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Abstract

A conjecture by Bollobás and Komlós states that for every

γ > 0 and integers r ≥ 2 and ∆, there exists β > 0 such that

for sufficiently large n the following holds: If G is a graph on

n vertices with minimum degree at least ( r−1

r
+γ)n and H is

an r-chromatic graph on n vertices with bandwidth at most

βn and maximum degree at most ∆, then G contains a copy

of H. This conjecture generalises several results concerning

sufficient degree conditions for the containment of spanning

subgraphs. We prove the conjecture for the case r = 3. Our

proof yields a polynomial time algorithm for embedding H

into G if H is given together with a 3-colouring and vertex

labelling respecting the bandwidth bound.

1 Introduction and results

The study of sufficient degree conditions which imply
that a given graph G satisfies a certain property is one
of the central themes in extremal graph theory. In this
paper we are concerned with conditions on the minimum
degree of G which guarantee that G contains a copy of
a particular spanning subgraph H .

A well known example of such a result is Dirac’s
theorem [13]. It asserts that any graph G on n vertices
with minimum degree δ(G) ≥ n/2 contains a spanning,
so called Hamiltonian, cycle. Another classical result of
that type by Corrádi and Hajnal [9] states that every
graph G with n vertices and δ(G) ≥ 2n/3 contains bn/3c
vertex disjoint triangles. This was generalised by Hajnal
and Szemerédi [19], who proved that every graph G with
δ(G) ≥ (r−1)n/r must contain a family of bn/rc vertex
disjoint cliques, each of size r.

Pósa (see, e.g., [15]) and Seymour [35] indicated
how these theorems could actually fit into a common
framework. They conjectured that, at the same thresh-
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old δ(G) ≥ (r − 1)n/r, one can in fact ask for ‘well-
connected’ cliques, more precisely that such a graph G
contains a copy of the (r−1)-st power of a Hamiltonian
cycle (where the (r − 1)-st power of an arbitrary graph
is obtained by inserting an edge between every two ver-
tices of distance at most r−1 in the original graph). The
following approximate version of this conjecture for the
case r = 3 was proved by Fan and Kierstead [17], and
independently, by Komlós, Sárközy, and Szemerédi [26].

Theorem 1.1. ([17, 26]) For every constant γ > 0
there is a constant n0 such that every graph G on n ≥ n0

vertices with δ(G) ≥ (2/3 + γ)n contains the square of

a Hamiltonian cycle.

Fan and Kierstead [18] also gave a proof for the exact
statement (i.e., with γ = 0 and n0 = 1) for the square
of a Hamiltonian path.1 Moreover, Komlós, Sárközy,
and Szemerédi [26] proved the approximate version
concerning the (r − 1)-st power of a Hamiltonian cycle.
Finally, the same authors [23, 27] gave a proof of the
sharp Pósa–Seymour conjecture for sufficiently large
graphs G and general r.

Recently, several other results of a similar flavour
have been obtained which deal with a variety of span-
ning subgraphs H , such as, e.g., trees, F -factors, and
planar graphs [3, 5, 6, 7, 10, 11, 22, 28, 29, 30, 31, 32, 36].

Facing this wealth of results, there seems to be a
need for a unifying generalisation. Which parameter(s)
of H determine the minimum degree threshold for G to
guarantee a spanning copy of H as a subgraph? The
results above indicate that the chromatic number of H
plays a crucial rôle.

Obviously, by the classical results of Turán [38] and
Erdős, Stone and Simonovits [16, 14], any graph H of
constant size with χ(H) = r, is forced to appear as a
subgraph in any sufficiently large graph G if δ(G) ≥
( r−2

r−1 + γ)n. However, if H has as many vertices as
G and if in every r-colouring of H the colour classes
are of the same size, then it is clear that we do indeed

1In fact, Fan and Kierstead [18] showed that for the existence
of a square of a Hamiltonian path δ(G) ≥ (2n−1)/3 is a sufficient
and sharp minimum degree condition.



need δ(G) ≥ r−1
r n. For example, let G be the complete

r-partite graph with partition classes almost, but not
exactly, of the same size and let H be the union of
vertex disjoint r-cliques. (See, e.g., [22, 31, 36] for a
more detailed discussion how a less balanced r-colouring
of H can lead to a smaller minimum degree threshold
between r−2

r−1n and r−1
r n.)

Thus, in an attempt to move away from results that
concern only graphs H with a special, rigid structure,
a näıve conjecture could be that δ(G) ≥ ( r−1

r + γ)n
suffices to guarantee that G contains a spanning copy of
any r-chromatic graph H of bounded maximum degree.
While the results mentioned above are in accordance
with this idea, it is known that it fails in general as the
following simple example shows.

Let H be a random bipartite graph with bounded
maximum degree and partition classes of size n/2 each,
and let G be the graph formed by two cliques of size
(1/2 + γ)n each, which share exactly 2γn vertices. It
is then easy to see that G cannot contain a copy of H ,
since in H every set of vertices of size (1/2 − γ)n has
more than 2γn neighbours.

One way to rule out such expansion properties
for H , is to restrict the bandwidth of H . A graph is said
to have bandwidth at most b, if there exists a labelling
of the vertices by numbers 1, . . . , n, such that for every
edge {i, j} of the graph we have |i − j| ≤ b. Bollobás
and Komlós [21, Conjecture 16] conjectured that every
r-chromatic graph on n vertices of bounded degree and
bandwidth limited by o(n), can be embedded into any
graph G on n vertices with δ(G) ≥ ( r−1

r + γ)n. In this
paper we give a proof of this conjecture for the case
r = 3.

Theorem 1.2. For all ∆ ∈ N and γ > 0, there exist

constants β > 0 and n0 ∈ N such that for every n ≥ n0

the following holds.

If H is a 3-chromatic graph on n vertices with

∆(H) ≤ ∆, and bandwidth at most βn and if G is

a graph on n vertices with minimum degree δ(G) ≥
(2/3 + γ)n, then G contains a copy of H.

Moreover, such an embedding of H can be found in

O(n3.376) if H is given together with a valid 3-colouring

and a labelling of the vertices respecting the bandwidth

bound βn.

This theorem embraces a fairly large class of 3-
chromatic graphs H – the structural requirement of
a o(n)-bandwidth is less restrictive than, e.g., being a
particular spanning subgraph. In fact, most graphs H
considered so far were of constant bandwidth, whereas
Theorem 1.2 includes (higher dimensional) grid graphs
as possible graphs H .

The analogue of Theorem 1.2 for bipartite H was

announced by Abbasi [1] in 1998 and a proof can be
found in [20]. In [2] it is shown that in this case no
sharp version of Theorem 1.2 (with γ = 0) is possible.
More precisely, it is shown that if γ → 0 and ∆ → ∞
then β must tend to 0 in Theorem 1.2. However, the
bound on β coming from our proof is rather poor, having
a tower-type dependence on 1/γ.

The proof of Theorem 1.2 is based on the regu-

larity method and uses, in particular, the regularity
lemma [37] and the blow-up lemma [24] together with
Theorem 1.1. There is a well established strategy for
proofs of this kind, which, as described by Komlós in
his survey [21], proceeds in several steps:

First, prepare the graph H by dividing it into a con-
stant number of smaller pieces, which is usually possible
and not too difficult by calling upon the structural prop-
erties guaranteed for H . Secondly, prepare the graph G
by applying the regularity lemma and thus obtaining a
sufficiently regular vertex partition. Thirdly, find an as-
signment that maps vertices of H to the partition classes
of G. Fourthly, ensure that the edges between the differ-
ent parts of H are mapped to edges in G. Finally, com-
plete the embedding by applying the blow-up lemma to
the individual pieces of H and their counterparts in G.

Although steps 2, 3, and 5 have been standardised
by the use of the powerful tools mentioned above, the
proofs are still technically rather involved: although H
and G have been ‘prepared’ roughly for each other, there
is still a great deal of details that have to be carefully
adjusted and fitted, especially in step 4. Since, in our
case, we have very little control about the structure
of H , this difficulty becomes particularly pressing. In
order to avoid the looming threat of many cases, we
have pushed the agenda described above a bit further.

We will prove two main lemmas. While they will
deal exclusively with the graph G and the graph H re-
spectively, they are linked to each other in the following
way: the lemma for G (Lemma 2.2) will suggest a par-
tition of G and communicate the structure of this par-
tition (but not the graph G) to the lemma for H . The
lemma for H (Lemma 2.3) will then try to find a parti-
tion of H with a very similar structure, and return the
sizes of the partition classes to the lemma for G. The
latter will then adjust its partition classes by shifting a
few vertices of G, until they fit exactly class sizes of H .
The embedding of H into G can then be found using
(a slight variant of) the embedding lemma (Lemma 2.4)
first used by Chvátal et al. for step 4 and the blow-up
lemma (Lemma 2.1) for step 5.

This approach provides a very modular proof strat-
egy that can easily be checked and may be of further
use for other similar problems. For example, our cur-
rent work-in-progress indicates that a proof of the Bol-



lobás-Komlós conjecture for general r-chromatic graphs
H is now within reach.

This extended abstract is organised as follows.
In § 2, we state and explain our two main lemmas,
Lemma 2.2 and 2.3, together with the two embedding
lemmas mentioned above. Here we also outline how
Theorem 1.2 can be deduced from these lemmas. This
deduction is given in § 3. We conclude by briefly
sketching the proofs of Lemma 2.2 and 2.3 in § 4 and § 5.

2 Main lemmas and outline of the proof

In this section we introduce the central lemmas that are
needed for the proof of our main theorem. Our emphasis
in this section is to explain how they work together
to give the proof of Theorem 1.2, which itself is then
presented in full detail in the subsequent section, § 3.

We start with some basic definitions. Our general
aim is to find a copy of some graph H in some other
graph G, by which we mean that G contains a subgraph
which is isomorphic to H . In other words, we are
looking for an embedding of H into G, i.e., an injective
function f : V (H) → V (G) such that for every edge
{u, v} ∈ E(H) we have {f(u), f(v)} ∈ E(G).

One of the main tools in our proof is Szemerédi’s
regularity lemma [37], which pivots around the concept
of an ε-regular pair. Let G = (V, E) be a graph
and A, B ⊆ V be disjoint vertex sets. The ratio
d(A, B) = e(A, B)/(|A||B|) is called the density of
(A, B). The pair (A, B) is ε-regular, if for all A′ ⊆ A
and B′ ⊆ B with |A′| ≥ ε|A| and |B′| ≥ ε|B| it is true
that |d(A, B)− d(A′, B′)| < ε. An ε-regular pair (A, B)
is called (ε, d)-regular if it has density at least d. If, in
addition, every v ∈ A has at least d|B| neighbours in B
and every u ∈ B has at least d|A| neighbours in A, the
pair (A, B) is called (ε, d)-super-regular.

It is easy to check that every (ε, d)-regular pair
(A, B) contains an (2ε, d − 2ε)-super-regular sub-pair
(A′, B′) with |A′| ≥ (1 − ε)|A| and |B′| ≥ (1 −
ε)|B|. An exciting feature about super-regular pairs is
that a powerful theorem, the so-called blow-up lemma

proven by Komlós, Sárközy and Szemerédi [24] (see
also [33] for an alternative proof), guarantees that
bipartite spanning graphs of bounded degree can be
embedded into sufficiently super-regular pairs. In fact,
the statement is more general and allows the embedding
of r-chromatic graphs into the union of r vertex classes
that form

(

r
2

)

super-regular pairs, but we will only
use this lemma in the following restricted form for 3-
chromatic graphs.

Lemma 2.1. (Blow-up lemma [24]) For every d, ∆,

c > 0 there exist constants εBL = εBL(d, ∆, c) and

αBL = αBL(d, ∆, c) such that the following holds.

Let n1, n2, and n3 be arbitrary positive integers,

0 < ε < εBL, and G = (V1∪̇V2∪̇V3, E) be a 3-partite
graph with |Vi| = ni for i ∈ [3] and with all pairs (Vi, Vj)
being (ε, d)-super-regular for 1 ≤ i < j ≤ 3. Suppose H
is a 3-partite graph on vertex classes W1∪̇W2∪̇W3 of

sizes n1, n2, and n3 with ∆(H) ≤ ∆. Moreover, suppose

that in each class Wi there is a set of at most αBLni

special vertices y, each of them equipped with a set

Cy ⊆ Vi with |Cy| ≥ cni.

Then there is an embedding of H into G such that

every special vertex y is mapped to a vertex in Cy.

We say that the special vertices y in Lemma 2.1 are
image restricted to Cy.

Of course a comfortable embedding tool like the
blow-up lemma only makes sense, if we can be sure to
find super-regular (or regular) pairs in G. This was
proven much earlier by Szemerédi [37] in 1978. Our
next lemma incorporates the regularity lemma and is
derived from it, but before we can state it we will need
some more definitions.

Let G = (V, E) be a graph, let V1∪̇ · · · ∪̇Vk be a
partition of V , and let Rk be a graph on the vertex
set [k]. We say that V1∪̇ · · · ∪̇Vk is (ε, d)-regular on Rk

if (Vi, Vj) is (ε, d)-regular for every {i, j} ∈ E(Rk). Rk is
also called the reduced graph for V1∪̇ · · · ∪̇Vk. Similarly,
V1∪̇ · · · ∪̇Vk is (ε, d)-super-regular on Rk if (Vi, Vj) is
(ε, d)-super-regular for every {i, j} ∈ E(Rk). For all
n, k ∈ N with k divisible by 3, we call an integer
partition n1 + · · · + nk = n (with ni ∈ N for all
i ∈ [k]) equitriangular, if |n3(j−1)+l − n3(j−1)+l′ | ≤ 1
for all j ∈ [k/3] and l, l′ ∈ [3]. We denote by R∗

k =
([k], E(R∗

k)) the square of the Hamiltonian cycle with
edges {{i, i+1} : i = 1, . . . , k−1}∪{{1, k}}. Moreover,
we write R∗∗

k for the subgraph of R∗

k consisting of the
family of k/3 vertex disjoint triangles in R∗

k with vertex
sets 3(j−1)+1, 3(j−1)+2, and 3(j−1)+3 for j ∈ [k/3].

We can now state (and then explain) our first main
lemma which ‘prepares’ the graph G for the embedding
of H into G.

Lemma 2.2. (Lemma for G) For all γ > 0 there exist

d and ε0 > 0 such that for all 0 < ε ≤ ε0 there exist K0

and ξ0 > 0 such that for all n ≥ K0 and for every graph

G on vertex set [n] with δ(G) ≥ (2/3 + γ)n there exist

k ∈ N \ {0} and a graph Rk on vertex set [k] with

(R1 ) k ≤ K0 and 3|k,

(R2 ) δ(Rk) ≥ (2/3 + γ/2)k,

(R3 ) R∗∗

k ⊆ R∗

k ⊆ Rk, and

(R4 ) there is an equitriangular integer partition m1 +
· · ·+ mk of n with mi ≥ (1− ε)n/k such that the

following holds.



For every partition n = n1 + · · · + nk with mi − ξ0n ≤
ni ≤ mi + ξ0n there exists a partition V1∪̇ · · · ∪̇Vk of V
with

(V1 ) |Vi| = ni,

(V2 ) V1∪̇ · · · ∪̇Vk is (ε, d)-regular on Rk, and

(V3 ) V1∪̇ · · · ∪̇Vk is (ε, d)-super-regular on R∗∗

k .

In order to understand what this lemma says, let
us first ignore property (R4 ), the two lines thereafter,
and property (V1 ), and instead propose that the sizes
|Vi| form an equitriangular partition of n. In this case,
Lemma 2.2 could be considered a standard corollary
of the regularity lemma for graphs G with δ(G) ≥
(2/3+γ)n (see, e.g., [32, Proposition 9]). Here it would
guarantee a partition of V (G) in such a way that the
partition classes form many (super-)regular pairs, and
that these pairs are organised in a sort of backbone,
namely in the form of a square of a Hamiltonian cycle R∗

k

for the regular pairs, and, contained therein, a spanning
family R∗∗

k of disjoint triangles for the super-regular
pairs.

However, the lemma says more. When we come to
the point (R4 ), the lemma ‘has in mind’ the partition
we just described, but doesn’t exhibit it. Instead, it
only discloses the sizes mi and allows us to wish for
small amendments: for every i ∈ [k], we can now look
at the value mi and ask for the size of the i-th partition
class to be adjusted to a new value ni, differing from mi

by at most ξ0n.
When proving Lemma 2.2, one needs to alter the

partition by shifting a few vertices. Note that while
(ε, d)-regularity is very robust towards such small alter-
ations, (ε, d)-super -regularity is not, so this is where the
main difficulty lies. We sketch the proof of Lemma 2.2,
which borrows ideas from [29], in § 4.

Now we come to the second main lemma which
prepares the graph H so that it can be embedded into
G. This is exactly the place which, given the values
mi, specifies the new values ni in the setting described
above.

Lemma 2.3. (Lemma for H) Let k ≥ 1 be an integer

and let β, ξ > 0 satisfy β ≤ ξ2/104. Let H be

a 3-colourable graph on n vertices with bandwidth at

most βn and let Rk be a graph with V (Rk) = [k] such

that δ(Rk) > 2k/3 and R∗∗

k ⊆ R∗

k ⊆ Rk. Furthermore,

suppose m1 + · · · + mk is an equitriangular integer

partition of n with mi ≥ βn for every i ∈ [k].
Then there exists a mapping f : V (H) → [k] and

a set of special vertices X ⊆ V (H) with the following

properties

(a ) |X | ≤ kξn,

(b ) mi − ξn ≤ |Wi| := |f−1(i)| ≤ mi + ξn for every

i ∈ [k],

(c ) for every {u, v} ∈ E(H) we have {f(u), f(v)} ∈
E(Rk), and

(d ) if {u, v} ∈ E(H) and, moreover, u and v are both

in V (H) \ X, then {f(u), f(v)} ∈ E(R∗∗

k ).

In other words, Lemma 2.3 receives a graph H as input
and, from Lemma 2.2, a reduced graph Rk (with R∗∗

k ⊆
R∗

k ⊆ Rk), an equitriangular partition n = m1+· · ·+mk,
and a parameter ξ.

Again we emphasise that this is all what Lemma 2.3
needs to know about G. It then provides us with a
function f which maps the vertices of H onto the vertex
set [k] of Rk in such a way that i ∈ [k] receives ni := |Wi|
vertices from H , with |ni − mi| ≤ ξn. Although the
vertex partition of G is not known exactly at this point,
we already have its reduced graph Rk. Lemma 2.3
guarantees that the endpoints of an edge {u, v} of H get
mapped into vertices f(u) and f(v) of Rk, representing
future partition classes Vf(u) and Vf(v) in G which will
form a super-regular pair (see (d )) – except for those
few edges with one or both endpoints in some small
special set X . But even these edges will be mapped into
pairs of classes in G that will form at least regular pairs
(see (c )). Lemma 2.3 will then return the values ni to
Lemma 2.2, which will finally produce a corresponding
partition of the vertices of G.

If we consider the triangles 3(j − 1) + 1,
3(j − 1) + 2, and 3(j − 1) + 3 for every j ∈ [k/3]
that form the edge set of R∗∗

k , then Lemma 2.1 yields
an embedding of H [W3(j−1)+1, W3(j−1)+2, W3(j−1)+3]
into G[V3(j−1)+1, V3(j−1)+2, V3(j−1)+3] that takes care
of all edges of H [V (H) \ X ].

Edges of H with one or both vertices in the special
set X will need some special treatment. However, due
to part (a ) of Lemma 2.3 the size of X is quite small.
In particular we will be able to ensure that |X | � n/k.
Our strategy will be first to find an embedding g of
the vertices of X into V (G) such that for every y ∈
NH(X) := {y ∈ V (H)\X : ∃xy ∈ E(H) s.t. x ∈ X} the
set Cy := Vf(y) ∩

⋂

x∈NH(y)∩X NG(g(x)) is sufficiently
large. The following lemma guarantees the existence of
such an embedding g of X . Once we have applied it, we
can complete the partial embedding g with the blow-up
lemma, which will ‘respect’ the image restriction to Cy

for every y ∈ NH(X).
Lemma 2.4 is in fact very similar to the embedding

lemma of Chvátal, Rödl, Szemerédi, and Trotter [8]
(see also [12, Lemma 7.5.2]) and hence we omit its
proof here. The only difference between Lemma 2.4 and
their embedding lemma is that we only embed some



of the vertices of a given graph B into G and reserve
sufficiently many places in G for a future embedding of
the remaining vertices of B.

Lemma 2.4. (Partial embedding lemma) For ev-

ery integer ∆ ≥ 1 and every d ∈ (0, 1] there exist

constants c = c(∆, d) and εPEL = εPEL(∆, d) such that

for all ε ≤ εPEL the following is true.

Let Rk be a graph with V (Rk) = [k] and G be

a graph with V (G) = V1∪̇ · · · ∪̇Vk, such that |Vi| ≥
(1 − εPEL)n/k for all i ∈ [k] and V1∪̇ · · · ∪̇Vk is (ε, d)-
regular on Rk. Let, furthermore, B be a graph with

V (B) = X∪̇Y and f : V (B) → V (Rk) be a mapping

with {f(b), f(b′)} ∈ E(Rk) for all {b, b′} ∈ E(B).
If |V (B)| ≤ εPELn/k and ∆(B) ≤ ∆, then there

exists an injective mapping g : X → V (G) with g(x) ∈
Vf(x) for all x ∈ X such that for all y ∈ Y there exist

sets Cy ⊆ Vf(y) \ g(X) such that

(i ) If x and x′ ∈ X and {x, x′} ∈ E(B) then

{g(x), g(x′)} ∈ E(G),

(ii ) for all y ∈ Y we have Cy ⊆ NG(g(x)) for all

x ∈ NB(y) ∩ X, and

(iii ) |Cy| ≥ c|Vf(y)|.

In the next section we give the precise details how
Theorem 1.2 can be deduced from the lemmas just
presented.

3 Proof of Theorem 1.2

In this section we give the proof of Theorem 1.2 based
on Lemmas 2.1–2.4 from § 2. In particular, we will
use Lemma 2.2 for partitioning G, and Lemma 2.3 for
assigning the vertices of H to the parts of G. For
this, it will be necessary, to split the application of
Lemma 2.2 into two phases. The first phase is used
to set up the parameters for Lemma 2.3. With this
input, Lemma 2.3 then defines the sizes of the parts
of G that are constructed during the execution of the
second phase of Lemma 2.2.

Finally, H is embedded into G by using the blow-up
lemma, Lemma 2.1, on the partition of G and by treat-
ing the special vertices X ⊆ V (H) from Lemma 2.3 with
the help of the partial embedding lemma, Lemma 2.4.

Here is how the constants that appear in the proof
are related:

1

∆
, γ � d � ε �

1

K0
� ξ � β and c � ε � α .

Proof. Given ∆ and γ, let ε0 and d be as asserted
by Lemma 2.2 for input γ. Let c = c(∆, d) and
εPEL = εPEL(∆, d) be as given by Lemma 2.4, and

εBL = εBL(d/2, ∆, c) and αBL = αBL(d/2, ∆, c) as given
by Lemma 2.1. Set

(3.1) ε := min{ε0, εPEL/2, εBL/2, d/4} .

Then, the lemma for G (Lemma 2.2) provides
constants K0 and ξ0 for this ε. We define

(3.2) ξ := min

{

ξ0,
1

4K0
,

ε

K2
0 (∆ + 1)

,
αBL

2K2
0 (∆ + 1)

}

as well as n0 := K0, β := min{ξ2/104, (1 − ε)/K0} and
consider arbitrary graphs H and G on n ≥ n0 vertices
that meet the conditions of Theorem 1.2.

Applying Lemma 2.2 to G we get an integer k with
0 < k ≤ K0, graphs R∗∗

k ⊆ R∗

k ⊆ Rk on vertex set [k],
and an equitriangular partition m1 + · · ·+mk of n such
that (R1 )–(R4 ) are satisfied.

Before continuing with Lemma 2.2, we will now
apply the lemma for H (Lemma 2.3). Note that due
to (R4 ) and the choice of β above, we have mi ≥
(1 − ε)n/k ≥ βn for every i ∈ [k]. Consequently, for
constants k, β, and ξ, graphs H and R∗∗

k ⊆ R∗

k ⊆ Rk,
and the equitriangular integer partition m1+ · · ·+mk =
n we can apply Lemma 2.3. This yields a mapping
f : V (H) → [k] and a set of special vertices X ⊆ V (H).
These will be needed later. For the moment we are
only interested in the sizes ni := |Wi| = |f−1(i)| for
i ∈ [k]. Condition (b ) of Lemma 2.3 and the choice of
ξ ≤ ξ0 in (3.2) imply that the partition n = n1+ · · ·+nk

satisfies mi − ξ0n ≤ mi − ξn ≤ ni ≤ mi + ξn ≤ mi + ξ0n
for every i ∈ [k]. Accordingly, we can continue with
Lemma 2.2 to obtain a partition V = V1∪̇ · · · ∪̇Vk

with |Vi| = ni that satisfies conditions (V1 )–(V3 ) of
Lemma 2.2. Note that

|Vi| = ni ≥ mi − ξn
(R4 )

≥ (1 − ε)
n

k
− ξn

≥ (1 − εPEL)
n

k
≥

1

2

n

k
.

(3.3)

Now, we have partitions W1∪̇ · · · ∪̇Wk of H and
V1∪̇ · · · ∪̇Vk of G with |Wi| = |Vi| = ni for all i ∈ [k].
We will build the embedding of H into G such that
each vertex v ∈ Wi ⊆ V (H) will be embedded into the
corresponding set Vi ⊆ V (G) for i ∈ [k].

For embedding the special vertices X of H in G,
we use the partial embedding lemma (Lemma 2.4). We
provide Lemma 2.4 with constants ∆, d, R, and k, the
graph G with vertex partition V1∪̇ · · · ∪̇Vk = V (G), the
graph B := H [X ∪ Y ] where Y := NH(X) consists
of the neighbours of vertices of X outside X , and the
mapping f restricted to X∪̇Y . By (V2 ) of Lemma 2.2
and (c ) of Lemma 2.3, G and f fulfil the requirements



of Lemma 2.4. Moreover, since ∆(B) ≤ ∆(H) ≤ ∆

|X | + |Y | = |V (B)| ≤ (∆ + 1)|X |

≤ (∆ + 1)kξn
(3.2)

≤ ε
n

k

(3.4)

by (a ) of Lemma 2.3. Accordingly, since ε ≤ εPEL we
can apply Lemma 2.4 for obtaining an embedding g of
the vertices in X , and for every y ∈ Y sets Cy such that
Cy ⊆ Vf(y) \ g(X) and

|Cy| ≥ c|Vf(y)| ≥ c|Vf(y) \ g(X)| .

The sets Cy will be used in the blow-up lemma for
the image restriction of the vertices in Y = NH(X). We
first check that there are not too many of these vertices.
Let W ′

i := Wi\X , V ′

i := Vi\g(X) and n′

i := |W ′

i | = |V ′

i |
for each i ∈ [k]. Observe that

|X | + |Y |
(3.4)

≤ (∆ + 1)kξn
(3.2)

≤
αBL

2k
n

(3.3)

≤ αBLni,

and, hence,

|NH(X)| = |Y | ≤ αBLni − |X |

≤ αBL(ni − |X |) ≤ αBLn′

i.

For all j ∈ [k/3] we apply Lemma 2.1 and find an
embedding of H [W ′

3(j−1)+1, W
′

3(j−1)+2, W
′

3(j−1)+3] into

G[V ′

3(j−1)+1, V
′

3(j−1)+2, V
′

3(j−1)+3] in such a way that ev-

ery y ∈ NH(X) will be embedded into Cy . It is easy
to check the the respective conditions are satisfied. In-
deed, recall that by (V3 ) the pair (V3(j−1)+l, V3(j−1)+l′ )
is (ε, d)-super-regular and that V ′

i = Vi \ g(X) for
every i ∈ [k]. It follows directly from the defi-
nition of a super-regular pair and (3.3), (3.4), and
ε ≤ d/4, that (V ′

3(j−1)+l, V
′

3(j−1)+l′ ) is (2ε, d/2)-super-

regular with ε ≤ εBL/2 (see (3.1)).
Having applied the blow-up lemma for every j ∈

[k/3], we have obtained a bijection

h : W ′

1∪̇ · · · ∪̇W ′

k → V ′

1 ∪̇ · · · ∪̇V ′

k

with
h(W ′

i ) = V ′

i for every i ∈ [k]

such that

(3.5) h(y) ∈ Cy for every y ∈ NH(X)

and

H [W ′

1∪̇ · · · ∪̇W ′

k] ⊆ G[h(W ′

1)∪̇ · · · ∪̇h(W ′

k)].

Now we finish the proof by checking that the united
embedding h̄ : V (H) → V (G) defined by

v 7→ h̄(v) :=

{

h(v) if v ∈ V (H) \ X

g(v) if v ∈ X

is indeed an embedding of H into G. Let e = {u, v} be
an edge of H . We distinguish three cases.

If u, v ∈ X , then {h̄(u), h̄(v)} = {g(u), g(v)}, which
is an edge in G since g is an embedding of H [X ] into G
by the partial embedding lemma.

If u ∈ X and v ∈ V (H) \ X , then v ∈ NH(u) ⊆
NH(X), so we have h(v) ∈ Cv ⊆ NG(g(u)) by (3.5),
(3.3), and part (ii ) of Lemma 2.4, thus {h̄(u), h̄(v)} =
{g(u), h(v)} ∈ E(G).

If, finally, u, v ∈ V (H) \ X , then by part (d )
of Lemma 2.3, {f(u), f(v)} ∈ E(R∗∗

k ). In other
words, there exists a j ∈ [k/3], such that {u, v} is
contained in H [W ′

3(j−1)+1, W
′

3(j−1)+2, W
′

3(j−1)+3] and

hence {h̄(u), h̄(v)} = {h(u), h(v)} ∈ E(G) by (3.5).
Finally, we note that this proof yields an algorithm,

which finds an embedding of H in G, if H is given along
with a valid 3-colouring and a labelling of the vertices
respecting the bandwidth bound βn. This follows from
the observation that the proof above is constructive,
and all the lemmas used in the proof (Lemma 2.1–2.4)
have algorithmic proofs. Algorithmic versions of the
blow-up lemma, Lemma 2.1, were obtained in [25, 34].
In [25] a running time of order O(max{n1, n2, n3}

3.376)
was proved. The key ingredient of Lemma 2.2 is
Szemerédi’s regularity lemma for which a O(n2.376)
algorithm exists due to [4]. All other arguments in
the proof of Lemma 2.2 can be done algorithmically
in O(n2) (see § 4). Similarly, the proof of Lemma 2.3
is constructive if a 3-colouring of H and a bandwidth
ordering is given (see § 5). Finally, we note that the
proof of Lemma 2.4 (following along the lines of [8])
gives rise to a O(n3) algorithm. Thus there is a

O
(

k× ((1/k+ ξ0)n)3.376 +n2.376 +n2 +n3
)

= O
(

n3.376
)

embedding algorithm, where the implicit constant de-
pends on γ and ∆ only.

4 Lemma for G

The main ingredients for the proof of Lemma 2.2 are
Szemerédi’s regularity lemma which provides a reduced
graph Rk for G and a partition of V (G), Theorem 1.1
which guarantees the square of a Hamiltonian cycle in
Rk, and a strategy for moving vertices between the
partition classes of G in order to adjust the sizes of
these classes. In the following, we will sketch the main
ideas of this proof.

Let us first assume that we want to prove
Lemma 2.2 only for the special case that ni = mi for
all i ∈ [k]. Hence we are interested in finding graphs
R∗∗

k ⊆ R∗

k ⊆ Rk on k vertices that satisfy δ(Rk) ≥
(2/3 + γ/2)k and a partition V (G) = V1∪̇ · · · ∪̇Vk with
|Vi| ≥ (1 − ε)n/k for all i ∈ [k] that is regular on Rk



and super-regular on R∗∗

k . For this, we proceed in three
steps.

We apply the regularity lemma to construct a
partition V ′

0 ∪̇V ′

1 ∪̇ · · · ∪̇V ′

k′ of V (G) with reduced graph
R′ = ([k′], E(R′)) such that G[V ′

i ∪V ′

j ] is (ε′, d′)-regular
for some suitable constants ε′ < ε and d′ > d whenever
{i, j} ∈ E(R′). Since δ(G) ≥ (2/3 + γ)n, it can easily
be assured that there exists a subgraph Rk ⊆ R′ on
k vertices such that δ(Rk) ≥ (2/3 + γ/2)k and 3|k by
deleting some few sets V ′

i from R′ and adding them
to V ′

0 . Let V ′′

0 ∪̇V ′′

1 ∪̇ · · · ∪̇V ′′

k be the resulting partition
of V (G).

From Theorem 1.1 it follows that subgraphs R∗∗

k ⊆
R∗

k ⊆ Rk exist (provided that k′ and thus k was
chosen sufficiently large). Next, we modify the partition
V ′′

0 ∪̇V ′′

1 ∪̇ · · · ∪̇V ′′

k′ in order to obtain super-regularity on
R∗∗

k . This is achieved by deleting those vertices from
each V ′′

i with i ∈ [k] that violate the super-regularity
on R∗∗

k and adding them to V ′′

0 , i.e., we delete those
vertices v from V ′′

i for which |N(v)∩V ′′

j | is too small for
some j with {i, j} ∈ R∗∗

k . In addition we remove some
more vertices such that the resulting partition classes
are of equal size. Since most vertices in a regular pair
have high degree, not many vertices are moved in this
process.

In a last step we redistribute the vertices of the
new exceptional class V ′′′

0 among the other classes of
the new partition V ′′′

0 ∪̇V ′′′

1 ∪̇ · · · ∪̇V ′′′

k , while maintaining
super-regularity. Here the following problem occurs.
Although a pair remains almost as regular as before
when a few vertices leave or enter a partition class,
the property of being super-regular is not that robust:
every vertex that is moved to a new class which is
part of a super-regular triangle (of R∗∗

k ) must make
sure that it has sufficiently many neighbours inside the
neighbouring classes within the triangle.

For this purpose, let u be a vertex in V ′′′

0 . A triangle
i + 1, i + 2, i + 3 of R∗∗

k is called u-friendly, if u has at
least dn/k neighbours in each of V ′′′

i+1, V ′′′

i+2, and V ′′′

i+3.
Note that we can move u to any of the classes V ′′′

i+1,
V ′′′

i+2, and V ′′′

i+3 without compromising super-regularity.
Since δ(G) ≥ (2/3+γ)n, it follows that each u ∈ V ′′′

0 has
at least γk/3 u-friendly triangles. When we distribute
the vertices u ∈ V ′′′

0 to classes of u-friendly triangles as
evenly as possible, we therefore add at most |V ′′′

0 |/(γk)
vertices to each V ′′′

i with i ∈ [k]. If we chose ε′ small
enough, we will still have (ε, d)-super-regularity after
these changes. The resulting partition is the desired
equitriangular partition V1∪̇ · · · ∪̇Vk.

This proves the special case of Lemma 2.2 with
ni = mi for every i ∈ [k]. For the general version, it
remains to show that the sizes of the classes Vi can be
slightly changed from mi to ni by moving some vertices

without destroying any of the achieved properties. At
this point we use the structure of the graph R∗

k.
Let σ be the unique 3-colouring of R∗

k with σ(3j +
c) = c for all 0 ≤ j < k/3 and c ∈ [3]. We also say that
the class V3j+c is of colour c. Let i + 1, i + 2, i + 3 be a
triangle in R∗∗

k with i = 3j for some j ∈ {0, . . . , k/3−1}.
Observe that {i+4, i+2} and {i+4, i+3} are edges in
R∗

k. Since V1∪̇ · · · ∪̇Vk is regular on Rk ⊇ R∗

k it follows
that typical vertices in Vi+4 have many neighbours in
Vi+2 and Vi+3. Thus we can move such a typical vertex
from Vi+4 to Vi+1 without violating super-regularity.
Since R∗

k is the square of a Hamiltonian cycle this can
be applied repeatedly and we can move vertices of any
class of colour 1 to any other class of colour 1. We
call this procedure method 1. Similarly, vertices can be
moved from Vi+3 to Vi+6, and, repeating the argument,
to any other class of colour 3. The classes of colour 2
however need special treatment. Consider e.g. Vi+2.
Unfortunately we have no other vertex in R∗

k that is
adjacent to i + 1 and i + 3. Notice though, that there
are more than k/3 vertices x in Rk that are adjacent to
i + 1 and i + 3 because δ(Rk) > 2k/3. All of them
can be used to move vertices from Vx to Vi+2. In
particular, we can find such an x that is not of colour 2
(method 2 ). Moreover, by an easy counting argument,
for each x ∈ [k] we can find a triangle i′ +1, i′ +2, i′ +3
in R∗∗

k such that i′ + 1, i′ + 2, i′ + 3 ∈ NRk
(x). This fact

can be used for moving vertices out of an arbitrary class
Vx into any of the classes Vi′+1, Vi′+2, or Vi′+3 and thus
into a class of a different colour (method 3 ).

Combining these ideas, we get the following strat-
egy. As long as |Vi| < ni (|Vi| > ni), we say that the
class Vi is deficient (excessive). We start by eliminating
all deficient classes of colour 2 by repeatedly applying
method 2. Then, we take one deficient class Vi and one
excessive class Vj at a time. Note, that σ(i) 6= 2. If
σ(i) = σ(j), we can therefore use method 1 for moving
a vertex from Vj to Vi. In the case that σ(i) 6= σ(j), we
first make use of method 3, for moving a vertex from
Vj to a class of colour σ(i) and then proceed as before.
We repeat these steps until no deficient and excessive
classes are left. Since |ni − mi| is small, not many ver-
tices get moved during this process and so the adjusted
vertex partition is still (ε, d)-regular on Rk and (ε, d)-
super-regular on R∗∗

k provided that we chose ε′ � ε and
d′ � d.

Finally, recall that in the outline above we could
‘freely’ shift only vertices of classes with colour 1 or 3
(see method 1). Classes of colour 2 needed some
special treatment (first addressing all deficiencies with
method 2). This is the point where our argument
breaks down for the case r > 3 of the Bollobás–Komlós
conjecture. For r > 3, our approach would, due to [27],



yield R∗∗

k ⊆ R∗

k ⊆ Rk, with R∗∗

k being k/r disjoint
copies of Kr and R∗

k being the (r − 1)-st power of a
Hamiltonian cycle. However, we would only be able
to ‘freely’ move vertices from classes of colour 1 and
colour r. In particular, we would not be able to first
address all deficiencies of classes with colours 2, . . . , r−1
by only using vertices from classes with colour 1 or r.

5 Lemma for H

In this section we sketch the proof of Lemma 2.3.
Recall that for this lemma we are given graphs H and
R∗∗

k ⊆ R∗

k ⊆ Rk, and an equitriangular integer partition
m1 + · · · + mk = n. The task now is to determine a
small set X and a mapping f that sends roughly mi

vertices of H to vertex i of R∗

k. At the same time, f
needs to make sure that every edge {u, v} of H gets
mapped to an edge {f(u), f(v)} ∈ E(R∗∗

k ), unless u or
v lie in X , in which case we still need to guarantee that
{f(u), f(v)} ∈ E(Rk).

Suppose that the vertices of H are labelled by
numbers 1, . . . , n, such that the limited bandwidth
guarantees that every edge {u, v} satisfies |u− v| ≤ βn.
In a first step we follow this ordering and cut H into
segments Sj of size m3j+1 + m3j+2 + m3j+3, where
j = 0, . . . , k/3− 1.

The idea is to map almost all vertices of Sj to
the triangle {3j + 1, 3j + 2, 3j + 3} in R∗∗

k . Since H
is 3-colourable, it seems tempting to try to map all
vertices in Sj of colour c ∈ [3] to vertex 3j + c, thereby
guaranteeing that all edges of H [Sj ] will be mapped
to the respective edges of the triangle in R∗∗

k . However,
the problem is that the mi are equitriangular, i.e. almost
identical, but the three colour classes of H [Sj ] may vary
in size. Hence we will have to re-balance the colouring
in the following way.

Take an arbitrary vertex s ∈ H and two colours
l, l′ ∈ [3]. It is not difficult to check that switching the
colours l and l′ for all vertices v > s and assigning the
new colour 0 to all originally l-coloured vertices in the
interval [s−βn, s+βn] yields a new proper 4-colouring.
By repeating this colour–switch after (roughly) every
ξn vertices of H , each time with appropriate colours
l, l′, we can obtain a proper colouring σ of H [Sj ] with
colour classes 1, 2 and 3 of almost equal size (up to
roughly ξn), and with only a few occurrences of colour
0, concentrated around the pivotal vertices s. Denote
the set of vertices with colour 0 in Sj by Xj .

The next thing we need to take care of are edges
between Sj and Sj+1. Let Lj be the last βn vertices
from Sj and Fj+1 the first βn vertices from Sj+1. With
a little bit of care in choosing the pivotal vertices we can
make sure that the Fj , Xj , and Lj are pairwise disjoint,
have no edges between each other, and [s − βn, s + βn]

lie well in Sj . Set

X :=

k/3−1
⋃

j=0

Fj ∪̇Xj∪̇Lj .

Now for all j = 0, . . . , k/3 − 1, we map all vertices in
H [Sj \ X ] of colour c ∈ [3] to vertex 3j + c in R∗∗

k ,
as originally planned, thus satisfying claim (d) in the
Lemma. This defines f on VH \ X . For the other
vertices, we need to extend f such that claim (c) is
fulfilled.

We first consider the vertices in the sets Xj . Due
to the bandwidth constraint, these vertices have no
neighbours outside Sj . Since Xj forms an independent
set in H (the vertices were all of colour 0 before) and
has no edges to vertices in Lj or Fj , we therefore have
NH(Xj) ⊆ Sj \ X , hence f(NH(Xj)) ⊆ {3j + 1, 3j +
2, 3j +3}. Thus it suffices to find a vertex rj in Rk with
{3j + 1, 3j + 2, 3j + 3} ⊆ NRk

(rj) and set f(v) = rj

for all v ∈ Xj . Such a vertex rj clearly exists because
δ(Rk) > 2k/3.
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Figure 1: The mapping f from H to R∗

k.

Finally we deal with the vertices in the sets Fj and
Lj . For the edges between these sets we make use of the
special structure of R∗

k. We define f as follows. For all
v ∈ Lj set

f(v) =

{

3(j + 1) + 1 if σ(v) = 1,

3j + σ(v) if σ(v) ∈ {2, 3},

and for v ∈ Fj+1 set

f(v) =

{

3(j + 1) + σ(v) if σ(v) ∈ {1, 2},

3j + 3 if σ(v) = 3 .

It is easy to check that the mapping f defined in this
way has all the required properties.
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