed by the centres of the stars in

the constellation.

Our next two technical lemmas provide lower bounds on the numbers of edges in

the hypergraphs R⋆ and R⋆⋆ and upper bounds on the sequence of maximum degrees

of the latter hypergraph. These estimates will allow us to apply the container lemma

(Theorem 4.7) to the (r − 1)(s− 1)s-uniform hypergraph R⋆⋆ and construct a family of

only exp
(
o(p · v(H))

)
containers that cover the family of all partial colourings of V (H)

that admit many fewer than p(r−1)(s−1)s · e(R⋆⋆) rainbow constellations.

Lemma 6.3. There is a positive constant c that depends only on r and s such that

e(R⋆) ⩾ c · e(H)r−1

v(H)r−2
and e(R⋆⋆) ⩾ c · e(H)(r−1)s+1

v(H)(r−1)s
.

Lemma 6.4. There are constants Γ and Γ′ that depend only on r and the sequence H
and such that

∆1(R⋆⋆) ⩽ Γ′ ·
(
e(H)

v(H)

)(r−1)s+1

⩽ Γ · e(R
⋆
⋆)

v(R⋆⋆)
.

Moreover, for every t ⩾ 2,

∆t(R⋆⋆)≪ pt−1
H · e(R

⋆
⋆)

v(R⋆⋆)
.

The next lemma translates the rainbow star-constellation property into the language

of R⋆ and R⋆⋆.

Lemma 6.5. For every positive constant β, there exists a positive constant ε that de-

pends only on β, r, and the sequence H and such that the following holds for every

C ⊆ V (H)× JrK: If e
(
R⋆[C]

)
⩾ β · e(R⋆), then e

(
R⋆⋆[C]

)
⩾ ε · e(R⋆⋆).

7It is possible that Ei(A1, . . . , Ar−1) = Ei(A
′
1, . . . , A

′
r−1) when {A1, . . . , Ar−1} and {A′

1, . . . , A
′
r−1}

are two different stars that differ only in their centres.
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Furthermore, it will be convenient to define the (r−1)(s−1)-uniform (multi)hypergraph

M⋆ of uncoloured (r − 1)-stars whose vertex set is V (H). The edges of M⋆ are all sets

of the form

(A1 ∪ · · · ∪Ar−1) \ {v},

where A1, . . . , Ar−1 form a star in H whose centre vertex is v. Observe that M⋆ can be

thought of as the image of R⋆ via the projection π1 : V (H) × JrK → V (H) of its vertex

set onto the first coordinate. More precisely, since every star admits r! colourings that

make it rainbow, we have that π1(R⋆) = r! · M⋆ as multihypergraphs. This allows us

to bound degrees of subhypergraphs of R⋆ induced by various JrK-colourings of Z from

above using respective degrees of M⋆[Z]. The advantage of such an approach is that

the latter degrees depend only on Z rather than on the particular colouring of Z. This

motivates the two final lemmas of this subsection.

Lemma 6.6. There is a constant Γ that depend only on r and the sequence H such that

∆1(M⋆) ⩽ Γ · e(M⋆)

v(M⋆)
and e(M⋆) ⩽ Γ · e(H)r−1

v(H)r−2
.

Moreover, for every t ⩾ 2,

∆t(M⋆)≪ pt−1
H · e(M⋆)

v(M⋆)
.

Recall the definition of pseudo-variance (Definition 4.8) given in Section 4.3. In our

final lemma, we abuse the notation somewhat and write Var′(M⋆[Z]) to denote the

pseudo-variance of the sequence of events ({A ⊆ Z})A∈M⋆ .

Lemma 6.7. For every positive constant c, there is a constant Γ that depends only on c,

r, and the sequence H such that the following holds: If Z ∼ V (H)p for some p ⩾ c · pH,
then

Var′
(
M⋆[Z]

)
⩽ Γ · E[e(M⋆[Z])]2

pv(M⋆)
.

6.2. Proofs of Lemmas 6.2–6.7. In this subsection, we prove Lemmas 6.2–6.7. All

proofs are straightforward, albeit somewhat technical. Since the proofs of Lemmas 6.4

and 6.6 are very similar, but the latter is simpler, we present them in reverse order.

Throughout this section, we assume that r ⩾ 2 and s ⩾ 3 are integers and that H
is a sequence of s-uniform hypergraphs that satisfies assumptions (A2) and (A5). In

particular, there is a constant K such that, for all t ⩾ 1,

∆t(H) ⩽ K · pt−1
H · e(H)

v(H)
. (13)

Proof of Lemma 6.2. Fix an edge A ∈ H and let XA be the family of all constellations

with base edge A. Denoting by supp(C) the union of all (r − 1)s edges forming a

constellation C, we have

E
[
con(A,Z)2

]
=

∑
C,C′∈XA

p|(supp(C)∪supp(C
′))\A|

=
∑
C∈XA

p|supp(C)\A| ·
∑

C′∈XA

p|supp(C
′)\supp(C)|.
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For every C ∈ XA and t ∈ {0, . . . , (r−1)(s−1)s}, let XC,t denote the family of all C′ ∈ XA
satisfying |supp(C′) ∩ supp(C)| = |A|+ t, so that

XA =

(r−1)(s−1)s⋃
t=0

XC,t

and, consequently,

E
[
con(A,Z)2

]
=
∑
C∈XA

p(r−1)(s−1)s ·
(r−1)(s−1)s∑

t=0

|XC,t| · p(r−1)(s−1)s−t.

We may further partition each XC,t according to the intersection pattern of C′ ∈ XC,t with

supp(C). Namely, for every sequence t = (ti,j : i ∈ Jr − 1K, j ∈ JsK) with 0 ⩽ ti,j ⩽ s− 1,

we let XC,t be the family of all C′ ∈ XA such that the ith edge of the jth star in C′ (in

some arbitrary ordering) intersects supp(C) \A in ti,j vertices, so that

XC,t =
⋃

t:
∑

t=t

XC,t.

Since each edge of every star comprising each C′ ∈ XA intersects A in one vertex, there

is a constant Γ′ that depends only on r and s such that

|XC,t| ⩽ Γ′ ·
∏
i,j

∆ti,j+1(H) ⩽ Γ′ · p
∑
i,j ti,

H ·
(
K · e(H)

v(H)

)(r−1)s

= Γ′ ·K(r−1)s · p
∑

t−(r−1)(s−1)s
H .

In particular, there is a constant Γ′′ that depends only on r, s, and K such that

E
[
con(A,Z)2

]
⩽ Γ′′ ·

∑
C∈XA

p(r−1)(s−1)s ·
(r−1)(s−1)s∑

t=0

(
p

pH

)(r−1)(s−1)s−t

⩽ Γ′′ · |XA| ·
(
p2

pH

)(r−1)(s−1)s

·
(r−1)(s−1)s∑

t=0

c−t.

(14)

Since

|XA| ⩽ ∆1(H)(r−1)s ⩽

(
K · e(H)

v(H)

)(r−1)s

= K(r−1)s · p−(r−1)(s−1)s
H ,

summing (14) over all A ∈ H yields

E

[∑
A∈H

con(A,Z)2

]
⩽ Γ ·

(
p

pH

)2(r−1)(s−1)s

· e(H),

for some constant Γ that depends only on c, r, s, and K, as claimed. □

Proof of Lemma 6.3. Let H′ be the hypergraph obtained from H by iteratively removing

vertices with degree smaller than e(H)/(2v(H)). Observe that

e(H′) > e(H)− v(H) · e(H)

2v(H)
=
e(H)

2

and, consequently, that δ(H′) ⩾ e(H)/(2v(H)). In particular, there are at least

e(H′) · δ(H′)r−2 ⩾ 2−r · e(H)r−1

v(H)r−2
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sequences A1, . . . , Ar−1 of edges of H′ that satisfy A1 ∩ · · · ∩ Ar−1 ̸= ∅. If r = 2, then

each such sequence corresponds to 2s edges of R⋆ (there are two colours and s different

choices for the centre vertex that makes an edge into a star). Otherwise, if r ⩾ 3, then

all but at most

O(1) · e(H) ·∆1(H)r−3 ·∆2(H)≪ e(H)r−1

v(H)r−2

of those sequences are orderings of the edges of an (r−1)star (whose centre is the unique

element of A1 ∩ · · · ∩ Ar−1). Moreover, as A1, . . . , Ar−1 range over all such sequences

and i ranges over JrK, the sets Ei(A1, . . . , Ar−1) are distinct edges of R⋆.
Similarly, there are at least

e(H′) · δ(H′)(r−1)s ⩾ 2−rs · e(H)(r−1)s+1

v(H)(r−1)s

pairs comprising an edge A = {v1, . . . , vs} of H′ and a set {A1, . . . ,As} of sequences of

r−1 edges ofH′ such that, letting Aj = (Aj,1, . . . , Aj,r−1), we have vj ∈ Aj,1∩· · ·∩Aj,r−1.

Moreover, for all but at most

O(1) · e(H) ·∆1(H)s(r−1)−1 ·∆2(H)≪ e(H)(r−1)s+1

v(H)(r−1)s

of them, A1, . . . ,As are orderings of the edges of (r− 1)-stars that form a constellation

with base edge A and, as {A1, . . . ,As} and A range over all such pairs and i ranges

over JrK, the sets Ei(A1) ∪ · · · ∪ Ei(As) are distinct edges of R⋆⋆. □

Proof of Lemma 6.6. The lower bound

e(M⋆) ⩾

(
2−r

(r − 1)!
− o(1)

)
· e(H)r−1

v(H)r−2
,

is proved analogously to the lower bound on e(R⋆) in Lemma 6.3. Since an (r − 1)-star

forms a connected hypergraph with r − 1 edges, we have

∆1(M⋆) ⩽ Γ′ ·∆1(H)r−1 ⩽ Γ′ ·
(
K · e(H)

v(H)

)r−1

⩽ Γ · e(M⋆)

v(M⋆)

and, consequently,

e(M⋆) ⩽ ∆1(M⋆) · v(H) ⩽ Γ · e(H)r−1

v(H)r−2

where Γ and Γ′ are constants that depend only on r and K.

Let T ⊆ V (H) be an arbitrary set of size t ⩾ 2. For every sequence t = (ti)
r−1
i=1

satisfying 0 ⩽ ti ⩽ s− 1 for all i, we will bound from above the number of (r − 1)-stars

whose edges intersect T according to t, that is, the ith edge of the star intersects T in ti
vertices (not counting the centre vertex). Since

∑
ti = t ⩾ 2 and s ⩾ 3, we may assume

(by symmetry) that either

(i) 2 ⩽ t1 ⩽ s− 1 or

(ii) t1 = ti = 1 for some i ⩾ 2.

We may enumerate all stars of the above form as follows:

(1) Choose a labeled partition of T according to the intersection pattern t; there are

at most (r − 1)t such partitions.

(2) Choose the first edge of the star and its centre vertex; there are at most s·∆t1(H)

choices.
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(3) Choose the remaining r − 2 edges of the star; since the centre vertex is already

fixed, there are at most ∆ti+1(H) choices for the ith edge.

This gives

degM⋆
(T ) ⩽ O(1) ·max

t

{
∆t1(H) ·

r−1∏
i=2

∆ti+1(H)
}
,

where the maximum ranges over all sequences t summing to t and satisfying (i) or (ii)

above. Since H is non-clustered, if (i) holds, then ∆t1(H)≪ pt1−1
H ·e(H)/v(H) and if (ii)

holds, then ∆ti+1(H)≪ ptiH · e(H)/v(H), as ti + 1 = 2 ⩽ s− 1 (we also recall that (13)

holds always). Therefore, we may conclude that

degM⋆
(T )≪ O(1) ·max

t
p
∑
ti−1

H ·
(
e(H)

v(H)

)r−1

= O

(
pt−1
H · e(M⋆)

v(M⋆)

)
,

where the second inequality follows from the lower bound on e(M⋆) that we established

at the beginning. This completes the proof of the lemma. □

Proof of Lemma 6.4. Since a constellation together with its base edge forms a connected

hypergraph with (r−1)s+1 edges and the number of different rainbow colourings of any

given constellation can be bounded by a function of r and s only, there are constants Γ′

and Γ that depend only on r, s, and K such that

∆1(R⋆⋆) ⩽ Γ′ ·∆1(H)(r−1)s+1 = Γ′ ·
(
K · e(H)

v(H)

)(r−1)s+1

⩽ Γ · e(R
⋆
⋆)

v(R⋆⋆)
,

where the last inequality follows from Lemma 6.3.

Let T ⊆ V (H)× JrK be an arbitrary set of size t ⩾ 2 and let Ti = T ∩
(
V (H)× {i}

)
.

If each of T1, . . . , Tr is nonempty, then degR⋆
⋆
(T ) = 0, so we may assume (by symmetry)

that Tr = ∅. For every sequence

t =
(
ti,j : i ∈ Jr − 1K, j ∈ JsK

)
satisfying 0 ⩽ ti,j ⩽ s − 1 for all i and j, we will bound from above the number of

rainbow constellations whose r-rainbow stars intersect the set T according to t, that is,

the edge coloured i of the jth star intersects Ti ⊆ T in ti,j vertices. Since
∑
ti,j = t ⩾ 2

and s ⩾ 3, we may assume (by symmetry) that either

(i) 2 ⩽ t1,1 ⩽ s− 1 or

(ii) t1,1 = ti,j = 1 for some (i, j) ̸= (1, 1).

We may enumerate all constellations of the form described above as follows:

(1) Choose a labeled partition of T1, . . . , Tr−1 according to the intersection pattern

t; there are at most [(r − 1)s]t such partitions.

(2) Choose the edge coloured 1 of the first star; there are at most ∆t1,1(H) such

edges.

(3) Choose the base edge of the constellation; there are at most (s − t1,1) · ∆1(H)

choices.

(4) Choose all the s(r−1)−1 remaining edges of all the stars forming the constellation

one-by-one; since the base edge is already fixed, there are at most ∆ti,j+1(H)

choices for the edge coloured i of the jth star.
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This gives

degR⋆
⋆
(T ) ⩽ O(1) ·∆1(H) ·max

t

{
∆t1,1(H) ·

∏
(i,j)̸=(1,1)

∆ti,j+1(H)
}
,

where the maximum ranges over all sequences t summing to t and satisfying either (i)

or (ii) above. Since H is non-clustered, if (i) holds, then ∆t1,1(H)≪ p
t1,1−1
H · e(H)/v(H)

and if (ii) holds, then ∆ti,j+1(H) ≪ p
ti,j
H · e(H)/v(H), as ti,j + 1 = 2 ⩽ s − 1 (we also

recall that (13) holds always). Therefore, we may conclude that

degR⋆
⋆
(T )≪ O(1) ·max

t
p
∑
ti,j−1

H ·
(
e(H)

v(H)

)(r−1)s+1

= O

(
pt−1
H · e(R

⋆
⋆)

v(R⋆⋆)

)
,

where the last inequality follows from Lemma 6.3. This completes the proof of the

lemma. □

Proof of Lemma 6.5. Suppose that e
(
R⋆[C]

)
⩾ β · e(R⋆) and let W = π1(C), where

π1 : V (H) × JrK → V (H) is the projection on the first coordinate. Define a random

colouring ψ : W → JrK as follows: For every v ∈ W , let ψ(v) be the uniformly random

colour i ∈ JrK such that (v, i) ∈ C; in other words, ψ(v) is the uniformly chosen random

element of π2
(
C ∩ ({v} × JrK)

)
; here, π2 is the projection of V (H) × JrK on the second

coordinate. Since R⋆ is (r − 1)(s− 1)-uniform, we have

E
[
e
(
R⋆[ψ]

)]
⩾ r−(r−1)(s−1) · e

(
R⋆[C]

)
⩾ βr−(r−1)(s−1) · e(R⋆). (15)

From now on, let ψ : W → JrK be an arbitrary colouring for which (15) holds without

the expectation.

Since Lemma 6.3 supplies a positive constant c such that e(R⋆) ⩾ c·e(H)r−1/v(H)r−2,

assumption (A5), see Definition 2.8, assures that

e
(
R⋆⋆[ψ]

)
⩾ ε′ · e(H)(r−1)s+1

v(H)r−1)s

for some positive constant ε′ that depends only on β, r, and the sequence H. Finally,

Lemma 6.4 supplies a constant Γ′ that depends only on r, s, and K such that ∆1(R⋆⋆) ⩽
Γ′ · e(H)(r−1)s+1/v(H)(r−1)s+1. Consequently,

e
(
R⋆⋆[C]

)
⩾ e
(
R⋆⋆[ψ]

)
⩾
ε′

Γ′ · v(H) ·∆1(R⋆⋆) =
ε′

Γ′r
· v(R⋆⋆) ·∆1(R⋆⋆) ⩾

ε′

Γ′r
· e(R⋆⋆),

which concludes the proof of the lemma. □

Proof of Lemma 6.7. We have

Var′(M⋆[Z]) =
∑

A,B∈M⋆

A∩B ̸=∅

p|A∪B| ⩽
∑
A∈M⋆

p|A|
∑

∅≠T⊆A

∑
B∩A=T

p|B\A|

⩽ E[e(M⋆[Z])] ·
(r−1)(s−1)∑

t=1

(
(r − 1)(s− 1)

t

)
·∆t(M⋆) · p(r−1)(s−1)−t.
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By Lemma 6.6, for some constant Γ′ that depends only on r and the sequence H,

Var′(M⋆[Z]) ⩽ Γ′ · E[e(M⋆[Z])] ·
(r−1)(s−1)∑

t=1

p(r−1)(s−1)−t · pt−1
H · e(M⋆)

v(M⋆)

=
Γ′ · E[e(M⋆[Z])]2

pv(M⋆)
·
(r−1)(s−1)∑

t=1

(
pH
p

)t−1

,

which, by our assumption that p ⩾ c ·pH implies the claimed bound on Var′(M⋆[Z]). □

6.3. Proof of Theorem 6.1. We wish to show that, with probability close to one, every

colouring of Z ∼ V (H)p that admits only a small number of rainbow constellations will

also admit only a small number of rainbow stars. To do this, we will apply the container

lemma to the hypergraph R⋆⋆ and conclude that every such colouring is contained in one

of exp(o(pN)) subsets of V (H) × JrK, each of which induces o(e(R⋆⋆)) rainbow constel-

lations. By Lemma 6.5, each such container can only induce o(e(R⋆)) rainbow stars.

Intuitively, it seems plausible that every colouring of Z residing inside each container

should also have a small number of rainbow stars, as we wanted. In order to show this,

however, we appear to need an upper bound on the upper tail of the number of rainbow

stars in the intersection of Z × JrK with a given container C that is strong enough to

survive the union bound over all containers. Unfortunately, the upper tail is most likely

too heavy to permit such a naive union bound. We will avert this problem by showing

that the overall number of stars in Z is concentrated (for our purposes, a simple second

moment argument would do, which is the task of Lemma 6.7) and then transform the

question of bounding the upper tail of the number of rainbow stars in C ∩ (Z × JrK) to

that of bounding the lower tail of the number of rainbow stars that are not contained in

C ∩ (Z × JrK); here, Janson’s inequality provides an adequate, exponential bound.

Proof of Theorem 6.1. For the sake of brevity, we write V in place of V (H). Let Γ :=

Γ6.4, let β := βs/(3Γr!), let ε be the constant supplied by Lemma 6.5 invoked with

β6.5 = β, let c := c6.3, and let t and δ be the constants from the assertion of the

container lemma (Theorem 4.7) invoked with k4.7 = (r − 1)(s − 1)s, K4.7 = Γ, and

ε4.7 = ε. Further, let T = T (t, r, β,Γ) be sufficiently large so that(
2teT

t

)tr/T
⩽ exp

(
β2

5Γ

)
(16)

and let τ := p/T . Finally, let βc := cδ · T−(r−1)(s−1)s and note that

βc
c
· p(r−1)(s−1)s ⩽ δτ (r−1)(s−1)s. (17)

Since Lemma 6.4 implies that, for every ℓ ∈ J(r − 1)(s− 1)sK,

∆ℓ(R⋆⋆) ⩽ Γ · τ ℓ−1 · e(R
⋆
⋆)

v(R⋆⋆)
,

Theorem 4.7 supplies a function f : P
(
V × JrK

)t → P(V × JrK
)

such that:8

(i) For every partial JrK-colouring ψ with fewer than δτ (r−1)(s−1)s · e(R⋆⋆) rainbow

constellations, there are S1, . . . , St ⊆ ψ with at most rτv(H) elements each such

that ψ ⊆ f(S1, . . . , St).

8Recall that we view partial JrK-colourings of V as subsets of V × JrK.
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(ii) For every S1, . . . , St ⊆ V × JrK, the set f(S1, . . . , St) induces fewer than εe(R⋆⋆)
edges in R⋆⋆ and thus, by Lemma 6.5, fewer than βe(R⋆) edges in R⋆.

Suppose now that Z fails to satisfy the assertion of the theorem, that is, there is a

partial JrK-colouring ψ of Z such that

e
(
R⋆[ψ]

)
⩾ βs ·

(
p

pH

)(r−1)(s−1)

· v(H) = βs · p(r−1)(s−1) · e(H)r−1

v(H)r−2

but, nevertheless,

e
(
R⋆⋆[ψ]

)
< βc ·

(
p

pH

)(r−1)(s−1)s

· e(H) = βc · p(r−1)(s−1)s · e(H)(r−1)s+1

v(H)(r−1)s
.

Consequently, by Lemma 6.6,

e(R⋆[ψ]) ⩾
βs
Γ
· p(r−1)(s−1) · e(M⋆) = 3β · r! · E

[
e
(
M⋆[Z]

)]
(18)

and, by Lemma 6.3 and (17),

e
(
R⋆⋆[ψ]

)
<
βc
c
· p(r−1)(s−1)s · e(R⋆⋆) ⩽ δτ (r−1)(s−1)s · e(R⋆⋆). (19)

Property (i) implies that there are sets S1, . . . , St ⊆ V ×JrK with at most rτv(H) elements

each such that π1, the projection onto the first coordinate, maps S1 ∪ · · · ∪St injectively

to Z and ψ is contained in the set f(S1, . . . , St). In particular, by (18),

e
(
R⋆
[
f(S1, . . . , St) ∩ (Z × JrK)

])
⩾ e(R⋆[ψ]) ⩾ 3β · r! · E

[
e
(
M⋆[Z]

)]
. (20)

On the other hand, property (ii) states that f(S1, . . . , St) induces fewer than βe(R⋆)
edges in R⋆. We will now show that it is unlikely that this holds for any sequence

S1, . . . , St.

Let U be the event that

e
(
M⋆[Z]

)
⩽ (1 + β) · E

[
e
(
M⋆[Z]

)]
.

It follows from Lemma 6.7 and Markov’s inequality that

P(Uc) ⩽ 4

β2
·

Var
(
e(M⋆[Z])

)
E
[
e(M⋆[Z])

]2 ⩽
4Γ

β2 · pv(H)
= o(1),

as pv(H)→∞, see Fact 2.3.

Given a C ⊆ V × JrK, define

RC⋆ := R⋆ \ R⋆[C]

and let MC
⋆ be the multiset projection of RC⋆ onto V , so that e(MC

⋆ ) = e(RC⋆ ). In

particular,

e
(
R⋆
[
C ∩ (Z × JrK)

])
= e

(
R⋆
[
Z × JrK

])
− e

(
RC⋆
[
Z × JrK

])
= r! · e

(
M⋆[Z]

)
− e
(
MC

⋆ [Z]
)
,

(21)

where the final equality holds because every (r − 1)-star admits exactly r! rainbow

colourings (and therefore every edge of M⋆[Z] corresponds to r! edges of R⋆
[
Z × JrK

]
).

We conclude this discussion with the following observation: If U holds, then inequal-

ity (20) and identity (21) with C = f(S1, . . . , St) imply that

e
(
Mf(S1,...,St)

⋆ [Z]
)
⩽ (1− 2β) · r! · E

[
e
(
M⋆[Z]

)]
. (22)
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Let S denote the collection of all sequences (S1, . . . , St) of t subsets of V × JrK with

at most rτv(H) elements each such that π1 restricted to S1 ∪ · · · ∪St is injective. Given

a sequence S = (S1, . . . , St) ∈ S, let YS denote the event that π1(S1 ∪ · · · ∪St) ⊆ Z and

let LS denote the event that (22) holds; note that YS is increasing (in Z) whereas LS
is decreasing. Finally, let F denote the event that Z fails the assertion of the theorem.

The above discussion and Harris’s inequality imply that

P(F) ⩽ P(Uc) +
∑
S∈S

P(LS ∩ YS) ⩽ P(Uc) +
∑
S∈S

P(LS) · P(YS)

⩽ max
S∈S

P(LS) ·
∑
S∈S

P(YS) + o(1).
(23)

Claim 6.8. For every S ∈ S,

P(LS) ⩽ exp

(
−β

2

2Γ
· pv(H)

)
.

Proof of Claim 6.8. Fix an arbitrary sequence S = (S1, . . . , St) ∈ S and recall that

e
(
Mf(S1,...,St)

⋆

)
= e
(
Rf(S1,...,St)
⋆

)
= e(R⋆)− e

(
R⋆
[
f(S1, . . . , St)

])
⩾ (1− β) · e(R⋆) = (1− β) · r! · e(M⋆)

or, equivalently,

E
[
e
(
Mf(S1,...,St)

⋆ [Z]
)]

⩾ (1− β) · r! · E
[
e
(
M⋆[Z]

)]
. (24)

Let X := e
(
Mf(S1,...,St)

⋆ [Z]
)

and let µ := r! · E
[
e
(
M⋆[Z]

)]
, so that (22) and (24) can be

rewritten as X ⩽ (1− 2β)µ and E[X] ⩾ (1− β)µ, respectively. It follows from Janson’s

inequality (Theorem 4.9) that

P(LS) = P (X ⩽ (1− 2β)µ) ⩽ P (X ⩽ E[X]− βµ) ⩽ exp

(
− β2µ2

2Var′
(
Mf(S1,...,St)

⋆ [Z]
)) ,

where, similarly as in Lemma 6.7, we write Var′(Mf(S1,...,St)
⋆ [Z]) to denote the pseudo-

variance of the sequence of events ({A ⊆ Z})
A∈Mf(S1,...,St)

⋆
. SinceMf(S1,...,St)

⋆ ⊆ r! ·M⋆,

we have (using an analogous notational convention)

Var′(Mf(S1,...,St)
⋆ [Z]) ⩽ Var′(r! · M⋆[Z]) = (r!)2 ·Var′(M⋆[Z])

Further, by Lemma 6.7,

Var′(M⋆[Z]) ⩽ Γ · E[e(M⋆[Z])]2

pv(M⋆)
= Γ · (µ/r!)2

pv(H)
.

Substituting this estimate back into the upper bound on P(LS) gives the assertion of

the claim. □

Finally, we derive an upper bound on the sum in the right-hand side of (23). To this

end, for every integer m, we let

Sm :=
{

(S1, . . . , St) ∈ S : |S1 ∪ · · · ∪ St| = |π1(S1 ∪ · · · ∪ St)| = m
}

and note that

S =

trτv(H)⋃
m=0

Sm.
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It is not hard to see that, for every m,

|Sm| ⩽
(
v(H)

m

)
·
(
2tr
)m

⩽

(
2terv(H)

m

)m
and P(YS) = pm for every S ∈ Sm. Consequently, since τ ⩽ p and, for every positive

real a, the function x 7→ (ea/x)x is increasing on the interval [0, a],

∑
S∈S

P(YS) =

trτv(H)∑
m=0

(
2terpv(H)

m

)m
⩽ v(H) ·

(
2tep

tτ

)trτv(H)

= v(H) ·
(

2teT

t

)(tr/T )·pv(H) (16)

⩽ exp

(
β2

4Γ
· pv(H)

)
.

We may finally conclude that

P(F) ⩽ o(1) + exp

(
β2

4Γ
· pv(H)− β2

2Γ
· pv(H)

)
= o(1),

where we again used the assumption that pv(H)→∞, see Fact 2.3. □

7. Applications

In this section, we will use our general Theorem 2.1 to prove Theorems 1.2, 1.3,

and 1.4. In the following three subsections, we will verify that Theorem 2.1 can be applied

to hypergraphs that naturally arise in the context of Ramsey questions for: graphs

(Section 7.1), arithmetic progressions (Section 7.2), and Schur triples (Section 7.3). In

each case, we will verify the list of assumptions of the theorem, which will swiftly award

us with a sharp threshold result for the corresponding Ramsey problem. As a reminder,

the assumptions on the hypergraph H are:

(A1) is symmetric,

(A2) it is non-clustered,

(A3) non-colourability has a threshold at pH,

(A4) it satisfies 2-choosability for typical bounded-sized subsets, and

(A5) it satisfies the rainbow star-constellation property.

The first two assumptions are more technical in nature and will mostly set the frame-

work of the application. For example, in the arithmetic setting, (A1) will force us to

work in ZN instead of JNK whereas, for graphs, (A2) is akin to requiring the graph to

be strictly 2-balanced. Assumption (A3) was the subject of previous works. Having

said that, in the arithmetic setting of Theorems 1.3 and 1.4, the 0-statements implicit

in (A3) are marginally stronger than what was explicitly established by previous works,

due to the fact that we are working in modular arithmetic. Even though these earlier

works can be adapted to yield (A3), we will not dwell on it and instead establish stronger

forms of these 0-statements that also imply (A4), Theorems 1.5 and 1.6. These follow

from the general Theorem 1.7, which will be proved in Section 7.4. (We also recall that

the 1-statements can be derived using Proposition 2.11 since the hypergraphs in all of

our applications are robustly non-colourable.) As for (A5), even though it is rather

straightforward to verify in the context of Theorem 1.3, checking it in the remaining two

cases is far from easy. (We recall here that this assumption is not satisfied in all cases

of interest, see Appendix C.) Summarising, the bulk of the work in this section will be

spent in verifying the last two assumptions.
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7.1. Graphs. In this section, we will prove Theorem 1.2, which asserts that the property

Gn,p → (H)r has a sharp threshold for certain pairs of H and r. Given a strictly 2-

balanced graph H, let HH be the hypergraph of copies of H in Kn whose vertices are

the edges of Kn and whose hyperedges are (the edge sets of) all copies of H. It is

straightforward to check that s = eH , v(HH) = Θ(n2), e(HH) = Θ(nvH ), and pHH
=

Θ(n−1/m2(H)). Moreover, it is routine to verify that HH is non-clustered (as H is strictly

2-balanced) and that it is symmetric (due to the symmetries of Kn). It was proved by

Rödl and Ruciński [22] that, for each r ⩾ 2, the threshold for non-r-colourability of

(HH)p is located at pH. This, assumptions (A1)– (A3) are met. We now turn to

verifying the last two assumptions.

7.1.1. Rainbow star-constellation property for graphs. A rainbow star in the hypergraph

HH of copies of a graph H in Kn is comprised of r − 1 monochromatic copies of H

minus some edge (not necessarily the same edge in different copies), each coloured with

a different colour, that are glued on that missing edge, called the centre of the star. A

rainbow constellation is a union of edge-disjoint rainbow stars whose centres form a copy

of H. We will tacitly assume that all stars and constellations are generic in the sense

that the copies of H minus an edge that form them do not share more vertices than

necessary: every rainbow star will have vS := (vH − 2) · (r − 1) + 2 vertices and every

rainbow constellation will have vC := eH · (vH − 2) · (r − 1) + vH vertices.

To prove the rainbow star-constellation property in r colours we will need to show

that any collection of Θ(e(HH)r−1/v(HH)r−2) = Θ(nvS ) many (r − 1)-stars, induces

Θ(e(HH)s(r−1)+1/v(HH)s(r−1)) = Θ(nvC ) many (r− 1)-constellations. Put differently, if

we have a collection achieving the full count of rainbow stars in Kn, then it induces the

full count of rainbow constellations.

Let F and G be edge-coloured graphs. A homomorphism from F to G is a function

φ : V (F )→ V (G) such that, for every uv ∈ F , the pair {φ(u), φ(v)} is an edge of G with

the same colour as uv. We wish to prove the following characterisation for the rainbow

star-constellation property.

Proposition 7.1. The hypergraph HH of copies of a given graph H in Kn has the

rainbow star-constellation property if and only if every rainbow star S of H admits a

rainbow constellation C of H with a homomorphism C → S.

In order to prove this statement, we will first gather some definitions and tools. Given

edge-coloured graphs F and G, let Hom(F,G) denote the family of all homomorphisms

from F to G and let hom(F,G) denote the density of Hom(F,G) in V (G)V (F ), that is,

hom(F,G) :=
|Hom(F,G)|

vvFG
.

In other words, hom(F,G) is the probability that a random function φ : V (F )→ V (G)

belongs to Hom(F,G).

Observation 7.2. Let F and G be graphs. If F ′ ⊆ F , then hom(F ′, G) ⩾ hom(F,G).

Proof. Indeed, if φ ∈ Hom(F,G), then φ|V (F ′) ∈ Hom(F ′, G). Therefore, |Hom(F,G)| ⩽
|Hom(F ′, G)| · vGvF−vF ′ and the result follows. □
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For a graph F and a positive integer k, the k-blowup of F , denoted by F (k), is the

graph obtained from F by replacing each vertex a of F by an independent set Va of size

k and every edge ab of F by a complete bipartite graph between Va and Vb.

Observation 7.3. Hom(F,G) ̸= ∅ if and only if F ⊆ G(vF ).

The following lemma should be folklore.

Lemma 7.4. Suppose that F and G are graphs and let k be a positive integer. Then

hom(F (k), G) ⩾ hom(F,G)k·vF .

Proof. Let v = vF and let u1, . . . , uv be an arbitrary ordering of the vertices of F . For

i ∈ {0, . . . , v} let Fi denote the graph obtained from F by blowing up vertices u1, . . . , ui
by a factor of k, so that F0 = F and Fv = F (k). It suffices to show that, for every i ∈ JvK,

hom(Fi, G) ⩾ hom(Fi−1, G)k.

Let φ : V (Fi)→ V (G) be a random function, let ui,1, . . . , ui,k be the k copies of ui in Fi,

and let V ′
i = V (Fi) \ {ui,1, . . . , ui,k} = V (Fi−1) \ {ui}. We have

hom(Fi, G) = P
(
φ ∈ Hom(Fi, G)

)
= P

(
φ|V ′

i
∈ Hom(Fi[V

′
i ], G)

)
· P
(
φ ∈ Hom(Fi, G) | φ|V ′

i
∈ Hom(Fi[V

′
i ], G)

)
Since Fi[V

′
i ] = Fi−1[V

′
i ], we have

P
(
φ|V ′

i
∈ Hom(Fi[V

′
i ], G)

)
= P

(
φ|V ′

i
∈ Hom(Fi−1[V

′
i ], G])

)
= hom(Fi−1[V

′
i ], G).

Crucially, since φ(ui,1), . . . , φ(ui,k) are independent, uniformly random elements of V (G)

and {ui,1, . . . , ui,k} is an independent set in Fi,

P
(
φ ∈ Hom(Fi, G) | φ|V ′

i
∈ Hom(Fi[V

′
i ], G)

)
=

k∏
j=1

P
(
φ|V ′

i ∪{ui,j} ∈ Hom(Fi[V
′
i ∪ {ui,j}], G) | φ|V ′

i
∈ Hom(Fi[V

′
i ], G)

)
.

Finally, since Fi[V
′
i ∪ {ui,j}] ∼= Fi−1, we conclude that, letting ψ : V (Fi−1)→ V (G) be a

uniformly random map,

hom(Fi, G) = hom(Fi−1[V
′
i ], G) · P

(
ψ ∈ Hom(Fi−1, G) | ψ|V ′

i
∈ Hom(Fi−1[V

′
i ], G)

)k
⩾ hom(Fi−1[V

′
i ], G)k · P

(
ψ ∈ Hom(Fi−1, G) | ψ|V ′

i
∈ Hom(Fi−1[V

′
i ], G)

)k
= hom(Fi−1, G)k,

as claimed. □

Proof of Proposition 7.1. First, suppose that, for some rainbow star S, there is no con-

stellation C such that C → S. The blowup S(⌊n/vS⌋) is an edge-coloured subgraph of Kn

with Ω(nvS ) rainbow stars but no rainbow constellations, see Observation 7.3.

For the other direction, suppose that G is an edge-coloured subgraph of Kn that has

Ω(nvS ) rainbow stars. Since there are only O(1) isomorphism types of stars of H, there

must be some rainbow star S of H such that hom(S,G) is bounded from below by a

positive constant. Let C be a rainbow constellation satisfying C → S, that is, C ⊆ S(vC),

see Observation 7.3. By Observation 7.2 and Lemma 7.4,

hom(C,G) ⩾ hom(S(vC), G) ⩾ hom(S,G)vC ·vS = Ω(1).
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In particular, G contains Ω(nvC ) rainbow constellations. □

We will now derive several sufficient conditions for the rainbow star-constellation

property that are easier to verify than the abstract criterion provided by Proposition 7.1.

Corollary 7.5. If H is bipartite, then HH has the rainbow star-constellation property.

Proof. We wish to show that every rainbow star S of a bipartite graph admits a rainbow

constellation C such that C → S. Given a star S, we will build the required constellation

C in the following way. Begin with a copy of H with partite sets U and V . For all u ∈ U
and v ∈ V that are adjacent in H, place a copy of S centred at uv. It is not hard to check

that the function that maps every vertex in each copy of S in C to its corresponding

vertex of S is a homomorphism from C to S. □

Next, observe that the rainbow star-constellation property for r colours is monotone

decreasing in r. However, as it turns out, whenever it holds with r = 3, it also holds

for all r strictly greater than three. We will show this by describing another equivalent

property that does not mention rainbow structures and instead deals solely with the

symmetries of H.

Definition 7.6. A graph H is collapsible if, for every edge e ∈ H and every vertex a ∈ e,
there is an edge f ∈ H and a homomorphism H \ f → H \ e mapping both endpoints of

f to a.

Corollary 7.7. Suppose that r > 2 and that H is not bipartite. Then HH has the

rainbow star-constellation property if and only if H is collapsible.

Proof. Suppose first that HH has the rainbow star-constellation property for r > 2. Let

e = {a, b} be an edge of H. We will construct a rainbow star S centred at some uv using

copies of H \ e as follows: In the first colour, use a copy of H \ e so that u plays the role

of a and v plays the role of b. In every other colour (the number of colours is r− 1 ⩾ 2),

we switch the roles – u plays the role of b and v plays the role of a. By Proposition 7.1,

we are guaranteed a rainbow constellation C and a homomorphism φ from C to S. Let

W be the set of vertices spanned by the centres of stars comprising C. We claim that

φ(W ) ⊆ {u, v}. Indeed, every vertex in W is incident to edges of all r − 1 > 1 colours

and every vertex of S other then u and v is incident to edges of solely one colour. Since

W is the vertex set of a copy of H whose every edge is the centre of a star in C, the

assumption that H is not bipartite implies that φ maps both endpoints of at least one

such centre to the same vertex (either u or v). Let S′ be the star in C whose centere

has this property. The restriction of φ to S′ (specifically, the first two colours of S′)

describes two homomorphisms from copies of H minus an edge, one of them mapping

both endpoints of the missing edge to a, and the other mapping both of them to b.

Suppose now that H is collapsible. Given a rainbow star S, centred at some uv,

there are edges a1b1, . . . , ar−1br−1 ∈ H such that S comprises copies of H \a1b1, . . . ,H \
ar−1br−1 glued together so that a1, . . . , ar−1 are all mapped to u and b1, . . . , br−1 are all

mapped to v. For each i ∈ Jr − 1K, we may find an fi ∈ H and a homomorphism φi
from H \ fi to H \ aibi that maps both endpoints of fi to ai. Let S′ be a rainbow star

comprised of copies of H \ f1, . . . ,H \ fr−1 glued together along f1, . . . , fr−1. It is not

hard to check that the function φ′ extending all φ1, . . . , φr−1 is a homomorphism from

S′ to S that maps both endpoints of the centre of S′ to u. Finally, let C ′ be a rainbow
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constellation whose each star is a copy of S′. The function mapping each vertex in each

copy of S′ according to φ′ is a homomorphism from C ′ to S (which maps all vertices

spanned by the base of C ′ to u). □

Last, in the case where r = 2 the notion of rainbow stars and constellations degenerates

– a rainbow star is just a copy of H minus an edge. As a result, we have fewer restrictions

than in the case r > 2 and even a weaker version of the collapsibility will be sufficient

to imply the star-constellation property.

Definition 7.8. A graph H is semi-collapsible if, for every edge e ∈ H, there is an edge

f ∈ H and a homomorphism H \ f → H \ e mapping both endpoints of f to the same

vertex.

Corollary 7.9. If r = 2 and H is semi-collapsible, then HH has the star-constellation

property.

Proof. Suppose that H is semi-collapsible and let H \ e, where e ∈ H, be an arbitrary

star of H. We let C be a constellation constructed from copies of H \ f , for some f ∈ H
such that there exists a homomorphism φ from H \f to H \ e that maps both endpoints

of f to the same vertex. It is not hard to check that the function that maps each vertex

in each copy of H \ f in C according to φ is a homomorphism from C to H \ e. □

One can use these corollaries to establish the rainbow star-constellation property for

certain families of graphs. We will give two examples. Recall that a graph is called

nearly-bipartite if it can be made bipartite by removing one edge; e.g. a cycle. Together

with trees, strictly 2-balanced nearly-bipartite graphs make the largest family of graphs

for which sharpness was previously established (albeit, only when r = 2). We will show

that nearly-bipartite graphs are collapsible and so their respective hypergraphs HH all

have the rainbow star-constellation property for every r. Secondly, we will note that

cliques are also collapsible, thus giving another application to a natural family on the

other end of the spectrum. We should also note that some graphs do not have the rainbow

star-constellation property. One such example is the Petersen graph (see Appendix C).

Corollary 7.10. If H is nearly-bipartite and with minimum degree at least two, then

HH has the rainbow star-constellation property.

Proof. By Corollary 7.5, we may assume that H is not bipartite. By Corollary 7.7, it

suffices to show that H is collapsible. Let e be an edge of H and let u be an endpoint of

e. Since δ(H) ⩾ 2, there is an edge e′ ̸= e that also contains u. Now take an edge f such

that H \ f is bipartite. Consider some bipartition of H \ f and let U be the colour class

that contains both endpoints of f (we assumed that H is not bipartite). We map H \ f
to H \ e by sending all the vertices in U to u and by sending the vertices in V (H) \ U
to the second endpoint of e′. □

Corollary 7.11. If H is a clique, then HH has the rainbow star-constellation property.

Proof. This follows from Corollary 7.7 and the fact that a clique is collapsible. Indeed,

given any edge e of the clique and an endpoint u of e, the mapping of Kn \ e to itself

that maps both endpoints of e to u and fixes every other vertex is a homomorphism. □
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7.1.2. List colouring graphs. We wish to show that, when p ⩽ n−1/m2(H), a.a.s. every

constant-sized subgraph of Gn,p is 2-choosable with respect to H, that is, its edges can

be coloured from arbitrary lists of size two without introducing a monochromatic copy

of H. Since a.a.s. any constant-sized subgraph G ⊆ Gn,p satisfies m(G) ⩽ m2(H), it

suffices to prove the following proposition.

Proposition 7.12. Let H be a graph that is not a forest. If a graph G satisfies m(G) ⩽
m2(H), then it is 2-choosable with respect to H.

Before we prove this, let us state a helpful lemma. Given a graph H and a set

W ⊆ V (H), it will be convenient to denote by ēH(W ) the number of edges incident with

a vertex of W , i.e., ēH(W ) := eH − eH\W .

Lemma 7.13 (Helpful Lemma). Suppose that H is strictly 2-balanced and suppose that

W ⊆ V (H) satisfies 1 ⩽ |W | ⩽ vH − 3. Then

m2(H) · |W | < ēH(W ).

Proof. Since H −W is a proper subgraph of H with at least three vertices and H is

strictly 2-balanced,

eH − 1− ēH(W )

vH − 2− |W |
=
eH−W − 1

vH−W − 2
< m2(H) =

eH − 1

vH − 2
,

which means that (eH − 1) · |W | < (vH − 2) · ēH(W ) and the result follows. □

We now turn to proving the proposition. We will have separate arguments for three

small graphs—specifically K3, K4, and C4—and then a general argument for every other

graph. We will begin with the general argument and subsequently supply the remaining

cases.

Proof of Proposition 7.12 (Part I: The general argument). Without loss of generality, we

may assume that H is strictly 2-balanced. Indeed, otherwise we replace H with one of

its minimal subgraphs H ′ satisfying m2(H
′) = m2(H) > 1. Since the only strictly 2-

balanced graphs with fewer than five vertices (and a cycle) are K3, K4, and C4, which

will require a separate argument, we may further assume that H has at least five vertices.

Suppose that the statement is false and let G be a minimal counterexample. Write

m2(H) = k + ε, where k is an integer and ε ∈ [0, 1). Since H is not a forest, we must

have k ⩾ 1.

The idea of the proof is to use the upper bound on the density of G to locate a sparse

subgraph S ⊆ G; this will be achieved using a discharging argument. By the minimality

of G, we are able to colour G \ S without monochromatic copies of H and because S is

sufficiently sparse, we will be able to extend each such colouring to all of G.

Claim 7.14. One of the following holds:

(1) G has a vertex of degree at most 2k,

(2) G has a vertex of degree 2k + 1 with a neighbour of degree at most 2k + 2 and

ε ⩾ 1/2, or

(3) G has a vertex of degree 2k+3 with two neighbours of degree 2k+1 and ε ⩾ 7/8.

Proof. Since δ(G) ⩽ 2m(G) ⩽ 2m2(H) = 2k + 2ε < 2k + 2, we have δ(G) ⩽ 2k + 1 and,

if ε < 1/2, then δ(G) ⩽ 2k. We may thus assume that δ(G) = 2k + 1 and ε ⩾ 1/2,
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since otherwise (1) holds. We may further assume that all neighbours of every vertex of

degree 2k + 1 have degrees at least 2k + 3, since otherwise (2) holds.

Assign to each v ∈ V (G) a charge of deg(v)− 2(k + ε). Note that the average charge

is at most 2m(G)− 2(k+ ε) ⩽ 0. We define the following discharging rule: every vertex

of degree 2k+ 1 takes a charge of 2ε−1
2k+1 from each of its neighbours. By our assumption,

no vertex of degree 2k+ 1 or 2k+ 2 sends charge to any of its neighbours. In particular,

the final charge of a vertex of degree 2k + 1 is

2k + 1− 2(k + ε) + (2k + 1) · 2ε− 1

2k + 1
= 0

and the final charge of a vertex of degree 2k + 2 is 2k + 2− 2(k + ε) > 0.

Since the total charge remains unchanged, the final charge of some vertex of degree at

least 2k+3 must be non-positive. Let v be one such vertex. Suppose that deg(v) = 2k+t,

where t ⩾ 3, and that v has x neighbours with degree 2k + 1. Since the final charge of

v is

2k + t− 2(k + ε)− x · 2ε− 1

2k + 1
⩽ 0,

we have

(t− 2)(2k + 1) <
t− 2ε

2ε− 1
· (2k + 1) ⩽ x ⩽ 2k + t,

which implies that t < 3 + 1/k ⩽ 4. Therefore, t = 3 and x > 2k + 1 ⩾ 3, which means

that some vertex of degree 2k + 3 has more than three neighbours of degree 2k + 1.

Moreover, we also have 3−2ε
2ε−1 · (2k + 1) ⩽ 2k + 3, which implies that ε ⩾ 3k+3

4k+4 ⩾ 7
8 . □

We split the argument into three cases, depending on which item in Claim 7.14 holds.

Case 1. Item (1) in Claim 7.14 holds. Since the Helpful Lemma implies that deg(a) =

ēH({a}) > m2(H) = k + ε for every vertex a ∈ V (H), we have δ(H) ⩾ k + 1. Let v be

a vertex of smallest degree in G and let S comprise all the edges incident with v. Any

colouring of G \ S may be extended to G in the following way: Because all lists have

two colours, we may choose colours for the edges of S so that every colour is selected at

most ⌈|S|/2⌉ = ⌈δ(G)/2⌉ = k times. Since δ(H) > k, this means that v cannot belong

to a monochromatic copy of H.

Case 2. Item (2) in Claim 7.14 holds. Let uv be an arbitrary edge of G satisfying

deg(u) = 2k + 1 and deg(v) ⩽ 2k + 2. We claim that any colouring of G \ uv can be

extended to G. Suppose that it cannot. This means that uv completes a monochromatic

copy of H in both its colour options. But this means that, for some ab ∈ H,

4k + 1 ⩾ deg(u) + deg(v)− 2 = ēG({u, v})− 1 ⩾ 2 ·
(
ēH({a, b})− 1

)
.

However, the Helpful Lemma implies that ēH({a, b}) > 2m2(H) = 2k + 2ε ⩾ 2k + 1, a

contradiction.

Case 3. Item (3) in Claim 7.14 holds. Let u, v1, and v2 be distinct vertices of G

satisfying uv1, uv2 ∈ G, deg(u) = 2k + 3, and deg(v1) = deg(v2) = 2k + 1. We may

assume that v1v2 /∈ G, since otherwise (2) in Claim 7.14 holds. We claim that any proper

colouring of G′ := G\{uv1, uv2} can be extended to G. To this end, let G1 := G′∪{uv1}
and G2 := G′∪{uv2}. Since degGi(u) = 2k+2 and degGi(vi) = 2k+1 for both i ∈ {1, 2},
the argument presented in Case 2 shows that any colouring of G′ can be (separately)

extended to both G1 and G2. If some extensions of the colouring of G′ to G1 and

G2 assign different colours to uv1 and uv2, then their common extension is an H-free
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colouring of G. Therefore, we may assume that there is a colour j such that, for both

i ∈ {1, 2}, every extension of the colouring of G′ to Gi assigns this colour j to uvi. This

means that uvi completes a copy of H in Gi whose all remaining edges are assigned a

colour other than j (the second colour from the list of uvi) in the colouring of G′. In

particular, there are vertices a1, a2, and b2 of H such that a2b2 ∈ H and, letting m

denote the number of edges of G′ incident to {u, v1, v2} that are not coloured j,

m ⩾ ēH({a1})− 1 + ēH({a2, b2})− 1

As before, the Helpful Lemma implies that ēH({a1}) > k and ēH({a2, b2}) > 2k + 2ε >

2k + 1, which means that m ⩾ 3k + 1. It follows that the number m′ of edges of G′

incident to {u, v1, v2} that are coloured j satisfies

m′ = ēG′({u, v1, v2})−m = deg(u) + deg(v1) + deg(v2)− 4−m ⩽ 3k.

Assign the colour j to both uv1 and uv2. If this is not a proper colouring of G, then

there must be a copy of H in colour j that contains both uv1 and uv2. This means that

there are vertices a, b, and c of H such that ab, bc ∈ H, ac /∈ H, and

ēH({a, b, c})− 2 ⩽ m′ ⩽ 3k.

However, since ε ⩾ 1 − 1/8, we must have vH ⩾ 8 + 2 and the Helpful Lemma implies

that ēH({a, b, c}) > 3m2(H) = 3k + 3ε > 3k + 2, a contradiction. □

Proof of Proposition 7.12 (Part II: the small graphs). All that remains is to prove the

statement for C4, K4, and K3. Assume that G is a minimal counterexample.

(C4) Since m(G) ⩽ m2(C4) = 3/2, then either δ(G) < 3 or G is 3-regular. However,

since δ(C4) = 2, the former leads to a contradiction: we would take a vertex v

of G of degree at most two, find a C4-free colouring for G \ {v}, and extend this

colouring to G by choosing different colours for the two edges incident with v.

The same argument works in the case where deg(v) = 3 and the lists of colours

for the three edges incident to v are not identical (we can still choose a different

colour for each of these edges). Thus, we may assume that G is 3-regular and all

the colour lists are identical (the minimality of G implies that it is connected) –

they all contain the colours red and blue.

Let v be an arbitrary vertex of G and let u1, u2, and u3 be its neighbours. Fix

a colouring of G − v. Since the colouring cannot be extended to G, every pair

of vertices among {u1, u2, u3} is connected in G − v by both a red and a blue

path of length two. (Indeed, if u1 and u2 were not connected by a red path, say,

then colouring vu1 and vu2 red and vu3 blue would yield a C4-free colouring.)

However, since G is 3-regular, each ui is incident to at most one red and at most

one blue edge of G′. This means that there are vertices vr, vb ̸= v such that

vr is connected to all ui in red and vb is connected to all ui in blue. Since G

is 3-regular, {v, vr, vb, u1, u2, u3} is a connected component of G; by minimality,

G = G[{v, vr, vb, u1, u2, u2}] ∼= K3,3. However, K3,3 has many 2-edge-colourings

without a monochromatic C4 (e.g., K3,3 can be decomposed into C6 and 3K2).

(K4) Since m(G) ⩽ m2(K4) = 5/2, then either δ(G) ⩽ 4 or G is 5-regular. Since

δ(K4) = 3, if G has a vertex v of degree at most four or a vertex of degree five

whose incident edges have nonidentical colour lists, we may extend any K4-free

colouring of G−v to G by colouring edges incident to v in such a way that every
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colour is used at most twice. Thus, we may assume that G is 5-regular and all

the colour lists contain the colours red and blue.

Let v be an arbitrary vertex and fix a colouring of G− v. Since G− v has no

red K4’s, there must be a 3-element subset T ⊆ N(v) that does not induce a red

triangle. Colouring the three edges connecting v to T red and the remaining two

edges incident to v blue yields a K4-free colouring of G.

(K3) Since m(G) ⩽ m2(K3) = 2, then either δ(G) ⩽ 3 or G is 4-regular. Suppose

that, for some v ∈ V (G), there was an orientation of the edges of G[N(v)] in

which every vertex had out-degree at most one. We could then extend every

K3-free colouring of G− v to G as follows: For every u ∈ N(v), the edge uv gets

a colour that is different from the colour of the out-edge from u. (Since each

triangle involving v contains an edge of G[N(v)], this colouring is K3-free.) As

every graph with at most four edges has such an orientation, we may assume

that e(N(v)) ⩾ 5 for every v ∈ V (G); in particular, δ(G) ⩾ 4, so G is 4-regular.

We claim that G = K5. If e(N(v)) > 5 for some v ∈ v(G), then G = K5, since

G is 4-regular and connected. We may thus further assume that e(N(v)) = 5 for

every v. Pick some v and denote N(v) = {u1, u2, u3, u4} so that u1u3 /∈ G[N(v)].

Since G is 4-regular, there must be a w ∈ V (G)\({v}∪N(v)) such that N(u1) =

{v, w, u2, u4}. Moreover, w is not adjacent to either of v, u2, and u4, as they all

have 4 neighbours in {v} ∪N(v), and thus e(N(u1)) ⩽ 3, a contradiction.

Finally, we show how that K5 is 2-choosable with respect to K3. If some

colour, say red, contains a 5-cycle, then we may colour this 5-cycle red and the

complementary 5-cycle not red. If some colour class, say red, contains an edge,

say e, not in a triangle, then we may colour K5 \ e without monochromatic

triangles (this is possible as K5 is minimally non-2-choosable) and colour e red.

If none of the above is true, then each colour induces one of the following graphs:

K3, K4, K
−
4 , K5 \K3, or two triangles sharing a vertex. If some colour, say red,

induces K5\K3, then we colour K2,3 with red, the remaining edge of K5\K3 with

not red and the edges of the K3 in the complement with two different colours

other than red. If one of the colours, say red, induces K4 or K−
4 , then colour a C4

with red and its diagonal with a colour other than red. Each of the remaining,

uncoloured four edges can close at most one monochromatic triangle, as red is

not available anywhere outside of the K4 we have already coloured; thus we may

colour them one-by-one. This leaves the case where every colour class is either

K3 or two triangles sharing a vertex. But this is impossible, since 3 does not

divide 2e(G) = 20. □

7.2. Arithmetic progressions. In this section, we prove Theorem 1.3, which asserts

that W(k, r) has a sharp threshold in (ZN )p. Even though the most natural setting for

van der Waerden’s theorem is the interval JNK, the corresponding hypergraph lacks the

required symmetry. As a result, we have to work in ZN instead, where transitivity is

guaranteed by translations. (We note that this was also the case in [10], which proved

sharpness of the threshold for van der Waerden’s theorem in two colours.) We will

consider the k-uniform hypergraph Hk−AP of proper k-term arithmetic progressions in

ZN . It is easily verified that Hk−AP has Θ(N2) edges, and thus pHk−AP
= Θ(N−1/(k−1)),

and that it is non-clustered and symmetric. The threshold for van der Waerden’s theorem
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in JNKp is known to lie at N−1/(k−1); this was first proved by Graham, Rödl, and Ruciński

in [14], for 3-APs, and later extended by Rödl and Ruciński [22, 23] to general k-APs.

The 1-statement implicit in (A3) in our setting is an immediate consequence of this, as

every k-AP in JNK is also a k-AP in ZN ; independently, it can also be recovered using

Proposition 2.11 – robust non-colourability of Hk−AP follows from van der Waerden’s

theorem and Varnavides’s averaging argument. The 0-statement in (A3) requires extra

consideration since ZN contains more progressions than JNK. The arguments of [22, 23]

can be echoed here, but we instead prove the stronger Theorem 1.5, which asserts that,

when p < cN−1/(k−1) for a sufficiently small constant c, then (ZN )p is a.a.s. list-k-van

der Waerden.

This will leave us with verifying the last two assumptions of Theorem 2.1. The choos-

ability assumption (A4) is a simple corollary of Theorem 1.5, see Corollary 7.17 in

Section 7.4. Finally, the rainbow star-constellation property follows readily from Sze-

merédi’s theorem and another application of Varnavides’s averaging argument. Indeed,

suppose that a partial colouring of ZN contains Ω(N r) rainbow stars. Then, for some

i ∈ JrK, the set Ai of all elements of ZN that are the centres of Ω(N r−1) many i-rainbow

stars has Ω(N) elements. Therefore, Ai contains Ω(N2) many k-term APs and each such

k-AP is the base of Ω(N (r−1)k) rainbow constellations.

7.3. Schur’s theorem. In this section, we prove Theorem 1.4, which asserts that the

property of being r-Schur has a sharp threshold in (ZN )p. As in the case of van der

Waerden’s theorem, we have to work in ZN , as the interval JNK lacks the symmetries

required by Theorem 2.1. Define the Schur hypergraph H on ZN whose edges are Schur

triples, i.e., triples of distinct x, y, z ∈ ZN such that x + y = z. This hypergraph

has Θ(N2) edges, and thus pH = Θ(N−1/2), and it is easily seen to be non-clustered.

However, it is not symmetric. Indeed, every automorphism of H is of the form x 7→ c · x
for some invertible c ∈ ZN . Since 0 is always mapped to itself, the automorphism group

is non-transitive. However, when N is a prime number, this is the only obstruction. In

other words, the hypergraph H′ := H−{0} is symmetric. This is very fortunate because

a.a.s. 0 is not in (ZN )p when p = o(1), and as a result Hp acts very much like H′
p. Put

succinctly, we have the following observation:

Observation 7.15. Given p = o(1) and a property P, the probability of Hp ∈ P tends

to 0 if and only if the probability that H′
p ∈ P tends to 0.

We aim to use this observation to prove a sharp threshold for H by proving it first

for the symmetric H′. To do so, we will prove that H, on top of being non-clustered,

satisfies assumptions (A3)–(A5). These properties will then transfer to H′ and, together

with symmetry, we will be able to argue that it has a sharp threshold.

Regarding (A3), Graham, Rödl, and Ruciński [14] located the threshold for Schur’s

theorem in JNKp at N−1/2. Similarly as in the context of van der Waerden’s theorem,

since ZN has more Schur triples than JNK, this result implies the 1-statement in (A3), but

the 0-statement needs extra work. Instead of adjusting the arguments of [14], we prove

the stronger Theorem 1.6, which asserts that N−1/2 is a threshold for the ‘stronger’

property of being list-Schur. This solution has the advantage that the choosability

assumption (A4) is a simple corollary of this stronger theorem, see Corollary 7.17 in

Section 7.4. This leaves us with establishing the rainbow star-constellation property for

the Schur hypergraph, which we do in the remainder of this section.
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7.3.1. Rainbow star-constellation property for Schur triples. In this short subsection,

we verify that the Schur hypergraph has the rainbow star-constellation property. We

write X instead of ZN , noting that our arguments remain valid if we replace it with an

arbitrary Abelian group of order N .

It will be convenient to define structures that offer a slight relaxation of the notions

of stars and constellations in that their elements may not be distinct: Given a sequence

Y of t subsets of X define a Y -prestar to be a pair x, y of sequences of t elements of X

together with an element a ∈ X, such that xi, yi ∈ Yi and xi, yi, and z form a sum for

every i ∈ JtK. The element a is called the centre of the prestar and each pair xi, yi is called

a ray. Similarly, define a Y -preconstellation to be a triplet of Y -prestars whose centres

form a sum. Since fixing any two coordinates of a Y -preconstellation leaves at most

O(N3t) options for completing it, there are at most O(N3t+1) many Y -preconstellations

that have a repeating coordinate. In particular, the following statement (with Y being

the sequence of some r−1 colour classes) implies the rainbow star-constellation property.

Proposition 7.16. For every β > 0, there exists a γ > 0 such that the following holds.

For any sequence Y of t subsets of X, if there are βN t+1 many Y -prestars, then there

are γN3t+2 many Y -preconstellations.

Proof. We may always order the elements of the ith ray of any prestar as xi, yi so that

one of xi ± yi equals the centre of the prestar. Define the sign pattern of the prestar to

be the sequence of signs that yi appeared with for each i ∈ JtK. If there are βN t+1 many

Y -prestars, the pigeonhole principle dictates that there are at least 2−tβN t+1 many Y -

prestars sharing a specific sign pattern. Call these prestars the popular Y -prestars. Note

that every popular Y -prestar x, y with centre a is uniquely determined by x and a since

knowing the sign pattern allows us to compute y.

Let f(x, a) be the indicator of whether x ∈ Xt and a ∈ X determine a popular Y -

prestar and note that
∑

x,a f(x, a) ⩾ 2−tβN t+1. Next, for an x ∈ Xt and a, b ∈ X,

define f1(x, a, b) := f(x, a) · f(x, b). Using Jensen’s inequality we learn that

1

N t

∑
x,a,b

f1(x, a, b) =
1

N t

∑
x

(∑
a

f(x, a)

)2

⩾

(
1

N t

∑
x,a

f(x, a)

)2

⩾
(
2−tβN

)2
,

which implies that
∑

x,a,b f1(x, a, b) ⩾ 2−2tβ2N t+2.

Now, for x, x′, x′′ ∈ Xt and a, b ∈ X, write

f2(x, x
′, x′′, a, b) := f1(x, a, b) · f1(x′, a, b) · f1(x′′, a, b).

Using Jensen’s inequality again, we get the bound

1

N2

∑
x,x′,x′′,a,b

f2(x, x
′, x′′, a, b) =

1

N2

∑
a,b

(∑
x

f1(x, a, b)

)3

⩾

 1

N2

∑
a,b,x

f1(x, a, b)

3

⩾
(
2−2tβ2N t

)3
,

which implies that
∑

x,x′,x′′,a,b f2(x, x
′, x′′, a, b) ⩾ 2−6tβ6N3t+2.

Now, suppose that f2(x, x
′, x′′, a, b) = 1 for some x, x′, x′′ ∈ Xt and a, b ∈ X. Then

f(x′, a) = f(x′′, b) = f(x, a) = f(x, b) = 1. By definition, this ensures the existence of
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the following four popular Y -prestars: x, y and x′, y′ centred at a and x, z and x′′, z′′

centred at b (the sequences y, y′, z, z′′ ∈ Xt are uniquely determined). In particular, for

every i ∈ JtK, either xi + yi = a and xi + zi = b or xi− yi = a and xi− zi = b; this means

that either yi − zi = a − b or zi − yi = a − b. Therefore, y, z is a Y -prestar centered at

a− b and, consequently, (x′, y′, a), (x′′, z′′, b), (y, z, a− b) is a Y -preconstellation.

Note that the function mapping x, x′, x′′, a, b as above to the Y -preconstellation com-

prising (x′, y′, a), (x′′, z′′, b), and (y, z, a− b) is injective. Indeed, one can reconstruct x

given y and a, as we know the sign-pattern of the popular prestar x, y centered at a. As

a result, we learn that there are at least 2−6tβ6N3t+2 many Y -preconstellations. □

7.4. Choosability of almost-linear hypergraphs. In this section, we prove complete

the derivations of Theorems 1.3 and 1.4 by proving Theorem 1.7, which immediately

implies Theorems 1.5 and 1.6.

Theorem 1.7. Suppose that s ⩾ 3 and that a sequence of s-uniform hypergraphs H
satisfies ∆2(H) = O(1). There is a positive c such that, for every p ⩽ c · v(H)−1/(s−1),

P
(
H[Vp] is 2-choosable

)
→ 1.

Even though this is not the exact statement we need for verifying assumption (A4)

in the context of van der Waerden’s and Schur’s theorem, we will be able to obtain the

latter as a straightforward corollary.

Corollary 7.17. Given s ⩾ 3 and a non-clustered s-uniform hypergraph H with ∆2(H) =

O(1), a sequence p = Θ(pH), and any constant K, the probability that Hp contains a

non-2-choosable set of size K tends to zero.

Proof. Let F be the family of all non-2-choosable sets with at most K elements and let

µ(p) := P(∃B ∈ F : B ⊆ V (H)p). Theorem 1.7 tells us that there is some p = Θ(pH)

for which µ(p) = o(1). By monotonicity, µ(p′) = o(1) also for any p′ < p. Now, for any

constant C > 1 we can use Lemma 4.6 to bound µ(p) ⩾ C−Kµ(Cp), so µ(Cp) = o(1) as

well. □

We will describe a process for revealing connected subsets of the vertices of an s-

uniform hypergraph H by layers. Let N := v(H) and identify the vertices of H with the

set JNK. This labeling induces a total ordering of the vertices and also of the edges of

H, via the lexicographic ordering. Given a subset S of the vertices of H which induces

a connected subhypergraph of H we define the following procedure.

Observe that connectivity of S ensures that the process will indeed terminate. We say

that a vertex in S is degenerate if it was added in a degenerate step. Let d(S) denote

the number d such that S = Sd.

We will apply this procedure to sets S that are minimally non-2-choosable. (Note

that minimality implies that these sets are connected.) The proof of Theorem 1.7 has

two steps. First, using a deterministic argument, we will show that each minimally non-

2-choosable set must either have at least s−1 degenerate elements or contain a structure

which we will call a clot. Second, we will see that, when H satisfies the assumptions of

the theorem, connected sets containing either s−1 degenerate elements or a clot are too

rare to appear in V (H)p.
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Let v1 be the smallest vertex in S and write S′ = {v1}.
for i = 1, 2, . . . do

// Degenerate steps

while there exists an edge e ∈ H[S] such that 2 ⩽ |e ∩ S′| ⩽ s− 1 do
Pick the smallest such edge e and let S′ ← S′ ∪ e.

// Finish the layer

Write Si = S′.

if Si = S then
Terminate.

else

// Start a new layer

Take the smallest vertex vi ∈ Si which has an edge e ∈ H[S] that

intersects Si exactly in vi.

Pick the smallest such edge ei and let S′ ← Si ∪ ei.

Definition 7.18. A set A of 2s− 3 vertices in an s-uniform hypergraph is a nucleus if,

for every (s−1)-element subset A′ ⊆ A, there are two distinct vertices v1(A
′), v2(A

′) /∈ A
such that A′ ∪ {vi(A′)} is an edge for both i ∈ {1, 2}. A clot around a nucleus A is the

union of A together with all the vertices vi(A
′).

Lemma 7.19. If s ⩾ 3, then every minimally non-2-choosable set of vertices of an

s-uniform hypergraph contains either at least s− 1 degenerate elements or a clot.

Proof. Let S be a minimally non-2-choosable set of vertices of an s-uniform hypergraph

H. We run the process of revealing S described above and let d = d(S). Since S1 = {v1}
is 2-choosable, d must be greater than 1. We may assume that S contains at most

s− 2 degenerate elements, as otherwise there is nothing left to prove. We will show that

A := S \ Sd−1 is the nucleus of a clot.

Note that A contains at most 2s− 3 elements: the s− 1 elements of ed−1 \ Sd−1 plus

at most s − 2 additional degenerate elements included in subsequent degenerate steps.

Further, note that every edge of S which is not contained in Sd−1 must contain at least

s− 1 elements from A, since otherwise it would intersect Sd−1 in at least two elements

and would have therefore been absorbed into Sd−1 in a degenerate step. For that reason,

every colouring of Sd−1 may be extended to S unless we are forced to colour some s− 1

of A with the same colour. However, this may only happen if |A| = 2s − 3 and all the

colour lists of the elements of A are identical, say they comprise the colours red and

blue. Moreover, every set of s−1 elements in A must be contained in at least two edges:

one with an element of Sd−1 already coloured red, and a second with an element of Sd−1

already coloured blue. Therefore, A must be the nucleus of a clot. □

Lemma 7.20. Suppose that s ⩾ 3 and H is a sequence of s-uniform hypergraphs with

∆2(H) = O(1). If p = O
(
v(H)−1/(s−1)

)
, then a.a.s. Hp does not contain a clot.

Proof. As before, we write N := v(H) and identify V (H) with JNK. We give two different

arguments, depending on whether or not s > 3.

We first show that, when s > 3, there are only O(N2) clots. This will be sufficient

as every clot contains at least 2s − 1 vertices (the nucleus and at least two additional
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vertices) and thus the expected number of clots in Hp is O(N2p2s−1) = O(p) = o(1).

There are at most O(N2) ways to choose the two smallest elements of the nucleus A of

a clot. Since s − 1 > 2, every other element of A belongs to an edge containing these

two elements and there are only ∆2(H) = O(1) such edges. Similarly, every element of

the clot that is not in A belongs to one of the at most
(
2s−3
s−1

)
· ∆s−1(H) = O(1) edges

that intersect A in s− 1 elements.

The second case is where s = 3, implying that every nucleus has three vertices and

every clot has at least five vertices. In particular, there are at most N3 ways to choose

the nucleus A of a clot and every element of the clot that is not in A belongs to one of

the at most 3 ·∆2(H) = O(1) edges that intersect A in two vertices. Consequently, the

expected number of clots with at least seven vertices is O(N3p7) = O(p) = o(1). If a

clot has fewer than seven vertices, then, by the pigeonhole principle, there must be some

vertex v not in its nucleus that forms edges with two different pairs of vertices from the

nucleus. This implies that there are only O(N2) such clots: We may pick one such v

and an element of the nucleus with at most N2 options. The remaining vertices of the

clot can be added one-by-one in such a way that the added element forms an edge with

two previously added vertices. This means that the expected number of such clots is

O(N2p5) = O(p) = o(1). □

Lemma 7.21. Suppose that s ⩾ 3 and H is a sequence of s-uniform hypergraphs with

∆2(H) = O(1). If p ⩽ cv(H)−1/(s−1) for a sufficiently small positive constant c, then

a.a.s. any connected S ⊆ V (H)p contains at most s− 2 degenerate elements.

Proof. As before, we write N := v(H) and identify V (H) with JNK. If a connected

set S has at least s − 1 degenerate elements, then it must contain a connected subset

with at least s− 1 degenerate elements for which our procedure executed at most s− 1

degenerate steps. Indeed, one obtains such subset by simply halting the procedure after

s − 1 degenerate elements are revealed, while noting that every degenerate step must

introduce at least one new degenerate element. We may thus restrict our attention to

connected sets S with this additional property. We further claim that d(S) ⩽ |S|−1
s−1 for

every S with at least s − 1 degenerate elements. To see this, note that the number of

degenerate elements in S is |S| − 1 − (d(S) − 1)(s − 1), as precisely (d(S) − 1)(s − 1)

vertices are added in non-degenerate steps. Summarising, it is enough to show that the

expected number of connected sets S with d(S) ⩽ |S|−1
s−1 and at most s − 1 degenerate

steps that appear in V (H)p tends to zero.

Let Xk be the number of such sets that have exactly k elements. We can bound Xk

using the following logic: First, we fix integers d ⩽ k−1
s−1 and d′ ⩽ s − 1 and bound the

number of k-element sets S with d(S) = d for which the procedure runs d′ degenerate

steps. Given d and d′, we decide, for each of the d+d′−1 steps of the procedure revealing

S whether it is degenerate or not; there are at most 2d+d
′−1 ⩽ 2k options. Second, we

pick v1 ∈ JNK. Third, for every degenerate step, we choose some two vertices of S′ that

witnessed |e ∩ S′| ⩾ 2 and choose the edge e; there are at most k2 · ∆2(H) options.

Fourth, we choose the number of times each element of S plays the role of vi to start

a new layer. We may represent this as a multiset M of JkK with d − 1 elements, where

j ∈ JkK corresponds to the jth vertex in the order of arrival to S; thus, there are at most(
k+d−1−1
d−1

)
⩽ 22k options. Crucially, note that, for each i ∈ Jd− 1K, the identity of the

vertex vi is determined by M and Si. Finally, we pick, for every i ∈ Jd− 1K, the edge ei
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that intersects Si in vi; there are at most N ·∆2(H) options. Summarising,

Xk ⩽
∑
d⩽ k−1

s−1

∑
d′⩽s−1

2k ·N ·
(
k2 ·∆2(H)

)d′ · 22k · (N ·∆2(H)
)d−1

⩽ 2Ck ·N
k−1
s−1 ,

where C is a constant that depends only on s and the constant implicit in the upper

bound ∆2(H) = O(1).

Suppose now that p ⩽ 2−CN−1/(s−1) and let B denote the event that JNKp contains a

connected subset with at least s− 1 degenerate elements. We have

P(B) ⩽
∑
k⩾1

Xk · pk ⩽
∑
k⩾1

2Ck ·N
k−1
s−1 · 2−CkN− k

s−1 = N− 1
s−1 = o(1),

as claimed. □
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Appendix A. Weak threshold – the 1-statement

Proposition A.1. Suppose that H is weakly non-clustered and robustly non-r-colourable.

Then there are constants C,α such that, for any p > C · pH, we have

P (Hp is r-colourable) ⩽ exp(−α · p · v(H)).

In particular, if v(H) · pH tends to infinity, then the proposition tells us that the

probability of Hp being r-colourable tends to zero. Before turning to the proof, we

pause to make a couple of remarks concerning this point.

Remark. First, we claim that when H satisfies the stronger requirement of being mildly

non-clustered, then v(H) · pH does tend to infinity. Indeed, if there is an index i ∈
J2, s− 1K such that ∆i(H) ≪ pi−1

H ∆1(H), then, bounding ∆i(H) from below by the

average degree of an i-element subset of V (H), we can write

e(H)

v(H)i
⩽ ∆i(H)≪ pi−1

H v(H)i−1 · e(H)

v(H)i
.

Therefore, pH · v(H)≫ 1 as requested.

Remark. Next, it is possible for a sequence of hypergraphs H and probabilities p ful-

filling the requirements of Proposition A.1 that the probability that Hp is r-colourable

to be bounded away from zero. Indeed, let H be the complete s-uniform hypergraph

on n vertices. Since e(H) = Θ(ns), we have that pH = Θ(n−1), and therefore that

v(H) · pH = Θ(1).

We verify that H satisfies the assumptions of the proposition. First, for every i ∈ JsK,
we have ∆i(H) = Θ(ns−i) = Θ(pi−1∆1), so H is weakly non-clustered. Second, by

the pigeonhole principle, every r-colouring of the vertices of H must have at least n/r

elements sharing the same colour. These vertices alone induce Θ(ns) monochromatic

edges.

However, for every C > 0 and p = C · pH, the probability that Hp is in fact empty

is (1 − p)v(H) ⩾ exp(−Θ(v(H) · p)) = exp(−Θ(1)). This of course implies that the

probability that Hp is r-colourable is bounded away from zero.

Proof of Proposition A.1. Let δ be the constant for whichH is robustly non-r-colourable.

Since H is weakly non-clustered, we may apply the Container Lemma to it. Write

V = V (H). Taking any ε < δ/r, there are constants c1 = c1(ε), t = t(ε), and a function

f : P(V )t → P(V ) such that the following hold:

(1) For every independent set I there are T1, . . . , Tt ⊆ I with at most c1 · pH · v(H)

elements, such that I ⊆ f(T1, . . . , Tt).

(2) The set f(T1, . . . , Tt) induces at most εe(H) edges in H.

Suppose now that Hp is r-colourable. This of course means that Vp is a union of r

independent sets I1, . . . , Ir. Following the Container Lemma, this implies that, for each

i ∈ JrK, there are sets T i1, . . . , T
i
t ⊆ Ii, each containing at most c1 · pH · v(H) vertices,

such that Ii ⊆ Ci := f(T i1, . . . , T
i
t ). Of course, that would mean that all subsets T ij are

contained in V (Hp) and that V (Hp) is covered by the containers C1, . . . , Cr. Using the

fact that the containers induce few edges, together with the robust non-colourability, we

will be able to prove the following claim.
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Claim A.2. There is a constant α such that the number of vertices in V \ (C1∪· · ·∪Cr)
is at least αv(H).

Proof of the claim. Write W := V \(C1∪· · ·∪Cr) and consider the following r-colouring

of the vertices of H. Colour each vertex according to the index i of its container Ci (if it

is contained in more then one container, choose one arbitrarily), and colour the vertices

of W by the colour 1. Since H is robustly non-r-colourable, we know that there are at

least δe(H) monochromatic edges. Since every container induces at most εe(H) edges,

there must be at least (δ − rε) · e(H) monochromatic edges in the colour 1 that have at

least one vertex in W . On the other hand, there are at most ∆1(H) · |W | such edges.

By our assumption on H, there is a constant K such that

(δ − rε) · e(H) ⩽ ∆1(H) · |W | ⩽ K · e(H)

v(H)
· |W |.

Remembering that ε < δ/r, there must be a constant α > 0 such that |W | > αv(H), as

promised. □

Following the previous discussions, and letting c2 = rtc1, we can bound

P (Hp is r-colourable)

⩽
∑

|T ij |⩽c1·pH·v(H)

P

 ⋃
j∈JtK,i∈JrK

T ij ⊆ Vp ⊆ C1 ∪ · · · ∪ Cr


=

∑
|T ij |⩽c1·pH·v(H)

P
(⋃

T ij ⊆ Vp
)
· P (Vp ∩ (V \ (C1 ∪ · · · ∪ Cr)) = ∅)

⩽
∑

k⩽rtc1·pH·v(H)

(
v(H)

k

)
· 2rtk · pk · (1− p)αv(H)

⩽ c2 · pH · v(H) · max
k⩽c2·pH·v(H)

(
2rtev(H)p

k

)k
· exp (−αv(H) · p) .

The function k 7→
(
eM
s

)k
is increasing until it reaches its maximum at k = M .

Therefore, supposing that C is large enough so that c2 < 2rt · C, the maximum is

achieved at s = c2 · pH · v(H), allowing us to bound

max
k⩽c2·pH·v(H)

(
2rte · v(H) · p

k

)k
⩽

(
2rte · v(H) · p
c2 · v(H) · pH

)c2·v(H)·pH

= exp

(
c2 log

(
2rte

c2
· p
pH

)
· pH
p
· v(H) · p

)
.

Recalling that C ⩽ p
pH

and x−1 log x → 0 as x tends to infinity, taking C sufficiently

large, we have c2 log
(
2rte
c2
· p
pH

)
· pHp < 1

2α and, therefore,

P (Hp is r-colourable) ⩽ c2 · pH · v(H) · exp

(
−1

2
α · p · v(H)

)
⩽ exp

(
−α′ · p · v(H)

)
. □
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Appendix B. A container lemma for sparse sets

Theorem 4.7. For every positive integer k and all positive reals ε and K, there exist

an integer t and a positive real δ such that the following holds. Suppose that a nonempty

k-uniform (multi)hypergraph G with vertex set V and a positive real τ satisfy

∆ℓ(G) ⩽ Kτ ℓ−1 · e(G)

v(G)

for every ℓ ∈ JkK. Then, there exists a function f : P(V )t → P(V ) with the following

properties:

(i) For every set I ⊆ V satisfying e(G[I]) ⩽ δτke(G), there are S1, . . . , St ⊆ I with

at most τv(G) elements each such that I ⊆ f(S1, . . . , St).

(ii) For every S1, . . . , St ⊆ V , the set f(S1, . . . , St) induces fewer than εe(G) edges

in G.

Theorem B.1 ([24, Corollary 3.6]). For every positive integer k and positive real ε, there

exists an integer s such that the following holds. Suppose that a nonempty k-uniform

(multi)hypergraph G and τ ∈ (0, 1/2) satisfy

δ(G, τ) := 2(k2)−1
k∑
j=2

2−(j−1
2 )δj(G, τ) ⩽

ε

12k!
,

where

δj(G, τ) :=
τ1−j

ke(G)
·
∑
v∈V

max{deg T : v ∈ T ⊆ V and |T | = j}.

Then there exists a function C : P(V )s → P(V ) such that, letting

T :=
{

(T1, . . . , Ts) ∈ P(V )s : |Ti| ⩽ sτ |V | for all i ∈ JsK
}
,

we have:

(a) For every set I ⊆ V satisfying e(G[I]) ⩽ 24εk!kτke(G), there exists T = (T1, . . . , Ts) ∈
T ∩ P(I)s with I ⊆ C(T ).

(b) For every T ∈ T , the set C(T ) induces at most εe(G) edges in G.

Derivation of Theorem 4.7 from Theorem B.1. Let G be a nonempty k-uniform hyper-

graph with vertex set V and let ε and K be positive reals. We set s := sB.1(k, ε) and

let

L :=

⌈
12(k − 1)!2(k2)K

ε

⌉
, t := 2L2s, and δ := 24εk!kLk

Suppose that the maximum degrees of G satisfy the assumptions of the theorem for some

τ . Note that, for every j ∈ {2, . . . , k},

δj(G, Lτ) =
(tτ)1−j

ke(G)
· v(G)∆j(G) ⩽

KL1−j

k

and thus, as L ⩾ 2,

δ(G, Lτ) ⩽ 2(k2)−1 ·
k∑
j=2

Kt1−j

k
⩽

2(k2)K

kL
⩽

ε

12k!
.
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Consequently, Theorem B.1, invoked with τB.1 = Lτ , implies that there exist a function

C : P(V )s → P(V ) that satisfies (a) and (b). We define f : P(V )t → P(V ) by letting

f(S1, . . . , St) := C
(
S1 ∪ · · · ∪ St/s, . . . , S(s−1)t/s+1 ∪ · · · ∪ St

)
.

In particular, if I ⊆ V satisfies

e(G[I]) ⩽ δτke(G) ⩽ 24εk!k(Lτ)ke(G),

then there are T1, . . . , Ts ⊆ I, with |Ti| ⩽ sLτ |V | for each i, such that I ⊆ C(T1, . . . , Ts).

This gives the assertion of the theorem, as we may partition each Ti into t/s sets

St(i−1)/s+1, . . . , St(i+1)/s, each of size at most ⌈s/t · sLτ |V |⌉ ⩽ τ |V |. □

Appendix C. A graph without the star-constellation property

In this appendix we provide an example of a graph whose corresponding hypergraph

does not have the rainbow star-constellation property. We need not look further than

the usual suspect, the Petersen graph.

b

a

u

b′

a′

u′

Figure 2. A Petersen star for r = 2

Claim C.1. The hypergraph corresponding to the Petersen graph does not have the

rainbow star-constellation property.

Proof. It is enough to show this for r = 2. Note that since the Petersen graph is

edge-transitive there is only one star S up to isomoporphism and therefore only one

constellation C. to show that there is no homomorphism C → S we will first claim that

every homomorphism S → S must be an isomorphism. To see why this helps us, observe

that every homomorphism S → S must then map the center vertices to themselves, as

they are the only vertices of degree 2. Therefore, any homomorphism C → S, which

induces a homomorphism from each of its stars to S, must send all the center vertices

of C to the two center vertices of S. Viewing this is a 2-colouring of the center vertices

of C, we may use the fact that the Petersen graph is not 2-colourable to find a star in C

where both of the center vertices were mapped to the same vertex. However, this would

mean that the homomorphism from that star was not an isomorphism, in contradiction

to the previous claim.

Suppose φ : S → S is a homomorphism. To prove that it is also an isomorphism

we show it is injective. Since the Petersen graph has no cycles of length 3, we learn

that every 5-cycle must be mapped to a 5-cycle. As a corollary, we learn that whenever

x, y ∈ S are in a 5-cycle, φ(x) ̸= φ(y). So we only need to worry about pairs of elements

that are not in a 5-cycle. However, one can verify that there are only five pairs of vertices
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not in a 5-cycle. Using the labels from Figure 2, these are the center vertices {u, u′},
the pairs {u, a} and {u, b}, and by symmetry the pairs {u′, a′} and {u′, b′}. Of course

if φ were to map two vertices x, y to the same vertex z, then it would have to send all

neighbours of x and y to the neighbourhood of z. In all the above cases the pair x, y has

at least 4 neighbours of which every pair is in a 5-cycle, so they cannot be mapped to

the same vertex, meaning that z would have to be of degree ⩾ 4, however all vertices in

S have degree at most 3. □
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