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Abstract. We show that 3-uniform hypergraphs with the property that all vertices have
a quasirandom link graph with density bigger than 1{3 contain a clique on five vertices.
This result is asymptotically best possible.

§1. Introduction

We study extremal problems for 3-uniform hypergraphs and here, unless stated otherwise,
a hypergraph will always be 3-uniform. Recall that given an integer n and a hypergraph F
the extremal number expn, F q is the maximum number of hyperedges that an n-vertex
hypergraph can have without containing a copy of F . It is well known that the sequence
expn, F q{

`

n
3
˘

converges and the limit defines the Turán density πpF q. Determining πpF q

is a central open problem in extremal combinatorics. In fact, even the case when F is a
clique on four vertices is still unresolved and known as the 5{9-conjecture of Turán.

Erdős and Sós [4] suggested a variation restricting the problem only to those F -free
hypergraphs that are uniformly dense among large sets of vertices. More precisely, given
a hypergraph F , Erdős and Sós asked for the supremum d P r0, 1s such that there exist
arbitrarily large F -free hypergraphs H “ pV,Eq for which every linear sized subset of
the vertices induces a hypergraph of density at least d. Extremal results for uniformly
dense hypergraphs in that context were studied in [2, 5, 6, 9, 12, 13]. For hypergraphs there
are several other notions of “uniform density” that are closely related to the theory of
quasirandom hypergraphs (see, e.g., [1,16]) and corresponding extremal results were studied
in [10,11,14,15]. Here, we shall focus on the following notion.

Definition 1.1. For a hypergraph H “ pV,Eq and reals d P r0, 1s, η ą 0, we say that H is
pη, d, q-dense if for all P , Q Ď V ˆ V we have

e pP,Qq “

ˇ

ˇ

ˇ

!

`

px, yq, py, zq
˘

P K pP,Qq : tx, y, zu P E
)
ˇ

ˇ

ˇ
ě d

ˇ

ˇK pP,Qq
ˇ

ˇ ´ η|V |
3, (1.1)

where K pP,Qq “
␣`

px, yq, py1, zq
˘

P P ˆ Q : y “ y1
(

.
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For a fixed hypergraph F , we define the corresponding Turán density

π pF q “ suptd P r0, 1s : for every η ą 0 and n P N there exists an F -free,

pη, d, q-dense hypergraph with at least n verticesu . (1.2)

In [14] the last three authors obtained a general upper bound for π pK
p3q

ℓ q, which turned
out to be best possible for all ℓ ď 16 except for ℓ “ 5, 9, and 10.

Theorem 1.2. For every integer t ě 2 we have

π pK
p3q

2t q ď
t ´ 2
t ´ 1 .

Moreover, we have

0 “ π pK
p3q

4 q ,

1
3 ď π pK

p3q

5 q ď 1
2 “ π pK

p3q

6 q “ ¨ ¨ ¨ “ π pK
p3q

8 q ,

and 1
2 ď π pK

p3q

9 q ď π pK
p3q

10 q ď 2
3 “ π pK

p3q

11 q “ ¨ ¨ ¨ “ π pK
p3q

16 q . □

Here we close the gap for π pK
p3q

5 q and show that the lower bound is best possible.

Theorem 1.3 (Main result). We have that

π pK
p3q

5 q “
1
3 .

Theorem 1.3 has a consequence for hypergraphs with quasirandom links. For a hyper-
graph H “ pV,Eq the link graph LHpxq of a vertex x is defined to be the graph with vertex
set V and edge set tyz P V p2q : xyz P EpHqu. Recall that for given d P r0, 1s and δ ą 0 a
graph G “ pV,Eq is said to be pδ, dq-quasirandom if for every subset of vertices X Ď V the
number of edges epXq inside X satisfies

ˇ

ˇ

ˇ

ˇ

epXq ´ d
|X|2

2

ˇ

ˇ

ˇ

ˇ

ď δ|V |
2 .

One can check that if all the vertices of a hypergraph H have a pδ, dq-quasirandom
link graph, then H is pfpδq, d, q-dense, where fpδq ÝÑ 0 as δ ÝÑ 0. In fact, such
hypergraphs even satisfy in addition a matching upper bound for e pP,Qq in (1.1) and,
hence, having quasirandom links is a stronger property. However, the lower bound
construction for π pK

p3q

5 q given below has quasirandom links with density 1{3 and, therefore,
Theorem 1.3 yields an asymptotically optimal result for such hypergraphs.

Example 1.4. For a map ψ : V p2q ÝÑ Z{3Z we define the hypergraph Hψ “ pV,Eq by

xyz P E ðñ ψpxyq ` ψpxzq ` ψpzyq ” 1 pmod 3q . (1.3)
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Observe that for any set of five different vertices U “ tu1, u2, u3, u4, u5u double counting
yields the identity

ÿ

uiujukPUp3q

`

ψpuiujq ` ψpuiukq ` ψpujukq
˘

“ 3
ÿ

uiujPUp2q

ψpuiujq .

Since the second sum is zero modulo 3, at least one of the ten triples in the first sum fails
to satisfy (1.3). Consequently, Hψ is Kp3q

5 -free for every map ψ.
Moreover, if ψ is chosen uniformly at random, then following the lines of the proof

of [14, Proposition 13.1] shows that for every fixed δ ą 0 and sufficiently large |V | with
high probability the hypergraph Hψ has the property that all link graphs are pδ, 1{3q-
quasirandom.

Summarising the discussion above we arrive at the following corollary, which in light
of Example 1.4 is asymptotically best possible.

Corollary 1.5. For every ε ą 0 there exist δ ą 0 and an integer n0 such that every
hypergraph on at least n0 vertices all of whose link graphs are pδ, 1{3 ` εq-quasirandom
contains a copy of Kp3q

5 . □

The proof of Theorem 1.3 is based on the regularity method for hypergraphs. More
precisely, we shall address the corresponding problem for reduced hypergraphs A (see
Proposition 2.4). The proof of Proposition 2.4 is based on a further reduction to the
case, when there exists an underlying bicolouring of the pairs V p2q, which corresponds to
a bicolouring of the vertices in the reduced hypergraph A (see Proposition 2.6). Finally,
we show that in the context of Theorem 1.3 such bicoloured reduced hypergraphs yield
a Kp3q

5 (see Proposition 2.7). Sections 4 and 5 are devoted to the proofs of Propositions 2.6
and 2.7.

§2. Reduced hypergraphs and bicolourings

Similar as in [11–14] the proof of Theorem 1.3 utilises the regularity method for hy-
pergraphs. This allows us to transfer the problem to an extremal problem for reduced
hypergraphs, which play a similar rôle for hypergraphs as reduced graphs in applications
of Szemerédi’s regularity lemma for graphs.

Definition 2.1. Given a set of indices I and pairwise disjoint, non-empty sets of vertices P ij

for every pair of indices ij P Ip2q, let for every triple of distinct indices ijk P Ip3q a tripartite
hypergraph Aijk with vertex classes P ij, P ik, and Pjk be given.

We call the
`

|I|

2
˘

-partite hypergraph A defined by

V pAq “
ď

¨

ijPIp2q

P ij and EpAq “
ď

¨

ijkPIp3q

EpAijk
q

a reduced hypergraph with index set I. Moreover, we say A has vertex classes P ij and
constituents Aijk.
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In this work the index set I will often be an ordered set and we may assume I Ď N.
When we say that a reduced hypergraph is sufficiently large, we mean that its index set is
sufficiently large. Theorem 1.3 concerns -dense and K5-free hypergraphs H and next we
define the corresponding properties in the context of reduced hypergraphs.

Definition 2.2. For d P r0, 1s we say that a reduced hypergraph A with index set I
is pd, q-dense, if for every ijk P Ip3q and all vertices P ij P P ij and P ik P P ik we have

d
`

P ij, P ik
˘

“
ˇ

ˇtP jk
P Pjk : P ijP ikP jk

P EpAijk
qu
ˇ

ˇ ě d |Pjk
| .

Definition 2.3. We say a reduced hypergraph A with index set I supports a clique Kp3q

ℓ

if there are an ℓ-element subset J Ď I and vertices P ij P P ij for every ij P J p2q such that

P ijP ikP jk
P EpAijk

q

for all ijk P J p3q.

With these concepts at hand, it follows from [10, Theorem 3.3] that the upper bound in
Theorem 1.3 is a direct consequence of the following statement for reduced hypergraphs.

Proposition 2.4. For every ε ą 0 every sufficiently large
`1

3 ` ε,
˘

-dense reduced hyper-
graph A supports a Kp3q

5 .

The proof of Proposition 2.4 proceeds by contradiction, so we assume that for some ε ą 0
there are p1

3 ` ε, q-dense reduced hypergraphs of unbounded size that do not support Kp3q

5 .
This motivates the following notion.

Definition 2.5. For ε ą 0 we say a reduced hypergraph A is ε-wicked if it is p1
3 `ε, q-dense

and fails to support a Kp3q

5 .

Proposition 2.4 asserts that wicked reduced hypergraphs cannot have too many indices
and the proof is divided into two main parts. First we reduce the problem to the case in
which the reduced hypergraph A on some index set I can be bicoloured. By this we mean
that there is a colouring φ : V pAq ÝÑ tred, blueu of the vertices such that for every ij P Ip2q

we have
φ´1

predq X P ij
‰ ∅ and φ´1

pblueq X P ij
‰ ∅ (2.1)

and there are no hyperedges in A with all three vertices of the same colour. Given such a
colouring φ, we define the minimum monochromatic codegree density of A and φ by

τ2pA, φq “ min
ijkPIp3q

min
!dpP ij, P ikq

|Pjk|
: P ij

P P ij, P ik
P P ik, and φpP ij

q “ φpP ik
q

)

. (2.2)

The following proposition reduces Proposition 2.4 to bicoloured reduced hypergraphs.

Proposition 2.6. Given ε ą 0 and t P N, let A be a sufficiently large ε-wicked reduced
hypergraph. There exist a reduced hypergraph A‹ with index set of size at least t not
supporting a Kp3q

5 and a bicolouring φ of A‹ such that τ2pA‹, φq ě 1
3 ` ε

8 .



TURÁN DENSITY OF 5-CLIQUES IN HYPERGRAPHS WITH QUASIRANDOM LINKS 5

For the proof of Proposition 2.6 we mainly analyse holes in wicked reduced hypergraphs,
i.e., subsets of vertices inducing very few edges. It turns out that we can find two “large”
but almost disjoint holes such that most edges with two vertices in one of the holes have
their third vertex in the other hole. This configuration can then can be used to define an
auxiliary reduced hypergraph A‹ admitting an appropriate colouring φ (see Section 4).

The next proposition completes the proof of Proposition 2.4 by contradicting the
conclusion of Proposition 2.6, thus showing that large wicked hypergraphs indeed do not
exist.

Proposition 2.7. For every ε ą 0 every sufficiently large bicoloured reduced hypergraph A
with τ2pA, φq ě 1

3 ` ε supports a Kp3q

5 .

The proof of Proposition 2.7 is deferred to Section 5.

§3. Preliminaries

In this section we introduce some necessary definitions and properties for reduced
hypergraphs.

3.1. Transversals and cherries. We start with the following notion for reduced hyper-
graphs A with index set I. For J Ď I we refer to a set of vertices QpJq “ tQij : ij P J p2qu

with Qij P P ij for all ij P J p2q as a J-transversal. Similarly, for two disjoint subsets of
indices K,L Ď I we say that QpK,Lq “ tQkℓ : pk, ℓq P K ˆ Lu is a pK,Lq-transversal
when Qkℓ P Pkℓ for all pk, ℓq P K ˆ L. Transversals will always be denoted by calligraphic
capital letters and the vertices they contain are denoted by the corresponding Roman
capital letters (equipped with a pair indices as superscript).

For subsets J‹ Ď J , K‹ Ď K, and L‹ Ď L we refer to the transversals QpJ‹q Ď QpJq and
QpK‹, L‹q Ď QpK,Lq (defined in the obvious way) as restricted transversals. Whenever
the sets J , K, L Ď I are clear from the context, we may omit them and write transversal
to refer to J-transversals or to pK,Lq-transversals.

Let us recall that we are often assuming implicitly that our index sets are accompanied
by a distinguished linear order denoted by ă. Since we are working with -dense reduced
hypergraphs (see Definition 2.2), pairs of vertices sharing one index will play an important
rôle. More precisely, given indices ijk P Ip3q with i ă j ă k and given vertices P ij P P ij,
P ik P P ik, and P jk P Pjk we say that the ordered pair pP ij, P ikq is a left cherry, the ordered
pair pP ik, P jkq is a right cherry, and the ordered pair pP ij, P jkq is a middle cherry. Often
we refer to them simply as cherries.

For indices ijk P Ip3q and a set of left cherries L ijk Ď P ij ˆ P ik we say a transversal Q
avoids L ijk if pQij, Qikq R L ijk for Qij, Qik P Q. Furthermore, we say Q avoids a set of
left cherries L “

Ť

ijkPIp3q L ijk, if it avoids L ijk for every ijk P Ip3q. Similarly, Q avoids
a set of right cherries Rijk Ď P ik ˆ Pjk if pQik, Qjkq R Rijk, and Q avoids a set of right



6 S. BERGER, S. PIGA, CHR. REIHER, V. RÖDL, AND M. SCHACHT

cherries R “
Ť

ijkPIp3q Rijk if it avoids each Rijk. Note that these definitions apply both
to J-transversals and to pK,Lq-transversals.

3.2. Inhabited transversals in weakly dense reduced hypergraphs. We shall utilise
a key result from [13] on -dense hypergraphs. Roughly speaking, this notion concerns
hypergraphs which have a uniform edge distribution on large sets of vertices. However,
here we restrict ourselves to the corresponding concepts for reduced hypergraphs arising
after an application of the hypergraph regularity lemma (see, e.g., [10,13] for more details).

Definition 3.1. Let µ ą 0 and let A be a reduced hypergraph on an index set I. We say
that A is pµ, q-dense, if for every ijk P Ip3q we have

epAijk
q ě µ |P ij

||P ik
||Pjk

| . (3.1)

Further, for disjoint subsets of indices K,L,M Ď I we say that A is pµ, q-tridense
on K,L,M , if (3.1) holds for every triple pi, j, kq in K ˆ L ˆ M .

Note that by definition every pd, q-dense reduced hypergraph is also pd, q-dense. The
following result from [13, Lemma 3.1] states the existence of transversals containing edges
in -dense reduced hypergraphs.

Theorem 3.2. Let t P N, µ ą 0, and let A be a pµ, q-dense reduced hypergraph on a
sufficiently large index set I. There exist a set I‹ Ď I of size t and three transversals QpI‹q,
RpI‹q, and SpI‹q such that QijRikSjk P EpAq for all i ă j ă k in I‹. □

Triples of transversals satisfying the conclusion of Theorem 3.2 will play an important
rôle here and this motivates the following definition.

Definition 3.3 (inhabited triple of transversals). Given a reduced hypergraph A with
index set I, we say a triple of transversals QpJqRpJqSpJq for some J Ď I is inhabited if
for all i ă j ă k in J we have QijRikSjk P EpAq.

Similarly, for pairwise disjoint sets of indices K, L, M Ď I, we say a triple of transver-
sals QpK,LqRpK,MqSpL,Mq is inhabited if for every k P K, ℓ P L, and m P M we
have QkℓRkmSℓm P EpAq.

We will also need a version of Theorem 3.2 in which the resulting transversals avoid
given sets of forbidden cherries.

Lemma 3.4. For all t P N and µ ą 0 there is µ1 ą 0 such that the following holds. Let A
be a pµ, q-dense reduced hypergraph on a sufficiently large index set I and for all i ă j ă k

in I let L ijk Ď P ij ˆ P ik and Rijk Ď P ik ˆ Pjk be sets of left and right cherries satisfying

|L ijk
| ď µ1

|P ij
||P ik

| and |Rijk
| ď µ1

|P ik
||Pjk

| .

There exist a set I‹ Ď I of size t and an inhabited triple of transversals QpI‹qRpI‹qSpI‹q

avoiding the cherries L ijk and Rijk for every ijk P Ip3q
‹ .
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For the proof of Lemma 3.4 we will consider random preimages of reduced hypergraphs.

Definition 3.5 (random preimage). Given a reduced hypergraph A with index set I and
vertex classes P ij for ij P Ip2q, and given an integer ℓ ě 1, we fix

`

|I|

2
˘

mutually disjoint
sets P ij

‚ of size ℓ and consider the uniform probability space ApA, ℓq of all mappings h from
Ť

ijPIp2q P ij
‚ to

Ť

ijPIp2q P ij satisfying

hpP ij
‚ q Ď P ij

for every ij P Ip2q.
With each such map h we associate a reduced hypergraph Ah with index set I and

vertex classes P ij
‚ for ij P Ip2q whose edges are defined by

P ij
‚ P

ik
‚ P

jk
‚ P EpAijk

h q ðñ hpP ij
‚ qhpP ik

‚ qhpP jk
‚ q P EpAijk

q

for all ijk P Ip3q and all P ij
‚ P P ij

‚ , P ik
‚ P P ik

‚ , and P jk
‚ P Pjk

‚ .

Notice that in this situation h is a hypergraph homomorphism from Ah to A. Below
we pass to such a random preimage Ah of A for sufficiently large ℓ, which will allow us to
deduce Lemma 3.4 for A by applying Theorem 3.2 to Ah.

Proof of Lemma 3.4. Given t P N and µ ą 0, let t1 be sufficiently large for an application
of Theorem 3.2 with t and µ

2 in place of t and µ. Further, we fix an integer ℓ and µ1 ą 0 to
satisfy the hierarchy

µ, t´1
1 " ℓ´1

" µ1.

Finally, let A be a reduced hypergraph as in the statement of Lemma 3.4. We may assume
that its index set I is of size t1.

Similar as in the proof of [10, Lemma 4.2] we consider the probability space ApA, ℓq
from Definition 3.5 and we shall prove that with high probability the associated reduced
hypergraph Ah is p

µ
2 , q-dense and no cherry has its image in the sets L ijk or Rijk.

For every constituent Aijk
h the random variable epAijk

h q satisfies ErepAijk
h qs ě µℓ3 and by

Azuma’s inequality (see, e.g., [8, Corollary 2.27]) we obtain

P
`

Ah is not p
µ
2 , q-dense

˘

ď
ÿ

ijkPIp3q

P
`

epAijk
h q ă

µ
2 ℓ

3˘
ď

ˆ

t1
3

˙

exp
`

´
µ2ℓ
24
˘

.

Moreover, since L ijk ď µ1|P ij||P ik|, the probability that the image of some cherry lies in
those sets is bounded by

ÿ

ijkPIp3q

P
´

hpP ij
‚ qhpP ik

‚ q P L ijk for some P ij
‚ P

ik
‚ P P ij

‚ ˆ P ik
‚

¯

ď

ˆ

t1
3

˙

µ1ℓ2 .

The same inequality holds for the sets Rijk and our choice of parameters ensures
ˆ

t1
3

˙

exp
`

´
µ2ℓ
24
˘

` 2
ˆ

t1
3

˙

µ1ℓ2
ă 1 .
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Therefore, we can fix an h such that Ah is p
µ
2 , q-dense and no cherry has its image in the

sets L ijk or Rijk.
Applying Theorem 3.2 to Ah yields a set I‹ Ď I of size t and a triple of transver-

sals QhpI‹qRhpI‹qShpI‹q inhabited in Ah. It is easy to see that the transversals

QpI‹q “ h
`

QpI‹q
˘

, RpI‹q “ h
`

RpI‹q
˘

, and SpI‹q “ h
`

SpI‹q
˘

are as required. □

3.3. Partite versions. We will also need a slightly more involved variant of Theorem 3.2,
which guarantees the existence of inhabited triples of transversals in the intersection of
multiple -tridense reduced subhypergraphs.

Lemma 3.6. For all t, r P N, µ ą 0 there is some s P N such that the following is true.
Let A be a reduced hypergraph on index set I. Suppose that we have

(a ) disjoint subsets of indices K,L,M Ď I each of size s,
(b ) sets X1, . . . , Xr of size s, and
(c ) for every r-tuple áx P

ś

iPrrs
Xi a pµ, q-tridense subhypergraph Aáx Ď A on K,L,M .

Then, there are
(i ) subsets K‹ Ď K,L‹ Ď L,M‹ Ď M of size t,

(ii ) subsets Yi Ď Xi of size t for every i P rrs, and
(iii ) a triple of transversals QpK‹, L‹qRpK‹,M‹qSpL‹,M‹q, which is inhabited in Aáy

for every áy P
ś

iPrrs
Yi.

The proof of Lemma 3.6 relies on three successive applications of the following auxiliary
lemma.

Lemma 3.7. For all t, r P N, µ ą 0 there is some s P N such that the following is true.
Let A be a reduced hypergraph on index set I. Suppose that we have

(a ) disjoint subsets of indices K,L Ď I each of size s,
(b ) sets X1, . . . , Xr of size s, and
(c ) for every r-tuple áx P

ś

iPrrs
Xi, every k P K, and every ℓ P L a subset Pkl

áx Ď Pkl of
size at least µ|Pkℓ|.

Then, there are
(i ) subsets K 1 Ď K,L1 Ď L of size t,

(ii ) subsets X 1
i Ď Xi of size t for every i P rrs, and

(iii ) a transversal QpK 1, L1q such that for every áx P
ś

iPrrs
X 1
i and every pk, ℓq P K 1 ˆ L1

we have that Qkℓ P Pkℓ
áx .

Proof. Given t, r P N, µ ą 0 we fix an integer s such that

t, r, µ´1
! s . (3.2)
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Let A be a reduced hypergraph as in the statement of the lemma and further let K 1 Ď K,
and L1 Ď L be arbitrary subsets of size t.

For every pK 1, L1q-transversal Q we consider the set

xpQq “

"

áx P
ź

iPrrs

Xi : Qkℓ
P Pkℓ

áx for all pk, ℓq P K 1
ˆ L1

*

.

Summing over all pK 1, L1q-transversals Q assumption (c ) yields
ÿ

Q
|xpQq| “

ÿ

áxP
ś

iPrrs Xi

ź

pk,ℓqPK1ˆL1

ˇ

ˇPkℓ
áx

ˇ

ˇ ě µt
2 ź

pk,ℓqPK1ˆL1

ˇ

ˇPkℓ
ˇ

ˇ

ź

iPrrs

ˇ

ˇXi

ˇ

ˇ .

Hence, we can fix a pK 1, L1q-transversal Q such that

|xpQq| ě µt
2 ź

iPrrs

ˇ

ˇXi

ˇ

ˇ .

We may view xpQq as an r-partite r-uniform hypergraph of density at least µt2 on vertex
classes of size s. Consequently, a result of Erdős [3] combined with the hierarchy (3.2)
yields subsets X 1

i Ď Xi of size t for every i P rrs such that
ź

iPrrs

X 1
i Ď xpQq ,

which concludes the proof of Lemma 3.7. □

Next we derive Lemma 3.6.

Proof of Lemma 3.6. Given t, r P N, µ ą 0 we fix integers s, s1, and s2 such that

t, r, µ´1
! s2

! s1
! s

and let A be a reduced hypergraph as in the statement of the lemma. We will prove the
lemma by applying Lemma 3.7 three times, once for every pair from K, L, and M .

First step. For every k P K, ℓ P L, m P M , and every áx P
ś

iPrrs
Xi we consider the set

Pkℓ
páx,mq “

!

P kℓ
P Pkℓ :

ˇ

ˇNAkℓm
áx

pP kℓ
q
ˇ

ˇ ě
µ
2 |Pkm

||Pℓm
|

)

.

Since Aáx is pµ, q-tridense, we have

epAkℓmáx q ě µ|Pkℓ
||Pkm

||Pℓm
| ,

and a standard counting argument implies
ˇ

ˇPkℓ
páx,mq

ˇ

ˇ ě
µ
2

ˇ

ˇPkℓ
ˇ

ˇ .

Lemma 3.7 applied with s1, r ` 1, and µ
2 in place of t, r, and µ and with Xr`1 “ M

yields s1-element subsets K 1 Ď K, L1 Ď L, M 1 Ď M , and X 1
i Ď Xi for every i P rrs and a

transversal QpK 1, L1q such that for every p
áx,mq P

ś

iPrrs
X 1
i ˆM 1 and every pk, ℓq P K 1 ˆL1

we have that Qkℓ P Pkℓ
páx,mq.
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Second Step. Next we consider for every k P K 1, ℓ P L1, m P M 1, and every áx P
ś

iPrrs
X 1
i

the set
Pkm

páx,ℓq “

!

P km
P Pkm :

ˇ

ˇNAkℓm
áx

pQkℓ, P km
q
ˇ

ˇ ě
µ
4 |Pℓm

|

)

.

By our choice of the transversal QpK 1, L1q we have

|NAkℓm
áx

pQkℓ
q| ě

µ
2 |Pkm

||Pℓm
|

and, as before, this implies
|Pkm

páx,ℓq| ě
µ
4 |Pkm

| .

Again, we apply Lemma 3.7, now with s2, r ` 1, and µ
4 in place of t, r, and µ and with

X 1
r`1 “ L1, to reach s2-element subsets K2 Ď K 1, L2 Ď L1, M2 Ď M 1, and X2

i Ď X 1
i, for

every i P rrs and a transversal RpK2,M2q such that for every p
áx, ℓq P

ś

iPrrs
X2
i ˆ L2 and

every pk,mq P K2 ˆ M2 we have Rkm P Pkm
páx,ℓq.

Third step. Last, we consider for every ℓ P L2, k P K2,m P M2, and every áx P
ś

iPrrs
X2
i

the set
Pℓm

páx,kq “ NAkℓm
áx

pQkℓ, Rkm
q .

By our choice of the transversals QpK2, L2q and RpK2,M2q we have |Pℓm
páx,kq| ě

µ
4 |Pℓm|.

The final application of Lemma 3.7, with t, r`1, and µ
4 in place of t, r, and µ, yields t-sized

subsets K‹ Ď K2, L‹ Ď L2, M‹ Ď M2, and Yi Ď X2
i , for every i P rrs, and a transversal

SpL‹,M‹q such that for every áy P
ś

iPrrs
Yi and every pk, ℓ,mq P K‹ ˆ L‹ ˆ M‹ we have

that QkℓRkmSℓm P EpAáyq. In other words, the triple of transversals QRS is inhabited in
every Aáy with áy P

ś

iPrrs
Yi. □

§4. Bicolouring wicked reduced hypergraphs

4.1. Plan. This entire section is devoted to the proof of Proposition 2.6. As the argument
is quite long, we would like to commence with a brief outline of our strategy.

4.1.1. Naïve ideas. In an attempt to keep this account sufficiently digestible we will
systematically oversimplify and most claims below will later turn out to be true in a
metaphorical sense only.

It might be helpful to know, what the proof of Proposition 2.6 does, when the given
ε-wicked reduced hypergraph A itself possesses a bicolouring φ of the vertices (which might
be “unknown“ to us) and to contrast this situation with the general case.

What can immediately be seen is that in the bicoloured case A contains many holes, by
which we mean that there are many independent sets Φ Ď V pAq such that for every pair
of indices ij we have |P ij X Φ| ě p1{3 ` εq|P ij|. Indeed, there are “red holes” consisting of
red vertices only and, similarly, there are “blue holes”. For the sake of discussion we will
pretend that these are the only holes, i.e., that each hole is either red or blue.
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In the general case, it might not be clear on first sight that any holes exist, but based on
the assumption that A fails to support a Kp3q

5 one can establish that they do. As a matter
of fact, there is a fairly flexible method to construct holes and thus one should think of
the set H of all holes in A as having a possibly intricate structure. There are three main
lemmata in our analysis of H:

‚ the transitivity lemma;
‚ the union lemma;
‚ and the density increment lemma.

Let us briefly summarise the content of these three statements.
I. Returning to the bicoloured case, “being of the same colour” is an obvious equivalence

relation on H, which has two equivalence classes. Moreover, if φ and thus the colouring
of the holes is unknown, this equivalence relation is definable by saying that two holes
are equivalent if and only if they intersect each other (substantially) on every vertex
class P ij. When A is arbitrary, the relation of intersecting each other in this sense is
clearly reflexive and symmetric. The aforementioned transitivity lemma ensures that this
relation is transitive as well; its proof requires some effort. One can also show that H

always consists of exactly two equivalence classes.
II. In the bicoloured case, the union of two red holes is again a red hole and, in fact,

the class of red vertices is definable as the union of all red holes. It turns out that in the
general case one can prove the union of two equivalent holes to be a hole as well, and this
is what the union lemma asserts.

III. Iterative applications of the union lemma yield two maximal holes, namely the
unions of the two equivalence classes. In the bicoloured case every vertex belongs to one
of these maximal holes, but this is not necessary for the proof of Proposition 2.6 to go
through. All that matters is that for two appropriate holes

most edges with two vertices in one hole have their third vertex in the other hole. (˚)

The density increment lemma states that if two holes violate p˚q, then there are two other
holes covering more space. Thus iterative applications of this lemma show that the maximal
holes satisfy p˚q.

Notice that if we managed to arrive at two holes satisfying p˚q, then the proof of
Proposition 2.6 could be completed by deleting the vertices not belonging to them.

4.1.2. A more realistic picture. Let us now point to two deficiencies of the foregoing outline.
First, we will never show that the given reduced hypergraph A contains a hole containing
no edges at all. All we need and prove is that there are large sets inducing very few edges
in A and thus there will be parameters µ, ν, etc. quantifying how accurate our holes are.
Second, each step of the argument is accompanied by a significant loss of the relevant
part of the index set. Thus the number of times we apply our key lemmata needs to be
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bounded by a function of ε and, therefore, we will never reach holes that are maximal
in the absolute sense. All that can realistically be said is that there are two holes which
cannot be enlarged by a substantial amount, and for this reason we adopt the somewhat
indirect density increment formulation of the third main lemma.

4.1.3. Organisation. In §4.2 and §4.3 we deal with general properties of -dense reduced
hypergraphs not supporting a K

p3q

5 , including the existence of holes. The main result
of §4.4 is the transitivity lemma, a precise version of which will be stated as Lemma 4.10.
Next, the union lemma is obtained in §4.5 (see Lemma 4.13). The proof of the density
increment lemma (Lemma 4.17) requires some preparations provided in §4.6, while the
proof itself is given in §4.7. Finally, we argue in §4.8 that despite the approximate nature
of the arguments provided so far the proof of Proposition 2.6 can be completed by taking
a random preimage.

4.2. Holes and links in reduced hypergraphs. Given a reduced hypergraph A with
index set I, a natural definition of a hole across a subset of indices J Ď I and subsets of
vertices Φij Ď P ij for ij P J p2q would maybe require that for every ijk P J p3q the sets Φij,
Φik, Φjk span no hyperedges in Aijk. However, this notion is too restrictive for our analysis
and we shall only require that these sets induce hypergraphs of low density.

Definition 4.1. Given a reduced hypergraph A and a subset of indices J Ď I we say that
a subset of vertices Φ Ď V pAq is a µ-hole on J if Φij “ Φ X P ij is nonempty for all ij P J p2q

and
epΦij,Φik,Φjk

q ď µ|P ij
||P ik

||Pjk
|

for every ijk P J p3q.
The size of the hole is |J | and the smallest ς ą 0 such that |Φij| ě ς|P ij| for every

ij P J p2q is called the width of the hole. We refer to µ-holes with width at least ς as
pµ, ςq-holes.

Roughly speaking, for the proof of Proposition 2.6 we shall find two almost disjoint holes
with widths bigger than 1{3 on a large set of indices in a wicked reduced hypergraph.

Holes may induce a few hyperedges. However, cherries that are contained in too many
such hyperedges are considered to be exceptional. This leads to the following definition.

Definition 4.2. Given a µ-hole Φ on J , ε ą 0, and ijk in J p3q a cherry pP ij, P ikq P ΦijˆΦik

is ε-exceptional if
ˇ

ˇNpP ij, P ik
q X Φjk

ˇ

ˇ ě ε
ˇ

ˇPjk
ˇ

ˇ .

For indices i ă j ă k in J we denote by

L ijk
pΦ, εq Ď P ij

ˆ P ik , M ijk
pΦ, εq Ď P ij

ˆ Pjk , and Rijk
pΦ, εq Ď P ik

ˆ Pjk ,
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the ε-exceptional left, middle, and right cherries and we set

L pΦ, εq “
ď

¨

iăjăk

L ijk
pΦ, εq , M pΦ, εq “

ď

¨

iăjăk

M ijk
pΦ, εq , and RpΦ, εq “

ď

¨

iăjăk

Rijk
pΦ, εq .

It is easy to see that holes can only contain few exceptional cherries. More precisely, for
every µ-hole Φ on J and every ε ą 0 we have for all i ă j ă k in J

ε |Pjk
||L ijk

pΦ, εq| ď epΦij,Φik,Φjk
q ď µ |P ij

||P ik
||Pjk

|

and the same reasoning applies to R and M . This shows
ˇ

ˇL ijk
pΦ, εq

ˇ

ˇ ď
µ

ε

ˇ

ˇP ij
ˇ

ˇ

ˇ

ˇP ik
ˇ

ˇ ,
ˇ

ˇM ijk
pΦ, εq

ˇ

ˇ ď
µ

ε

ˇ

ˇP ij
ˇ

ˇ

ˇ

ˇPjk
ˇ

ˇ ,

and
ˇ

ˇRijk
pΦ, εq

ˇ

ˇ ď
µ

ε

ˇ

ˇP ik
ˇ

ˇ

ˇ

ˇPjk
ˇ

ˇ . (4.1)

Often we consider holes Φ arising from neighbourhoods NpP ik, P jkq, i.e., for appropriately
chosen P ik P P ik and P jk P Pjk we set Φij “ NpP ik, P jkq. Note that in pd, q-dense reduced
hypergraphs, holes obtained in this way will automatically have width at least d.

Given a pK,Lq-transversal Q, a subset K‹ Ď K, and an index ℓ P L we define the Q-link
of ℓ on K‹ by

ΛpQ, K‹, ℓq “
ď

¨

kk1PK
p2q
‹

NpQkℓ, Qk1ℓ
q .

The following lemma asserts that in -dense reduced hypergraphs that do not support Kp3q

5

the Q-links contain large holes.

Lemma 4.3. Let t P N, µ, d ą 0, let A be a pd, q-dense reduced hypergraph with index set I
that does not support a Kp3q

5 , and for sufficiently large disjoint subsets of indices K,L Ď I

let Q be a pK,Lq-transversal.
Then there exist K‹ Ď K and L‹ Ď L of size t such that for every ℓ P L‹ the

link ΛpQ, K‹, ℓq is a pµ, dq-hole .

Proof. Let q “
`

rµ´1s

2
˘

and set Υ kk1

ℓ “ NpQkℓ, Qk1ℓq for all kk1 P Kp2q, ℓ P L, and, similarly,
Υ ℓℓ

1

k “ NpQkℓ, Qkℓ1

q for all k P K, ℓℓ1 P Lp2q. Consider an auxiliary 2-colouring of the
pairs pkk1k2, ℓq P Kp3q ˆ L depending on whether

e
`

Υ kk
1

ℓ , Υ kk
2

ℓ , Υ k
1k2

ℓ

˘

ą µ|Pkk1

||Pkk2

||Pk1k2

| (4.2)

holds or not. Since K and L are sufficiently large, the product Ramsey theorem (see,
e.g., [7, Theorem 5.1.5]) yields a set K1 Ď K with |K1| ě maxt3d´q, tu and a set L1 Ď L

with |L1| ě maxtrµ´1s, tu such that all pairs pkk1k2, ℓq P K
p3q

1 ˆ L1 agree whether (4.2)
holds or not. In fact, if (4.2) fails on Kp3q

1 ˆ L1, then arbitrary t-element subsets K‹ Ď K1

and L‹ Ď L1 have the desired property. Consequently, we may assume that (4.2) holds
on K

p3q

1 ˆ L1. We shall show that this implies A to support a Kp3q

5 .
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Let L2 be a subset of L1 of size |L2| “ rµ´1s and consider some ℓℓ1 P L
p2q

2 . Since we
have |Υ ℓℓ

1

k | ě d|Pℓℓ1

| for every k P K1, there is a subset K2 Ď K1 of size at least d|K1| such
that

č

kPK2

Υ ℓℓ
1

k ‰ ∅ .

Repeating this argument iteratively q “
`

|L2|

2
˘

times, once for every pair in L2, we obtain
nested subsets K1 Ě K2 Ě ¨ ¨ ¨ Ě Kq`1 such that

|Kq`1| ě dq|K1| ě 3 and
č

kPKq`1

Υ ℓℓ
1

k ‰ ∅ for every ℓℓ1
P L

p2q

2 .

The first statement allows us to fix some kk1k2 P K
p3q

q`1 and the second one yields for
every ℓℓ1 P L

p2q

2 a fixed vertex P ℓℓ1

P Pℓℓ1 satisfying

P ℓℓ1

QkℓQkℓ1

, P ℓℓ1

Qk1ℓQk1ℓ1

, P ℓℓ1

Qk2ℓQk2ℓ1

P EpAq . (4.3)

We infer from (4.2) and our choice of L2 that
ÿ

ℓPL2

e
`

Υ kk
1

ℓ , Υ kk
2

ℓ , Υ kk
2

ℓ

˘

ą µ|L2||Pkk1

||Pkk2

||Pk1k2

| ě |Pkk1

||Pkk2

||Pk1k2

| .

Consequently, there are an edge Rkk1

Rkk2

Rk1k2

P EpAkk1k2

q and two distinct indices ℓ, ℓ1 P L2

such that both λ P tℓ, ℓ1u satisfy

Rkk1

QkλQk1λ, Rkk2

QkλQk2λ, Rk1k2

Qk1λQk2λ
P EpAq .

Together with (4.3) we arrive at the contradiction that P ℓℓ1 , the six vertices Qκλ with
κ P tk, k1, k2u and λ P tℓ, ℓ1u, and the three vertices Rkk1 , Rkk2 , Rk1k2 support a K

p3q

5

in A. □

Two consecutive applications of Lemma 4.3 yield the symmetric conclusion that both
links ΛpQ, K‹, ℓq and ΛpQ, L‹, kq are µ-holes for every ℓ P L‹ and k P K‹.

Corollary 4.4. Let t P N, µ, d ą 0, let A be a pd, q-dense reduced hypergraph with
index set I that does not support a K

p3q

5 , and for sufficiently large disjoint subsets of
indices K,L Ď I let Q be a pK,Lq-transversal.

Then there exist K‹ Ď K and L‹ Ď L of size t such that for every ℓ P L‹ and for
every k P K‹ the Q-links ΛpQ, K‹, ℓq and ΛpQ, L‹, kq are pµ, dq-holes.

Proof. For sufficiently large t1 “ t1pt, µ, dq a first application of Lemma 4.3 yields subsets K 1

and L1 of size at least t1 such that ΛpQ, K 1, ℓq is a pµ, dq-hole for every ℓ P L1. A second
application to the restricted transversal QpK 1, L1q (with the rôles of K and L exchanged)
then yields subsets L‹ Ď L1 and K‹ Ď K 1 of size t such that additionally ΛpQ, L‹, kq is
a pµ, dq-hole for every k P K‹. □
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4.3. Intersecting and disjoint links. Next we define concepts for pairs of links of having
a substantial intersection and of being almost disjoint.

Definition 4.5. Let A be a reduced hypergraph with index set I, let K,L,M Ď I be
pairwise disjoint sets of indices, and let QpK,Lq and RpK,Mq be transversals.

For ℓ P L and m P M we say the links ΛpQ, K, ℓq and ΛpR, K,mq are δ-intersecting if
ˇ

ˇNpQkℓ, Qk1ℓ
q X NpRkm, Rk1m

q
ˇ

ˇ ě δ
ˇ

ˇPkk1ˇ

ˇ (4.4)

for all kk1 P Kp2q. If, on the other hand, (4.4) fails for all kk1 P Kp2q, then we say ΛpQ, K, ℓq
and ΛpR, K,mq are δ-disjoint.

Moreover, we say a pair of transversals QpK,LqRpK,Mq has δ-intersecting links (resp.
δ-disjoint links) if ΛpQ, K, ℓq and ΛpR, K,mq are δ-intersecting (resp. δ-disjoint) for every
ℓ P L and m P M .

We remark that the notions of being δ-intersecting and δ-disjoint do not complement
each other. However, by means of (the product version of) Ramsey’s theorem we can
always pass to subsets of K, L, and M for which one of the properties holds (see, e.g., the
proof of Corollary 4.7 below).

The next lemma shows that in reduced hypergraphs that do not support Kp3q

5 at most
one pair from a triple of inhabited transversals can have an intersecting link.

Lemma 4.6. Let δ ą 0, let A be a reduced hypergraph with index set I, and for sufficiently
large disjoint sets K,L,M Ď I let QpK,LqRpK,MqSpL,Mq be an inhabited triple of
transversals. If both pairs of transversals QpK,LqRpK,Mq and QpK,LqSpL,Mq have
δ-intersecting links, then A supports a Kp3q

5 .

Proof. Fix m P M , a subset K‹ Ď K of size tδ´1u ` 1, and q “
`

tδ´1u`1
2

˘

. Consider an
arbitrary pair of distinct indices k, k1 P K‹. Since |NpQkℓ, Qk1ℓq XNpRkm, Rk1mq| ě δ|Pkk1

|

for every ℓ P L, there is a subset L1 Ď L of size at least δ|L| such that
č

ℓPL1

NpQkℓ, Qk1ℓ
q X NpRkm, Rk1m

q ‰ ∅ . (4.5)

As the pair kk1 was taken arbitrarily, we can repeat the argument iteratively q times (once
for every pair in Kp2q

‹ ) and find nested subsets L Ě L1 Ě L2 Ě ¨ ¨ ¨ Ě Lq such that (4.5)
with L1 replaced by Lq holds for every kk1 P Kp2q

‹ .
Moreover, we have |Lq| ě δq|L| and, since L is sufficiently large, this yields |Lq| ě 2 and

we can select ℓℓ1 P Lp2q
q . Owing to (4.5) with L1 replaced by Lq, for every kk1 P Kp2q

‹ there
is a vertex P kk1

P Pkk1 such that

P kk1

QkℓQk1ℓ, P kk1

Qkℓ1

Qk1ℓ1

, P kk1

RkmRk1m
P EpAq . (4.6)

Next, since QpK,LqSpL,Mq has δ-intersecting links and |K‹| ą δ´1, there exists a
pair kk1 P Kp2q

‹ such that

NpQkℓ, Qkℓ1

q X NpQk1ℓ, Qk1ℓ1

q X NpSℓm, Sℓ
1m

q ‰ ∅ .
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Therefore, there is a vertex P ℓℓ1

P Pℓℓ1 such that

P ℓℓ1

QkℓQkℓ1

, P ℓℓ1

Qk1ℓQk1ℓ1

, P ℓℓ1

SℓmSℓ
1m

P EpAq . (4.7)

Finally, since QpK,LqRpK,MqSpL,Mq is inhabited, we have

QkℓRkmSℓm, Qkℓ1

RkmSℓ
1m, Qk1ℓRk1mSℓm, Qk1ℓ1

Rk1mSℓ
1m

P EpAq . (4.8)

Altogether the ten hyperedges provided by (4.6) – (4.8) show that the vertices P kk1 , P ℓℓ1 ,
together with Qkℓ, Qkℓ1 , Qk1ℓ, Qk1ℓ1 , Rkm, Rk1m, and Sℓm, Sℓ1m support a Kp3q

5 on the five
indices k, k1, ℓ, ℓ1, and m. □

By means of the product Ramsey theorem (see, e.g., [7, Theorem 5.1.5]) we can move
from at most one pair with intersecting links (given by Lemma 4.6) to at least two pairs
with essentially disjoint links.
Corollary 4.7. Let t P N, δ ą 0, let A be a reduced hypergraph with index set I that does
not support Kp3q

5 , and let QpK,LqRpK,MqSpL,Mq be an inhabited triple of transversals
for sufficiently large disjoint sets K, L, M Ď I.

Then there exist subsets K‹ Ď K, L‹ Ď L, and M‹ Ď M each of size t such that
at most one pair of restricted transversals QpK‹, L‹qRpK‹,M‹q, QpK‹, L‹qSpL‹,M‹q,
RpK‹,M‹qSpL‹,M‹q has δ-intersecting links and all other pairs have δ-disjoint links.

Proof. Define a 2-colouring on the triples pkk1, ℓ,mq P Kp2q ˆ L ˆ M depending on
whether NpQkℓ, Qk1ℓqXNpRkm, Rk1mq ě δ|Pkk1

| or not. Since K, L, and M are large enough,
we can deduce from the product Ramsey theorem that there exist large subsets K1 Ď K,
L1 Ď L, and M1 Ď M for which the pair of restricted transversals QpK1, L1qRpK1,M1q

has δ-intersecting or δ-disjoint links.
We can repeat this argument and consider the triples in L

p2q

1 ˆ K1 ˆ M1 to obtain
subsets K2 Ď K1, L2 Ď L1, and M2 Ď M1 such that the pair QpK2, L2qSpL2,M2q has
δ-intersecting or δ-disjoint links. Observe that these properties are preserved under taking
subsets of indices and, hence, also the pair QpK2, L2qRpK2,M2q has δ-intersecting or δ-
disjoint links.

Repeating the Ramsey argument again yields subsets K‹ Ď K2, L‹ Ď L2, and M‹ Ď M2

such that all pairs of restricted transversals QpK‹, L‹q, RpK‹,M‹q, and SpL‹,M‹q have
δ-intersecting or δ-disjoint links. Since the initial sets K, L, and M are large enough, we
argue that K‹, L‹, and M‹ can be taken of size at least t.

Finally, applying Lemma 4.6 we observe that at most one of those pairs of transversals
has a δ-intersecting link, and hence, at least two of them have δ-disjoint links. □

Finally, we may combine Corollaries 4.4 and 4.7. More precisely, after an application of
Corollary 4.7 and three consecutive applications of Corollary 4.4 we arrive at the following
statement.
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Corollary 4.8. Let t P N, δ, µ, d ą 0, let A be a pd, q-dense reduced hypergraph with
index set I that does not support a Kp3q

5 , and for sufficiently large disjoint sets K, L, M Ď I

let QpK,LqRpK,MqSpL,Mq be an inhabited triple of transversals.
There exist subsets K‹ Ď K, L‹ Ď L, and M‹ Ď M of size at least t such that
(i ) at most one pair QpK‹, L‹qRpK‹,M‹q, QpK‹, L‹qSpL‹,M‹q, RpK‹,M‹qSpL‹,M‹q

of restricted transversals has δ-intersecting links and all other pairs have δ-disjoint
links

(ii ) and for every k P K‹, ℓ P L‹, and m P M‹ the links ΛpQ, K‹, ℓq, ΛpQ, L‹, kq,
ΛpR, K‹,mq, ΛpR,M‹, kq, ΛpS, L‹,mq, and ΛpS,M‹, ℓq are pµ, dq-holes. □

4.4. Equivalent holes. Roughly speaking, in the next step of the proof of Proposition 2.6
we show that for wicked reduced hypergraphs (see Definition 2.5), the set of holes with
width bigger than 1{3 splits into only two classes defined by δ-intersections. For that we
generalise the notion of being δ-intersecting from links to holes.

Definition 4.9. Given a reduced hypergraph A with index set I, a subset J Ď I, and µ,
δ ą 0, we say two µ-holes Φ and Ψ on J are δ-intersecting if

ˇ

ˇΦij
X Ψij

ˇ

ˇ ě δ
ˇ

ˇP ij
ˇ

ˇ (4.9)

for all ij P J p2q. If, on the other hand, (4.9) fails for all ij P J p2q, then we say Φ and Ψ are
δ-disjoint.

For µ ą 0 and δ P p0, 1s the notion of being δ-intersecting defines a reflexive and
symmetric relation on the µ-holes on J . Perhaps somewhat surprisingly, the next lemma
shows that this relation is also transitive on holes with width bigger than 1{3 in wicked
reduced hypergraphs, if one passes to an appropriate subset of J . This justifies the
shorthand notation

Φ ”δ,J Ψ

for δ-intersecting holes on J . Similarly, Φ ıδ,J Ψ will indicate that Φ and Ψ are δ-disjoint
on J . Notice that this statement is stronger than the mere negation of Φ ”δ,J Ψ.

Lemma 4.10 (transitivity lemma). For every ε ą 0 there exists µ ą 0 such that for
every t P N the following holds. Suppose A is an ε-wicked reduced hypergraph with index
set I and for sufficiently large J Ď I we are given pµ, 1{3 ` εq-holes Φ, Ψ, and Ω on J . If

Φ ”ε,J Ψ and Ψ ”ε,J Ω ,

then there is a subset J‹ Ď J of size at least t such that Φ ”ε,J‹
Ω.

Proof. Given ε ą 0 we fix auxiliary integers t1, t2, t3, and µ ą 0 satisfying the hierarchy

ε´1
! t3 ! t2 ! t1, µ

´1 .
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Let t P N and let A be an ε-wicked reduced hypergraph with index set I and for sufficiently
large J Ď I let Φ, Ψ, and Ω be pµ, 1{3 ` εq-holes on J such that the pairs ΦΨ and ΨΩ are
ε-intersecting.

Consider an auxiliary 2-colouring of the pairs ij P J p2q depending on whether

|Φij
X Ωij

| ă ε|P ij
| (4.10)

or not. Since |J | ÝÑ pt1, tq
2
2, there either exists the desired set J‹, or there is a subset J1 Ď J

of size t1 such that (4.10) holds for every ij P J
p2q

1 . So it suffices to show that the second
possibility contradicts the wickedness of A.

First we note that for all i ă j ă k from J1 and every P ij P P ij and P jk P Pjk the
p1{3 ` ε, q-density of A and the given width of the holes Φ and Ω together with (4.10)
imply

ˇ

ˇNpP ij, P jk
q X pΦik

Y Ωik
q
ˇ

ˇ ě
ˇ

ˇNpP ij, P jk
q
ˇ

ˇ `
ˇ

ˇΦik
ˇ

ˇ `
ˇ

ˇΩik
ˇ

ˇ ´
ˇ

ˇP ik
ˇ

ˇ ´
ˇ

ˇΦik
X Ωik

ˇ

ˇ

ě 2ε
ˇ

ˇP ik
ˇ

ˇ . (4.11)

We define the reduced subhypergraph A1 Ď A with index set J1, vertex classes P ij

inherited from A, and constituents

Aijk
1 “ Aijk

rΦij
X Ψij,Φik

Y Ωik,Ψjk
X Ωjk

s .

Since the pairs ΦΨ and ΨΩ are ε-intersecting, we infer from (4.11) for all i ă j ă k in J1

that

epAijk
1 q “

ÿ

P ijPΦijXΨij

P jkPΨjkXΩjk

ˇ

ˇNApP ij, P jk
q X pΦik

Y Ωik
q
ˇ

ˇ ě 2ε3
|P ij

||P ik
||Pjk

|

and, hence, A1 is p2ε3, q-dense.
We consider the ε-exceptional left and right cherries (see Definition 4.2) of the holes Φ, Ψ,

and Ω (restricted to J1) and for every i ă j ă k in J1 we set

L ijk
“ L ijk

pΨ, εq Y L ijk
pΩ, εq and Rijk

“ Rijk
pΦ, εq Y Rijk

pΨ, εq .

We infer from (4.1) that

|L ijk
| ď

2µ
ε

|P ij
||P ik

| and |Rijk
| ď

2µ
ε

|P ik
||Pjk

| .

By the choice of µ we can apply Lemma 3.4 to A1 with t2, 2ε3, and 2µ
ε

in place of t, µ
and µ1. This yields a set J2 Ď J1 of size t2 and an inhabited triple of transversals
QpJ2qRpJ2qSpJ2q avoiding the exceptional cherries from L ijk and Rijk for every ijk P J

p3q

2 .
In particular, for all i ă j ă k in J2 we have

QijRikSjk P EpAijk
1 q “ E

`

Aijk
rΦij

X Ψij,Φik
Y Ωik,Ψjk

X Ωjk
s
˘

. (4.12)

We fix disjoint subsets K 1 ă L ă M 1 of J2, where K 1 and M 1 have size tt2{3u and L has
size t3.
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Note that by definition RpK 1,M 1q Ď Φ Y Ω. Due to the product Ramsey theorem,
applied with the set of colours tΦ,Ωu, this leads to sets K Ď K 1 and M Ď M 1 of size t3
and to a hole Π P tΦ,Ωu such that

Rkm
P Πkm for every k P K, and m P M . (4.13)

Owing to (4.12) the restricted transversals QpK,Lq, RpK,Mq, and SpL,Mq form an
inhabited triple in A. We derive a contradiction by Lemma 4.6 and for that we shall
show that two of the pairs QpK,LqRpK,Mq, QpK,LqSpL,Mq, and RpK,MqSpL,Mq have
ε-intersecting links.

First, we recall that, independent of the chosen Π, the pair QpK,LqSpL,Mq consists
of transversals inside the hole Ψ and both avoid the exceptional left and right cherries
from Ψ. Hence, for all k P K, ℓℓ1 P Lp2q, and m P M we have

ˇ

ˇNApQkℓ, Qkℓ1

q X Ψℓℓ2 ˇ

ˇ ă ε
ˇ

ˇPℓℓ1ˇ

ˇ and
ˇ

ˇNApSℓm, Sℓ
1m

q X Ψℓℓ1 ˇ

ˇ ă ε
ˇ

ˇPℓℓ1 ˇ

ˇ .

Consequently, the p1{3 ` ε, q-density of A and the width of Ψ imply
ˇ

ˇNApQkℓ, Qkℓ1

q X NApSℓm, Sℓ
1m

q
ˇ

ˇ ą ε
ˇ

ˇPℓℓ1 ˇ

ˇ

for every k P K, ℓℓ1 P Lp2q, and m P M , i.e., the pair QpK,LqSpL,Mq has ε-intersecting
links.

If Π “ Φ, then QpK,Lq and RpK,Mq are both transversals in Φ (see (4.13)) and both Q
and R avoid the exceptional right cherries of Φ. As before, this implies that the pair
QpK,LqRpK,Mq has ε-intersecting links. So Lemma 4.6 tells us that A supports a Kp3q

5 ,
contrary to the wickedness of A.

Analogously, if Π “ Ω, then RpK,Mq and SpL,Mq are both transversals in Ω and,
since both R and S avoid the exceptional left cherries of Ω, the pair of transversals
has ε-intersecting links, which leads to the same contradiction. □

Another application of Ramsey’s theorem leads to the following corollary.

Corollary 4.11. For every ε P p0, 1s there exists µ ą 0 such that for all integers t, r ě 2
the following holds. Suppose A is an ε-wicked reduced hypergraph with index set I and for
sufficiently large J Ď I we are given pµ, 1{3 ` εq-holes Φ1, . . . ,Φr on J .

Then there is a subset J‹ Ď J of size t such that
(i ) for all ϱ, ϱ1 P rrs the holes Φϱ and Φϱ1 are either ε-intersecting or ε-disjoint on J‹

(ii ) and ”ε,J‹
is an equivalence relation on tΦ1, . . . ,Φru with at most two equivalence

classes.

Proof. For ε P p0, 1s let µ ą 0 be given by Lemma 4.10. For fixed t, r ě 2 let t1 ě t be
sufficiently large for an application of Lemma 4.10 with ε, µ, and with 2 in place of t.

For a given ε-wicked reduced hypergraph A and pµ, 1{3 ` εq-holes Φ1, . . . ,Φr we impose
that the size of J is at least the 2pr

2q-colour Ramsey number for graph cliques on t1 vertices,
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i.e.,

|J | ÝÑ pt1q2
|Ξ| for Ξ “

␣

ξ “ pξϱϱ1qϱϱ1Prrsp2q : ξϱϱ1 P t0, 1u for ϱϱ1
P rrsp2q

(

. (4.14)

We assign to a pair ij P J p2q the colour ξ “ pξϱϱ1qϱϱ1Prrsp2q with ξϱϱ1 “ 1 signifying
ˇ

ˇΦij
ϱ X Φij

ϱ1

ˇ

ˇ ě ε
ˇ

ˇP ij
ˇ

ˇ

and ξϱϱ1 “ 0 otherwise. Owing to (4.14) there exists a subset J‹ Ď J of size at least
t1 ě t and a colour ξ‹ “ pξ‹

ϱϱ1qϱϱ1Prrsp2q such that all pairs of J‹ were assigned ξ‹. Note
that assertion (i ) follows directly from the definition of the colouring, i.e., Φϱ and Φϱ1 are
ε-intersecting on J‹ if ξ‹

ϱϱ1 “ 1 and ε-disjoint otherwise.
Obviously the relation ”ε,J‹

is reflexive and symmetric. Moreover, our choice of t1 allows
us to invoke Lemma 4.10 and the transitivity follows from the definition of the colouring.
Since all holes have width at least 1{3 ` ε, at least two among any choice of three holes
must share at least ε|P ij| vertices in P ij for any ij P J p2q

‹ and, hence, ”ε,J‹
has at most

two equivalence classes. □

It will later be important that, under sufficiently general circumstances, there really are
two distinct equivalence classes.

Lemma 4.12. Given t P N and ε, µ ą 0 let I be a sufficiently large set of indices. For
every ε-wicked reduced hypergraph A with index set I there are a set J Ď I of size t and
two ε-disjoint pµ, 1{3 ` εq-holes on J .

Proof. We may assume that we have an integer t1 fitting into the hierarchy

|I| " t1 " t, µ´1 .

Since A is, in particular, p1{3 ` ε, q-dense, Theorem 3.2 applied with 3t1, 1{3 ` ε here
in place of t, µ there yields a set I 1 Ď I of size 3t1 and an inhabited triple of transver-
sals QpI 1qRpI 1qSpI 1q.

Fix an arbitrary partition I 1 “ K 1 Ÿ L1 Ÿ M 1 such that |K 1| “ |L1| “ |M 1| “ t1. Now we
apply Corollary 4.8 with ε, 1{3 ` ε here in place of δ, d there to the inhabited triple of
restricted transversals QpK 1, L1qRpK 1,M 1qSpL1,M 1q. This yields subsets K Ď K 1, L Ď L1,
and M Ď M 1 of size t satisfying properties (i ) and (ii ) of the corollary.

By (i ) we may assume without loss of generality that the pair QpK,LqRpK,Mq has
ε-disjoint links. Thus, fixing ℓ P L and m P M arbitrarily we obtain the desired ε-disjoint
pµ, 1{3 ` εq-holes ΛpQ, K, ℓq and ΛpR, K,mq on J “ K. □

4.5. Unions of equivalent holes. We proceed with the union lemma, which roughly
speaking asserts that unions of equivalent holes are holes. As usual, the precise statement
involves a considerable loss of relevant indices. Moreover, if want such a union Φ Y Ψ
to be a µ-hole, we need to assume that Φ and Ψ themselves are ν-holes for some very
small ν ! µ.
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Lemma 4.13 (union lemma). For every µ, ε ą 0 there exists ν ą 0 such that for
every t P N the following holds. Suppose A is an ε-wicked reduced hypergraph with index
set I and for a sufficiently large subset J Ď I we are given two pν, 1{3 ` εq-holes Φ and Ψ
on J such that Φ ”ε,J Ψ.

Then, there exists a subset J‹ Ď J of size at least t such that Φ Y Ψ is a µ-hole on J‹.

Proof. As decreasing µ makes the lemma stronger, we may assume that µ ! ε. Now we
take auxiliary integers t1, t2, t3, and t4 and a positive real ν fitting into the hierarchy

ε " t´1
4 " t´1

3 " t´1
2 , ν " t´1

1 .

More precisely we assume that
(1 ) t4 is so large that the conclusion of Corollary 4.11 holds for ε, µ, and for 2, 4, t4

here in place of t, r, |J | there;
(2 ) t3 is so large that the conclusion of Corollary 4.8 holds for t4, ε, µ, 1{3 ` ε, t3 here

in place of t, δ, µ, d, mint|K|, |L|, |M |u there;
(3 ) t2 is so large and ν ď µ is so small that the conclusion of Lemma 3.4 holds for 3t3,

µ{8, 2ν{ε, t2 here in place of t, µ, µ1, |J | there;
(4 ) and t1 ÝÑ pt2q3

8.
Finally, given t P N we suppose that J Ď I is large so that

|J | ÝÑ pt1, tq
3
2 .

For pν, 1{3 ` εq-holes Φ and Ψ on J let

L “ L pΦ, εq Y L pΨ, εq and R “ RpΦ, εq Y RpΨ, εq

be their ε-exceptional left and right cherries. For later reference we recall that (4.1) yields

|L ijk
| ď

2ν
ε

|P ij
||P ik

| and |Rijk
| ď

2ν
ε

|P ik
||Pjk

| . (4.15)

We begin with an application of Ramsey’s theorem for hypergraphs and consider a
2-colouring of the triples ijk P J p3q depending on whether

epΦij
Y Ψij,Φik

Y Ψik,Φjk
Y Ψjk

q ą µ|P ij
||P ik

||Pjk
| (4.16)

or not. Owing to the size of J , there either exists the desired set J‹, or there is a
subset J1 Ď J of size t1 such that (4.16) holds for all ijk P J

p3q

1 . We shall show that the
second case leads to a contradiction.

First we observe that for every ijk P J
p3q

1 inequality (4.16) implies that for at least one
of the eight possible triples pΠ1,Π2,Π3q P tΦ,Ψu3 we have

epΠij
1 ,Πik

2 ,Π
jk
3 q ą

µ

8 |P ij
||P ik

||Pjk
| . (4.17)

(Actually, since Φ and Ψ are ν-holes and ν ď µ{8, inequality (4.17) can neither hold
for epΦij,Φik,Φjkq nor for epΨij,Ψik,Ψjkq, but we shall not use this here.) Thus, there exists



22 S. BERGER, S. PIGA, CHR. REIHER, V. RÖDL, AND M. SCHACHT

an 8-colouring of J p3q

1 such that if the colour of a triple ijk P J
p3q

1 is pΠ1,Π2,Π3q P tΦ,Ψu3,
then this indicates the validity of (4.17) for this triple of holes. In view of (4 ) there are a
subset J2 Ď J1 of size t2 and a fixed colour pΠ1,Π2,Π3q P tΦ,Ψu3 such that inequality (4.17)
holds for every ijk P J

p3q

2 .
Now the reduced subhypergraph A2 Ď A with index set J2, vertex classes inherited

from A, and constituents
Aijk

2 “ Aijk
rΠij

1 ,Πik
2 ,Π

jk
3 s (4.18)

for all i ă j ă k in J2 is pµ{8, q-dense. Owing to (4.15) and our choice of t2 and ν in (3 ),
Lemma 3.4 ensures that there are a subset J3 Ď J2 of size 3t3 and an inhabited triple of
transversals QpJ3qRpJ3qSpJ3q where each transversal avoids the sets of exceptional left
and right cherries L and R of Φ and Ψ.

Since QpJ3qRpJ3qSpJ3q is an inhabited triple, we have QijRikSjk P EpA2q for every
i ă j ă k in J3 and, therefore, (4.18) implies

Qij
P Π1 , Rik

P Π2 , and Sjk P Π3 (4.19)

for all i ă j ă k in J3.
Fix disjoint subsets of indices K3 ă L3 ă M3 of J3 each of size t3. Clearly, the triple

of restricted transversals QpK3, L3qRpK3,M3qSpL3,M3q is still inhabited. Therefore, the
choice of t3 in (2 ) allows an application of Corollary 4.8, which yields subsets K4 Ď K3,
L4 Ď L3, and M4 Ď M3 each of size t4 satisfying properties (i ) and (ii ) of Corollary 4.8.

Next we shall show that all three pairs of restricted transversals QpK4, L4qRpK4,M4q,
QpK4, L4qSpL4,M4q, and RpK4,M4qSpL4,M4q have ε-intersecting links. However, this
contradicts property (i ) of Corollary 4.8, which allows only one pair of transversals with
ε-intersecting links and this contradiction concludes the proof of Lemma 4.13. Below we
show that the pair QpK4, L4qRpK4,M4q has ε-intersecting links. The proof for the other
pairs follows verbatim the same lines.

Fix some ℓ P L4 and m P M4. Property (ii ) of Corollary 4.8 tells us that ΛpQ, K4, ℓq

and ΛpR, K4,mq are pµ, 1{3 ` εq-holes on K4. Moreover, since ν ď µ, also Φ and Ψ
are pµ, 1{3 ` εq-holes on K4 and, therefore, the choice of t4 in (1 ) and an application of
Corollary 4.11 yield a subset K‹ Ď K4 of size two such that ”“”ε,K‹

is an equivalence
relation with at most two equivalence classes on the µ-holes

ΛpQ, K‹, ℓq , ΛpR, K‹,mq , Π1 , and Π2 .

In view of (4.19) we have QpK‹, L4q Ď Π1 and RpK‹,M4q Ď Π2 and, since Q and R
avoid the exceptional cherries from L and R, we infer

|NpQkℓ, Qk1ℓ
q X Πkk1

1 | ă ε|Pkk1

| and |NpRkm, Rk1m
q X Πkk1

2 | ă ε|Pkk1

| ,

where k and k1 denote the two elements of K‹. Consequently,

Π1 ı ΛpQ, K‹, ℓq and Π2 ı ΛpR, K‹,mq .
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As our assumption Φ ” Ψ yields Π1 ” Π2 and ” has at most two equivalence classes, we
thus arrive at

ΛpQ, K‹, ℓq ” ΛpR, K‹,mq .

In other words we have |NpQkℓ, Qk1ℓq X NpRkm, Rk1mq| ě ε|Pkk1

|, which excludes the
possibility that the pair of transvervals QpK4, L4qRpK4,M4q has ε-disjoint links. So by
property (i ) of Corollary 4.8 it follows that this pair has ε-intersecting links, as desired. □

For later reference we now state a corollary that follows from Corollary 4.11 and
Lemma 4.13.

Corollary 4.14. For every µ, ε ą 0 there exists ν ą 0 such that for every t P N the
following holds. Suppose A is an ε-wicked reduced hypergraph with index set I and for a
sufficiently large subset J Ď I we are given three pν, 1{3 ` εq-holes Φ, Ψ, and Ω on J such
that Φ and Ψ are ε-disjoint.

Then, there exists a subset J‹ Ď J of size at least t such that
(A ) either Φ Y Ω is a pµ, 1{3 ` εq-hole ε-disjoint with Ψ
(B ) or Ψ Y Ω is a pµ, 1{3 ` εq-hole ε-disjoint with Φ.

Proof. Again we may assume that µ ! ε. Take appropriate constants

ν ! µ and t1 " t2 " t, ν´1 ,

and assume that |J | " t1.
Due to Corollary 4.11 there is a subset J1 Ď J of size t1 such that ”ε,J1 is an equivalence

relation with at most two equivalence classes on tΦ,Ψ,Ωu. By hypothesis the holes Φ
and Ψ are in different classes and thus we may assume without loss of generality that

Ω ”ε,J1 Φ and Ω ıε,J1 Ψ .

An application of Lemma 4.13 yields the existence of a subset J2 Ď J1 of size t2 on which

Φ Y Ω is a pµ, 1{3 ` εq-hole.

Now a second application of Corollary 4.11 leads to a t-element subset J‹ Ď J2 such
that ”ε,J‹

is an equivalence relation with at most two equivalence classes on tΦ,Φ Y Ω,Ψu.
Since ΦYΩ ”ε,J‹

Φ ıε,J‹
Ψ, we have ΦYΩ ıε,J‹

Ψ. Altogether both parts of (A ) hold. □

4.6. Holes derived from two transversals. Before we can make further progress, we
need to analyse holes generated by two transversals. Given two transversals QpJq and RpJq

in a wicked reduced hypergraph A, we wonder whether for fixed i P J the sets Ωjk
i Ď Pjk

defined by Ωjk
i “ NpQij, Rikq form a hole. There are several possible cases depending on

how i, j, k are ordered, and in the lemma that follows we focus on the case i ă j ă k. It
turns out that if the links of Q and R satisfy a certain equivalence condition (see (4.20)
below), then on a large subset of J the sets Ωjk

i form holes.
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Lemma 4.15. Let ε ą 0, ν ą 0, and t P N be given and suppose that A is an ε-wicked
reduced hypergraph with index set I. If J Ď I is sufficiently large and QpJq, RpJq are two
transversals on J such that all i ă j ă k ă ℓ from J satisfy

|NpQik, Qjk
q X NpRiℓ, Rjℓ

q| ě ε|P ij
| , (4.20)

then there is a set J‹ Ď J of size t such that we have

e
`

NpQij, Rik
q, NpQij, Riℓ

q, NpQik, Riℓ
q
˘

ď ν|Pjk
||Pjℓ

||Pkℓ
|

for all i ă j ă k ă ℓ in J‹.

Proof. Suppose that |J | " t1 " t2 " t, ε´1, ν´1. Set Ωjk
i “ NpQij, Rikq for all i ă j ă k

from J and colour the quadruples i ă j ă k ă ℓ depending on whether

epΩjk
i ,Ω

jℓ
i ,Ωkℓ

i q ą ν|Pjk
||Pjℓ

||Pkℓ
| (4.21)

holds or fails. Due to |J | ÝÑ p4t1, tq4
2 this either leads to the desired set J‹ of size t, or to

a set J1 Ď J of size 4t1 such that (4.21) holds for all i ă j ă k ă ℓ in J1.
Let J1 “ X1 Ÿ K1 Ÿ L1 Ÿ M1 be the (unique) partition of J1 into sets of size t1

satisfying X1 ă K1 ă L1 ă M1. Now for every x P X1 the reduced subhypergraph Ax

of A with index set K1 Ÿ L1 Ÿ M1, vertex classes inherited from A, and constituents
Akℓm
x “ AkℓmrΩkℓ

x ,Ωkm
x ,Ωℓm

x s is pν, q-tridense. Therefore, Lemma 3.6 applied to t2, 1, ν
here in place of t, r, µ there yields subsets X2 Ď X1, K2 Ď K1, L2 Ď L1, and M2 Ď M1

of size t2 and a triple of transversals T pK2, L2qUpK2,M2qVpL2,M2q which is inhabited in
every Ax with x P X2.

Owing to the definition of the constituents of these reduced hypergraphs this means that
for all px, k, ℓ,mq P X2 ˆ K2 ˆ L2 ˆ M2 we have

T kℓ P Ωkℓ
x , Ukm

P Ωkm
x , V ℓm

P Ωℓm
x , and T kℓUkmV ℓm

P EpAkℓm
q .

In other words, all four triples of transversals

QpX2, K2qRpX2, L2qT pK2, L2q , QpX2, K2qRpX2,M2qUpK2,M2q ,

QpX2, L2qRpX2,M2qVpL2,M2q , and T pK2, L2qUpK2,M2qVpL2,M2q

are inhabited in A.
We successively apply Corollary 4.8 to these four triples of inhabited transversals with

ε, ν, 1{3 ` ε here in place of δ, µ, d there. Each of these applications shrinks the sets of
indices still under consideration and eventually we obtain sets X3, K3, L3, and M3 of size 2,
which satisfy (i ) and (ii ) of Corollary 4.8 for all those four inhabited triples of transversals.
Let us write X3 “ tx, x1u, K3 “ tk, k1u, L3 “ tℓ, ℓ1u, and M3 “ tm,m1u.

Now our assumption on the transversals Q and R yields

|NpQxk, Qx1k
q X NpRxℓ, Rx1ℓ

q| ě ε|Pxx1

|
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and thus the pair QpX3, K3qRpX3, L3q has ε-intersecting links. So by (i ) of Corollary 4.8 ap-
plied to QRT the pairs QpX3, K3qT pK3, L3q and RpX3, L3qT pK3, L3q have ε-disjoint links.
Similarly, the pairs QpX3, K3qRpX3,M3q and QpX3, L3qRpX3,M3q have ε-intersecting
links, whereas the pairs QpX3, K3qUpK3,M3q, RpX3,M3qUpK3,M3q, QpX3, L3qVpL3,M3q,
and RpX3,M3qVpL3,M3q have ε-disjoint links.

Let us now look at the three subsets NpQxk, Qxk1

q, NpT kℓ, T k
1ℓq, and NpUkm, Uk1mq

of Pkk1 . As A is p1{3 ` ε, q-dense, each of them has at least the size p1{3 ` εq|Pkk1

|.
Moreover, the fact that QpX3, K3qT pK3, L3q and QpX3, K3qUpK3,M3q have ε-disjoint
links implies

|NpQxk, Qxk1

q X NpT kℓ, T k
1ℓ

q| ă ε|Pkk1

| and |NpQxk, Qxk1

q X NpUkm, Uk1m
q| ă ε|Pkk1

| .

For all these reason we have |NpT kℓ, T k
1ℓq X NpUkm, Uk1mq| ě ε|Pkk1

| and, hence, the links
of T pK3, L3qUpK3,M3q are ε-intersecting.

Arguing similarly with the subsets NpRxm, Rxm1

q, NpUkm, Ukm1

q, and NpV ℓm, V ℓm1

q

of Pmm1 one can show that the pair UpK3,M3qVpL3,M3q has ε-intersecting links as well.
Thus the application of Corollary 4.8 to the triple T UV yields two pairs of ε-intersecting
links, contrary to clause (i ). □

We proceed with a related result that, given two transversals QpJq, SpJq, addresses
holes composed of sets of the form Ωij

x “ NpQix, Sxjq, where i ă x ă j. The proof is very
similar to the previous one, but towards the end we shall need an additional argument.
Lemma 4.16. Given ε ą 0, ν ą 0, and t P N let A be an ε-wicked reduced hypergraph
with index set I. If J Ď I is sufficiently large and QpJq, SpJq are two transversals on J

such that all i ă j ă k ă ℓ from J satisfy

|NpQij, Qik
q X NpSjℓ, Skℓq| ě ε|Pjk

| and |NpSik, Siℓq X NpSjk, Sjℓq| ě ε|Pkℓ
| , (4.22)

then there is a set J‹ Ď J of size t such that we have

e
`

NpQix, Sxjq, NpQix, Sxkq, NpQjy, Sykq
˘

ď ν|P ij
||P ik

||Pjk
|

for all i ă x ă j ă y ă k in J‹.

Proof. Since decreasing ν makes the statement stronger, we may assume that ν ! ε.
Suppose that |J | " t1 " t2 " t3 " t, ε´1, ν´1. This time we set Ωij

x “ NpQix, Sxjq for all
i ă x ă j from J and colour the quintuples i ă x ă j ă y ă k depending on whether

epΩij
x ,Ωik

x ,Ωjk
y q ą ν|P ij

||P ik
||Pjk

| (4.23)

holds or fails. Due to |J | ÝÑ p5t1, tq5
2 this either leads to the desired set J‹ of size t, or to

a set J1 Ď J of size 5t1 such that (4.23) holds for all i ă x ă j ă y ă k in J1.
Now we partition

J1 “ K1 Ÿ X1 Ÿ L1 Ÿ Y1 Ÿ M1
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into t1-sets ordered by K1 ă X1 ă L1 ă Y1 ă M1 and form for every pair px, yq P X1 ˆ Y1

the reduced subhypergraph Axy of A with index set K1 ŸL1 ŸM1, vertex classes inherited
from A, and with constituents Akℓm

xy “ AkℓmrΩkℓ
x ,Ωkm

x ,Ωℓm
y s. As these reduced hypergraphs

are pν, q-tridense, Lemma 3.6 applied to t2, 2, ν here in place of t, r, µ there yields subsets
K2 Ď K1, X2 Ď X1, L2 Ď L1, Y2 Ď Y1, and M2 Ď M1 of size t2 and a triple of transversals
T pK2, L2qUpK2,M2qVpL2,M2q, which is inhabited in every Axy with x P X2 and y P Y2.

As in the proof of the foregoing lemma one observes that the four triples

QpK2, X2qT pK2, L2qSpX2, L2q , QpK2, X2qUpK2,M2qSpX2,M2q ,

QpL2, Y2qVpL2,M2qSpY2,M2q and T pK2, L2qUpK2,M2qVpL2,M2q

are inhabited in A.
Again, we apply Corollary 4.8 successively to all these triples, this time obtaining

sets K3, X3, L3, Y3, and M3 of size t3, satisfying (i ) and (ii ) of Corollary 4.8 for these four
triples of transversals. As before the desired contradiction arises from the fact that the
pairs T pK3, L3qUpK3,M3q and UpK3,M3qVpL3,M3q have ε-intersecting links, contrary to
Corollary 4.8 (i ).

The first of these two facts can be proved in the usual way: By (4.22) the pairs
QpK3, X3qSpX3, L3q and QpK3, X3qSpX3,M3q have ε-intersecting links and, therefore, the
pairs QpK3, X3qT pK3, L3q and QpK3, X3qUpK3,M3q have ε-disjoint links. So for arbitrary
k, k1 P K3, x P X3, ℓ P L3, and m P M3 the subsets NpQkx, Qk1xq, NpT kℓ, T k

1ℓq, and
NpUkm, Uk1mq of Pkk1 have at least the size p1{3 ` εq|Pkk1

| and the first of them intersects
the two other ones in less than ε|Pkk1

| vertices each. This yields

|NpT kℓ, T k
1ℓ

q X NpUkm, Uk1m
q| ą ε|Pkk1

|

and thus the pair T pK3, L3qUpK3,M3q has indeed ε-intersecting links.
It is less obvious, however, that the pair UpK3,M3qVpL3,M3q has ε-intersecting links

as well. To confirm this, we pick arbitrary vertices k P K3, x P X3, ℓ P L3, y P Y . Due
to ν ! ε we can invoke Corollary 4.11 and pass to a subset M4 Ď M3 of size 2 such that
”“”ε,M4 is an equivalence relation with at most two equivalence classes on the set of
ν-holes

␣

ΛpU ,M4, kq,ΛpV ,M4, ℓq,ΛpS,M4, xq,ΛpS,M4, yq
(

.

By the left statement in (4.22) the pairs QpK3, X3qSpX3,M3q and QpL3, Y3qSpY3,M3q

have ε-intersecting links and, hence, by our application of Corollary 4.8 to the triples QUS
and QVS the pairs UpK3,M3qSpX3,M3q and VpL3,M3qSpY3,M3q have ε-disjoint links, for
which reason

ΛpU ,M4, kq ı ΛpS,M4, xq and ΛpV ,M4, ℓq ı ΛpS,M4, yq . (4.24)

Moreover, writing M4 “ tm,m1u the right part of (4.22) yields

|NpSxm, Sxm
1

q X NpSym, Sym
1

q| ě ε|Pmm1

| ,
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whence ΛpS,M4, xq ” ΛpS,M4, yq. Together with (4.24) this discloses

ΛpU ,M4, kq ” ΛpV ,M4, ℓq

and, consequently, UpK3,M3qVpL3,M3q has ε-intersecting links, as desired. □

4.7. Two large disjoint holes. In this section we establish the existence of two essentially
disjoint holes such that most cherries in each hole have a large neighbourhood in the other
hole. For that we consider the following sets of unwanted cherries.

Given µ-holes Φ and Ψ on J , γ ą 0, and indices ijk P J p3q a cherry pP ij, P ikq P P ij ˆ P ik

is γ-bad if either

pP ij, P ik
q P Φij

ˆ Φik and |NpP ij, P ik
q ∖ Ψjk

| ě γ|Pjk
|

or pP ij, P ik
q P Ψij

ˆ Ψik and |NpP ij, P ik
q ∖ Φjk

| ě γ|Pjk
| .

For i ă j ă k we denote the sets of all γ-bad left, middle, and right cherries by

Bijk
pΦ,Ψ, γq Ď P ij

ˆ P ik , C ijk
pΦ,Ψ, γq Ď P ij

ˆ Pjk , and D ijk
pΦ,Ψ, γq Ď P ik

ˆ Pjk .

The following lemma shows that given two disjoint holes Φ and Ψ of width at least 1{3`ε

there are either (for a large subset of indices) few γ-bad cherries or there are two other
holes covering substantially more space. It might be helpful to point out that eventually
we will only use this lemma for γ “ ε{12.

Lemma 4.17 (density increment lemma). For every µ, ε ě γ ą 0 and t P N there is ν ą 0
such that the following holds. Suppose A is an ε-wicked reduced hypergraph with index set I
and for sufficiently large J Ď I we are given ε-disjoint pν, 1{3 ` εq-holes Φ and Ψ on J .

Then, there exists a subset J‹ Ď J of size t such that one of the following alternatives
occurs.

(A ) There exist two ε-disjoint pµ, 1{3 ` εq-holes Φ‹ and Ψ‹ on J‹ such that

|Φij
‹ Y Ψij

‹ | ě |Φij
Y Ψij

| `
γ

2 |P ij
|

for every ij P J p2q
‹

(B ) or for all i ă j ă k in J‹ the sets of γ-bad cherries satisfy

|Bijk
pΦ,Ψ, γq| ď µ|P ij

||P ik
| , |C ijk

pΦ,Ψ, γq| ď µ|P ij
||Pjk

| ,

and |D ijk
pΦ,Ψ, γq| ď µ|P ik

||Pjk
| .

Proof. Given µ, ε ě γ ą 0 and t we fix auxiliary integers t1, t2, t3, t4, and we choose ν to
satisfy

ε´1, µ´1, γ´1, t ! t4 ! t3 ! t2 ! t1, ν
´1 .

Let A, J Ď I, Φ, and Ψ be as in the statement of the lemma, where J is so large that
|J | ÝÑ pt1, t1, t1, tq

3
4. We suppose that (B ) fails and intend to derive (A ).
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Our assumption on the size of J combined with the failure of (B ) yields a subset J1 Ď J

of size t1 such that one of the following three statements holds:
(1 ) |BijkpΦ,Ψ, γq| ą µ|P ij||P ik| for all i ă j ă k in J1,
(2 ) |C ijkpΦ,Ψ, γq| ą µ|P ij||Pjk| for all i ă j ă k in J1,
(3 ) or |D ijkpΦ,Ψ, γq| ą µ|P ik||Pjk| for all i ă j ă k in J1.

As reversing the order ă on I exchanges (1 ) and (3 ), we may assume that one of the
first two cases occurs.

First Case: We have |BijkpΦ,Ψ, γq| ą µ |P ij||P ik| for all i ă j ă k in J1.
For all i ă j ă k in J1 at least one of the sets

Bijk
Φ “ Bijk

pΦ,Ψ, γq X Φij
ˆ Φik and Bijk

Ψ “ Bijk
pΦ,Ψ, γq X Ψij

ˆ Ψik

must consist of more than µ
2 |P ij||P ik| bad cherries. Thus, a further application of Ramsey’s

theorem allows us to assume that there is a set J2 Ď J1 of size t2 such that

|Bijk
Φ | ą

µ

2 |P ij
||P ik

| (4.25)

holds for all i ă j ă k in J2.

Claim 4.18. There are a set J3 Ď J2 of size t3 and transversals QpJ3q, RpJ3q such that

|NpQij, Rik
q ∖ pΦjk

Y Ψjk
q| ě

γ

2 |Pjk
| (4.26)

for all i ă j ă k in J3 and

|NpQik, Qjk
q X NpRiℓ, Rjℓ

q| ě ε|P ij
| (4.27)

whenever i ă j ă k ă ℓ are in J3.

Proof. Let A2 be the auxiliary reduced hypergraph with index set J2 and vertex classes P ij

for ij P J
p2q

2 whose constituents are defined by

tP ij, P ik, P jk
u P EpAijk

2 q ðñ pP ij, P ik
q P Bijk

Φ ∖ L ijk
pΦ, γ{2q

for all i ă j ă k in J2 and all pP ij, P ik, P jkq P P ij ˆ P ik ˆ Pjk. Due to (4.1) we have

|L ijk
pΦ, γ{2q| ď

2ν
γ

|P ij
||P ik

| ď
µ

4 |P ij
||P ik

|

for all i ă j ă k in J2 and together with (4.25) this establishes that A2 is pµ{4, q-dense.
Together with

|L ijk
pΦ, γ{2q| ď

2ν
γ

|P ij
||P ik

| and |Rijk
pΦ, γ{2q| ď

2ν
γ

|P ik
||Pjk

| ,

and ν ! γ, µ this shows that Lemma 3.4 yields a set J3 Ď J2 of size t3 and transversals QpJ3q,
RpJ3), and SpJ3q that avoid L pΦ, γ{2q and RpΦ, γ{2q and form an inhabited triple in A2.

In particular, we have QijRikSjk P EpA2q for all i ă j ă k in J3 and thus

pQij, Rik
q P Bijk

Φ ∖ L ijk
pΦ, γ{2q . (4.28)
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By the definitions of Bijk
Φ and L ijkpΦ, γ{2q this tells us

|NpQij, Rik
q ∖ Ψjk

| ě γ|Pjk
| and |NpQij, Rik

q X Φjk
| ă

γ

2 |Pjk
| ,

and by subtracting these estimates one easily confirms (4.26).
Now let i ă j ă k ă ℓ from J3 be arbitrary. Since Q and R avoid RpΦ, γ{2q, we have

|NpQik, Qjk
q X Φij

| ď
γ

2 |P ij
| ă ε|P ij

| and |NpRiℓ, Rjℓ
q X Φij

| ď
γ

2 |P ij
| ă ε|P ij

| .

Since each of the three subsets NpQik, Qjkq, NpRiℓ, Rjℓq, and Φij of P ij has at least the
size p1{3 ` εq|P ij|, this implies (4.27). □

Now Lemma 4.15 applied to J3 and the transversals QpJ3q, RpJ3q yields a set J`
4 Ď J3

of size t4 ` 1 such that all i ă j ă k ă ℓ in J`
4 satisfy

e
`

NpQij, Rik
q, NpQij, Riℓ

q, NpQik, Riℓ
q
˘

ď ν|Pjk
||Pjℓ

||Pkℓ
| .

Setting x “ minpJ`
4 q, J4 “ J`

4 ∖ txu, and

Ωjk
“ NpQxj, Rxk

q

for all jk P J
p2q

4 we obtain

epΩjk,Ωjℓ,Ωkℓ
q ď ν|Pjk

||Pjℓ
||Pkℓ

|

for all jkℓ P J
p3q

4 . In other words, the set Ω “
Ť

¨
jkPJ

p2q

4
Ωij is a pν, 1{3 ` εq-hole. Moreover,

by (4.26) we have
ˇ

ˇΩjk ∖ pΦjk
Y Ψjk

q
ˇ

ˇ ě
γ

2
ˇ

ˇPjk
ˇ

ˇ .

Now by Corollary 4.14 there exists a subset J‹ Ď J4 of size t in which Ω Y Φ and Ψ
or Ω Y Ψ and Φ are two ε-disjoint µ-holes. Due to (4.26) this shows that (A ) holds either
for Φ‹ “ Φ Y Ω and Ψ‹ “ Ψ, or for Φ‹ “ Φ and Ψ‹ “ Ψ Y Ω.

Second Case: We have |C ijkpΦ,Ψ, γq| ą µ |P ij||Pjk| for all i ă j ă k in J1.
As before we consider the set of ε-bad cherries C ijk

Φ and C ijk
Ψ restricted to the respective

holes and following the same Ramsey argument we find a subset J2 Ď J of size at least t2
for which we may assume that

|C ijk
Φ | ą

µ

2 |P ij
||Pjk

|

holds for all i ă j ă k in J2.

Claim 4.19. There are a set J3 Ď J2 of size t3 and transversals QpJ3q, SpJ3q such that

|NpQij, Sjkq ∖ pΦik
Y Ψik

q| ě
γ

2 |P ik
| (4.29)

whenever i ă j ă k are in J3, and

|NpQij, Qik
q X NpSjℓ, Skℓq| ě ε|Pjk

| and |NpSik, Siℓq X NpSjk, Sjℓq| ě ε|Pkℓ
| (4.30)

for all i ă j ă k ă ℓ in J3.
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Proof. This time the constituents of our auxiliary reduced hypergraph A2 with index set J2

are defined by

tP ij, P ik, P jk
u P EpAijk

2 q ðñ pP ij, P jk
q P C ijk

Φ ∖ M ijk
pΦ, γ{2q

for i ă j ă k in J2 (see Definition 4.2). As in the first case Lemma 3.4 leads to a set J3 Ď J2

of size t3 and transversals QpJ3q, SpJ3q which satisfy pQij, Sjkq P C ijk
Φ ∖ M ijkpΦ, γ{2q for

all i ă j ă k in J3 and avoid the left and right pγ{2q-exceptional cherries of Φ. Again the
first of these properties yields

|NpQij, Sjkq ∖ Ψik
| ě γ|P ik

| and |NpQij, Sjkq X Φik
| ă

γ

2 |P ik
| ,

and (4.29) follows upon subtraction.
For the proof (4.30) we fix four indices i ă j ă k ă ℓ from J3. The subsets NpQij, Qikq,

NpSjℓ, Skℓq, and Φjk of Pjk have size at least p1{3`εq|Pjk| and the third of them intersects
the other two in less than ε|Pjk| vertices. This implies the left part of (4.30). The right side
can be shown in the same way, looking at the sets NpSik, Siℓq, NpSjk, Sjℓq, and Φkℓ. □

Now we define
Ωij
x “ NpQix, Sxjq Ď P ij

for all i ă x ă y in J3. Owing to Lemma 4.16 there exists a set J`
4 Ď J3 of size 2t4 ´ 1

such that

epΩij
x ,Ωik

x ,Ωjk
y q ď ν|P ij

||P ik
||Pjk

| (4.31)

holds for all i ă x ă j ă y ă k from J`
4 . Let J`

4 “ tjp1q, . . . , jp2t1 ´ 1qu enumerate the
elements of J`

4 in increasing order, let J4 “ tjp1q, jp3q, . . . , jp2t4 ´ 1qu be the t4-element
subset of J`

4 consisting of the elements occupying odd positions, and set

Ωjp2r´1qjp2s´1q
“ Ωjp2r´1qjp2s´1q

jp2rq
for all rs P rt4s

p2q .

By (4.31) the set Ω “
Ť

rsPrt4sp2q Ωjp2r´1qjp2s´1q is a pν, 1{3 ` εq-hole on J4 and in view
of (4.29) we can finish as in the first case. □

Now Lemma 4.12 followed by iterative applications of Lemma 4.17 leads to two nonequiv-
alent holes with few bad cherries.

Corollary 4.20. For every µ, ε ě γ ą 0 and t P N the following holds. If A is an ε-wicked
reduced hypergraph whose index set I is sufficiently large, then there exist a subset J Ď I

of size t and ε-disjoint pµ, 1{3 ` εq-holes Φ and Ψ on J such that for all i ă j ă k in J

the sets of γ-bad cherries satisfy

|Bijk
pΦ,Ψ, γq| ď µ|P ij

||P ik
| , |C ijk

pΦ,Ψ, γq| ď µ|P ij
||Pjk

| ,

and |D ijk
pΦ,Ψ, γq| ď µ|P ik

||Pjk
| . (4.32)
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Proof. By Lemma 4.17 there are functions f : Rą0 ˆN ÝÑ Rą0 and g : Rą0 ˆN ÝÑ N

such that for all t‹ P N, µ‹ P Rą0 the conclusion of Lemma 4.17 holds for µ‹, t‹, fpµ‹, t‹q

and gpµ‹, t‹q here in place of µ, t, ν and |J | there.
Starting with µ0 “µ and t0 “ t we recursively set µm`1 “ fpµm, tmq and tm`1 “ gpµm, tmq

for every integer m ě 0. Without loss of generality we may assume that the sequence
pµmqmě0 is decreasing and that tm ě 2 for every m. Setting s “ r4γ´1s we shall now prove
the conclusion of our corollary for |J | " ts, µ

´1
s , ε´1.

Due to Lemma 4.12 there are a set Js Ď J of size ts and two ε-disjoint pµs, 1{3 ` εq-
holes on Js. Thus there exists a least nonnegative integer m ď s such that there are
a set Jm Ď J of size tm and two ε-disjoint pµm, 1{3 ` εq-holes Φ, Ψ on Jm such that
|Φij| ` |Ψij| ą ps ´ mqγ|P ij|{2 holds for every pair ij P J

p2q

k .
As our choice of s entails sγ{2 ě 2, we cannot have m “ 0. Thus Lemma 4.17 leads

to a set Jm´1 Ď Jm of size tm´1 such that either (A ) or (B ) holds for µm´1 here in place
of µ there. By the minimality of m alternative (A ) is impossible. For this reason the
restrictions of Φ and Ψ to arbitrary t-element subsets of Jm´1 are as desired. □

4.8. Bicolourisation. It remains to argue that by taking a random preimage we can
convert Corollary 4.20 into Proposition 2.6.

Proof of Proposition 2.6. Given ε and t we take γ, µ ą 0 and ℓ P N such that

γ “
ε

12 and ε, t´1
" ℓ´1

" µ

and consider an ε-wicked reduced hypergraph A whose index set I is sufficiently large.
Due to Corollary 4.20 there are a set J Ď I of size t and ε-disjoint µ-holes Φ, Ψ on J such
that for all i ă j ă k in J we have

|Bijk
pΦ,Ψ, γq| ď µ|P ij

||P ik
| , |C ijk

pΦ,Ψ, γq| ď µ|P ij
||Pjk

| ,

and |D ijk
pΦ,Ψ, γq| ď µ|P ik

||Pjk
| . (4.33)

Next we define a reduced subhypergraph A1 of A admitting a bicolouring φ1 which
satisfies, with only few exceptions, the minimum codegree condition τ2pA1, φ1q ě 1{3 ` ε{4.
To this end we consider for every pair ij P J p2q the sets

Rij
“ Φij ∖ Ψij and Bij

“ Ψij ∖ Φij ,

and then we set R “
Ť

¨ ijPJp2q Rij as well as B “
Ť

¨ ijPJp2q Bij. Now let A1 be the reduced
hypergraph with index set J , vertex classes P ij

1 “ Rij Ÿ Bij Ď P ij for every ij P J p2q, and
edges

EpA1q “ EpR Y Bq ∖
`

EpRq Y EpBq
˘

.

Since Φ and Ψ are ε-disjoint and have width at least 1{3 ` ε we have
ˇ

ˇP ij
1
ˇ

ˇ ě

´2
3 ` ε

¯

ˇ

ˇP ij
ˇ

ˇ (4.34)
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for every ij P J p2q.
It is plain that the map φ1 : V pA1q ÝÑ tred, blueu defined by φ´1

1 predq “ R and
φ´1

1 pblueq “ B is a bicolouring of A1.

Claim 4.21. In A1 all monochromatic cherries pP ij
1 , P

ik
1 q that fail to be γ-bad in A have

codegree at least p1{3 ` ε{4q|Pjk
1 |.

Proof. Suppose i ă j ă k and that pP ij
1 , P

ik
1 q “ pRij, Rikq P Rij ˆ Rik is a red left cherry

not belonging to BijkpΦ,Ψ, γq. Due to

|NApRij, Rik
q ∖ Ψjk

| ď γ|Pjk
|

we have

|NA1pRij, Rik
q| “|NApRij, Rik

q X Bjk
|

ě|NApRij, Rik
q| ´ |NApRij, Rik

q ∖ Ψjk
| ´ |Φjk

X Ψjk
|

ě

ˆ

1
3 ` ε

˙

|Pjk
| ´ γ|Pjk

| ´ |Φjk
X Ψjk

|

ě

ˆ

1
3 `

ε

4

˙

`

|Pjk
| ´ |Φjk

X Ψjk
|
˘

`
2
3
`

ε|Pjk
| ´ |Φjk

X Ψjk
|
˘

ě

ˆ

1
3 `

ε

4

˙

|Pjk
1 | ,

where the penultimate inequality uses the definition of γ and the last inequality follows
from Pjk

1 Ď Pjk ∖ pΦjk X Ψjkq. This concludes the proof for red left cherries and all other
cases can be treated analogously. □

Similar as in [10, Lemma 4.2] we will define the reduced hypergraph A‹ by taking the
preimage of a random homomorphism h P ApA1, ℓq. Recall from Definition 3.5 that for
every map h P ApA1, ℓq the associated reduced hypergraph Ah has index set J and vertex
classes P ij

‚ of size ℓ.
Observe that there is no h P ApA1, ℓq such that Ah supports a Kp3q

5 , because otherwise
the homomorphism h would show that A1 Ď A supports a K

p3q

5 as well, contrary to A
being wicked. Furthermore, for every h P ApA1, ℓq the map φh “ φ1 ˝ h is a bicolouring
of Ah. So it remains to show that if h gets chosen uniformly at random, then with positive
probability the event

τ2pAh, φhq ě
1
3 `

ε

8
occurs. We estimate for each cherry of Ah the probability that it violates this condition.

Claim 4.22. If ijk P J p3q and pP ij
‚ , P

ik
‚ q P P ij

‚ ˆ P ik
‚ is a cherry of Ah, then the event X

that
φhpP ij

‚ q “ φhpP ik
‚ q and |NAh

pP ij
‚ , P

ik
‚ q| ă

´1
3 `

ε

8

¯

|Pjk
‚ |

has at most the probability 3µ ` exp
`

´ ε2ℓ
128

˘

.
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Proof. Without loss of generality we may assume i ă j ă k. By the law of total probability
we have

PpX q “
1

|P ij
1 ||P ik

1 |

ÿ

pP ij ,P ikqPPij
1 ˆPik

1

P
`

X
ˇ

ˇhpP ij
‚ q “ P ij and hpP ik

‚ q “ P ik
˘

.

Note that cherries pP ij, P ikq consisting of two vertices with different colours contribute
zero to this sum. Moreover, due to (4.33) the total contribution from cherries pP ij, P ikq

belonging to BijkpΦ,Ψ, γq is at most

µ|P ij||P ik|

|P ij
1 ||P ik

1 |

(4.34)
ď

ˆ

3
2

˙2

µ ă 3µ .

Furthermore, for P ij, P ik of the same colour with pP ij, P ikq R BijkpΦ,Ψ, γq Claim 4.21
combined with Chernoff’s inequality tells us

P
`

X
ˇ

ˇhpP ij
‚ q “ P ij and hpP ik

‚ q “ P ik
˘

ď exp
`

´ ε2ℓ
128

˘

and Claim 4.22 follows. □

Since Ah has 3ℓ2`t
3
˘

cherries, Claim 4.22 implies

P

ˆ

τ2pAh, φhq ă
1
3 `

ε

8

˙

ď 3ℓ2
ˆ

t

3

˙

´

3µ ` exp
`

´ ε2ℓ
128

˘

¯

.

Owing to the hierarchy µ ! ℓ´1 ! t´1 this probability is smaller than 1 and, therefore,
there is a map h P ApA1, ℓq for which Ah has the desired properties. □

§5. Cliques on five vertices in bicoloured reduced hypergraphs

In this section we establish Proposition 2.7 and show that bicoloured reduced hypergraphs
with minimum monochromatic codegree density bigger than 1{3 support a Kp3q

5 .
In the proof we shall use the following types of neighbourhoods in reduced hypergraphs A.

For two vertices P , P 1 P V pAq and a subset U Ď V pAq we denote by NUpP, P 1q the
neighbourhood restricted to U . Similarly, for two subsets U , U 1 Ď V pAq we write NUˆU 1pP q

for the set of pairs in U ˆ U 1 that together with P form a hyperedge in A, i.e.,

NUpP, P 1
q “ tU P U : PP 1U P EpAqu

and NUˆU 1pP q “ tpU,U 1
q P U ˆ U 1 : PUU 1

P EpAqu .

Proof of Proposition 2.7. Clearly we may assume that ε ă 1
6 . Fix a sufficiently small

auxiliary constant ξ with 0 ă ξ ! ε such that 1{6´ε
ξ

is equal to some positive integer s.
Moreover, let I be a sufficiently large index set such that its cardinality satisfies the
partition relation |I| ÝÑ p5q2

s, meaning that it is at least as large as the s-colour Ramsey
number for the graph clique K5. Let A be a bicoloured reduced hypergraph with index
set I and vertex classes P ij for ij P Ip2q and let the bicolouring φ : V pAq ÝÑ tred, blueu

satisfy τ2pA, φq ě 1{3 ` ε.
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For every ij P Ip2q we set

Rij
“ φ´1

predq X P ij and ϱij “
|Rij|

|P ij|

and, analogously, we define Bij “ φ´1pblueq X P ij and βij “ |Bij|{|P ij|. In view of (2.1),
the assumption on τ2pA, φq implies that all ϱij, βij are in r1{3 ` ε, 2{3 ´ εs. Splitting this
interval into s intervals of length 2ξ, the size of I yields a subset J Ď I of size 5 such that
all βij with ij P J p2q are in the same interval. Let β be the centre of this interval and
set ϱ “ 1 ´ β. We thus arrive at

βij “ β ˘ ξ and ϱij “ ϱ ˘ ξ

for all ij P J p2q. Without loss of generality we may assume β ď ϱ, which implies
1
3 ` ε ď β ´ ξ ă β ď

1
2 ď ϱ ă ϱ ` ξ ď

2
3 ´ ε . (5.1)

For ijk P J p3q the codegree condition translates for red vertices Rij P Rij and Rik P Rik

to

|NBjkpRij, Rik
q| “ dpRij, Rjk

q ě

ˆ

1
3 ` ε

˙

|Pjk
|

ě

ˆ

1
3 ` ε

˙ˆ

1
β ` ξ

˙

|Bjk
| ě

ˆ

1
3β `

ε

2

˙

|Bjk
| , (5.2)

where we used ξ ! ε, β for the last inequality. Similarly, for blue vertices we have

|NRjkpBij, Bik
q| ě

ˆ

1
3ϱ `

ε

2

˙

|Bjk
| . (5.3)

We may rename the indices in J and assume that J “ Z{5Z. We shall show that A
restricted to J supports a K

p3q

5 . For that we have to find ten vertices P ij P P ij, one
for every ij P J p2q, such that for all of the ten triples ijk P J p3q the vertices P ij, P ik,
and P jk span a hyperedge in the constituent Aijk. For every i P J “ Z{5Z we will
select P i,i`1 from Bi,i`1 and P i,i`2 from Ri,i`2. Since A contains no monochromatic
triples as hyperedges, this choice for the colour classes is up to a permutation of indices
unavoidable, as it corresponds to the unique 2-colouring of EpK5q with no monochromatic
triangle.

The rest of the proof is based on several averaging arguments relying on the minimum
degree condition. For generic vertices from R and B we shall use capital letters R and B.
In the process we will make appropriate choices to fix the ten special vertices that induce
the supported Kp3q

5 . For those vertices we will use small letters r and b depending on their
colour.

We begin with the selection of r14 P R14. Applying (5.3) to all pairs of vertices B15 P B15

and B45 P B45 implies that the total number of hyperedges in A145 crossing the sets R14,
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B15, and B45 is at least

|B15
||B45

| ¨

ˆ

1
3ϱ `

ε

2

˙

|R14
| .

Consequently, we can fix some vertex r14 P R14 such that

|NB15ˆB45pr14
q| ě

ˆ

1
3ϱ `

ε

2

˙

|B15
||B45

| . (5.4)

The following claim fixes the four vertices b12, b34 and r13, r24.

Claim 5.1. There are blue vertices b12 P B12, b34 P B34 and red vertices r13 P R13, r24 P R24

such that
(i ) b12r14r24 and r13r14b34 are hyperedges in A

(ii ) and |NB23pb12, r13q X NB23pr24, b34q| ě
`

1 ´ 1
3β
˘

|B23|.

Proof. Owing to (5.2) for every R13 P R13 we have dpR13, r14q ě
` 1

3β ` ε
2
˘

|B34| and, hence,
there is a vertex b34 P B34 such that

|NR13pr14, b34
q| ě

ˆ

1
3β `

ε

2

˙

|R13
| ě

ϱ

3β |P13
| . (5.5)

Similarly, we can fix a vertex r24 P R24 such that

|NB23pr24, b34
q| ě

1
3ϱ |B23

| . (5.6)

Recalling that |R13| ď pϱ ` ξq|P 13| for every B12 P B12 and B23 P B23 we have
ˇ

ˇNR13pB12, B23
q X NR13pr14, b34

q
ˇ

ˇ ě

ˆ

1
3 ` ε

˙

|P13
| `

ˇ

ˇNR13pr14, b34
q
ˇ

ˇ ´ |R13
|

ě
ˇ

ˇNR13pr14, b34
q
ˇ

ˇ ´

ˆ

ϱ ` ξ ´
1
3 ´ ε

˙

|P13
|

(5.5)
ě

ˆ

1 ´ 3β `
β

ϱ

˙

ˇ

ˇNR13pr14, b34
q
ˇ

ˇ

ě

ˆ

3ϱ ´
ϱ

β

˙

ˇ

ˇNR13pr14, b34
q
ˇ

ˇ ,

where the last estimate uses β ` ϱ “ 1 and β
ϱ

`
ϱ
β

ě 2. Hence, the number of hyperedges
crossing NB12pr14, r24q, NB23pr24, b34q, and NR13pr14, b34q is at least

|NB12pr14, r24
q||NB23pr24, b34

q| ¨

ˆ

3ϱ ´
ϱ

β

˙

|NR13pr14, b34
q| .

Consequently, there exist b12 P NB12pr14, r24q and r13 P NR13pr14, b34q such that

|NB23pb12, r13
q X NB23pr24, b34

q| ě

ˆ

3ϱ ´
ϱ

β

˙

|NB23pr24, b34
q|

(5.6)
ě

ˆ

1 ´
1

3β

˙

|B23
| . □
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The next claim fixes the four vertices b15, b45 and r25, r35. Together with Claim 5.1 this
fixes all vertices except b23 and both claims together guarantee those seven hyperedges
supporting a Kp3q

5 that do not involve b23.

Claim 5.2. There exist blue vertices b15 P B15, b45 P B45 and red vertices r25 P R25,
r35 P R35 such that b12b15r25, r13b15r35, r14b15b45, r24r25b45, and b34r35b45 are hyperedges
in A.

Proof. We consider two sets of “candidates” for the pair pb15, b45q that are relevant for the
existence of r25 and r35. More precisely, we set

G1 “ tpB15, B45
q P B15

ˆ B45 : NR25pb12, B15
q X NR25pr24, B45

q ‰ ∅u

and G2 “ tpB15, B45
q P B15

ˆ B45 : NR35pr13, B15
q X NR35pb34, B45

q ‰ ∅u .

Note that for every B15 P B15 there is some R25 P NR25pb12, B15q and we have

|NB45pr24, R25
q|

(5.2)
ě

1
3β |B45

| .

Clearly, tB15u ˆ NB45pr24, R25q Ď G1 and, hence, we establish

|G1| ě
1

3β |B15
||B45

| . (5.7)

A symmetric argument yields the same bound for G2. Combining (5.7) and the same
bound for G2 with (5.4) leads to

|G1| ` |G2| ` |NB15ˆB45pr14
q| ě

ˆ

2
3β `

1
3ϱ `

ε

2

˙

|B15
||B45

|
(5.1)
ą 2 |B15

||B45
| .

Consequently, we can fix a pair pb15, b45q P G1 X G2 X NB15ˆB45pr14q. Moreover, having
fixed b15 and b45 this yields a vertex r25 P R25 from the non-empty intersection considered
in the definition of G1. Similarly, G2 leads to our choice of r35 P R35.

Since pb15, b45q P NB15ˆB45pr14q, the hyperedge r14b15b45 exists in A and the other four
hyperedges result from the definitions of G1 and G2. □

As mentioned above, Claims 5.1 and 5.2 fix all vertices except b23 P B23 and all hyperedges
not involving b23. For the three remaining hyperedges it suffices to show that

NB23pb12, r13
q X NB23pr24, b34

q X NB23pr25, r35
q ‰ ∅ .

Claim 5.1 (ii ) and (5.2) imply
ˇ

ˇNB23pb12, r13
q X NB23pr24, b34

q X NB23pr25, r35
q
ˇ

ˇ

ě
ˇ

ˇNB23pb12, r13
q X NB23pr24, b34

q
ˇ

ˇ `
ˇ

ˇNB23pr25, r35
q
ˇ

ˇ ´
ˇ

ˇB23ˇ
ˇ

(5.2)
ě

ˆ

1 ´
1

3β `
1

3β `
ε

2 ´ 1
˙

|B23
| ą 0 .

Hence a suitable choice for b23 exists and, therefore, A restricted to J supports a Kp3q

5 . □
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§6. Concluding Remarks

We close with a few related open problems and possible directions for future research.

6.1. Turán problems for cliques in -dense hypergraphs. In view of Theorems 1.2
and 1.3 for cliques Kp3q

ℓ with ℓ ď 16 vertices only the cases ℓ “ 9 and 10 are still unresolved
and closing the bounds

1
2 ď π pK

p3q

9 q ď π pK
p3q

10 q ď
2
3

would be interesting. It seems plausible that by combining our main result with the ideas
in [14] one can derive the improved upper bound π pK

p3q

10 q ď 3
5 . More generally, it seems

that π pKp3q
r q “ α implies π pK

p3q

2r q ď 1
2´α

and we shall return to this topic in the near
future.

Determining the value π pK
p3q

ℓ q for large values of ℓ might be a challenging problem and
one may first focus on the asymptotic behaviour. For every ℓ ě 3 Theorem 1.2 tells us

π pK
p3q

ℓ q ď 1 ´
1

log2pℓq
. (6.1)

For a lower bound we consider the following well known random construction.

Example 6.1. For r ě 2 we consider random hypergraphs Hφ “ pV,Eφq with the edge
set defined by the non-monochormatic triangles of a random r-colouring φ : V p2q ÝÑ rrs

for a sufficiently large vertex set V . It is easy to check that for any fixed η ą 0 with high
probability such hypergraphs Hφ are pη, r´1

r
, q-dense. On the other hand, if ℓ is at least

as large as Rp3; rq, the r-colour Ramsey number for graph triangles, then every such Hφ

is Kp3q

ℓ -free.

Consequently, Example 6.1 yields

π pK
p3q

ℓ q ě 1 ´
1
r
, whenever ℓ ě Rp3; rq

and using the simple upper bound Rp3; rq ď 3 r! we arrive at

π pK
p3q

ℓ q ě 1 ´
log2 log2pℓq

log2pℓq
(6.2)

for sufficiently large ℓ. Comparing the bounds in (6.1) and (6.2) leads to the following
problem.

Problem 6.2. Determine the asymptotic behaviour of 1 ´ π pK
p3q

ℓ q.

6.2. Turán problems for hypergraphs with uniformly dense links. As discussed in
the introduction there is a small difference between Theorem 1.3 and Corollary 1.5. Below
we briefly elaborate on these differences.
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In this work we study -dense hypergraphs, which are defined by the lower bound
condition (1.1) in Definition 1.1. Requiring in addition a matching upper bound, i.e.,
replacing (1.1) by

ˇ

ˇe pP,Qq ´ d |K pP,Qq|
ˇ

ˇ ď η|V |
3 ,

leads to the notion of pη, d, q-quasirandom hypergraphs. Clearly, we can transfer the defi-
nition of π pF q in (1.2) and define the Turán-density π1 pF q by restricting to -quasirandom
hypergraphs H

π1
pF q “ suptd P r0, 1s : for every η ą 0 and n P N there exists an F -free,

pη, d, q-quasirandom hypergraph with at least n verticesu .

By definition we have π1 pF q ď π pF q for every hypergraph F and one may wonder if this
inequality is sometimes strict.

For Kp3q

5 it is easy to check that the lower bound construction in Example 1.4 yields
K

p3q

5 -free pη, 1{3, q-quasirandom hypergraphs for every fixed η ą 0 and, hence,

π1
pK

p3q

5 q “ π pK
p3q

5 q “
1
3 .

On the other hand, the lower bound construction for Kp3q

6 from [14] is given by Example 6.1
for r “ 2. In those hypergraphs Hφ we can take P and Q to be the pairs in colour 1 and 2
respectively and get

e pP,Qq “ |K pP,Qq| ,

i.e., they have relative density 1. Therefore, the hypergraphs Hφ are only pη, 1{2, q-dense,
but not pη, 1{2, q-quasirandom. In fact, we are not aware of any matching quasirandom
lower bound construction for π pK

p3q

6 q and it seems possible that π1 pK
p3q

6 q is strictly smaller
than π pK

p3q

6 q suggesting the following general problem.∗

Problem 6.3. Which hypergraphs F satisfy π1 pF q ă π pF q?
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