SCHRIJVERS BEWEIS VON MADERS SATZ

MATHIAS SCHACHT

ZUSAMMENFASSUNG. Wir reproduzieren Schrijvers Beweis [A short proof of Mader's \mathcal{S} -paths theorem, J. Combin. Theory Ser. B $\mathbf{82}$ (2001), no. 2, 319–321] von Maders Min-Max-Satz [Über die Maximalzahl kreuzungsfreier H-Wege, Arch. Math. (Basel) $\mathbf{31}$ (1978/79), no. 4, 387–402] über die Anzahl der H-Wege in einem Graphen.

1. Maders Min-Max-Satz über die Anzahl von H-Wegen

In der Arbeit von Schrijver [3] wird die folgende Formulierung von Maders Satz aus [2] bewiesen (siehe Satz 1). Wir werden skizzieren wie man aus diesem Satz die Formulierung von Maders Satz über kreuzungsfreie H-Wege (siehe Korollar 2) herleiten kann.

Eine Menge \mathcal{P} von Wegen in einem Graphen G=(V,E) ist kreuzungsfrei, wenn die Schnittmenge der Eckenmengen zweier unterschiedlicher Wege aus \mathcal{P} eine Teilmenge der gemeinsamen Endecken beider Wege ist. Einfacher ausgedrückt zwei Wege sing kreuzungsfrei wenn sie sich höchstens in ihren Endecken schneiden. Darüber hinaus ist \mathcal{P} (ecken)disjunkt, wenn keine zwei Wege eine gemeinsame Ecke haben. Sei \mathscr{S} eine Menge von paarweise disjunkten Teilmengen von V. Ein \mathscr{S} -Weg ist ein Weg in G, deren Endecken in unterschiedlichen Mengen aus \mathscr{S} liegen. Insbesondere enthält jeder \mathscr{S} -Weg mindestens eine Kante. Für einen Graphen G=(V,E) und eine solche Menge \mathscr{S} sei $\pi_{G,\mathscr{S}}$ die Kardinalität einer größten Menge von disjunkten \mathscr{S} -Wegen in G. Satz 1 gibt eine Darstellung von $\pi_{G,\mathscr{S}}$ als Minimum eines Parameters von speziellen Partitionen von G. In den Partitionen hier ist die leere Menge als Partitionsklasse zugelassen.

Eine Partition $\mathscr{Z}=\{X,Y_1,\ldots,Y_k\}$ von V, d. h. $X\dot{\cup}Y_1\dot{\cup}\ldots\dot{\cup}Y_k=V$, überdeckt alle \mathscr{S} -Wege (kurz \mathscr{Z} ist \mathscr{S} -überdeckend) falls jeder \mathscr{S} -Weg in G der X vermeidet, d. h. keine Ecke aus X enthält, eine Kante enthält, dessen beide Endecken in einer der Mengen Y_i enthalten sind. Für Y_i sei $\partial_{\mathscr{Z},\mathscr{S}}Y_i$ die Menge der Ecken aus Y_i die entweder in $S=\bigcup\mathscr{S}$ liegen oder einen Nachbarn in einer anderen Menge Y_j mit $j\neq i$ haben

$$\partial_{\mathscr{Z},\mathscr{S}}Y_i = \{ y \in Y_i \colon y \in S \text{ oder } N_G(y) \setminus (X \dot{\cup} Y_i) \neq \emptyset \}.$$

Da jeder $\mathscr S$ -Weg der X meidet für ein $i=1,\ldots,k$ mindestens eine Kante aus $G[Y_i]$ enthält, muss so ein $\mathscr S$ -Weg dann auch mindestens zwei Ecken aus $\partial_{\mathscr Z,\mathscr S}Y_i$ enthalten. Somit gilt

$$\pi_{G,\mathscr{S}} \leq |X| + \sum_{i=1}^{k} \lfloor |\partial_{\mathscr{Z},\mathscr{S}} Y_i|/2 \rfloor =: \mu_{G,\mathscr{S}}(\mathscr{Z}).$$

Date: 30. Dezember 2011.

für alle \mathscr{S} -überdeckenden Partitionen $\mathscr{Z} = \{X, Y_1, \dots, Y_k\}$. Der Satz von Mader besagt, dass diese obere Schranke für eine Partitionen \mathscr{Z} tatsächlich angenommen wird.

Satz 1 (Mader 1978). Für jeden Graphen G=(V,E) und jede Menge $\mathscr S$ von disjunkten Teilmengen aus V gilt

$$\pi_{G,\mathscr{S}} = \min_{\mathscr{Z}} \mu_{G,\mathscr{S}}(\mathscr{Z}), \qquad (1)$$

wobei das Minimum über alle S-überdeckenden Partitionen genommen wird.

Der folgende Beweis ist mit minimalen Änderungen direkt aus der Arbeit [3] von Schrijver entnommen.

Beweis. Der Beweis besteht aus zwei Teilen. Im ersten Teil beweisen wir den Spezialfall, wenn alle Mengen $T \in \mathscr{S}$ aus genau einer Ecke bestehen. Dieser Fall wurde bereits von Gallai [1] behandelt und kann auf die Matchingformel von Tutte zurückgeführt werden.

1. Fall: |T|=1 für alle $T\in \mathcal{S}$. Seien G=(V,E) und \mathcal{S} gegeben und sei

$$\mu_{G,\mathscr{S}} = \min_{\mathscr{X}} \mu_{G,\mathscr{S}}(\mathscr{Z})$$

die rechte Seite aus (1). Wir setzen $S = \bigcup \mathscr{S}$ und betrachten den folgenden Hilfsgraphen $\widetilde{G} = (\widetilde{V}, \widetilde{E})$: Seien (V_1, E_1) und (V_2, E_2) zwei Kopien von G, wobei für eine Ecke $v \in V$ die Ecken $v_1 \in V_1$ und $v_2 \in V_2$ die entsprechenden Kopien bezeichnen und \mathscr{S}_1 und \mathscr{S}_2 entsprechen den Kopien von \mathscr{S} . Der Graph \widetilde{G} entsteht aus den beiden Kopien, in dem wir zuerst jeweils die beiden Kopien von jeder Ecke $v \in S$ identifizieren, die entstehende Kopie von S bezeichnen wir dann mit $\widetilde{S} = \bigcup \mathscr{S}_1 = \bigcup \mathscr{S}_2$, und für jede Ecke $v \in V \setminus S$ fügen wir die Kanten v_1u_2 und v_2u_1 für alle $u \in N_G(v) \setminus S$ und die Kante v_1v_2 hinzu.

Wir werden zeigen, dass G eine Paarung der Größe $\mu_{G,\mathscr{S}} + |V \setminus S|$ enthält. Auf Grund der Matchingformel von Tutte ist es hinreichend, die folgende Ungleichung für jede Menge $\widetilde{X} \subseteq \widetilde{V}$

$$|\widetilde{X}| + \sum_{\widetilde{C} \in \mathcal{C}_{\widetilde{G} - \widetilde{X}}} \left\lfloor \left| V(\widetilde{C}) \right| / 2 \right\rfloor \ge \mu_{G, \mathscr{S}} + |V \setminus S| \tag{2}$$

zu überprüfen, wobei $\mathcal{C}_{\widetilde{G}-\widetilde{X}}$ die Menge der Komponenten in $\widetilde{G}-\widetilde{X}$ ist.

Sei $\widetilde{X}\subseteq \widetilde{V}.$ O. B. d. A. können wir annehmen, dass für jede Ecke $v\in V\setminus S$ gilt

$$v_1 \in \widetilde{X} \quad \Leftrightarrow \quad v_2 \in \widetilde{X} \,. \tag{3}$$

Falls nur eine der Ecken, sagen wir v_1 , in \widetilde{X} enthalten wäre, dann könnten wir sie aus \widetilde{X} entfernen und der Komponente in $\widetilde{G}-\widetilde{X}$ hinzufügen die auch v_2 enthält. Da v_1 und v_2 in $\widetilde{V}\setminus\{v_1,v_2\}$ die gleiche Nachbarschaft haben, sind alle anderen Komponenten aus $\widetilde{G}-\widetilde{X}$ auch Komponenten von $\widetilde{G}-(\widetilde{X}\setminus\{v_1\})$. Die linke Seite von (2) würde sich also durch das entfernen von v_1 aus \widetilde{X} nicht erhöhen und deswegen können wir (3) voraussetzen.

Wegen (3) und da für jede Ecke $v \in V \setminus S$ die Kante v_1v_2 in \widetilde{G} liegt, muss auch

$$v_1 \in V(C) \quad \Leftrightarrow \quad v_2 \in V(C) \,. \tag{4}$$

für alle Ecken $v \in V \setminus S$ und alle Komponenten $C \in \mathcal{C}_{\widetilde{G}-\widetilde{X}}$ gelten. Insbesondere haben |V(C)| und $|V(C)\cap \widetilde{S}|$ die gleiche Parität. Für $X_1=\widetilde{X}\cap V_1$, sei \mathscr{Z}_1 die Partition von V_1 bestehend aus X_1 und den Eckenmengen der Komponenten von G_1-X_1 . Dann erhalten wir

$$\begin{split} |\widetilde{X}| + \sum_{\widetilde{C} \in \mathcal{C}_{\widetilde{G} - \widetilde{X}}} \left\lfloor \left| V(\widetilde{C}) \right| / 2 \right\rfloor &= |X_1| + \sum_{C_1 \in \mathcal{C}_{G_1 - X_1}} \left\lfloor \left| V(C_1) \cap \widetilde{S} \right| / 2 \right\rfloor + |V \setminus S| \\ &\geq |X_1| + \sum_{C_1 \in \mathcal{C}_{G_1 - X_1}} \left\lfloor \left| \partial_{\mathscr{Z}_1, \mathscr{S}_1} V(C_1) \right| / 2 \right\rfloor + |V \setminus S| \\ &\geq \mu_{G_1, \mathscr{S}_1} + |V \setminus S| = \mu_{G, \mathscr{S}} + |V \setminus S| \,. \end{split}$$

Die Matchingformel von Tutte besagt nun, dass \widetilde{G} eine Paarung mit mindestens $\mu_{G,\mathscr{S}}+|V\setminus S|$ Kanten enthält und wir halten eine solche Paarung M fest. Des weiteren sei N die Paarung in \widetilde{G} die aus den $|V\setminus S|$ Kanten der Form v_1v_2 mit $v\in V\setminus S$ besteht. Die Paarung M hat also $\mu_{G,\mathscr{S}}$ Kanten mehr als die Paarung N und deswegen gibt es mindestens $\mu_{G,\mathscr{S}}$ Komponenten in dem Graphen $(\widetilde{V},M\cup N)$ die genau eine Kante mehr aus M als aus N haben. Jede solche Komponente ist ein alternierender Weg dessen Endecken in \widetilde{S} liegen. Durch Kontraktion aller Kanten aus N in \widetilde{G} erhalten wir wieder eine Kopie von G und jeder der angesprochenen Wege entspricht einem \mathscr{S} -Weg in dieser Kopie. Um einzusehen, dass diese Wege tatsächlich \mathscr{S} -Wege sind, berufen wir uns auf die Annahme, dass \mathscr{S} nur aus einelementigen Mengen besteht und somit ist jeder Weg mit Endecken in S auch ein S-Weg. Wir haben also für diesen Fall gezeigt, dass G mindestens $\mu_{G,\mathscr{S}}$ disjunkte S-Wege enthält.

2. Fall: $|T| \geq 2$ für ein $T \in \mathscr{S}$. Wir führen einen Widerspruchsbeweis. Für eine gegebene Eckenmenge V wählen wir unter allen möglichen Gegenbeispielen einen Graphen G = (V, E) und eine Menge disjunkter Teilmengen \mathscr{S} aus, so dass

$$\sigma(G,\mathscr{S}) := |E| - \sum_{S_1 \neq S_2 \in \mathscr{S}} |S_1||S_2|$$

minimiert wird. Da jeder \mathscr{S} -Weg der eine innere Ecke in $S = \bigcup \mathscr{S}$ hat einen Teilweg enthält der ebenfalls ein \mathscr{S} -Weg ist, können wir uns im Folgenden auf Wege beschränken, die keine inneren Ecken in S haben. Insbesondere folgt damit aus der Minimalität von $\sigma(G,\mathscr{S})$, dass die Mengen aus \mathscr{S} unabhängig in G sind.

Sei also $T \in \mathscr{S}$ eine in G unabhängige Menge mit $|T| \geq 2$ und sei t eine Ecke aus T. Wir betrachten nun die Menge disjunkter Teilmengen \mathscr{S}' die wir erhalten, wenn wir T aus \mathscr{S} entfernen und dafür die beiden Mengen $T' = T \setminus \{t\}$ und $\{t\}$ einfügen. Für \mathscr{S}' gilt

$$\sigma(G, \mathscr{S}') = \sigma(G, \mathscr{S}') - |T| + 1 < \sigma(G, \mathscr{S})$$

und wegen der Wahl von G und $\mathscr S$ gibt es $\mu_{G,\mathscr S'}$ disjunkte $\mathscr S'$ -Wege in G. Da jeder $\mathscr S$ -Weg in G auch ein $\mathscr S'$ -Weg ist, ist jede $\mathscr S'$ -überdeckende Partition $\mathscr E$ eine $\mathscr S$ -überdeckende Partition. Darüber hinaus hängt die Definition von $\partial_{\mathscr Z,\mathscr S'}(\cdot)$ nur von der Menge $S = \bigcup \mathscr S = \bigcup \mathscr S'$, nicht aber von den einzelnen Mengen in $\mathscr S'$ ab. Somit gilt $\mu_{G,\mathscr S'} \geq \mu_{G,\mathscr S}$.

Wir wählen eine Menge \mathcal{P}' von $\mu_{G,\mathscr{S}}$ disjunkten \mathscr{S}' -Wegen so aus, dass kein Weg $P' \in \mathcal{P}'$ eine innere Ecke in S hat. Da \mathcal{P}' keine Menge von \mathscr{S} -Wegen ist,

muss \mathcal{P}' einen t-T'-Weg P'_0 enthalten und nach unserer Wahl von T und \mathcal{P}' muss dieser Weg eine innere Ecke $u \in V \setminus S$ haben.

Als nächstes betrachten wir die Mengenfamilie \mathscr{S}'' , die wir erhalten, wenn wir in \mathscr{S} die Menge T durch $T \cup \{u\}$ ersetzen. Da der Satz für Mengen \mathscr{S} mit $|\mathscr{S}| = 1$ leicht einzusehen ist (in diesem Fall ist $\mu_{G,\mathscr{S}}(\mathscr{Z}) = 0$ für die triviale Partition $\mathscr{Z} = \{\emptyset\} \cup \{\{v\} \colon v \in V\}$ mit $X = \emptyset$), können wir $\mathscr{S} \neq \{T\}$ annehmen. Folglich gilt

$$\sigma(G, \mathscr{S}'') = \sigma(G, \mathscr{S}) - |S \setminus T| < \sigma(G, \mathscr{S})$$

und wegen der Minimalität von G und $\mathscr S$ gibt es $\mu_{G,\mathscr S''}$ disjunkte $\mathscr S''$ -Wege in G. Da wieder jeder $\mathscr S$ -Weg auch ein $\mathscr S''$ -Weg ist und $S \subsetneq (S \cup \{u\}) = \bigcup \mathscr S''$ gilt $\mu_{G,\mathscr S''} \ge \mu_{G,\mathscr S}$.

Unter allen Mengen von $\mu_{G,\mathscr{T}}$ disjunkten \mathscr{S}'' -Wegen in G die keine inneren Ecken in $S \cup \{u\}$ haben, sei \mathscr{P}'' eine der Mengen die die die wenigsten Kanten ausserhalb von mit Wegen aus \mathscr{P}' benutzt. D. h. \mathscr{P}'' minimiert

$$\sum_{P'' \in \mathcal{P}''} \left| E(P'') \setminus \bigcup_{P' \in \mathcal{P}'} E(P') \right|. \tag{5}$$

Da \mathcal{P}'' nicht ausschließlich aus \mathscr{S} -Wegen bestehen kann, muss es einen Weg P_0'' mit Endecke u enthalten. Wegen $u \notin S = \bigcup \mathscr{S}'$ und $|\mathcal{P}'| = |\mathcal{P}''|$ muss es eine Endecke $v \in S$ eines \mathscr{S}' -Weges $P' \in \mathcal{P}'$ geben, die in keinem Weg aus \mathcal{P}'' enthalten ist.

Ausgehend von v sei w die erste Ecke auf dem Weg P' die auch auf einem Weg aus \mathcal{P}'' liegt. So eine Ecke w muss es tatsächlich geben, da sonst P' disjunkt zu allen Wegen aus \mathcal{P}'' ist, was auch $P' \neq P'_0$ nach sich zieht (da $V(P'_0) \cap V(P''_0) \supseteq \{u\}$), und deswegen $(\mathcal{P}'' \setminus \{P''_0\}) \cup \{P'\}$ eine Menge von $\mu_{G,\mathscr{S}}$ disjunkten \mathscr{S} -Wegen in G wäre. Sei x die andere Endecke von P', sei $P'' \in \mathcal{P}''$ der Weg der w enthält und seien y und z die Endecken von P''. Weiterhin sei $T'' \in \mathscr{S}''$ die Menge die v enthält.

Wir werden zeigen, dass $P' = P'_0$ und wegen der Wahl von w muss dann u eine Ecke des Teilweges wP'x sein. Dann werden wir aus dem Teilweg vP'w und einem Teilweg von P'' einen \mathscr{S} -Weg bauen, den wir an Stelle von P'_0 zu \mathcal{P}' hinzufügen können, um so $\mu_{G,\mathscr{S}}$ disjunkte \mathscr{S} -Wege zu erhalten.

Wir beginnen mit folgender Beobachtung, falls der Teilweg yP''w nicht ganz in wP'x enthalten ist und z nicht in T'' liegt, dann könnten wir das Teilstück yP''w durch vP'w in P'' ersetzen und erhielten auf diese Weise $\mu_{G,\mathscr{S}}$ disjunkte \mathscr{S}'' -Wege die der minimalen Wahl von \mathscr{P}'' in (5) widersprechen würden. Also muss gelten, dass entweder der Teilweg yP''w (bzw. wP''z) in wP'x enthalten ist oder z (bzw. y) liegt in T''. Da aber nicht sowohl y, als auch z in T'' liegen können (dann wäre P'' kein \mathscr{S}'' -Weg), können wir o. B. d. A. annehmen, dass $y \notin T''$ und dass dann wP''z in wP'x enthalten ist. Auf der anderen Seite werden wir zeigen, dass nun aber yP''w nicht mehr in wP'x enthalten sein kann, was $z \in T''$ nach sich zieht.

Angenommen yP''w wäre auch in wP'x enthalten. Dann muss w=y gelten und da die Wege aus \mathcal{P} und \mathcal{P}' keine inneren Ecken in S haben, muss in diesem Fall y=w=u und x=z gelten (bzw. z=w=u und x=y). Das bedeutet aber, dass u eine innere Ecke von P' ist und deswegen $P'=P'_0$. Somit liegen y und x=z in $T\cup\{u\}$, also wäre P'' kein \mathscr{S}'' -Weg. Also ist yP''w nicht in wP'x enthalten und $z\in T''$

Falls z=x ist, dann wären die Endecken x und v von P' beide in T''. Somit muss T'' zwei Mengen aus \mathscr{S}' schneiden und deswegen gilt $T''=T\cup\{u\}$ und

 $P'=P'_0$. Aber dann enthält P' die Ecke u und schneidet den Weg P''_0 . Da u keine innere Ecke von vP'w sein kann (wegen der Wahl von w) und $u\neq x=z$ muss dann aber w=u, $P''_0=wP'x$ und somit auch $P''=P_0$ und w=y gelten. Dann wären aber die Endecken y=u und x von P'' beide in $T''=T\cup\{u\}$ enthalten und wir erhielten den Widerspruch, dass P'' kein \mathscr{S}'' -Weg ist.

Also ist z eine innere Ecke P'. Da aber keine innere Ecke von P' in S liegt muss dann z=u sein und somit gilt $P'=P'_0$ und $P''=P''_0$ und y ist nicht in P' enthalten, also $y\neq w$. Nun können wir P'' in \mathcal{P}'' durch vP'wP''y ersetzen und erhalten auf diese Weise $\mu_{G,\mathscr{S}}$ disjunkte \mathscr{S}'' -Wege die alle u nicht als Endecke haben und deswegen alle auch \mathscr{S} -Wege sind.

Die folgende Formulierung von Maders Satz findet sich bereits in Maders Arbeit [2]. Ein Weg P in G=(V,E) ist ein H-Weg für einen induzierten Teilgraphen H=G[U], falls die Endecken von P in H liegen und alle inneren Ecken außerhalb von H liegen. Wir sagen (X,F) für $X\subseteq V\setminus U$ und $F\subseteq E(G-U-X)$ ist H-zulässig, falls jeder X-vermeidende H-Weg eine Kante aus F enthält. Für so ein Paar (X,F) sei G(H;X,F) der Teilgraph mit Eckenmenge $(V\setminus U)\setminus X$ und Kantenmenge F. Für eine Komponente $C\in \mathcal{C}_{G(H;X,F)}$ definieren wir

$$\partial_{G,H,X,F}(C) = \{ v \in V(C) \colon N_G(v) \setminus (X \cup V(C)) \neq \emptyset \}$$

und setzen

$$\mu_{G,H}(X,F) = |X| \sum_{C \in \mathcal{C}_{G(H;X,F)}} \lfloor |\partial_{G,H,X,F}(C)|/2 \rfloor.$$

Es ist leicht einzusehen, dass jeder X-vermeidende H-Weg mindestens zwei Ecken aus $\partial_{G,H,X,F}(C)$ für ein $C \in \mathcal{C}_{G(H;X,F)}$ enthalten muss, weswegen für jedes H-zulässige Paar (X,F) der Wert $\mu_{G,H}(X,F)$ eine obere Schranke für die maximale Anzahl kreuzungsfreier H-Wege in G darstellt. Wie in Satz 1 ist diese Schranke bestmöglich.

Korollar 2. Sei G = (V, E) ein Graph und H = G[U] ein induzierter Teilgraph für eine Menge $U \subseteq V$. Die maximale Anzahl kreuzungsfreier H-Wege in G ist $\min_{X,F} \mu_{G,H}(X,F)$, wobei das Minimum über alle H-zulässigen Paare (X,F) genommen wird.

Beweis (Skizze). Grob gesprochen würden wir gerne Satz 1 für den Graphen G' = G - U und die Mengen $\mathscr{S} = \{N_G(u) \setminus U \colon u \in U\}$ anwenden, um disjunkte \mathscr{S} -Wege in G' mit kreuzungsfreien H-Wegen in G in Zusammenhang zu bringen. Hierbei ergeben sich zwei kleine technische Problem. Zum einen besteht \mathscr{S} im Allgemeinen nicht aus paarweise disjunkten Mengen und zum anderen kann es sein, dass ein H-Weg bestehend aus zwei Kanten in G zu einem trivialen Weg in G' degeneriert. Die folgende Konstruktion adressiert diese beiden technischen Details.

- Setze $W = V \setminus U$ und $W_{\geq 2} = \{ w \in W : |N_G(w) \cap U| \geq 2 \}.$
- Ausgehend von $G' = G[\overline{W}]$ füge für jede Ecke $w \in W_{\geq 2}$ eine neue Ecke w' ein, die nur mit w verbunden wird und sei G'' der resultierende Graph.
- Setze

$$\mathscr{S} = \{ (N_G(u) \cap W) \setminus W_{\geq 2} \colon u \in U \} \cup \{ \{w\} \colon w \in W_{\geq 2} \} \cup \{ \{w'\} \colon w \in W_{\geq 2} \}$$

Mit Hilfe dieser Konstruktion kann man zeigen, dass die Kriterien in Satz 1 angewandt für G'' und $\mathscr S$ denen in Korollar 2 für G und H entsprechen und so kann man Korollar 2 aus Satz 1 herleiten.

6

LITERATUR

- 1. T. Gallai, Maximum-minimum Sätze und verallgemeinerte Faktoren von Graphen, Acta Math. Acad. Sci. Hungar. 12 (1961), 131–173. 1
- 2. W. Mader, Über die Maximalzahl kreuzungsfreier H-Wege, Arch. Math. (Basel) 31 (1978/79), no. 4, 387–402. 1, 1
- 3. A. Schrijver, A short proof of Mader's \mathcal{S} -paths theorem, J. Combin. Theory Ser. B **82** (2001), no. 2, 319–321. 1, 1