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Abstract

We prove that for all £ > 3 and 1 < ¢ < k/2, every k-uniform hypergraph H on n
vertices with dg_o(H) = (% + 0(1)) () contains a Hamiltonian ¢-cycle if k— ¢
divides n. This degree condition is asymptotically best possible.
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1 Introduction

A Ek-uniform hypergraph H is a pair (V, E) with vertex set V' and edge set F
such that each edge is a subset of k vertices. Given a k-uniform hypergraph
H = (V,E)and S € (‘8/), we denote by deg(S) the number of edges of H
containing S and we denote by N(S) the (k — s)-element sets T € (," ) such
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that 7w S is an edge of E, i.e. deg(S) = |N(S)|. We define the minimum
s-degree of H, denoted by d5(#H), as the minimum of deg(.S) over all s-vertex
sets S € (Z)

We say that a k-uniform hypergraph C is an ¢-cycle if there exists a cyclic
ordering of its vertices such that every edge of C is composed of k£ consecutive
vertices, two consecutive edges share exactly ¢ vertices, and every vertex is
contained in an edge.

We are interested in the problem of finding minimum degree conditions that
ensure the existence of Hamiltonian cycles. This problem was first studied by
Katona and Kierstead in [7]. They posed a conjecture, which was confirmed by
the following result of R6dl, Rucinski, and Szemerédi [11,12]: For every k > 3,
if H is a k-uniform n-vertex hypergraph with 6;,_1(H) = (1/2 + o(1))n, then H
contains a Hamiltonian (k — 1)-cycle. Their proof introduces the so-called
Absorbing Method, which we will use in our proof as well. In [10] Kithn and
Osthus investigated a similar question for 1-cycles, proving that 3-uniform
hypergraphs H with d2(H) = (1/4 + o(1))n contain a Hamiltonian 1-cycle.
This result was generalized to arbitrary k and ¢-cycles with 1 < ¢ < k/2 by
Han and Schacht [4] (see also [8]).

Theorem 1.1 For all integers k =3 and 1 < ¢ < k/2 and every vy > 0 there
exists an ng such that every k-uniform hypergraph H = (V, E) on |V| =n = ng
vertices with n € (k — ()N and

5o (H) > (2(/{1_@ i ’y) n

contains a Hamiltonian (-cycle. ]

To see the optimality of the minimum degree condition, we consider the
following well-known example. Let Hy, = (V, E) be a k-uniform hypergraph
on n vertices such that F is the set of all edges with at least one vertex from

AcV, where |A| = [20@7”4) - 1]. Note that an ¢-cycle on n vertices contains

n/(k —¢) edges and for k < £/2 every vertex is contained in at most two edges
of any /-cycle. So the hypergraph Hy, does not contain a Hamiltonian ¢-cycle

and has 0,1 (Hie) = [ﬁ — 1}. In [5] Han and Zhao proved a version of
Theorem 1.1 with this sharp degree condition.

Kithn, Mycroft, and Osthus [9] generalized Theorem 1.1 to 1 < /¢ <k — 1,
solving the problem of finding minimum (k — 1)-degree conditions that ensure
the existence of Hamiltonian ¢-cycles in k-uniform hypergraphs. A natural

question is to ask for minimum d-degree conditions forcing the existence of



Hamiltonian ¢-cycles for d < k — 1. In this direction Buf}, Han, and Schacht
proved the following asymptotically optimal result in [3].

Theorem 1.2 For all v > 0 there exists an ng such that every 3-uniform
hypergraph H = (V, E) on |V| = n = ng vertices with n € 2IN and

h(H) = (176 + ’y) n

contains a Hamiltonian 1-cycle. ]

Note that the optimality again follows from the hypergraph Hy, , considered
above for £ = 3 and ¢ = 1. The sharp bound for §,(#) was proved by Han
and Zhao in [6]. We generalize Theorem 1.2 to k-uniform hypergraphs and
give an asymptotically optimal bound on the minimum (k — 2)-degree for the
existence of Hamiltonian ¢-cycles for all 1 < ¢ < k/2.

Theorem 1.3 (Main result) For all integers k > 4 and 1 < ¢ < k/2 and
every v > 0 there exists an ng such that every k-uniform hypergraph H = (V, E)
on |V| =n = ng vertices with n € (k — {)IN and

s> (N +0) (5)

contains a Hamiltonian £-cycle.

The hypergraph H;, , motivates the following notion of extremality. Let
k > 3 and ¢ > 1 be integers and let 0 < & < 1. A k-uniform hypergraph
H = (V,E) is called (¢,&)-extremal if there exists a set B < V such that
|B| = [2(2]“(;f)51nj and e(B) < £(7}), where e(B) stands for the number of edges
in the subhypergraph of H induced by B. Our main result follows directly
from the following theorem.

Theorem 1.4 Forany0 < £ < 1 and all integersk = 4 and 1 < £ < k/2, there
exists v > 0 such that the following holds for sufficiently large n. Suppose H
is a k-uniform hypergraph on n vertices with n € (k — )N such that H is not

(¢, €)-extremal and

Then H contains a Hamiltonian (-cycle.



We remark that for £ = 3 and ¢ = 1, the corresponding version of Theo-
rem 1.4 appeared in the so-called non-extremal case of the sharp version of
Theorem 1.2 in [5]. As a result, it will be sufficient to address the extremal
case for a sharp version of Theorem 1.3 and we shall return to this in the near
future [2]. For details about this approach see [5,6]. It is easy to check that if

Op—2(H) = (45(6,;2)_21 + ’y) (%), then there exists & = £(k, ¢, ) > 0 such that H

is not (¢, §)-extremal. Consequently, Theorem 1.3 follows from Theorem 1.4.

2 Outline of the proof of Theorem 1.4

The proof follows the Absorbing Method introduced by Ro6dl, Rucinski, and
Szemerédi in [11]. It consists of three main parts: an absorbing part, a
connecting part, and an almost spanning path-tiling part.

2.1 Absorption

We call an ¢-path A € H a [-absorbing path for a k-uniform n-vertex hyper-
graph H if for every subset U < V(H) \ V(A) of size at most Sn there exists
an {-path Q such that V(Q) = V(A) v U and Q has the same ends as A, for
some (5 > 0. We can ensure the existence of a [-absorbing path A, which
reduces the problem of finding a Hamiltonian /-cycle to that of finding an
almost spanning ¢-cycle that contains A. To show this, we prove that for every
set of (k — ¢) vertices there exist many short “absorbing paths” and by taking
a small random selection of these short paths and connecting them we obtain
the required 3-absorbing path. For this step a minimum (k — 2)-degree of cn?
is sufficient, for any constant ¢ > 0.

2.2 Connecting

To obtain an almost spanning ¢-cycle, we first find a bounded number of
(-paths covering almost all vertices of V(#) \ A and then connect these paths
and A using only vertices from a small set, a so-called reservoir set that we fix
beforehand. To obtain this reservoir set, we show that any bounded number of
l-sets can be connected with short /-paths using only vertices from a set R,
provided that all (k — 2)-tuples of vertices of the hypergraph extend to enough
edges in R. By taking a suitably sized random set we can ensure this condition
and obtain the reservoir set R with the property that any bounded number
of disjoint /-paths can be connected to an ¢-cycle, only using vertices from R.
Again a minimum (k — 2)-degree of cn? is sufficient, for any ¢ > 0.



2.3 Path-Tiling

We can choose the sizes of A and R linear in n but small enough, so that
the remaining hypergraph satisfies almost the same degree condition as H.
To complete the proof it is only left to show the existence of a collection of
(-paths covering almost all vertices of V(H) ~ (A u R). This is the only
point in the proof where we use the exact value of the degree condition and
the non-extremality of H. In fact, the path-tiling step for a direct proof of
Theorem 1.3, which allows us to utilize a slightly larger degree condition, is a
bit simpler.

For this step we use the weak hypergraph regularity lemma, the straight-
forward generalisation of Szemerédi’s regularity lemma for graphs [13]. This
reduces the problem to that of finding a fractional packing of the “cherry’
graph C;, the 2-edge k-uniform hypergraph spanning 2(k — ¢) vertices. On
each of the regular tuples given by this fractional packing it is easy to greedily
obtain a bounded number of /-paths spanning almost all vertices.

Y

To obtain the fractional packing, we show that any packing that does not
already have almost full weight can be improved by a small, but constant,
fraction. For this we consider the so-called link graphs of (k — 2)-tuples of
vertices that are not fully covered and find many small local improvements
that we can aggregate.

The (-paths found in the path-tiling step and A can be connected by using
vertices from R to an almost spanning ¢-cycle containing A. Since this ¢-cycle
contains almost all vertices of H, the absorbing property of A allows us to
absorb the leftover vertices, i.e. vertices that are not contained in any of the
(-paths and vertices that were not used to connect the /-paths. The resulting
l-cycle is the desired Hamiltonian ¢-cycle. The full details of the proof of
Theorem 1.4 can be found in [1].
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