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Abstract

For a set of integers S, define ( A‘?Dk) to be the k-uniform hypergraph with vertex set S and
hyperedges corresponding to the set of all arithmetic progression of length £ in S. Similarly,
for a graph H, define (I?k ) to be the (g)—uniform hypergraph on the vertex set E(H) with
hyperedges corresponding to the edge sets of all copies of K in H. Also, we say that a k-
uniform hypergraph has girth at least ¢ if any h edges (1 < h < g) span at least (k — 1)h + 1

vertices.

For all integers k and ¢, we establish the existence of a relatively small graph H having girth
k and the property that every f-coloring of the edges of H yields a monochromatic copy of C.
We also show that for all integers k, ¢, and g, there exists a relatively small set S C N such
that the related hypergraph ( A%k) has girth g and each ¢-coloring of S yields a monochromatic
arithmetic progression of length k. Finally, for all integers k, ¢, and g, we establish the existence
of a relatively small graph H such that the associated hypergraph ( li ) has girth g and each
¢-coloring of the edges of H yields a monochromatic copy of Kj. Our proofs give improved (and
the first explicit) numerical bounds on the size of these objects.




1 Introduction

We say that a graph H is Ramsey to a graph G for ¢ colors if every ¢-coloring of the edges
of H yields a monochromatic copy of G; we represent this by writing H — (G),. For
any graph G, let R,(G) denote the least integer n such that K,, — (G),. Thus R,(K})
are the well known Ramsey numbers for Kj and ¢ colors. In this paper we discuss three
quantitative Ramsey-type results all related to cycles in graphs and hypergraphs.

The first result relates to a question of Erdds [2], who asked if for every pair of integers
¢ and k, there exists a graph H having girth(H) = k and the property H — (Cy)s. The
existence of graphs with this property was first established in [10]. We give a new proof
of this result which yields an explicit upper bound on the order of the smallest graph H
with these properties.

Theorem 1.1 For every pair of integers k > 4, £ > 2, and R := Ry(C}), there exists a
graph H satisfying

girth(H) =k, H — (Cp)e, and |V(H)| < RYOFJA0K*,

Note that an exponential dependency for |V (H)| on k as in Theorem 1.1 is unavoidable.
This follows from the observation that a minimal graph H with the desired properties
must have minimum degree greater than ¢ and girth k. Also note that the bound in
Theorem 1.1 involves Ry(C}) which for fixed even £ is known to be polynomial in ¢ and
for fixed odd k satisfies the exponential relation ¢! < Ry(Cy) < ¢5'°8" for some ¢1, ¢y > 1.
This dichotomy between even and odd k leads to the following corollary.

Corollary 1.2 For every integer k > 3, there exist constants C,qq, Ceoven such that for
every integer ¢ > 2, there exists a graph H with girth(H) = k such that H — (Cy)s.
Moreover, |V (H)| < (Ceven if k is even and |V (H)| < C°28" if k is odd.

Our next two theorems have their roots in a classical result of Erd6s and Hajnal who,
in 1966, established the existence of hypergraphs having both large chromatic number and
large girth (a k-uniform hypergraph has girth at least g if any h edges (1 < h < g) span
at least (k—1)h 4+ 1 vertices). Our second result extends this in the context of arithmetic
progressions. Specifically for a set S of integers we write S — (APy), if every (-coloring
of the elements of S yields a monochromatic arithmetic progression of length k (APF).
The van der Waerden number Wy(k) is then the least integer N such that [N] — (AP),
(where [N] = {1,2,...,N}), and van der Waerden’s Theorem states that W;(k) < oo
for all k£ and ¢. One of many generalizations of this theorem asked by Erdds in [3] is, if
for all integers k and ¢ there exists a set S not containing an APy, and still having the
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property S — (APg),. This was answered independently by Spencer [15] and by Nesetfil
and Rodl [8]. Moreover, for a set S C N define ( Afjk) to be the k-uniform hypergraph
having vertex set S and hyperedges corresponding to arithmetic progressions of length k
in S. Thus S — (AP,), if and only if the chromatic number of ( ASPk) satisfies x ( Afgk) >/

here we write x ( Aik) for x <( Afjk)>, a convention which we will keep. In [10] and [11],

Rodl and Rucinski established that for every k£ > 3 and g > 2, there exists a set S C N
with both X( Afjk) > ( and girth ( Afjk) > ¢g. Note that this extends the question asked by

Erdés in [3] since if the girth of ( Aik) is greater than two, any two arithmetic progressions
of length k in S can share at most one element, and thus S cannot contain an APy ;. We
provide a new proof of this result, giving the first explicit upper bound on the size of a
minimum set S with this desired property.

Theorem 1.3 For all integers k > 3, £ > 2, g > 2, and W := W,(k), there exists a set
S C N such that

X(4p) >0 givth(5) >g,  and |S| < kR p10k(ite) gike.

To illustrate the result, consider the special case k& = 3. In this case, a result of
Sanders [13] implies that W;(3) < exp (¢17°()) where the error term o(1) — 0 as { — cc.
For any g > 2, our result yields the existence of a set S of size at most exp (€1+0(1)) such
that S — (AP;), and ( ASP3) > ¢g. Hence, our bound asymptotically matches Sanders’
bound.

Our next result extends the result of Erdds and Hajnal on hypergraphs with large
chromatic number and large girth in the context of a Ramsey-type problem. The origins
of the problem relate to yet another question of Erdés and Hajnal, who asked if for every
pair of integers k and ¢, there exists a Ky i-free graph H with H — (K}),. The case £ = 2
was answered by Folkman and the case ¢ > 2 was later answered by Nesetfil and Rodl [9].
In response to these developments, Erdos subsequently asked about a strengthened form
of this result, namely the existence of a graph H with H — (K}), in which no two copies
of K} share more than one edge. This was established in [6]. Analogous to the case for
sets and arithmetic progressions, for graphs H and G, define the e(G)-uniform hypergraph
(g) to have vertex set F(H) and hyperedges correspond to the edges of copies of G in
H. Consequently, the statement H — (G), can be expressed equivalently in terms of
chromatic number by X(g) > (. Also, the statement that any two copies of G in H share
at most one edge is equivalent to (g) being a (simple) linear hypergraph. In [7], it was
shown that for every graph G and pair of integers ¢ and g, there exists a graph H such
that X(g) > ( and girth(g) > g.

We give a new proof of this result that yields an explicit numerical upper bound on
the size of the smallest such H for G = K.
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Theorem 1.4 For all integers k >3, £ > 2, g > 2, and R := Ry(k), there exists a graph
H such that

Y a > ¢, girth a >g, and |V(H)| < k9 RS9,
K, K,

By reversing the dependency between g and |V (H)| we obtain the following corollary.

Corollary 1.5 For all k > 3 and ¢ > 2, there exist c,ng > 0 such that for all n > ny,
there exists a graph H on n vertices with H — (Ky), and with girth(;{i) > cy/logn.

For a fixed ¢ and k, any graph H on n vertices satisfying H — (K}), must also satisfy
girth( ll{i ) = O(logn); this follows from the fact that in an edge minimal graph H with

the property H — (Kj)¢, the hypergraph ( Igc ) must have minimum degree at least ¢. It
would be interesting to close the gap between this bound and the one in Corollary 1.5.

The proofs of all three theorems are similar in the sense that they all analyze random
constructions by way of a recent result of Saxton and Thomason on hypergraph contain-
ers [14]. Alternatively, a result due to Balogh, Morris, and Samotij in [1] could likely be
used in place of [14] to obtain similar estimates. This method is similar to a recent paper
of Rodl, Ruciniski, and Schacht [12] which used some ideas of Nenadov and Steger [5].

2 Sketch of the proofs

Since the three proofs are similar, we will only sketch the one of Theorem 1.4. The main
step of this proof establishes the following strong Ramsey property for the random graph
G(n,p). This property essentially says that for suitable parameters the random graph
G(n,p) is Ramsey to K}, even after removal of any not too large subset of edges.

Lemma 2.1 For given k>3, (> 2, and g > 2, let R :== R(k,() and let

1074 2 2 =2 p
n = 1{32 k*g R8k g = 25\/10gnlogkR16 P = cynFl t = (2) )
9 y4 ) 54 ) 232

Then p < 1 and with probability at least 1 — 2 exp {—p (g) /24R2} we have
(Gn,p)\T) — (Kx). for any edge set T C G(n,p) of size |T| < t.

With this lemma established, Theorem 1.4 follows. Indeed, let X5 represent the ex-
pected number of 2-cycles in (G%p)), i.e. pairs of copies of K} in G(n,p) that intersect in
more than two edges in G(n,p), and let X represent the expected number of j-cycles in
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(G%;p)) for 2 < j < g, then we have that

k
2

k-1 _
X, < Zn%fip?(’é)—(ﬁ)) and X, < n(k2ip(3) =1, (1)
=3

With the parameters from Lemma 2.1 and using Markov’s inequality it follows from (1)
that with probability at least 1/2 the total number of cycles of length less than ¢ in (G%;p ))
is at most p(g) /2R? = t. Consequently, since 1 —exp {—p(g) / 24R2} — % > 0, we conclude
that there exists a graph H’' on n vertices which satisfies the conclusion of Lemma 2.1
and for which the associated hypergraph (II?;) contains at most ¢t cycles of length less

than g. By removing at most one vertex from each cycle of length less than ¢ in ( g;)
obtain a graph H C H' having at most ¢ fewer edges than H’ for which girth( I?k ) > g.
Furthermore, as H is obtained from H’ by removing at most t edges, H — (Kj),. This

establishes Theorem 1.4.

, We

Proof Sketch of Lemma 2.1: The crux of the proof is applying the container
lemma in [14] to the complete graph on the labeled vertex set [n]. A somewhat technical
application of this lemma yields a family C of graphs on [n] such that

(i) each Kj-free graph on [n] is a subgraph of some C € C,

(ii) each C' € C has at most (})/(¢R?) copies of K}, and
(iii) |C] < exp {p(})/24(R?}.
Define the family B to be the set of all graphs B on [n| with the property that there exists
a subgraph T' C B of size p(})/2R? = t such that (B\ T) /4 (Kj) i.e. there exists an
(-coloring of the edges of the graph B \ T that does not contain a monochromatic Kj.
Hence B is the set of all (‘bad’) graphs on n vertices that do not have the desired strong
Ramsey property. To establish the lemma, we need to bound P(G(n, p) € B) from above.
Consider any fixed graph B € B. By definition there is a set T" with |7 < ¢ and a
partition (B\7T) = G; U ---U Gy such that that each of the subgraphs G; contains no
K. Hence, there is an associated set of containers (C1, Cs, ..., Cy) such that G; C C; € C
for all i. For a given B, define the associated graph D := K, \ J;c/q Ci- Observe that
|BND| < |T|, since (B\T) C Gy U---UG, C (K, \ D). Let D denote the family of all
graphs D which arise this way by considering all B € B.
We have argued that for every B € B, there exists a D € D such that [BND| <t. It

follows that if G(n,p) € B, then for some D € D we have |G(n,p) N D| < t. The union
bound now yields:

P(G(n,p) € B) <P(3D € D : |G(n,p)ND| <t)
<" - max{P(|G(n,p) N D| < t): D € D}. (2)
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Using (ii) it can be established that each D € D has at least size at least 75 (5), and

o)

thus the probability that the random graph G(n,p) contains less than ¢t = 3 V2

D is small. Specifically, using Chernoft’s bound we obtain

edges of

Combined with (iii) which established that |C| is small, equation (2) becomes:

B(G(np) € B) < exp (%) e (—%) < 2exp (—%) |

which completes the proof sketch of Lemma 2.1.
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