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ABSTRACT. We answer two extremal questions about odd cycles that naturally arise in
the study of sparse pseudorandom graphs. Let T' be an (n,d, A)-graph, i.e., n-vertex,
d-regular graphs with all nontrivial eigenvalues in the interval [—X, A]. Krivelevich, Lee,
and Sudakov conjectured that, whenever A2*~1 « d?¥/n, every subgraph G of I" with
(1/2 + o(1))e(T") edges contains an odd cycle Caiy1. Aigner-Horev, Han, and the third
author proved a weaker statement by allowing an extra polylogarithmic factor in the
assumption A\2*~1 « d@2¥ /n, but we completely remove it and hence settle the conjecture.
This also generalises Sudakov, Szabo, and Vu’s Turdn-type theorem for triangles.
Secondly, we obtain a Ramsey multiplicity result for odd cycles. Namely, in the
same range of parameters, we prove that every 2-edge-colouring of I' contains at least
(1 —o0(1))272#d?**+! monochromatic copies of Cyy 1. Both results are asymptotically best

possible by Alon and Kahale’s construction of Coyy1-free pseudorandom graphs.

§1. INTRODUCTION

In the last two decades, one of the major developments in extremal and probabilistic
combinatorics has been the study of sparse (pseudo)random analogue of classical results.
We continue to study analogues of classical theorems in sparse pseudorandom graphs. An
(n,d, \)-graph T is a d-regular n-vertex graph such that the spectrum d = \; > -+ = A,
of its adjacency matrix Ar satisfies |\;| < A for i = 2,3,...,n. Although this is one of
the most well-known examples of pseurandom graphs and hence received considerable
attention, as surveyed in [12], there are only very few analogues of classical theorems for
(n,d, \)-graphs. For example, Sudakov, Szabo, and Vu [15] proved an analogue of Turan’s
theorem for (n,d, \)-graphs, where the range of parameters is believed to be optimal (for
other extremal or Ramsey-type results in this context see, e.g., [2,7] and references therein).

We prove two analogues of classical results for (n,d, A\)-graphs that concern odd cy-
cles Cory1. The range of parameters we focus on is always A2*~1 « @2 /n, which is tight for
each Cyy,11 in the sense that there exists a Cyy,1q-free (n, d, \)-graph with A\*~1 = ©(d** /n)
by the construction by Alon and Kahale [5], built on Alon’s triangle-free pseudorandom
graphs [4].

We study the Ramsey multiplicity of odd cycles in (n,d, \)-graphs. Let Ng(G) be the

number of labelled copies of H in G. A graph H is common if the number of monochromatic
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H-copies in a 2-edge-colouring of K, is minimised by the random colouring, i.e.,
Nu(G) + Nu(G) = (1 — o(1))2 —cE)p|VHE

whenever G is an n-vertex graph and G is its complement. In 1962, Erdés [8] conjectured
that every complete graph is common, which is generalised by Burr and Rosta [6] for
arbitrary graphs instead of complete graphs. However, already the original Erdds conjecture
turned out to be false, as was shown by Thomason [17] for every K;, t > 4. There are
many common and uncommon graphs known since then [9,10, 14|, although the complete
classification is far beyond our reach. In particular, Sidorenko [13] proved that every odd
cycle is common. We obtain a sparse pseudorandom analogue of Sidorenko’s theorem.

Theorem 1.1. Let ¢ > 0 and let T be an (n,d,\)-graph. Then there exists n > 0 such
that, whenever N**=1 < nd** /n and G is a subgraph of T,

Ny (G) + Neye o, (DN G) = (1 —e)27 2Rt

Secondly, we prove an analogue of the Erdés—Stone theorem for odd cycles, stating that
every n-vertex graph with more than half of the all possible edges must contain a copy of
an odd cycle of fixed length. Theorem 1.2 below yields the same conclusion for subgraphs
of suitable (n,d, \)-graphs with relative density 1/2 + o(1). Obviously, Alon and Kahale’s
Uy 1-free graphs do not possess the Erdés—Stone property for Cor, 1 and Krivlevich, Lee,
and Sudakov [11] conjectured that the example by Alon and Kahale is asymptotically

optimal. We verify this conjecture.

Theorem 1.2. Let k = 1 be an integer and let 6 > 0. Then there exist n > 0 and ng such
that the following holds: let n = ng and let T be an (n,d, \)-graph satisfying \**=* < nd®* /n.
If G < T is a subgraph such that e(G) = (3 +0) %(g), then there is a copy of Copy1 in G.

2k—1)(2k—2) 4 /n was

A similar result with a slightly stronger condition A?*~!(logn)(
obtained by Aigner-Horev, Han, and the third author [1]. However, those authors obtained
such a result in the more general context of bijumbled graphs, while we make use of the
spectral estimate for the number of even cycles in (n,d, \)-graphs (see Lemma 2.2 below).

Our proof of Theorem 1.2 uses a stronger variant (see Theorem 3.1) of the first main result,
Theorem 1.1. This is a new approach for the Erdos-Stone-type problems in pseudorandom
setting. However, one cannot expect an analogous solution to the variant of Turan’s
theorem proved by Sudakov, Szabo, and Vu [15], since Thomason [17] showed that any K,

t > 4, is uncommon.

§2. PRELIMINARIES

Throughout this paper, I' always denotes the (n,d, \) graph and 1p(z,y) is the indicator
function of the edge set E(I'). For brevity, p = d/n denotes the edge density of I". We
use the standard notation f(n) « g(n) if f(n)/g(n) — 0 as n — 0. We will also write
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xr=azxbifand only if a —b <z < a+0b. For each k > 2, () denotes the cycle of length &
and C5 means the single edge graph K,. We denote by Py the k-edge path on k + 1 vertices.

In what follows, we shall use the fact 1 « d and \ « d, which are trivial consequences of
the crucial condition A**~* « d?* /n. The number of vertices n = |V (I')| will be taken large
enough.

When counting H-copies in G, it is often convenient to allow possibly degenerate copies
of H. For graphs H and G, denote by hy(G) the number of all homomorphisms from H
to G. Let the graph homomorphism density ty(G) := hy(G)/|V(G)|[VEI that is, the
number of homomorphisms from H to G divided by the number of vertex maps from H
to G. Indeed, the graph homomorphism density defined above naturally generalises to (not
necessarily nonnegative) weighted graphs, i.e., for a symmetric function f: V(G)* — R,

-5 11 fwx]
ijeE(H

where each z; is a uniform random vertex in V(G) chosen independently. We shall
repeatedly use a key pseudorandom property of an (n,d, A)-graph, given by the Expander

Mixing Lemma.

Lemma 2.1 (Expander Mixing Lemma). Let I' be an n-vertex graph whose nontrivial
eigenvalues lie in the interval [—X, A]. Then for every weight function u,v: V(I') — [0,1],

> i) -0 Y u@ Y v Y, e 3 ot @)

z,yeV (T) zeV (T) yeV(T) zeV (T yeV(T)

When u and v are {0, 1}-valued, it appeared in [3,16]. Our weighted version of the
lemma can easily be derived by following the standard proofs of theirs.

The Expander Mixing Lemma yields an estimate on hc,, ., (I') for every fixed k. For that
fix a vertex, say 1 in V(Cy) = [k], and let h¢, (I'; ) be the number of homomorphic copies
of C}, that maps 1 to z € V(I'). Let wyr(z,y) be the number of k-edge walks from x to y
in . Then

h02k+1(r;x> = Z wk,I‘(x,ZDlF(y, Z)wk,F(xVZ)'

y,2€V (D)
Since Yy ) Wi, (2, y) = d*, the Expander Mixing Lemma yields
d2k+1 9
Mo, (T ) — <A D wer(z,y)® = X hey, (T 2).
n
yeV (D)
Summing over all € V(I") hence gives
By (D) = T < X+ hey, (D). (2.2)

In the following section, we shall prove a slightly stronger statement, Theorem 3.1, than
Theorem 1.1 by considering an ‘almost-regular’ subgraph of I' induced on a large vertex
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subset instead of the d-regular graph I'. To this end, we say that a vertex subset X < V(I
is d-almost-regular if
degriyy(z) = (1 £6)p[X]| for all x € X.

In particular, V(I') is d-almost-regular for any § > 0. Indeed, we may replace I by I'[ X]

in proving (2.2) to obtain an analogous bound. As

h02k+1(F[X];x) = Z wk,r[x](%yﬂr(y, Z)wk,F[X](%Z),

y,2€X

the Expander Mixing Lemma gives
Py (CIX s 2) = p o di(2; TIX])?] < A he,, (D[X]; ),

where dy(x; T'[X]) denotes the number of k-edge walks in I'[ X] starting at € X. Since X
is d-almost-regular, dy,(z; T[X]) = (1 £ k&)p*|X|* for every z € X. Thus, we obtain

|hc%+1(F[X]) _p2k+1‘X‘2k+1‘ < A~ hey, (D) + 2kop2 1 X261, (2.3)
To bound the right-hand side above, we shall use the following spectral argument.
Lemma 2.2. Let ' be an (n,d, \)-graph and let k be a positive integer. Then
he,, (T) < d** + X*~2dn.
Proof. Since he, (T') = tr(AE) = A\F + A5 + -+ + AF for every k > 2,
hey, (T) = A2 A3F 4o 1 2N2F <@ NP2 + -+ A2) < d%F + A2,
where the last inequality is from A2 + A3 + -+ + A2 = hg, (') = dn. O

Note that the assumption A?*~! « d%/n in Theorem 1.1 and 1.2 combined with the
fact A « d implies d**' » X - h¢,, (I') and hence, (2.2) implies hc,, ,, (T') = (1 + o(1))d?* .
Similarly, if | X| = un, (2.3) gives

‘hC%_H (F[X]) —p2k+1|X|2k+1} < AkaTLQk + AQk_1p7’L2 + k6p2k+1|X|2k+1.

In particular,

)\an )\2k—1n2
2%k+1 2k+1
h’CQkJrl(F[X]) =p " ‘X‘ <1 - p’X’2k+1 o p2k’X’2k+1 o %5)

by )\2k—1n
2k+1[ v |2k+1
=p X (1 N p2k+1d - (241 2k - 2k5> ’ (2.4)

which essentially means hc,,,, (T[X]) = (1 — o(1))(p|X][)***.
The following lemma will be useful in proving that the number of the degenerate copies
of an odd cycle Uy 1 is negligible.

Lemma 2.3. Let H be the graph consisting of edge-disjoint Ca, and Co, 41 sharing ezvactly
one vertex. Then

hH(F) < ld2(Q+r)+1 + )\2q—2d2r+2 + )\dz((ﬁ_r) n )\Q(Q+r)_1dn.
n
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Proof. For each homomorphism ¢ € Hom(Cy,, I'), let hy(I'; ¢) be the number of homomor-
phisms from H to I' that extends ¢ and let w,(x; ¢) be the number of r-edge walks from
the image of the shared vertex v under ¢ to x € V(I'). Then
hu(Ti) = Y we(;d)y(z,y)w,(y; ).
z,yeV (T")
The Expander Mixing Lemma gives

d2r+1

hH(P; o) —

<A wy(z; 0)°.
)

n
zeV

Note that erv(r) w,(x; ¢)? counts the number of homomorphisms from another graph H’
obtained by Cy, and (Y, identified on the vertex v that extends ¢. In particular, this is a
degenerate copy of Co(gyry. Thus, summing above over all ¢ € Hom(Cy,, H) yields

d2r+1

ha(T) —

hea (0] < Ay, 1)
and applying Lemma 2.2 concludes the proof. 0

If ¢ +r =k and \*7! « d*/n, then hy(T') « d**1. Whenever a homomorphic copy
of Cy,y1 is degenerate, it induces a homomorphic copy H of two shorter cycles sharing
one vertex. Hence, Lemma 2.2 shows that most of the homormophic copies of Cy,, 1 are

nondegenerate.

§3. THE RELATIVE COMMONALITY OF ODD CYCLES

We shall prove the following slightly stronger statement than Theorem 1.1. To avoid
ambiguity in the normalising factor, ¢ (G) means hy (G)/| X |V U] whenever G is a subgraph
of I'[XT].

Theorem 3.1. For 0 < p,0 <1 and an integer k = 1, there exists n = n(0, u, k) > 0 such
that the following holds: let T' be an (n,d, \)-graph satisfying \**=1 < nd®* /n and let X be
a 0-almost-reqular vertex subset of T' with | X| = un. Then for every subgraph G of T'[X],

we have
1

NC?’C“ (G) + Nc2k+1(F[X] ~ G) = ﬁ<p|X|>2k+1 (1 - 28k5) .

We remark that this strenghtening of Theorem 1.1 is purely for the future purpose to
derive Theorem 1.2 and we did not attempt to optimise the constants. The key ingredient

in proving Theorem 3.1 is a homomorphism counting lemma.

Lemma 3.2. Let 6, > 0 and let T be an (n,d, \)-graph. For every §-almost-reqular subset
X < V(') with | X| = un and every subgraph G of T[X],

L opn Tk A A+
t02k+1 (G) + t02k+1 (F[X] N G) = ﬁp 1-2 0+ /L2kd + Iu2kd2k :
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Theorem 3.1 can easily be deduced by setting n = z***§%*/10%* in the lemma above and
the fact that there are at most 2(2k + 1)2nd?**! degenerate copies of Cory1 by Lemma 2.3.
Throughout this section, we write vy := 1gr[x]) or even v = vx if X is clear from the
context. Similary, let g = gx be the indicator of the edges in the subgraph G of T'[ X].
Let J be an edge subset of H. For fi, fo: X* » R and 21, ..., 2y € X, write

oo fot =] filwizy) ] folwiwy).

ijeJ 1jeE(H)NJ

In fact, ty(f) = ]E[<f, h>f](H)] for any h. For a, 8 € R we may expand ty(afi + Sf2) to

tulafi+8F) = Y, aIgD I [(h, ).

JCE(H)

For brevity, write
E(H):={Jc E(H): |J|iseven} and &.(H):={Jc E(H): |J|is even and nonzero} .

Let f:=2g —vsothat g = 3(f+7) and v —g = 3(—f +~). Since 0 < g < 7 we have
|f| < ~. Moreover, from the definition of f it follows that

wo +tu-0=(3) (w+ 3 Ead]) 6

Je&y (H)

Recall that (2.4) implies

> 2k+1 )\ )\2]6*1” 2]€(5 2
tC2k+1<V) =P 1= 21 N (21 2k - : (3.2)

Thus, in order to prove Lemma 3.2, it suffices to show that ]E[< 7, fy>é2k+1] is ‘almost
nonnegative’. For that we generalise Sidorenko’s arguments [13] for proving the commonality
of odd cycles. For a symmetric function f: X? — R, define a polynomial in R[z]

Qu(zf) = D) E[{fonn]= D B[]V,

JeE, (H) JeEy (H)
Lemma 3.3. Suppose |f(z,y)| < v(x,y) for every x,y € X. Then

d . , 2%k+1 A A
%QCQ}CJA (27 f) _p(2k + 1>QP2k<Z7 f) < (Qk + ]')p ,u2k‘+1d + M2k+1d2k ’

Proof. Since {&€; (Catr1\ €)}eer(Cap, ) cOvers each J € £, (Copyr) exactly 2k +1 —[J| times,

szc%H(zs fl= ) E [<f, ’y>é2k“] (2k + 1 — |J|)2211

Jely (H)

=YY B[] (3.3)

e€E(Capq1) JEEL (Copq1Ne)
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As Copy1 \ e is always isomorphic to Py, we regard J as a subgraph of Py, on [2k + 1]
with edges {i,i+ 1}, i =1,2,...,2k. Let L and R be the edges in Py, induced on vertices
{1,2,...;k+1}and {k+1,...,2k + 1}. Foreach z€ X let £,,r,: V(I') > R be

l(x) = 2 H f(xi, zj) H V(@i )

Thk4+1=2,L1=2; g5e LnJ igelL~NJ
r,eX,1<i<k

and r,(x) = Z H [z, x;) H Y(4, ).

Th41=2,22k+1=%; 45€RNJ ijeRNJ
r,€X, k+2<7,<2k+1

Now the Expander Mixing Lemma together with the fact | f| <y < 1 gives

Z C(x)1p(z,y)r.(y pZ 2 = (y)

x,yeV (') zeV (T yeV ()

<A hC%(F; Z).

Since

Z £ 1F x y)'f’z( ) = ’X’%E [<f7 7>é2k+1

z,yeV (T

Tit+1 = Z]

and

> la) Y nl) = IXPE [,

zeV (T) yeV ()

Lh+1 = Z] ’
Lemma 2.2 gives

B8] —r Bl n ]| <

(/\p2k 2k )\2k—1pn2)

|X|2k+1
A )\2k—1

S p2k+1 ( 2k+1 + 2k+1 Zk’) ’
whtd - p2ktld

Substituting this into (3.3) yields the desired bound. O

Lemma 3.3 roughly means £Qc,, ., (z; f) ~ p(2k + 1)Qp,(z; ) and the next lemma
proves Qp,, (z; f) is ‘almost nonnegative’, which will immediately prove that Qc,,,,(1; f)

is almost nonnegative too, as planned.

Lemma 3.4. Let 0 < 2 < 1 and let v = 1gr(x)) for a 6-almost-reqular set X. Suppose
[ X% —[0,1] satisfies |f(z,y)| < y(z,y) for all z,y € X*. Then

El > <f,zv>}]o2k] > —p**2%s.
Je&y (Car)

Proof. We firstly classify the nonempty edge subsets of E(Psy) in terms of the first and
the last edge in J. Namely, for nonempty J < E(Py;), let ay be the smallest i such that
{i,i+ 1} € J and let by be the largest j such that {j,j + 1} € J. Define

Cij:={J < E(Px): J # @,a; =i, and by = j}.
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and let

Sij = E[ > 27>}]>2k]-

JEC'L'J‘ (\£+ (ng)

We regard J € C; ; as a subset of E(P,;), where P, ; is the path on {i,...,7 + 1}. Then

Sij = El >, e, ]

JGCZ',]' nEx (ng)

= > E [E [<f 2P,

xg:i<€<j+1“

JeC; jnE+ (Pay)
— Z (1 4 2k6) (pz)**H=71E [<f, zv>}%j] :
JeCi,jm€+(P2k) ’

Form=j—i+1, let

Toi= Y, ()P TE[(fen), ).

JGC»L'J' ﬁ8+ (ng)

This is well-defined because the right-hand side above only depends on j—i. Let Ty =T} = 0

for notational convenience. Since |f| <y and 0 < z <1,

1Si5 = Tjmira| < 2k3(pz)® 71 > B [<f’ ZW}%J

JeCm-m&(PQk)
< 2kd(pz)? Ty E[<%zv>‘éj]
JECiyjﬁ6+(P2k)

< 2k5(pz)2k+iijil . ’C@j N 6+(P2k)‘ 'th‘,j (’Y)

< 23kp2k 5’

where the last inequality used tp, ,(7) < (1+2k0)p" "1 As {Cijn&4 (Poy) = 1 < i < j < 2k}
is a partition of &, (Py),

< Z 1Si; — Tjir1] < 2°Fp?6.

1<i<j<2k

E[ >, zv>}]a%] — >,k + 10T,

J€5+(P2k) =1

Our final goal is to prove that Zfﬁl(% + 1 —4)T; is nonnegative for 0 < z < 1, which
suffices to conclude the proof. We split this sum with respect to the parity to express it



ODD CYCLES IN SUBGRAPHS OF SPARSE PSEUDORANDOM GRAPHS 9

with the sum of nonnegative terms. Namely,

2k

D2k +1-i)T;

i=1

(2k + 1 — 20)To; + (2k + 2 — 20) T

I

@
Il
it

k—1
(2k +2 = 20)Tyy + (k+ 1= )Ty + > (k — )Ty

=0

I

@
Il
—_

k
20k +1—i)Tyiy + (k+1— )T + Y (k+1— )T

=1

Il

@
Il
—_

I
'M?T

@
Il
—

(k+1—4)(To; + 2151 + Toi—2).

We claim Top + 2751 + Toy_9 = 0 for each £ = 1,2,... k. For that we may assume that
k =/, as reducing k by 1 only multiplies a factor of 1/(pz)? to each T; and hence, we may
shorten the path Py as long as it contains P, ;. Let L :={{j,j + 1} :j =1,2,...,i} and
R := E(Py) \ L for brevity, that is, L and R are the left and the right half of the 2¢-edge
path, respectively. Let

Fo:={Je€Cia:|JnL|land |Jn R| are even},
Go:={J€Cio-1:|JnL|and |J N R| are even},
and  Ho:={J €Co2-1:|J nL|and |J n R| are even}.

Set Fl:={JnL:Je F}and Ff :={Jn R:Je Fy}. Then J € F if and only if there
exists J; € FF and Jy € FE such that J, U J, = J. Let h := z7y and note

2 <fah>}’a%=( > <f,h>il)( > <f,h>;’;).

JeFo Jle]:é‘ JQE]'—(%%

For similarly defined GI, G&, H¥, and HE we have the analogous identities. Therefore,

E[Z <f,h>i%] =E[( > <f,h>f)( > <f,h>f$)]

JeGo JieGgE JaeGlt

_E, [E[(Zg i) (Zg Gk ) fanss = ]|
- E, [ELE% o) | sy = x}ELﬁzgjgg, hYP2 | ey = :c”

where the last equality follows from the conditional independence of variables {f, h>i1
and (f, h>é2 given xy.1 = x. The key observation is that

Fr =gt and Gt = 1.
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Let ¢(x) := E[Zhef({ (f, by | 2441 = z] and ¢(z) := E[ZJQEH(I)% (f, b2 | 2441 = ] for
brevity. Then by the AM-GM inequality,

E| % i, |

JeGo

S (B[0P ] 4 B [w@?)) . (3.4)

< E. [|o()0 ()] <
By the symmetry that maps the vertex ¢ to 2¢ + 2 — ¢, we obtain

¢>(x>=E[ >, R iﬂe+1=l‘] and w<x>=E[ PIREROT

J2eF JieHE

which implies E[ Y.z, (f. )7, | = E[p(2)?] and E[ Y, {f.h)7,, | = E[¢(2)?], and

thus,
2‘E[ 5 <f,h>;iﬂ] (3<4)E[ ) <f,h>;£u] +E[ D <f,h>;iﬂ].

JeGo JeFo JeHo
We may do the same with F7, G;, and H; defined by the odd intersections with two halves L
and R to obtain

2. 'E[ PIREZ h>é%]

JeGi

To+1 = l’],

<E[ > <f,h>i%] +E[ > <f,h>iu]-

JeF1 JeH1

Since Fo U Fi, Gou G1, and Ho U H; are partitions of C; 97, C12¢—1, and Cq 2¢—1, respectively,

we conclude that Ty, + 27T5,,1 + Th,_5 is nonnegative, as claimed. O
Finally, we are ready to prove Lemma 3.2.

Proof of Lemma 3.2. By Lemma 3.3 and 3.4,

' 2%+1 A A in
QCZkJrl(]'; f) = (2k + 1) (J;) p- Qsz(Z; f)dz -Pp (M2k+1d + N2k+1d2k)>

A )\Qk—ln )

2k+1 5k
> —(Qk + 1)29 (2 0+ ,u2k+1d + ’u2k+1d2k

Thus, (3.1) with H = Cy41 and (3.2) give

L[ ok A N in
t02k+1(9) + t02k+1(7 - g) = ﬁ p - N2k+1d - M2k+1d2k —2ko | + QCzkH(l; f)

L o Tk A A% n
= ﬁp =2 Iu2k+1d + u2k+1d2k +9 )

as desired. 0

§4. THE RELATIVE ERDOS—STONE THEOREM FOR ODD CYCLES

To deduce Erdés—Stone theorem from commonality, it is crucial to ‘regularise’ the degree
of the given subgraph G of I by restricting it to a vertex subset X < V(I'). To this end,
we employ an analogous argument to the proofs from [1, Lemmas 4 and 6].
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Lemma 4.1. For each o, > 0 and 0 < € < «, there exist n > 0 such that the following
holds: let T be an (n,d, \)-graph, with A\ < np'*en and let G = T be a subgraph satisying
e(G) = ae(l'). Then, there exists a set X < V(G) such that
(4) | X[ = ven/s,
(i6) degap(#) > (@ — )plX], and
(ii) degpx ( ) = (L£e)plX].

We deduce Theorem 1.2 from Theorem 3.1 and Lemma 4.1. Here we use subscripts such

as T, to indicate that 7 is the parameter coming from Theorem a.b or Lemma a.b.

Proof of Theorem 1.2. Suppose for a contradiction that G' contains no copy of Cory 1. Set

1 1 (52k A/€4.1

%1 Q41 = B +0, €41 =031 = STk and psg = 3

041 =

and let
0 = min{ns ;, na, 2750 5208,
Let X < V(') be the e4;-regular subset guaranteed by Lemma 4.1. Let G := '\ G for

brevity. Theorem 3.1 combined with the Cy1-freeness of G yields

1

Neye o (GIXT) = Noye o, (GIX]) + Neye, (GIXT) > o et (1 5%) XL ()

22

The Expander Mixing Lemma implies
’h02k+1 (G[X]) —D- (hP2k (é[X])y‘ < A hCZk (P)

Since deggy)(z) < +(1 —&)p|X]| for each z € X, we have the bound

Iy (GIX]) < (1= ) xR

ﬁp (
and thus, again using Lemma 2.2,

val 1
NCzk+1(G[X]) < ﬁp%ﬂ(l - 52k)|X|2k+1 + \2F 2\ Lgp

L oki1)yp2ket op | 21t/
x ﬁp |X| 1—0"" + T
By the choice of n < 273%*§20F° this contradicts to the lower bound (4.1). O

The proof of Lemma 4.1 is based on following lemma that appeared in [1, Lemma 6],

where it was stated more generally for bijumbled graphs.

Lemma 4.2 ([1, p.8 (19)]). For all p,a > 0 and 0 < £, < « there exists an n > 0 such
that the following holds: let T' be an (n,d, \)-graph, with X\ < np'*en and let G = T be a
subgmph satisying e(G) = ae(l). Then, there exists a set Y < V(G) such that

) Y[ = 4/Fn and

( ) deggpy)(7) = (a —e1)p|Y| for allz e Y. O
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Proof of Lemma /J.1. Given o > 0 and 0 < € < a, let €1 = £/4 and let 79 be the 1 obtained
by Lemma 4.2 applied with g, a, and ;. Suppose n < 19. We shall make n smaller
if necessary in what follows. By Lemma 4.2, there exists a set Y < V/(G) such that
Y| = (/57 and deggpy(x) = (a —&1)p|Y]| for all z e V.

We will iteratively delete vertices with deviating degrees. Let Y_ < Y be the subset of
vertices with degree in Y smaller than (1 — e1)p|Y|. Indeed, e(Y,Y_) < (1 — &1)p|Y||Y_].
However, the Expander Mixing Lemma guarantees

e(Y,Y) 2 plY[[Y-| = MW/Y[[Y-].

Thus,

VY| < WY __ B apn
plY| =1 —c)plY]  eip/]Y]  a/IY]

where the last inequality follows from A\ < np'*¢n. Hence, by |Y| = /%n

2
e /Y )
Y| < (”p V") < Y )e,

€1 %

Let Y, € Y be the set of vertices with degree in Y larger than (1 + £1)p|Y’|. Repeating an
analogous argument for Y, gives

1+ e0plY [[Ye] < Ve, Y) < plY[[Ye] + MYV,
and thus, we have the same upper bound
V| < 20°p*|Y]|/e].

Now we are ready to start the deletion process. Let Yy :=Y_ u Y, and for ¢ > 0 let

' 1
Yip1:= {y €Y N U Y eay)(y,Yi) = 2i+251p|Y|} ;

3=0
that is, Y;;1 is the set of vertices that has ‘large’ degree to the previously deleted vertices.

We claim that |Y;| decreases rapidly, as long as 7 is small enough.
Claim 4.3. For each i > 0, if n < £3/2%%7 then
Y| < pitipitey . (4.2)
Proof of Claim 4.5. The proof is by induction. As n < 2e?,
Yol < |Y_| + Y| < 4n*p*|Y|/e3 < np*|Y| (4.3)

and hence, (4.2) holds for i = 0. By definition, er(Yiy1,Yi) = 53=p|Yi||Yis1|. By the
Expander Mixing Lemma and \ < np'*n,

9
QZ%QP\YZ-IIYZ-HI < plYillYipa| + WYl Y| < plYal[Yin| + ' en/[Yil[Yig .
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Thus,
2
nn 2
Yiia| < 5 - °|Yil. (4.4)
(st 1Y] = [Yil)
By the induction hypothesis,
‘ | _ |Y| i1, 2(i+1)p i > €1 N ﬂ > 5:{)/2
2@+2 21+2 P 2 n= 9i+2 n 2 n= 2i+7/2n

Since 1 < €3/2%%7, we have nn® < (335|Y] - \Yi\)z. The induction hypothesis and (4.4)
now prove the claim. O

As we cannot make 7 smaller than 1/2%*7 for arbitrary ¢ > 0, it is crucial to guarantee
that the deletion process ends within a finite number of iterations. This is indeed true,

and it allows us to take a judicious choice for 7.

Let K := —Q — 2. Then the iteration terminates if i > K and n < &1/2, since
K3 X3 1
Yiaa| <02 ey] < el V],

where the first inequality is by Claim 4.3. Thus, we may take n < £3/2371/¢ so that
Claim 4.3 holds until the iteration terminates.

It remains to check that X :=Y \ Uil Y; satisfies the three conditions of Lemma 4.1.
Firstly,

K
X =Y =) vl > ( Zn”l A )\YI (1= Kn) Y],
1=0

so taking 7 < 1/2K proves (i), as [Y| = /3 n. Secondly, for z € X,
1+

- Knpl B
R 2=y proves the maximum degree condition in (7i1).

For the proof of the minimum degree conditions in (ii) and (7i7), we estimate the number

degrixj(z) < (1 +e1)plY| <

and hence, letting n <

of deleted edges that are incident to each x € X and obtain

1
Zep < |Yi| + pmz ST S *6p\Y| fa’:‘p]X]
Therefore, as x ¢ Y_ by definition,
K
degriyy(z) = degrpy(z) — Z eapy(@,Y;) = (1 —¢€)p| X|.
i=0

Similarly,

K
degG[X](x> = degG[Y](x) - Z er[y) (z,Yi) = (a — g)p|X],
=0

which concludes the proof of the lemma. O
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