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Abstract. We show that every 4-uniform hypergraph with n vertices and minimum
pair-degree at least p5{9 ` op1qqn2{2 contains a tight Hamiltonian cycle. This degree
condition is asymptotically optimal. In the proof we use a variant of the absorbing
method and ideas from the proof of the optimal minimum vertex degree condition for
tight Hamiltonian cycles in 3-uniform hypergraphs that was obtained in a previous article
by Reiher, Rödl, Ruciński, Schacht, and Szemerédi.

§1. Background and main result

We deal with hypergraph extensions of Dirac’s Theorem. In 1952 G. A. Dirac [1 ] proved
that every graph G “ pV,Eq on at least 3 vertices and with minimum vertex degree
δpGq ě |V |{2 contains a Hamiltonian cycle. This result is best possible, as there are
graphs G with minimum degree δpGq “

P

|V |{2
T

´ 1 not containing a Hamiltonian cycle.
For k ě 2, a k-uniform hypergraph, or, shortly, a k-graph, is a pair pV,Eq, where

E Ď V pkq :“ te Ď V : |e| “ ku, that is, the edge set E “ EpHq consists of k-element
sets of vertices. After several earlier, related results offering various Dirac-type conditions
ensuring the existence of Hamiltonian cycles in k-graphs (see, e.g., [6 ] and [9 ]), in [5 ] the
following extension of Dirac’s Theorem was established.

A 3-graph H is called Hamiltonian if for some cyclic ordering of its vertices V pHq “
tx1, . . . , xnu, every consecutive triple of vertices txi, xi`1, xi`2u with i P Z{nZ is an edge
of H.

Theorem 1.1. For every α ą 0 there exists an integer n0 such that every 3-uniform
hypergraph H with n ě n0 vertices and with minimum vertex degree δpHq ě

`5
9 ` α

˘

n2

2 is
Hamiltonian.

One may consider various further extensions of Theorem 1.1 to k-uniform hyper-
graphs. Perhaps the most natural one would be to find the smallest constant ck with
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the property that, for large n, every n-vertex k-graph H with minimum degree δpHq ě
pck ` op1qqnk´1{pk ´ 1q! is Hamiltonian. (Similarly, as for k “ 3, a k-graph H is called
Hamiltonian if for some cyclic ordering of its vertices V pHq “ tx1, . . . , xnu, every con-
secutive k-element segment of vertices txi, xi`1, . . . , xi`k´1u with i P Z{nZ is an edge
of H.)

Since finding an optimal value of the parameter ck seems beyond the reach of our
current methodology, here we take another approach, which allows us to utilise some of
the methods developed in [4 ] and [5 ]. Given a k-graph H “ pV,Eq and a subset S Ď V ,
we denote by dHpSq the degree of S in H, that is, the number of edges e P H with S Ď e.
For d P rk ´ 1s, the minimum d-degree δdpHq is the smallest value of dHpSq taken over
all d-element subsets S Ď V . Finally, given d, k, and n, with 1 ď d ď k ´ 1 ă n, we define

h
pkq
d pnq “ minth P N : each n-vertex k-graph H with δdpHq ě h is Hamiltonianu.

The following generalisation of Dirac’s result was proved in [7 ].

Theorem 1.2. For every k ě 2, we have hpkqk´1pnq “
`1

2 ` op1q
˘

n.

Here we concentrate on the next value of d, namely d “ k´2, and formulate the following
conjecture.

Conjecture 1.3. For all k ě 3, we have hpkqk´2pnq “
`5

9 ` op1q
˘

n2{2.

The construction presented later in this section shows that, if true, this conjecture
provides the best possible constant. In [5 ] Conjecture 1.3 was verified for k “ 3. The main
result of this paper establishes it for k “ 4. For k ě 5 it remains open.

Theorem 1.4 (Main Theorem). For every α ą 0 there exists an integer n0 such that
every 4-uniform hypergraph H with n ě n0 vertices and with minimum pair-degree δ2pHq ě
`5

9 ` α
˘

n2

2 is Hamiltonian.

§2. Tight paths and cycles

For k ě 3, a k-graph P is a tight path of length `, if |V pP q| “ ` ` k ´ 1 and there
is an ordering of the vertices V pP q “ tx1, . . . , x``k´1u such that a k-element subset e
forms an edge of P if and only if e “ txi, xi`1, . . . , xi`k´1u for some i P r`s. The ordered
pk´ 1q-tuples px1, x2, . . . , xk´1q and px``1, x``2, . . . , x``k´1q are the end-pk´ 1q-tuples of P
and we say that P is a tight path from px1, x2, . . . , xk´1q to px``1, x``2, . . . , x``k´1q. This
definition of end-tuples is not symmetric and implicitly fixes a direction on P and the order
of the end-tuples. For k “ 3 we call the end-tuples end-pairs, and for k “ 4 end-triples.
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All other vertices of P are called internal. We sometimes identify such a path P with the
sequence of its vertices x1 . . . x``k´1.

Furthermore, a tight cycle C of length ` ě k ` 1 consists of a path x1 . . . x` of length
`´ k` 1 and k´ 1 additional edges tx`´k`1, . . . , x`, x1u, . . . , tx`, . . . , xk´1u. In both cases
the length of a tight cycle and of a tight path is measured by the number of edges. For
simplicity, when k “ 3 or k “ 4, we denote edges by xyz and xyzw instead of tx, y, zu and
tx, y, z, wu.

If a tight cycle C is a sub-k-graph of another k-graph H with the same number of vertices,
then we call C a tight Hamiltonian cycle in H. Note that with our earlier notion H is
Hamiltonian if and only if H contains a tight Hamiltonian cycle. Throughout this abstract,
we will skip the word ‘tight’, as we are not considering any other types of cycles.

§3. Lower bound

For k ě 4, we provide a construction which shows that the degree constraint in Conjec-
ture 1.3 is asymptotically optimal. Our construction is based on a bipartition of the vertex
set and forbidding just one type of edges to be present, similarly as it was done for k “ 3
in [5 ] (see also [3 ] and [7 ]). For k ě 4 and sufficiently large n, let |V | “ n, V “ X 9YY ,
and |X| “ t2

3nu. Further, let j be an integer such that

2
3k ´ 1 ă j ă 2

3k ` 1.

Define a k-graph H on V with edge set V pkqzEj , where Ej is the set of all k-element subsets
of V with exactly j vertices in X (and thus exactly k ´ j vertices in Y ). We need to show
that

(a) there is no Hamiltonian cycle in H, and
(b) δk´2pHq „

5
9

n2

2 .
To prove (a), suppose to the contrary that there is a Hamiltonian cycle C in H and

consider the quantity Q “
ř

ePC |eXX|. As every vertex belongs to precisely k edges of C,
we have Q “ k|X| “ kt2

3nu. Thus, by averaging, there exist edges e1, e2 P C such that
|e1 X X| ď 2

3k ă j ` 1 and |e2 X X| ě 2
3k ą j ´ 1. But, by our construction, there are

no edges e P H with |e XX| “ j. Thus, in fact, |e1 XX| ď j ´ 1 and |e2 XX| ě j ` 1.
However, this is obviously impossible in view of the lack of edges in C with precisely j
vertices in X. We omit the calculations that prove (b).

§4. Overview of the proof

The proof relies on the absorption method introduced in [8 ]. We will construct a large
cycle covering almost all vertices with the property that it can absorb the remaining vertices
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into it, i.e. that we can build a cycle containing both the vertices of the previous cycle and
the remaining vertices. Firstly, we show that for every quadruple of vertices v1v2v3v4 there
are many subgraphs with a certain structure; we will call these subgraphs v1v2v3v4-absorbers.
A v1v2v3v4-absorber consists of vertices which can build paths together with v1v2v3v4 and
without v1v2v3v4 such that these paths have the same end-triples and contain all vertices
of the absorber. With the probabilistic method we can then find a small set of absorbers
such that every quadruple v1v2v3v4 has many v1v2v3v4-absorbers inside this set. Further,
we will show that we can in fact connect the absorbers in this set to an absorbing path PA

containing only few vertices. Due to the structure of absorbers, this path has the property
that for any set X of not too many vertices, there is a path on the vertex set V pPAq YX

and with the same end-triples as PA. Since |PA| is small, the degree condition stays almost
intact in H ´ PA. Next, we show that we can cover almost all vertices with one long path
and connect the end-triples of this path to the end-triples of PA creating a cycle. Lastly,
we can absorb the few remaining vertices into PA, leaving the end-triples and therefore the
connections to the long path intact, yielding a Hamiltonian cycle.

Let us look at some of these steps in a little more detail. For some of them, the idea
is to look into the link graphs of vertices, and make use of the minimum vertex degree
condition with methods from [5 ]. (The link graph of a vertex u in a 4-graph H is a 3-graph
on V pHq with xyz being an edge if and only if uxyz is an edge in H.) Firstly, at several
points we needed to connect two end-triples of paths by a path. We can only guarantee
such a connection for certain, so called connectable, triples. Roughly speaking, a triple abc
is connectable if for many vertices u, the pairs ab and bc can be connected by many
tight 3-uniform paths in the link graph of u. To prove such a Connecting Lemma, i.e., to
construct many paths connecting two triples abc and xyz, the basic idea is as follows. We
show that there is a large set U of vertices in whose link graphs we find a common large set
of paths connecting bc with xy. Each of those 3-uniform paths gives rise to many 4-uniform
paths when we insert vertices from U at every fourth position. So in some sense 4-graphs
with the minimum pair-degree condition from Theorem 1.4 “inherit" their connectivity
from the connectivity of 3-graphs with a respective minimum vertex degree condition. In
fact, this is an example of a more general strategy of proving a Connecting Lemma by
using good connectivity properties in the link graphs. A simple probabilistic argument
now ensures the existence of a small reservoir set such that all connectable triples are in
fact connectable by many paths taking all their internal vertices from this reservoir.

As mentioned above, following an idea of [4 ] we will always absorb four vertices into one
absorber, whereas commonly a single vertex is absorbed into one absorber. The advantage
of our approach is that we can then use absorbers whose main part is a 4-partite 4-graph.
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When showing that for each quadruple there exist many absorbers, we can then make
use of a result by Erdős [2 ] that 4-partite 4-graphs have Turán density 0 and that hence,
by supersaturation, there exist many copies of any small 4-partite 4-graph in a 4-graph
satisfying the minimum pair-degree condition in Theorem 1.4 . The divisibility issues arising
from this way of absorbing are fairly easy to deal with.

Lastly, let us sketch the construction of the almost covering path. While proofs for the
existence of almost covering subgraphs often rely on the Hypergraph Regularity Method,
we are indeed able to finish without using it. We will instead argue that a maximal path Q
consisting of a set P of paths (with certain properties) that are connected through the
reservoir will cover almost everything. To do this, we will assume that the set of uncovered
vertices U is large and construct a longer path. For that we will not only use the uncovered
vertices but also vertices of some of the paths in P. Since we will be able to construct
more new paths to add to P than we have to take out, in the end we get a longer path.
By the probabilistic method we will show that there is some selection P 1 Ď P such that
for many vertices from U the link graph induced on V pP 1q satisfies the minimum vertex
degree condition for Hamiltonian cycles in 3-graphs (note that the proof in [5 ] does not
use the Regularity Lemma). In fact, we only need some covering of almost all vertices in
this link graph with certain (3-uniform) paths. By inserting some vertices from U at every
fourth position into these paths we get more than |P 1| new 4-uniform paths. Then we get
a longer path from Q by taking out the paths in P 1, adding the newly constructed paths
and connecting everything through the reservoir.

The fact that important parts of the proof can in parts be reduced to the result on the
minimum vertex degree condition for 3-uniform hypergraphs together with the lower bound
constructions motivate Conjecture 1.3 .
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