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Abstract

In this paper we prove the following conjecture by Bollobás and Komlós: For every
γ > 0 and positive integers r and ∆, there exists β > 0 with the following property. If
G is a sufficiently large graph with n vertices and minimum degree at least ( r−1

r
+γ)n

and H is an r-chromatic graph with n vertices, bandwidth at most βn and maximum
degree at most ∆, then G contains a copy of H.
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1 Introduction and results

One of the fundamental results in extremal graph theory is the theorem by
Erdős and Stone [6] which implies that any fixed graph H of chromatic number
r is forced to appear as a subgraph in any sufficiently large graph G if the
average degree of G is at least ( r−2

r−1
+ γ)n, for an arbitrarily small positive

constant γ.

In this extended abstract we prove a similar result for spanning subgraphs
H of small bandwidth that was conjectured by Bollobás and Komlós. It is
obvious that for a spanning graph H , it no longer suffices to guarantee that
G has a large average degree, since we need (to be able to control) every
single vertex of G, and thus we shift our emphasis to a large minimum degree
instead. Also, it is clear that in this regime the lower bound has to be raised
at least to δ(G) ≥ r−1

r
n: simply consider the example where G is the complete

r-partite graph with partition classes almost, but not exactly, of the same size
(thus G has minimum degree almost r−1

r
n) and let H be the spanning union

of vertex disjoint r-cliques.

There are a number of results where a minimum degree of r−1

r
n is indeed

sufficient to guarantee the existence of a certain spanning subgraph H . A well
known example is Dirac’s theorem [5]. It asserts that any graph G on n vertices
with minimum degree δ(G) ≥ n/2 contains a Hamiltonian cycle. Another
classical result of that type by Corrádi and Hajnal [4] states that every graph
G with n vertices and δ(G) ≥ 2n/3 contains ⌊n/3⌋ vertex disjoint triangles.
This was generalised by Hajnal and Szemerédi [7], who proved that every
graph G with δ(G) ≥ r−1

r
n must contain a family of ⌊n/r⌋ vertex disjoint

cliques, each of size r.

Pósa and Seymour [14] suggested a further extension of this theorem. They
conjectured that, at the same threshold δ(G) ≥ r−1

r
n, such a graph G must in

fact contain a copy of the (r − 1)-st power of a Hamiltonian cycle (where the
(r−1)-st power of an arbitrary graph is obtained by inserting an edge between
every two vertices of distance at most r − 1 in the original graph). This was
proven in 1998 by Komlós, Sárközy, and Szemerédi [12] for sufficiently large n.

Recently, several other results of a similar flavour have been obtained which
deal with a variety of spanning subgraphs H , such as, e.g., trees, F -factors,
and planar graphs (see the survey [13] and the references therein). In an
attempt to move away from results that concern only graphs H with a special,
rigid structure, Bollobás and Komlós [9, Conjecture 16] conjectured that every
r-chromatic graph on n vertices of bounded degree and bandwidth at most
o(n), can be embedded into any graph G on n vertices with δ(G) ≥ ( r−1

r
+γ)n.



(A graph is said to have bandwidth at most b, if there exists a labelling of
the vertices by numbers 1, . . . , n, such that for every edge {i, j} of the graph
we have |i − j| ≤ b.) In this extended abstract we present a proof of this
conjecture.

Theorem 1.1 For all r, ∆ ∈ N and γ > 0, there exist constants β > 0 and

n0 ∈ N such that for every n ≥ n0 the following holds.

If H is an r-chromatic graph on n vertices with ∆(H) ≤ ∆ and bandwidth

at most βn and if G is a graph on n vertices with minimum degree δ(G) ≥
( r−1

r
+ γ)n, then G contains a copy of H.

The analogue of Theorem 1.1 for bipartite graphs H was announced by
Abbasi [1] in 1998, and a proof based on our methods can be found in [8].
In [3] we proved the 3-chromatic case of this theorem. One central ingredient
to the proof was the existence of the square of a Hamiltonian cycle in graphs of
high minimum degree as asserted by the affirmative solution of the conjecture
of Pósa mentioned above. However, it turned out that the (r − 1)-st power of
a Hamiltonian cycle is not well connected enough to carry over these methods
to the r-chromatic case.

The following simple example shows that the statement of Theorem 1.1
becomes false when the bandwidth condition on H is dropped. Let H be a
random bipartite graph with bounded maximum degree and partition classes
of size n/2 each, and let G be the graph formed by two cliques of size (1/2+γ)n
each, which share exactly 2γn vertices. It is then easy to see that G cannot
contain a copy of H , since in H every set of vertices of size (1/2 − γ)n has
more than 2γn external neighbours.

Also, the γ term in the minimum degree condition on G is necessary in the
following sense: Abbasi [2] showed that if γ → 0 and ∆ → ∞ then β must
tend to 0 in Theorem 1.1. However, the bound on β coming from our proof is
rather poor, having a tower-type dependence on 1/γ.

Let us finally address the rôle of the chromatic number of H in Theo-
rem 1.1. In the same way that the Hamiltonian cycle on an odd number of
vertices is forced as a spanning subgraph in any graph of minimum degree
n/2 (although it is 3- and not 2-chromatic), other (r + 1)-chromatic graphs
are forced already when δ(G) ≥ ( r−1

r
+ γ)n. As already observed by Komlós

in [10], it seems that the crucial question here is whether all r + 1 colours are
needed by many vertices.

The following extension of Theorem 1.1 tries to go into a somewhat similar
direction. Assume that the vertices of H are labelled 1, . . . , n. For two positive
integers x, y, a proper (r + 1)-colouring σ : V (H) → {0, . . . , r} of H is said



to be (x, y)-zero free with respect to such a labelling, if for each t ∈ [n] there
exists a t′ with t ≤ t′ ≤ t + x such that σ(u) 6= 0 for all u ∈ [t′, t′ + y].

Theorem 1.2 For all r, ∆ ∈ N and γ > 0, there exist constants β > 0 and

n0 ∈ N such that for every n ≥ n0 the following holds.

Let H be a graph with ∆(H) ≤ ∆ whose vertices are labelled 1, . . . , n such

that, with respect to this labelling, H has bandwidth at most βn, an (r + 1)-
colouring that is (8rβn, 4rβn)-zero free, and uses colour 0 for at most βn
vertices in total.

If G is a graph on n vertices with minimum degree δ(G) ≥ ( r−1

r
+ γ)n,

then G contains a copy of H.

We conclude with the remark that our proof is constructive and yields a
polynomial time algorithm, which finds an embedding of H in G if H is given
along with a valid r-colouring (respectively, (r + 1)-colouring) and a labelling
of the vertices respecting the bandwidth bound βn.

2 Outline of the proof

Roughly speaking, the proof of Theorem 1.2 is split into two main lemmas.
While they deal exclusively with the graph G and the graph H respectively,
they are linked to each other in the following way: the lemma for G suggests
a partition of G and communicates the structure of this partition (but not the
graph G) to the lemma for H . The lemma for H then tries to find a partition
of H with a very similar structure, and returns the sizes of the partition classes
to the lemma for G. The latter then adjusts its partition classes by shifting a
few vertices of G, until they fit exactly the class sizes of H .

The initial partition constructed by the lemma for G is obtained using the
regularity lemma of Szemerédi [15]. This lemma guarantees that the vertex
set of every graph G can be partitioned in such a way that most of its edges
belong to sufficiently “random–like” induced bipartite graphs (so–called ε-
regular pairs).

Once compatible partitions of G and H have been found via the lemma
for G and the lemma for H , respectively, we find an embedding of H in G
with the help of the blow-up lemma of Komlós, Sárközy, and Szemerédi [11].
This lemma asserts that r-chromatic spanning graphs of bounded degree can
be embedded into the union of r classes that form

(

r

2

)

ε-regular pairs with
minimum degree dn for some small constant d.
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Combinatorial theory and its applications, II (Proc. Colloq., Balatonfüred,
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