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Abstract

We present a simple strong refutation algorithm for random k-SAT formulas. Our al-
gorithm applies to random k-SAT formulas on n variables with w(n)n**+1/2 clauses
for any w(n) — oo. In contrast to the earlier results of Coja-Oghlan, Goerdt, and
Lanka (for k£ = 3,4) and Coja-Oghlan, Cooper, and Frieze (for k& > 5), which address
the same problem for even sparser formulas our algorithm is more elementary.

1 Introduction

The k-SAT problem is among the best studied NP-complete problems. We
consider strong refutation algorithms for random k-SAT. Let X,, ={z1,...,2,}
be a set of n propositional variables, let p = p(n) € [0, 1], and let Fi(n,p)
be the probability space over all k-SAT formulas on X,,, for which each of
the (2n)* possible (ordered) k-clauses will be included independently with
probability p. It is well-known that for p > n'~* with high probability a
random formula F' € Fi(n, p) is not satisfiable. However, there are no efficient
refutation algorithms known. We are interested in deterministic algorithms
which w.h.p. reject a k-SAT formula from F(n,p) for p > n'~* but which
never reject a satisfiable formula.

An algorithm is a strong refutation algorithm if w.h.p. for F' € Fi(n,p)
it approximates unsat(F') by a factor of (1 — ¢) and never outputs a number
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bigger than unsat(F'), where unsat(F’) is the minimum number of unsatisfied
clauses in F' over all possible assignments. A simple averaging argument shows

unsat(F) < 27F|F|, (1)

where |F'| denotes the number of clauses of F. On the other hand, it follows
from Chernoff’s inequality that for p > n'=* w.h.p. unsat(F) > (27%—o(1))|F|
for F' € Fi(n,p). From a strong refutation algorithm we demand that it
verifies this bound on unsat(F').

Definition 1.1 Let £ > 3, ¢ > 0, and p = p(n). An algorithm A is an e-
strong refutation algorithm for Fi(n,p) if for a given k-SAT formula F' on X,
the algorithm A outputs an integer A(F') such that

(1) A(F) < unsat(F) and
(41) nh_{EOP(A(F) > (1 —¢)unsat(F)) =1 for F € Fy(n,p).

Note that for p > n'~* the trivial algorithm, which returns (27% — ¢)|F|
for every F', satisfies condition (ii), but fails to fulfill (7).

Refutation and strong refutation algorithms were studied by several re-
searchers and to our knowledge the best strong refutation algorithms for
k = 3,4 are due to Coja-Oghlan, Goerdt, and Lanka [2] and for general k > 5
are due to Coja-Oghlan, Cooper, and Frieze [1] (see also [5,4]). Those authors
found e-strong refutation algorithms for every ¢ > 0 and p > pg, where

n~(logn)® if k=3,
Pr = n=2 ifk= 4,

n=Lk/2] if k>5.

The algorithms from [2] and [1] relied on tools from linear algebra. We present
elementary e-strong refutation algorithms for every k > 3 for p > n~(*=1/2,

Theorem 1.2 For every k > 3, ¢ > 0, and o(1) = p(n) > n~*=V/2 there
is an e-strong refutation algorithm for Fi.(n,p) with running time O(nk2k71)
independent of €.

2 Proof of Theorem 1.2

Our work is based on results on quasi-random hypergraphs found in [3]. To
every F' € Fr(n,p) we will associate a k-partite, k-uniform hypergraph Hp
in the following way. Let X, be the variables of F. We denote by V,, =



{x1,Z1,... 2y, T, } the literals of F' and let V(Hp) consist of k copies of V,,
ie., V(Hp) =V, x [k]. Moreover, the edges of Hp correspond to the clauses
of F,ie., {(v,1),..., (v k)} is an edge of Hp if and only if v; V-V v is a
clause in F'. Clearly, this defines a bijection between all k-SAT formulas on X,
(without multiple occurrences of the same clause) and all k-partite, k-uniform
hypergraphs with vertex classes (V,, x {1})U...U(V,, x {k}). Moreover, it is
well-known that unsat(F) is related to the discrepancy of Hp.

Definition 2.1 Suppose H = (ViU...UV}, E) is a k-partite, k-uniform hy-
pergraph with vertex classes of size N and density p = |E|/N*. For ¢ > 0 we
say that H satisfies DISC(e) if for all subsets Uy C Vi,..., Uy C Vi

‘QH(Ul, .. ,Uk) —p|U1| <. |Uk|‘ < é‘ka.

Note that every assignment 3 of the variables {x1,...,z,} corresponds to
a bipartition of each V,, x {i} into equally large sets of literals U; = {(v,i) €
Vo x {i}: B(v) =0} and (V,, x {i}) \ U;. Furthermore, the number of clauses
not satisfied by 3 corresponds to the number of edges spanned by U;U. .. UU,.
This observation yields the following.

Fact 2.2 If Hy satisfies DISC(g) then unsat(F) > (27% — ¢)|F|. O

The property DISC cannot be naively verified in polynomial time. However,
for dense hypergraphs it was shown in [3], that the property DISC is equiv-
alent to an efficiently verifiable property, called DEV, which measures the
distribution of the homomorphisms of a certain hypergraph M;. We will show
that the implication “hypergraphs satisfying DEV must satisfy DISC” still
holds for hypergraphs of density p = o(1). Theorem 1.2 then follows from the
observation that w.h.p. Hp satisfies DEV if p > n~(+:-1/2,

The hypergraph Mj, is the k-uniform, k-partite hypergraph which arises in
the following way. For a k-uniform, k-partite hypergraph A with vertex classes
Y1,...,Y, and i € [k] we define db;(A), the doubling of A w.r.t. i, to be the
k-uniform hypergraph obtained from A by taking two disjoint copies of A and
identifying the vertices of Y;. For the construction of M we will start with a
single edge K}, which can be seen as a k-partite k-uniform hypergraph with
partition classes of size 1, and iteratively double this w.r.t. i € [k]. More pre-
cisely, My = Kj and M; = db;(M;_1). Thus, the graph M, is the 4-cycle and
M, consists of k28! vertices and 2* edges. Further, let Ylj ,..., Y} denote the
partition classes of M; and for a k-tuple of vertex sets V = (V4,..., V) we de-
note by Hom(2;, V) all functions ¢: ;¢ Y/ — Ui Vi with ©o(Y7) C V for
all ¢ € [k]. In other words, Hom(M;,V) is the set of all (partition respecting)



homomorphisms from M; to the complete k-partite, k-uniform hypergraph on
the partition classes VjU...UV,. For a k-partite, k-uniform hypergraph H
with vertex partition V;U. ..UV}, and density p let wg : Hiem Vi — [-1,1] be
the function defined by wy(e) = 1—pife € E(H) and wy(e) = —p otherwise.

Definition 2.3 Suppose H = (ViU...UV,, E) is a k-partite, k-uniform hy-
pergraph with vertex classes of size N and density p = |E|/N*. For ¢ > 0 we
say that H satisfies DEV(¢) if for V = (Vi,..., V})

k k—1
‘ Z¢6Hom(Mk,V) HeeE(Mk) wH(SD(e))’ < ep? NF,

Lemma 2.4 For every k > 3 and € > 0 exists ng such that for all N > nyg
the following holds. Suppose H = (ViU...UVy, E) is a k-partite, k-uniform
hypergraph with vertex classes of size N. If H satisfies DEV(Ezk), then H also
satisfies DISC(e).

The property DEV(6) can be verified in O(N*2*™") time. Lemma 2.4 com-
bined with Fact 2.2 shows that the algorithm A, which for a k-SAT formula
F outputs 0 if Hp fails to satisfy DISC(¢2") and outputs (2°% — &)|F| other-
wise, fulfills part (i) of Definition 1.1. Moreover, the next lemma combined
with (1) shows that the algorithm A also satisfies part (4i) of Definition 1.1
for F € Fi(n,p) with p > n=(=1/2,

Lemma 2.5 For any k > 3, ¢ > 0, and o(1) = p(n) > n~* "Y/2 ywe have
lim, .. P(HF satisfies DEV(e)) =1 for F € Fi(n,p).

3 Proofs of Lemmas 2.4 and 2.5

Proof of Lemma 2.4 The proof follows the lines of [3, Lemma 13]. Let H =
(ViU...UVj, E) be a k-partite, k-uniform hypergraph with vertex classes of
size N and density p, which satisfies DEV(&Qk). Let Uy CV4,..., U, CVi. We
show ’€H(U1, cey Uk)—p Hze[k] |U2H < €ka. Set Z/{z = (‘/1, ceey ‘/i; Ui—i—l; ceey Uk)
and for j € {0,...,k} let

fH(Mj7 Z/{J) = ZapeHom(Mj,Z/{j) HeGE(Mj) wH<S0(€)) (2)

Note that by definition fy(Mo,Uo) = en(Us, ..., Ux)=p[Lic Uil and, since H

satisfies DEV (e2%), fu (Mg, Uy) < e2'p?" N¥2"7' On the other hand, we can
rewrite (2) in the following way. For an arbitrary ordering y = (y1, ..., y2) of
the vertices in the j-th vertex class Yj11(M;) of M;, we fix the image of y to
be v = (v1,...,095) € Ufil, i.e. map y; to v; for all i € [27], and extend this



choice to a homomorphism ¢ € Hom(M;,U;). Consequently,

fH(iju]) = ZUEUJZil Z@GHOI‘H(MJ-,U]') HeEE(Mj) U)H(QO<€)) (3)

o(y)=v

Recall, that M,y = db;;1(M;) arises from M, by fixing the (j + 1)-st vertex
class Yj1(M;) of M; and “doubling” all the edges together with the remaining
vertices. Thus, applying the Cauchy-Schwarz inequality to fi(M;,U;) (to the
form stated in (3)), we obtain fr(M;,U;)?* < |Uj+1|2ij(Mj+1,L{j+1) for every
j €40,...,k—1}. Applying this inductively for j =0,...,k — 1 we obtain

2k—1

k
|1 (Mo, Uo) | < Tlicyy 10| fir (M )| < €2 p? N#2°

Consequently, |e(U1, ooy Ug) — pHiE[k] \UzH = | fu (Mo, Up)| < epN*. O

Proof of Lemma 2.5 For k > 3 and € > 0 let o(1) = p > n~(k~D/2 Set
d=¢/(12- 22k) and let M be the set of all spanning subgraphs of M. Let B
be the set of all labeled k-uniform hypergraphs B on v < k2*~! vertices
such that there is a surjective homomorphism from M, to B. For a k-partite
hypergraph A let X4 be the random variable denoting the number of labeled
partition respecting copies of A in Hr with F € Fy(n,p).

Claim 3.1 With high probability we have
(a) Xa=(1%£0)EXY forall Ac M and (b) > pcp Xp < 0Xn,.

Proof (sketch) For part (a) we note that, since every vertex of My, is con-
tained in precisely two edges, the hypergraph M, is balanced, i.e., epr, /vp, =
2F [k2k=1 = 2/k > ey /v, for all (not necessarily spanning) subhypergraphs
A C M. Moreover, it is easy to check that for the p considered here, we have
EX4 > EXy, — oo for every A € M. Hence, part (a) follows easily from
Chebyshev’s inequality applied in a similar way as, e.g., in [6, Theorem 3.4].
Due to part (a), it suffices to show that w.h.p. Xp < 6p2 (2n)%2" " /(2|B))
for every B € B to conclude assertion (b). Let B € B and set ¢ = 2¥ —ep and
r = k281 — vg. Hence, p* (2n)"""" = (1 — o(1))(p(2n)"/7)EX 5 and below
we will show that » > (k — 1)g/2, which due to our choice of p yields that
EXp = o(p* (2n)"?""") and assertion (b) follows from Markov’s inequality.
Let ¢: My — B be a surjective homomorphism. For e € FE(B) let
{fi,-- s fm} = ¢ (e) C E(My). Fix f; and call f;, i # 1, a lost edge and
any vertex v € f; \ fi a lost vertex. There are ¢ lost edges and every lost
edge contains at least (k — 1) lost vertices (f; and f; intersect in at most one
vertex, since My is a linear hypergraph). On the other hand, the number of



lost vertices is at most r and every lost vertex is contained in at most two
(lost) edges. Thus, by double counting we have g(k — 1) < 2r. O

We deduce Lemma 2.5 from Claim 3.1. Let Inj(My, V) C Hom(My, V) be the
set of all injective mappings ¢ € Hom(My, V). Thus, every ¢ € Inj(My, V)
corresponds to an A C H which is a labeled copy of some A € M in H,
whereas any ¢ € Hom(M;, V) \ Inj(M,, V) corresponds to a B € H which is
labeled copy of a hypergraph B € B. Let X 4 be the number of induced copies
of A. Since p = o(1) we have w.h.p. X4 = (1—0(1)) X4 and (1—p)¥2*™" > 1-4.
Since w.h.p. e(Hr)/(2n)F = (1 + o(1))p, part (a) of Claim 3.1 yields w.h.p.

ST wale(e) =1 —o0(1) Y (1 —p)a(-p)* X,
)

€Inj(My,V) e€E(M,, AeM

=p?" Y (14 38)(—1) 4 (2n)"2" <6522 p* (2n)F2 T < ¥ (20)F2
AeM

Moreover, due to parts (a) and (b) of the Claim 3.1 w.h.p. we can bound

> [T walele) <> Xp <X, < 5™ (20)
)

peHom (M, V)\Inj(Mg,V) ee E(Mj, BeB
Thus for F' € Fy(p,n) the hypergraph Hp satisfies w.h.p. DEV (). O
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