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Abstract

We determine asymptotically the two color Ramsey numbers
for bipartite graphs with small bandwidth and constant maximum
degree and the three color Ramsey numbers for balanced bipartite
graphs with small bandwidth and constant maximum degree. In
particular, we determine asymptotically the two and three color
Ramsey numbers for grid graphs.
2010 Mathematics Subject Classification: 05C05, 05C10, 90C27.

1 Introduction and Results

For graphs G1, G2, . . . , Gr, the Ramsey number R(G1, G2, . . . , Gr) is the
smallest positive integer n such that if the edges of a complete graph Kn

are partitioned into r disjoint color classes giving r graphs H1, H2, . . . ,Hr,
then at least one Hi (1 ≤ i ≤ r) contains a subgraph isomorphic to
Gi. The existence of such a positive integer is guaranteed by Ramsey’s
classical theorem. The number R(G1, G2, . . . , Gr) is called the Ramsey
number for the graphs G1, G2, . . . , Gr. Determining R(G1, G2, . . . , Gr)
for general graphs appears to be a difficult problem (see e.g. [13]). For
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r = 2, a well-known theorem of Gerencsér and Gyárfás [7] states that
R(Pn, Pn) =

⌊
3n−2

2

⌋
, where Pn denotes the path with n ≥ 2 vertices.

In [9] more general trees were considered. For a tree T , we write t1 and
t2, t2 ≥ t1, for the sizes of the vertex classes of T as a bipartite graph.
Note that if 2t1 ≥ t2, then R(T, T ) ≥ 2t1 + t2 − 1, since the following
edge-coloring of K2t1+t2−2 has no monochromatic copy of T . Partition
the vertices into two classes V1 and V2 such that |V1| = t1 − 1 and |V2| =
t1+t2−1, then use color “red” for all edges inside the classes and use color
“blue” for all edges between the classes. On the other hand, if 2t1 < t2, a
similar edge-coloring of K2t2−2 with two classes both of size t2 − 1 shows
that R(T, T ) ≥ 2t2. Thus, R(T, T ) ≥ max{2t1 + t2, 2t2} − 1. Haxell,
 Luczak and Tingley proved in [9] that for a tree T with maximum degree
o(t2), this lower bound is the asymptotically correct value of R(T, T ).
We try to extend this to bipartite graphs with small bandwidth (although
with a more restrictive maximum degree condition). A graph is said to
have bandwidth at most b, if there exists a labelling of the vertices by
numbers 1, . . . , n such that for every edge {i, j} of the graph we have
|i− j| ≤ b. We will focus on the following class of bipartite graphs.

Definition 1.1. A bipartite graph H is called a (β,∆)-graph if it has
bandwidth at most β|V (H)| and maximum degree at most ∆. Further-
more, we say that H is a balanced (β,∆)-graph if it has a legal 2-coloring
χ : V (H)→ [2] such that 1− β ≤ |χ−1(1)|/|χ−1(2)| ≤ 1 + β.

For example, all bounded degree planar graphs G are (β,∆(G))-graphs
for any β > 0 [3]. Our first theorem is an analogue of the result in [9] for
(β,∆)-graphs.

Theorem 1.2. For every γ > 0 and natural number ∆, there exist a
constant β > 0 and natural number n0 such that for every (β,∆)-graph
H on n ≥ n0 vertices with a legal 2-coloring χ : V (H) → [2] where
t1 = |χ−1(1)| and t2 = |χ−1(2)|, t1 ≤ t2, we have R(H,H) ≤ (1 +
γ) max{2t1 + t2, 2t2}.
For more recent results on the Ramsey number of graphs of higher chro-
matic number and sublinear bandwidth, we refer the reader to the recent
paper by Allen, Brightwell and Skokan [1].
For r ≥ 3 less is known about Ramsey numbers. Proving a conjecture
of Faudree and Schelp [5], it was shown in [8] that for sufficiently large
n R(Pn, Pn, Pn) = 2n − 1, for odd n and R(Pn, Pn, Pn) = 2n − 2, for
even n. Asymptotically this was also proved independently by Figaj and
 Luczak [6]. Benevides and Skokan proved [2] that R(Cn, Cn, Cn) = 2n for
sufficiently large even n. In our second theorem we extend these results
(asymptotically) to balanced (β,∆)-graphs.

Theorem 1.3. For every γ > 0 and natural number ∆, there exist a
constant β > 0 and natural number n0 such that for every balanced (β,∆)-
graph H on n ≥ n0 vertices we have R(H,H,H) ≤ (2 + γ)n.
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In particular, Theorems 1.2 and 1.3 determine asymptotically the two and
three color Ramsey numbers for grid graphs.
We conclude this section with a few words about the proof method for our
main theorems. The proof of Theorem 1.2 combines ideas from [9] and [4],
while the proof of Theorem 1.3 follows a similar approach as in [6], again,
together with the result in [4]. Since the strategies for both theorems are
close to each other, we focus on the proof of Theorem 1.3, for which we
present an outline in the next section. Details can be found in [12].

2 Sketch of the proof of Theorem 1.3

Here we will sketch the main ideas of our proof. The proof relies on the
regularity method for graphs and we refer the reader to the survey [10]
for related notation and definitions.

The first part of the proof follows the same pattern as the proof by Figaj
and  Luczak [6] for the case where H is a path. Namely, we apply a mul-
ticolored variant of Szemerédi’s Regularity Lemma [14] to the 3-colored
complete graph KN with N = (2 + γ)n and get a partition with a very
dense reduced graph. The edges of the reduced graph inherit the major-
ity color of the respective pair. Applying Lemma 8 from [6] gives us a
monochromatic tree T in the reduced graph that contains a matching M
covering almost half of the vertices.
Switching back from the reduced graph to the colored complete graph,
we denote by GT the subgraph of KN whose vertices are contained in the
clusters represented by the vertices of T and whose edges run inside the
pairs represented by the edges of T and have the same color as the edges
of T . Thus GT is a monochromatic subgraph of KN whose regular pairs
are arranged in a structure mirroring that of T and all have density at
least 1/3. Finally, we localize almost spanning super-regular subgraphs
in the pairs in GT represented by edges in M and denote the subgraph
formed by the union of these pairs by GM ⊂ GT .

To understand the motivation for the second part, recall that our overall
goal is to embed H into GT . Notice that GM has in fact enough vertices
to accomodate all of H. Indeed, most of the vertices of H will be mapped
to GM , and we will only have to use parts from GT \ GM because we
may need to connect the various parts of H embedded into GM . Let us
explain this more precisely by assuming for the moment that H is just a
path. Let m be an integer which is just a bit smaller than the size of the
clusters in GT (that we assume to be all of the same size). Applying the
Blow-up Lemma by Komlós, Sárközy and Szemerédi [11], we then embed
the first m vertices from each color class of H into the super-regular pair
represented by the first matching edge in M .
To be able to ‘reach’ the next super-regular pair in GM , where we can
embed the next m + m vertices of H, we need to make use of the fact
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that the vertices representing these two pairs are connected by a path in
T . This path translates into a sequence of regular pairs in GT , into each
of which we embed an intermediate edge of H, thereby ‘walking’ towards
the next super-regular pair in GM . In this way, we only use few edges
of the regular pairs in GT \ GM , thus keeping them regular all the way
through, and leaving a bit of space in the super-regular pairs in GM , in
case we need to walk through them later again.

The task for the second part of our proof is to restructure our balanced
(β,∆)-graph H in such a way that it behaves like the path in the embed-
ding approach described before. Here two major problems occur:

• Suppose for example that H is a graph consisting of a path whose
vertices are labelled by 1, . . . , n, with some additional edges between
vertices whose label differ by at most βn and have different parity
(because H is bipartite). For such a graph ‘making the connections’
as above is now more difficult. Suppose, for instance, that we have
a chain of regular pairs (Vi, Vi+1) in GT for i = 1, . . . , 4 and want
to use it to ‘walk’ with H from V1 to V5. We cannot simply assign
vertex 1 to V1, then 2 to V2 and so on up to 5 to V5, because maybe
{2, 5} forms an edge in H but (V2, V5) is not a regular pair in GT .

The solution to this problem is to walk more slowly: assign vertex
1 to V1, then with the vertices 2, 3, . . . , βn+ 1 alternate between V2
and V3, the next βn vertices continue the zig-zag pattern between
V3 and V4, and finally we send the last vertex to V5. What does this
buy us? Consider, e.g., the final vertex y that got mapped to V5.
Due to the bandwidth condition, all its potential neighbours were
embedded in V3 or V4, and due to the parity condition, they must
all lie in V4. This is good, because we have a regular pair (V4, V5).

• The second problem that we have to face is as follows. By definition,
H has a 2-coloring of its vertices that uses both colors similarly often
in total, but this does not have to be true locally – among the first
m+m vertices of H, there could be far more vertices of color 1 than
of color 2, which means that our approach to embed them into a
super-regular pair with two classes of the same size would fail.

The solution to this problem is to re-balance H. We use an ordering
of H with bandwidth at most βn and cut H into small blocks of size
ξn, where βn � ξn � m. Then it is not hard to see that we can
obtain a new ordering of the vertices of H by changing the order in
which the blocks appear, so that in every interval of blocks summing
to roughly m consecutive vertices of H the two colors are balanced
up to 2ξn vertices. We can now assign the blocks forming these
intervals to super-regular pairs in GM in such a way that they there
represent a balanced 2-coloring and can therefore be embedded via
the Blow-up Lemma into the super-regular pair.
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Both these problems can appear at the same time, but one can combine
these two solutions. Hence H can indeed be embedded into GT similarly
to the example of the path example given above, which finishes the proof.
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binatorica 17 (1997), no. 1, 109–123.
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