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Abstract. We answer two extremal questions about odd cycles that naturally arise in
the study of sparse pseudorandom graphs. Let Γ be an pn, d, λq-graph, i.e., n-vertex,
d-regular graphs with all nontrivial eigenvalues in the interval r´λ, λs. Krivelevich, Lee,
and Sudakov conjectured that, whenever λ2k´1 ! d2k{n, every subgraph G of Γ with
p1{2` op1qqepΓq edges contains an odd cycle C2k`1. Aigner-Horev, Hàn, and the third
author proved a weaker statement by allowing an extra polylogarithmic factor in the
assumption λ2k´1 ! d2k{n, but we completely remove it and hence settle the conjecture.
This also generalises Sudakov, Szabo, and Vu’s Turán-type theorem for triangles.

Secondly, we obtain a Ramsey multiplicity result for odd cycles. Namely, in the
same range of parameters, we prove that every 2-edge-colouring of Γ contains at least
p1´ op1qq2´2kd2k`1 monochromatic copies of C2k`1. Both results are asymptotically best
possible by Alon and Kahale’s construction of C2k`1-free pseudorandom graphs.

§1. Introduction

In the last two decades, one of the major developments in extremal and probabilistic
combinatorics has been the study of sparse (pseudo)random analogue of classical results.
We continue to study analogues of classical theorems in sparse pseudorandom graphs. An
pn, d, λq-graph Γ is a d-regular n-vertex graph such that the spectrum d “ λ1 ě ¨ ¨ ¨ ě λn
of its adjacency matrix AΓ satisfies |λi| ď λ for i “ 2, 3, . . . , n. Although this is one of
the most well-known examples of pseurandom graphs and hence received considerable
attention, as surveyed in [12], there are only very few analogues of classical theorems for
pn, d, λq-graphs. For example, Sudakov, Szabo, and Vu [15] proved an analogue of Turán’s
theorem for pn, d, λq-graphs, where the range of parameters is believed to be optimal (for
other extremal or Ramsey-type results in this context see, e.g., [2,7] and references therein).

We prove two analogues of classical results for pn, d, λq-graphs that concern odd cy-
cles C2k`1. The range of parameters we focus on is always λ2k´1 ! d2k{n, which is tight for
each C2k`1 in the sense that there exists a C2k`1-free pn, d, λq-graph with λ2k´1 “ Θpd2k{nq

by the construction by Alon and Kahale [5], built on Alon’s triangle-free pseudorandom
graphs [4].

We study the Ramsey multiplicity of odd cycles in pn, d, λq-graphs. Let NHpGq be the
number of labelled copies of H in G. A graph H is common if the number of monochromatic
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H-copies in a 2-edge-colouring of Kn is minimised by the random colouring, i.e.,

NHpGq `NHpGq ě p1´ op1qq21´epHqn|V pHq|,

whenever G is an n-vertex graph and G is its complement. In 1962, Erdős [8] conjectured
that every complete graph is common, which is generalised by Burr and Rosta [6] for
arbitrary graphs instead of complete graphs. However, already the original Erdős conjecture
turned out to be false, as was shown by Thomason [17] for every Kt, t ě 4. There are
many common and uncommon graphs known since then [9, 10, 14], although the complete
classification is far beyond our reach. In particular, Sidorenko [13] proved that every odd
cycle is common. We obtain a sparse pseudorandom analogue of Sidorenko’s theorem.

Theorem 1.1. Let ε ą 0 and let Γ be an pn, d, λq-graph. Then there exists η ą 0 such
that, whenever λ2k´1 ď ηd2k{n and G is a subgraph of Γ,

NC2k`1pGq `NC2k`1pΓ rGq ě p1´ εq2´2kd2k`1.

Secondly, we prove an analogue of the Erdős–Stone theorem for odd cycles, stating that
every n-vertex graph with more than half of the all possible edges must contain a copy of
an odd cycle of fixed length. Theorem 1.2 below yields the same conclusion for subgraphs
of suitable pn, d, λq-graphs with relative density 1{2` op1q. Obviously, Alon and Kahale’s
C2k`1-free graphs do not possess the Erdős–Stone property for C2k`1 and Krivlevich, Lee,
and Sudakov [11] conjectured that the example by Alon and Kahale is asymptotically
optimal. We verify this conjecture.

Theorem 1.2. Let k ě 1 be an integer and let δ ą 0. Then there exist η ą 0 and n0 such
that the following holds: let n ě n0 and let Γ be an pn, d, λq-graph satisfying λ2k´1 ď ηd2k{n.
If G Ă Γ is a subgraph such that epGq ě

`1
2 ` δ

˘

d
n

`

n
2

˘

, then there is a copy of C2k`1 in G.

A similar result with a slightly stronger condition λ2k´1plog nqp2k´1qp2k´2q ! d2k{n was
obtained by Aigner-Horev, Hàn, and the third author [1]. However, those authors obtained
such a result in the more general context of bijumbled graphs, while we make use of the
spectral estimate for the number of even cycles in pn, d, λq-graphs (see Lemma 2.2 below).

Our proof of Theorem 1.2 uses a stronger variant (see Theorem 3.1) of the first main result,
Theorem 1.1. This is a new approach for the Erdős-Stone-type problems in pseudorandom
setting. However, one cannot expect an analogous solution to the variant of Turán’s
theorem proved by Sudakov, Szabo, and Vu [15], since Thomason [17] showed that any Kt,
t ě 4, is uncommon.

§2. Preliminaries

Throughout this paper, Γ always denotes the pn, d, λq graph and 1Γpx, yq is the indicator
function of the edge set EpΓq. For brevity, p “ d{n denotes the edge density of Γ. We
use the standard notation fpnq ! gpnq if fpnq{gpnq Ñ 0 as n Ñ 8. We will also write
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x “ a˘ b if and only if a´ b ď x ď a` b. For each k ą 2, Ck denotes the cycle of length k
and C2 means the single edge graph K2. We denote by Pk the k-edge path on k`1 vertices.

In what follows, we shall use the fact 1 ! d and λ ! d, which are trivial consequences of
the crucial condition λ2k´1 ! d2k{n. The number of vertices n “ |V pΓq| will be taken large
enough.

When counting H-copies in G, it is often convenient to allow possibly degenerate copies
of H. For graphs H and G, denote by hHpGq the number of all homomorphisms from H

to G. Let the graph homomorphism density tHpGq :“ hHpGq{|V pGq|
|V pHq|, that is, the

number of homomorphisms from H to G divided by the number of vertex maps from H

to G. Indeed, the graph homomorphism density defined above naturally generalises to (not
necessarily nonnegative) weighted graphs, i.e., for a symmetric function f : V pGq2 Ñ R,

tHpfq :“ E
„

ź

ijPEpHq

fpxi, xjq



,

where each xi is a uniform random vertex in V pGq chosen independently. We shall
repeatedly use a key pseudorandom property of an pn, d, λq-graph, given by the Expander
Mixing Lemma.

Lemma 2.1 (Expander Mixing Lemma). Let Γ be an n-vertex graph whose nontrivial
eigenvalues lie in the interval r´λ, λs. Then for every weight function u, v : V pΓq Ñ r0, 1s,
ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

x,yPV pΓq
upxq1Γpx, yqvpyq ´

d

n

ÿ

xPV pΓq
upxq

ÿ

yPV pΓq
vpyq

ˇ

ˇ

ˇ

ˇ

ˇ

ď λ

d

ÿ

xPV pΓq
upxq2

ÿ

yPV pΓq
vpyq2. (2.1)

When u and v are t0, 1u-valued, it appeared in [3, 16]. Our weighted version of the
lemma can easily be derived by following the standard proofs of theirs.

The Expander Mixing Lemma yields an estimate on hC2k`1pΓq for every fixed k. For that
fix a vertex, say 1 in V pCkq “ rks, and let hCk

pΓ;xq be the number of homomorphic copies
of Ck that maps 1 to x P V pΓq. Let wk,Γpx, yq be the number of k-edge walks from x to y
in Γ. Then

hC2k`1pΓ;xq “
ÿ

y,zPV pΓq
wk,Γpx, yq1Γpy, zqwk,Γpx, zq.

Since
ř

yPV pΓqwk,Γpx, yq “ dk, the Expander Mixing Lemma yields
ˇ

ˇ

ˇ

ˇ

hC2k`1pΓ;xq ´ d2k`1

n

ˇ

ˇ

ˇ

ˇ

ď λ
ÿ

yPV pΓq
wk,Γpx, yq

2
“ λ ¨ hC2k

pΓ;xq.

Summing over all x P V pΓq hence gives
ˇ

ˇhC2k`1pΓq ´ d2k`1ˇ
ˇ ď λ ¨ hC2k

pΓq. (2.2)

In the following section, we shall prove a slightly stronger statement, Theorem 3.1, than
Theorem 1.1 by considering an ‘almost-regular’ subgraph of Γ induced on a large vertex
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subset instead of the d-regular graph Γ. To this end, we say that a vertex subset X Ď V pΓq
is δ-almost-regular if

degΓrXspxq “ p1˘ δqp|X| for all x P X.
In particular, V pΓq is δ-almost-regular for any δ ą 0. Indeed, we may replace Γ by ΓrXs
in proving (2.2) to obtain an analogous bound. As

hC2k`1pΓrXs;xq “
ÿ

y,zPX

wk,ΓrXspx, yq1Γpy, zqwk,ΓrXspx, zq,

the Expander Mixing Lemma gives
ˇ

ˇhC2k`1pΓrXs;xq ´ p ¨ dkpx; ΓrXsq2
ˇ

ˇ ď λ ¨ hC2k
pΓrXs;xq,

where dkpx; ΓrXsq denotes the number of k-edge walks in ΓrXs starting at x P X. Since X
is δ-almost-regular, dkpx; ΓrXsq “ p1˘ kδqpk|X|k for every x P X. Thus, we obtain

ˇ

ˇhC2k`1pΓrXsq ´ p2k`1
|X|2k`1ˇ

ˇ ď λ ¨ hC2k
pΓq ` 2kδp2k`1

|X|2k`1. (2.3)

To bound the right-hand side above, we shall use the following spectral argument.

Lemma 2.2. Let Γ be an pn, d, λq-graph and let k be a positive integer. Then

hC2k
pΓq ď d2k

` λ2k´2dn.

Proof. Since hCk
pΓq “ trpAkΓq “ λk1 ` λ

k
2 ` ¨ ¨ ¨ ` λ

k
n for every k ě 2,

hC2k
pΓq “ λ2k

1 ` λ2k
2 ` ¨ ¨ ¨ ` λ2k

n ď d2k
` λ2k´2

pλ2
2 ` ¨ ¨ ¨ ` λ

2
nq ď d2k

` λ2k´2dn,

where the last inequality is from λ2
1 ` λ

2
2 ` ¨ ¨ ¨ ` λ

2
n “ hK2pΓq “ dn. �

Note that the assumption λ2k´1 ! d2k{n in Theorem 1.1 and 1.2 combined with the
fact λ ! d implies d2k`1 " λ ¨ hC2k

pΓq and hence, (2.2) implies hC2k`1pΓq “ p1˘ op1qqd2k`1.
Similarly, if |X| ě µn, (2.3) gives

ˇ

ˇhC2k`1pΓrXsq ´ p2k`1
|X|2k`1ˇ

ˇ ď λp2kn2k
` λ2k´1pn2

` kδp2k`1
|X|2k`1.

In particular,

hC2k`1pΓrXsq ě p2k`1
|X|2k`1

ˆ

1´ λn2k

p|X|2k`1 ´
λ2k´1n2

p2k|X|2k`1 ´ 2kδ
˙

ě p2k`1
|X|2k`1

ˆ

1´ λ

µ2k`1d
´

λ2k´1n

µ2k`1d2k ´ 2kδ
˙

, (2.4)

which essentially means hC2k`1pΓrXsq ě p1´ op1qqpp|X|q2k`1.
The following lemma will be useful in proving that the number of the degenerate copies

of an odd cycle C2k`1 is negligible.

Lemma 2.3. Let H be the graph consisting of edge-disjoint C2q and C2r`1 sharing exactly
one vertex. Then

hHpΓq ď
1
n
d2pq`rq`1

` λ2q´2d2r`2
` λd2pq`rq

` λ2pq`rq´1dn.
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Proof. For each homomorphism φ P HompC2q,Γq, let hHpΓ;φq be the number of homomor-
phisms from H to Γ that extends φ and let wrpx;φq be the number of r-edge walks from
the image of the shared vertex v under φ to x P V pΓq. Then

hHpΓ;φq “
ÿ

x,yPV pΓq
wrpx;φqγpx, yqwrpy;φq.

The Expander Mixing Lemma gives
ˇ

ˇ

ˇ

ˇ

hHpΓ;φq ´ d2r`1

n

ˇ

ˇ

ˇ

ˇ

ď λ
ÿ

xPV pΓq
wrpx;φq2.

Note that
ř

xPV pΓqwrpx;φq2 counts the number of homomorphisms from another graph H 1

obtained by C2q and C2r identified on the vertex v that extends φ. In particular, this is a
degenerate copy of C2pq`rq. Thus, summing above over all φ P HompC2q, Hq yields

ˇ

ˇ

ˇ

ˇ

hHpΓq ´
d2r`1

n
hC2qpΓq

ˇ

ˇ

ˇ

ˇ

ď λ ¨ hC2pq`rq
pΓq

and applying Lemma 2.2 concludes the proof. �

If q ` r “ k and λ2k´1 ! d2k{n, then hHpΓq ! d2k`1. Whenever a homomorphic copy
of C2k`1 is degenerate, it induces a homomorphic copy H of two shorter cycles sharing
one vertex. Hence, Lemma 2.2 shows that most of the homormophic copies of C2k`1 are
nondegenerate.

§3. The relative commonality of odd cycles

We shall prove the following slightly stronger statement than Theorem 1.1. To avoid
ambiguity in the normalising factor, tHpGqmeans hHpGq{|X||V pHq| wheneverG is a subgraph
of ΓrXs.

Theorem 3.1. For 0 ă µ, δ ă 1 and an integer k ě 1, there exists η “ ηpδ, µ, kq ą 0 such
that the following holds: let Γ be an pn, d, λq-graph satisfying λ2k´1 ď ηd2k{n and let X be
a δ-almost-regular vertex subset of Γ with |X| ě µn. Then for every subgraph G of ΓrXs,
we have

NC2k`1pGq `NC2k`1pΓrXsrGq ě
1

22k pp|X|q
2k`1 `1´ 28kδ

˘

.

We remark that this strenghtening of Theorem 1.1 is purely for the future purpose to
derive Theorem 1.2 and we did not attempt to optimise the constants. The key ingredient
in proving Theorem 3.1 is a homomorphism counting lemma.

Lemma 3.2. Let δ, µ ą 0 and let Γ be an pn, d, λq-graph. For every δ-almost-regular subset
X Ă V pΓq with |X| ě µn and every subgraph G of ΓrXs,

tC2k`1pGq ` tC2k`1pΓrXsrGq ě
1

22k p
2k`1

ˆ

1´ 27k
ˆ

δ `
λ

µ2kd
`
λ2k´1n

µ2kd2k

˙˙

.
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Theorem 3.1 can easily be deduced by setting η “ µ4k2
δ2k{102k in the lemma above and

the fact that there are at most 2p2k ` 1q2ηd2k`1 degenerate copies of C2k`1 by Lemma 2.3.
Throughout this section, we write γX :“ 1EpΓrXsq or even γ “ γX if X is clear from the

context. Similary, let g “ gX be the indicator of the edges in the subgraph G of ΓrXs.
Let J be an edge subset of H. For f1, f2 : X2 Ñ R and x1, . . . , x|V pHq| P X, write

xf1, f2y
J
H :“

ź

ijPJ

f1pxi, xjq
ź

ijPEpHqrJ

f2pxi, xjq.

In fact, tHpfq “ E
“

xf, hy
EpHq
H

‰

for any h. For α, β P R we may expand tHpαf1 ` βf2q to

tHpαf1 ` βf2q “
ÿ

JĎEpHq

α|J |βepHq´|J |E
”

xf1, f2y
J
H

ı

.

For brevity, write

EpHq :“ tJ Ă EpHq : |J | is evenu and E`pHq :“ tJ Ă EpHq : |J | is even and nonzerou .

Let f :“ 2g ´ γ so that g “ 1
2pf ` γq and γ ´ g “ 1

2p´f ` γq. Since 0 ď g ď γ we have
|f | ď γ. Moreover, from the definition of f it follows that

tHpgq ` tHpγ ´ gq “

ˆ

1
2

˙epHq´1ˆ

tHpγq `
ÿ

JPE`pHq

E
“

xf, γyJH
‰

˙

. (3.1)

Recall that (2.4) implies

tC2k`1pγq ě p2k`1
ˆ

1´ λ

µ2k`1d
´

λ2k´1n

µ2k`1d2k ´ 2kδ
˙

. (3.2)

Thus, in order to prove Lemma 3.2, it suffices to show that E
“

xf, γyJC2k`1

‰

is ‘almost
nonnegative’. For that we generalise Sidorenko’s arguments [13] for proving the commonality
of odd cycles. For a symmetric function f : X2 Ñ R, define a polynomial in Rrzs

QHpz; fq :“
ÿ

JPE`pHq

E
“

xf, zγyJH
‰

“
ÿ

JPE`pHq

E
“

xf, γyJH
‰

zepHq´|J |.

Lemma 3.3. Suppose |fpx, yq| ď γpx, yq for every x, y P X. Then
ˇ

ˇ

ˇ

ˇ

d

dz
QC2k`1pz; fq ´ pp2k ` 1qQP2k

pz; fq
ˇ

ˇ

ˇ

ˇ

ď p2k ` 1qp2k`1
ˆ

λ

µ2k`1d
`

λ2k´1n

µ2k`1d2k

˙

.

Proof. Since tE`pC2k`1 r equePEpC2k`1q covers each J P E`pC2k`1q exactly 2k`1´|J | times,

d

dz
QC2k`1pz; fq “

ÿ

JPE`pHq

E
”

xf, γyJC2k`1

ı

p2k ` 1´ |J |qz2k´|J |

“
ÿ

ePEpC2k`1q

ÿ

JPE`pC2k`1req

E
”

xf, γyJC2k`1

ı

z2k´|J |. (3.3)
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As C2k`1 r e is always isomorphic to P2k, we regard J as a subgraph of P2k on r2k ` 1s
with edges ti, i` 1u, i “ 1, 2, . . . , 2k. Let L and R be the edges in P2k induced on vertices
t1, 2, . . . , k ` 1u and tk ` 1, . . . , 2k ` 1u. For each z P X, let `z, rz : V pΓq Ñ R be

`zpxq :“
ÿ

xk`1“z,x1“x,
xiPX,1ăiďk

ź

ijPLXJ

fpxi, xjq
ź

ijPLrJ
γpxi, xjq

and rzpxq :“
ÿ

xk`1“z,x2k`1“x,
xiPX,k`2ďiă2k`1

ź

ijPRXJ

fpxi, xjq
ź

ijPRrJ
γpxi, xjq.

Now the Expander Mixing Lemma together with the fact |f | ď γ ď 1Γ gives
ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

x,yPV pΓq
`zpxq1Γpx, yqrzpyq ´ p

ÿ

xPV pΓq
`zpxq

ÿ

yPV pΓq
rzpyq

ˇ

ˇ

ˇ

ˇ

ˇ

ď λ ¨ hC2k
pΓ; zq.

Since
ÿ

x,yPV pΓq
`zpxq1Γpx, yqrzpyq “ |X|

2kE
”

xf, γyJC2k`1

ˇ

ˇ

ˇ
xk`1 “ z

ı

and
ÿ

xPV pΓq
`zpxq

ÿ

yPV pΓq
rzpyq “ |X|

2kE
”

xf, γyJP2k

ˇ

ˇ

ˇ
xk`1 “ z

ı

,

Lemma 2.2 gives
ˇ

ˇ

ˇ
E
”

xf, γyJC2k`1

ı

´ p ¨ E
”

xf, γyJP2k

ıˇ

ˇ

ˇ
ď

1
|X|2k`1

`

λp2kn2k
` λ2k´1pn2˘

ď p2k`1
ˆ

λ

µ2k`1d
`

λ2k´1n

µ2k`1d2k

˙

.

Substituting this into (3.3) yields the desired bound. �

Lemma 3.3 roughly means d
dz
QC2k`1pz; fq « pp2k ` 1qQP2k

pz; fq and the next lemma
proves QP2k

pz; fq is ‘almost nonnegative’, which will immediately prove that QC2k`1p1; fq
is almost nonnegative too, as planned.

Lemma 3.4. Let 0 ď z ď 1 and let γ “ 1EpΓrXsq for a δ-almost-regular set X. Suppose
f : X2 Ñ r0, 1s satisfies |fpx, yq| ď γpx, yq for all x, y P X2. Then

E

„

ÿ

JPE`pC2kq

xf, zγyJP2k



ě ´p2k25kδ.

Proof. We firstly classify the nonempty edge subsets of EpP2kq in terms of the first and
the last edge in J . Namely, for nonempty J Ď EpP2kq, let aJ be the smallest i such that
ti, i` 1u P J and let bJ be the largest j such that tj, j ` 1u P J . Define

Ci,j :“ tJ Ď EpP2kq : J ‰ ∅, aJ “ i, and bJ “ ju.
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and let

Si,j :“ E
„

ÿ

JPCi,jXE`pP2kq

xf, zγyJP2k



.

We regard J P Ci,j as a subset of EpPi,jq, where Pi,j is the path on ti, . . . , j ` 1u. Then

Si,j “ E

„

ÿ

JPCi,jXE`pP2kq

xf, zγyJP2k



“
ÿ

JPCi,jXE`pP2kq

E
”

E
”

xf, zγyJP2k

ˇ

ˇ

ˇ
x` : i ď ` ď j ` 1

ıı

“
ÿ

JPCi,jXE`pP2kq

p1˘ 2kδqppzq2k`i´j´1E
”

xf, zγyJPi,j

ı

.

For m “ j ´ i` 1, let

Tm :“
ÿ

JPCi,jXE`pP2kq

ppzq2k`i´j´1E
”

xf, zγyJPi,j

ı

.

This is well-defined because the right-hand side above only depends on j´i. Let T0 “ T1 “ 0
for notational convenience. Since |f | ď γ and 0 ď z ď 1,

|Si,j ´ Tj´i`1| ď 2kδppzq2k`i´j´1
ÿ

JPCi,jXE`pP2kq

E
”

xf, zγyJPi,j

ı

ď 2kδppzq2k`i´j´1
ÿ

JPCi,jXE`pP2kq

E
”

xγ, zγyJPi,j

ı

ď 2kδppzq2k`i´j´1
¨
ˇ

ˇCi,j X E`pP2kq
ˇ

ˇ ¨ tPi,j
pγq

ď 23kp2kδ,

where the last inequality used tPi,j
pγq ď p1`2kδqpj´i`1. As tCi,jXE`pP2kq : 1 ď i ă j ď 2ku

is a partition of E`pP2kq,

ˇ

ˇ

ˇ

ˇ

ˇ

E

«

ÿ

JPE`pP2kq

xf, zγyJP2k

ff

´

2k
ÿ

i“1
p2k ` 1´ iqTi

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ÿ

1ďiăjď2k
|Si,j ´ Tj´i`1| ď 25kp2kδ.

Our final goal is to prove that
ř2k
i“1p2k ` 1 ´ iqTi is nonnegative for 0 ă z ď 1, which

suffices to conclude the proof. We split this sum with respect to the parity to express it
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with the sum of nonnegative terms. Namely,
2k
ÿ

i“1
p2k ` 1´ iqTi “

k
ÿ

i“1
p2k ` 1´ 2iqT2i ` p2k ` 2´ 2iqT2i´1

“

k
ÿ

i“1
p2k ` 2´ 2iqT2i´1 ` pk ` 1´ iqT2i `

k´1
ÿ

i“0
pk ´ iqT2i

“

k
ÿ

i“1
2pk ` 1´ iqT2i´1 ` pk ` 1´ iqT2i `

k
ÿ

i“1
pk ` 1´ iqT2i´2

“

k
ÿ

i“1
pk ` 1´ iqpT2i ` 2T2i´1 ` T2i´2q.

We claim T2` ` 2T2`´1 ` T2`´2 ě 0 for each ` “ 1, 2, . . . , k. For that we may assume that
k “ `, as reducing k by 1 only multiplies a factor of 1{ppzq2 to each Ti and hence, we may
shorten the path P2k as long as it contains Pi,j. Let L :“ ttj, j ` 1u : j “ 1, 2, . . . , iu and
R :“ EpP2`qr L for brevity, that is, L and R are the left and the right half of the 2`-edge
path, respectively. Let

F0 :“ tJ P C1,2` : |J X L| and |J XR| are evenu,

G0 :“ tJ P C1,2`´1 : |J X L| and |J XR| are evenu,

and H0 :“ tJ P C2,2`´1 : |J X L| and |J XR| are evenu.

Set FL
0 :“ tJ X L : J P F0u and FR

0 :“ tJ XR : J P F0u. Then J P F0 if and only if there
exists J1 P FL

0 and J2 P FR
0 such that J1 Y J2 “ J . Let h :“ zγ and note

ÿ

JPF0

xf, hyJP2`
“

ˆ

ÿ

J1PFL
0

xf, hyJ1
L

˙ˆ

ÿ

J2PFR
0

xf, hyJ2
R

˙

.

For similarly defined GL
0 ,GR

0 ,HL
0 , and HR

0 we have the analogous identities. Therefore,

E

„

ÿ

JPG0

xf, hyJP2`



“ E

„ˆ

ÿ

J1PGL
0

xf, hyJ1
L

˙ˆ

ÿ

J2PGR
0

xf, hyJ2
R

˙

“ Ex

„

E

„ˆ

ÿ

J1PGL
0

xf, hyJ1
L

˙ˆ

ÿ

J2PGR
0

xf, hyJ2
R

˙
ˇ

ˇ

ˇ

ˇ

x``1 “ x



“ Ex

„

E

„

ÿ

J1PGL
0

xf, hyJ1
L

ˇ

ˇ

ˇ

ˇ

x``1 “ x



E

„

ÿ

J2PGR
0

xf, hyJ2
R

ˇ

ˇ

ˇ

ˇ

x``1 “ x



,

where the last equality follows from the conditional independence of variables xf, hyJ1
L

and xf, hyJ2
R given x``1 “ x. The key observation is that

FL
0 “ GL

0 and GR
0 “ HR

0 .
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Let φpxq :“ E
“
ř

J1PFL
0
xf, hyJ1

L

ˇ

ˇ x``1 “ x
‰

and ψpxq :“ E
“
ř

J2PHR
0
xf, hyJ2

R

ˇ

ˇ x``1 “ x
‰

for
brevity. Then by the AM–GM inequality,

ˇ

ˇ

ˇ

ˇ

E

„

ÿ

JPG0

xf, hyJP2`


ˇ

ˇ

ˇ

ˇ

ď Ex
“
ˇ

ˇφpxqψpxq
ˇ

ˇ

‰

ď
1
2
`

Ex
“

φpxq2
‰

` Ex
“

ψpxq2
‰˘

. (3.4)

By the symmetry that maps the vertex i to 2`` 2´ i, we obtain

φpxq “ E

„

ÿ

J2PFR
0

xf, hyJ2
R

ˇ

ˇ

ˇ

ˇ

x``1 “ x



and ψpxq “ E

„

ÿ

J1PHL
0

xf, hyJ1
L

ˇ

ˇ

ˇ

ˇ

x``1 “ x



,

which implies E
“
ř

JPF0
xf, hyJP2`

‰

“ Erφpxq2s and E
“
ř

JPH0
xf, hyJP2`

‰

“ Erψpxq2s, and
thus,

2 ¨
ˇ

ˇ

ˇ

ˇ

E

„

ÿ

JPG0

xf, hyJP2`


ˇ

ˇ

ˇ

ˇ

(3.4)
ď E

„

ÿ

JPF0

xf, hyJP2`



` E

„

ÿ

JPH0

xf, hyJP2`



.

We may do the same with F1,G1, and H1 defined by the odd intersections with two halves L
and R to obtain

2 ¨
ˇ

ˇ

ˇ

ˇ

E

„

ÿ

JPG1

xf, hyJP2`


ˇ

ˇ

ˇ

ˇ

ď E

„

ÿ

JPF1

xf, hyJP2`



` E

„

ÿ

JPH1

xf, hyJP2`



.

Since F0YF1, G0YG1, and H0YH1 are partitions of C1,2`, C1,2`´1, and C2,2`´1, respectively,
we conclude that T2` ` 2T2``1 ` T2`´2 is nonnegative, as claimed. �

Finally, we are ready to prove Lemma 3.2.

Proof of Lemma 3.2. By Lemma 3.3 and 3.4,

QC2k`1p1; fq ě p2k ` 1q
ˆ
ż 1

0
p ¨QP2k

pz; fqdz ´ p2k`1
ˆ

λ

µ2k`1d
`

λ2k´1n

µ2k`1d2k

˙˙

ě ´p2k ` 1qp2k`1
ˆ

25kδ `
λ

µ2k`1d
`

λ2k´1n

µ2k`1d2k

˙

Thus, (3.1) with H “ C2k`1 and (3.2) give

tC2k`1pgq ` tC2k`1pγ ´ gq ě
1

22k

ˆ

p2k`1
ˆ

1´ λ

µ2k`1d
´

λ2k´1n

µ2k`1d2k ´ 2kδ
˙

`QC2k`1p1; fq
˙

ě
1

22k p
2k`1

ˆ

1´ 27k
ˆ

λ

µ2k`1d
`

λ2k´1n

µ2k`1d2k ` δ

˙˙

,

as desired. �

§4. The relative Erdős–Stone theorem for odd cycles

To deduce Erdős–Stone theorem from commonality, it is crucial to ‘regularise’ the degree
of the given subgraph G of Γ by restricting it to a vertex subset X Ď V pΓq. To this end,
we employ an analogous argument to the proofs from [1, Lemmas 4 and 6].
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Lemma 4.1. For each %, α ą 0 and 0 ă ε ă α, there exist η ą 0 such that the following
holds: let Γ be an pn, d, λq-graph, with λ ď ηp1`%n and let G Ă Γ be a subgraph satisying
epGq ě αepΓq. Then, there exists a set X Ď V pGq such that

(i ) |X| ě
?
εn{8,

(ii ) degGrXspxq ě pα ´ εqp|X|, and
(iii ) degΓrXspxq “ p1˘ εqp|X|.

We deduce Theorem 1.2 from Theorem 3.1 and Lemma 4.1. Here we use subscripts such
as τa.b to indicate that τ is the parameter coming from Theorem a.b or Lemma a.b.

Proof of Theorem 1.2. Suppose for a contradiction that G contains no copy of C2k`1. Set

%4.1 “
1

2k ´ 1 , α4.1 “
1
2 ` δ, ε4.1 “ δ3.1 “

δ2k

211k , and µ3.1 “

?
ε4.1

8
and let

η “ mintη3.1, η4.1, 2´30k2
δ20k3

u.

Let X Ă V pΓq be the ε4.1-regular subset guaranteed by Lemma 4.1. Let G :“ Γ rG for
brevity. Theorem 3.1 combined with the C2k`1-freeness of G yields

NC2k`1pGrXsq “ NC2k`1pGrXsq `NC2k`1pGrXsq ě
1

22k p
2k`1

ˆ

1´ δ2k

2k

˙

|X|2k`1. (4.1)

The Expander Mixing Lemma implies
ˇ

ˇhC2k`1pGrXsq ´ p ¨ phP2k
pGrXsqq2

ˇ

ˇ ď λ ¨ hC2k
pΓq.

Since degGrXspxq ď 1
2p1´ δqp|X| for each x P X, we have the bound

hP2k
pGrXsq ď

1
22k p

2k
p1´ δ2k

q|X|2k`1

and thus, again using Lemma 2.2,

NC2k`1pGrXsq ď
1

22k p
2k`1

p1´ δ2k
q|X|2k`1

` λd2k
` λ2k´1dn

ď
1

22k p
2k`1

|X|2k`1
ˆ

1´ δ2k
`

212kη1{p2k´1q

δ8k2

˙

.

By the choice of η ă 2´30k2
δ20k3 , this contradicts to the lower bound (4.1). �

The proof of Lemma 4.1 is based on following lemma that appeared in [1, Lemma 6],
where it was stated more generally for bijumbled graphs.

Lemma 4.2 ([1, p. 8 (19)]). For all %, α ą 0 and 0 ă ε1 ă α there exists an η ą 0 such
that the following holds: let Γ be an pn, d, λq-graph, with λ ď ηp1`%n and let G Ă Γ be a
subgraph satisying epGq ě αepΓq. Then, there exists a set Y Ă V pGq such that

(i ) |Y | ě
a

ε1
2 n and

(ii ) degGrY spxq ě pα ´ ε1qp|Y | for all x P Y . �
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Proof of Lemma 4.1. Given % ą 0 and 0 ă ε ă α, let ε1 “ ε{4 and let η0 be the η obtained
by Lemma 4.2 applied with %, α, and ε1. Suppose η ď η0. We shall make η smaller
if necessary in what follows. By Lemma 4.2, there exists a set Y Ď V pGq such that
|Y | ě

a

ε1
2 n and degGrY spxq ě pα ´ ε1qp|Y | for all x P Y .

We will iteratively delete vertices with deviating degrees. Let Y´ Ď Y be the subset of
vertices with degree in Y smaller than p1´ ε1qp|Y |. Indeed, epY, Y´q ă p1´ ε1qp|Y ||Y´|.
However, the Expander Mixing Lemma guarantees

epY´, Y q ě p|Y ||Y´| ´ λ
a

|Y ||Y´|.

Thus,
a

|Y´| ă
λ
a

|Y |

p|Y | ´ p1´ ε1qp|Y |
“

β

ε1p
a

|Y |
ď

γp%n

ε1
a

|Y |
,

where the last inequality follows from λ ď ηp1`%n. Hence, by |Y | ě
a

ε1
2 n

|Y´| ă

˜

ηp%
a

|Y |

ε1
a

ε1
2

¸2

ď 2η2p2%
|Y |{ε3

1.

Let Y` Ď Y be the set of vertices with degree in Y larger than p1` ε1qp|Y |. Repeating an
analogous argument for Y` gives

p1` ε1qp|Y ||Y`| ă epY`, Y q ď p|Y ||Y`| ` λ
a

|Y ||Y`|,

and thus, we have the same upper bound

|Y`| ă 2η2p2%
|Y |{ε3

1.

Now we are ready to start the deletion process. Let Y0 :“ Y´ Y Y` and for i ą 0 let

Yi`1 :“
#

y P Y r
i
ď

j“0
Yj : eGrY spy, Yiq ě

1
2i`2 ε1p|Y |

+

,

that is, Yi`1 is the set of vertices that has ‘large’ degree to the previously deleted vertices.
We claim that |Yi| decreases rapidly, as long as η is small enough.

Claim 4.3. For each i ě 0, if η ď ε3
1{22i`7, then

|Yi| ď ηi`1p2pi`1q%
|Y |. (4.2)

Proof of Claim 4.3. The proof is by induction. As η ď 2ε3
1,

|Y0| ď |Y´| ` |Y`| ă 4η2p2%
|Y |{ε3

1 ď ηp2%
|Y | (4.3)

and hence, (4.2) holds for i “ 0. By definition, eΓpYi`1, Yiq ě
ε1

2i`2p|Yi||Yi`1|. By the
Expander Mixing Lemma and λ ď ηp1`%n,

ε1

2i`2p|Yi||Yi`1| ď p|Yi||Yi`1| ` λ
a

|Yi||Yi`1| ď p|Yi||Yi`1| ` ηp
1`%n

a

|Yi||Yi`1|.
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Thus,

|Yi`1| ď
ηn2

`

ε1
2i`2 |Y | ´ |Yi|

˘2 ¨ ηp
2%
|Yi|. (4.4)

By the induction hypothesis,

ε1

2i`2 |Y | ´ |Yi| ě
´ ε1

2i`2 ´ η
i`1p2pi`1q%

¯

c

ε1

2 n ě
´ ε1

2i`2 ´ η
¯

c

ε1

2 n ě
ε

3{2
1

2i`7{2n.

Since η ď ε3
1{22i`7, we have ηn2 ď

`

ε1
2i`2 |Y | ´ |Yi|

˘2. The induction hypothesis and (4.4)
now prove the claim. �

As we cannot make η smaller than 1{22i`7 for arbitrary i ą 0, it is crucial to guarantee
that the deletion process ends within a finite number of iterations. This is indeed true,
and it allows us to take a judicious choice for η.

Let K :“ 1
2% ´ 2. Then the iteration terminates if i ě K and η ď ε1{2, since

|Yi`1| ď ηi`2pp2i`4q%
|Y | ď

1
2i`2 ε1p|Y |,

where the first inequality is by Claim 4.3. Thus, we may take η ď ε3
1{23`1{ρ so that

Claim 4.3 holds until the iteration terminates.
It remains to check that X :“ Y r

Ťi˚

i“1 Yi satisfies the three conditions of Lemma 4.1.
Firstly,

|X| “ |Y | ´
K
ÿ

i“0
|Yi| ě

˜

1´
K
ÿ

i“0
ηi`1p2pi`1q%

¸

|Y | ě p1´Kηq |Y |,

so taking η ď 1{2K proves (i ), as |Y | ě
a

ε1
2 n. Secondly, for x P X,

degΓrXspxq ă p1` ε1qp|Y | ď
1` ε1

1´Kηp|X|,

and hence, letting η ď ε1
Kp1`2ε1q

proves the maximum degree condition in (iii ).
For the proof of the minimum degree conditions in (ii ) and (iii ), we estimate the number

of deleted edges that are incident to each x P X and obtain
K
ÿ

i“0
eΓrY spx, Yiq ď |YK | `

ε1

2 p|Y |
8
ÿ

i“0

1
2i`1 ď

1
4εp|Y | ď

1
2εp|X|.

Therefore, as x R Y´ by definition,

degΓrXspxq ě degΓrY spxq ´
K
ÿ

i“0
eGrY spx, Yiq ě p1´ εqp|X|.

Similarly,

degGrXspxq “ degGrY spxq ´
K
ÿ

i“0
eΓrY spx, Yiq ě pα ´ εqp|X|,

which concludes the proof of the lemma. �
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