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ABSTRACT. We study sufficient conditions for the existence of Hamilton cycles in uniformly
dense 3-uniform hypergraphs. Problems of this type were first considered by Lenz, Mubayi,
and Mycroft for loose Hamilton cycles and Aigner-Horev and Levy considered it for tight
Hamilton cycles for a fairly strong notion of uniformly dense hypergraphs. We focus on tight
cycles and obtain optimal results for a weaker notion of uniformly dense hypergraphs.

We show that if an n-vertex 3-uniform hypergraph H = (V, E) has the property that for
any set of vertices X and for any collection P of pairs of vertices, the number of hyperedges
composed by a pair belonging to P and one vertex from X is at least (1/4+0(1))|X||P|—o(|V]?)
and H has minimum vertex degree at least Q(|V|?), then H contains a tight Hamilton cycle.

A probabilistic construction shows that the constant 1/4 is optimal in this context.

§1. INTRODUCTION

Dirac’s theorem states that any graph on n > 3 vertices and minimum degree at least n/2
contains a Hamilton cycle. This is best possible in terms of minimum degree, since a graph
composed by two disjoint cliques of sizes |n/2| and [n/2] is not even connected. Here we
investigate what kind of properties ensure the existence of Hamilton cycles in 3-uniform
hypergraphs.

Since we restrict our attention to 3-uniform hypergraphs, if not mentioned otherwise, by
a hypergraph we will mean a 3-uniform hypergraph. We denote an edge {u,v,w} € E(H)
by wvw. An ordered set of distinct vertices (v, v, ..., vp) forms a tight path of length ¢ — 2
if every three consecutive vertices form an edge. The pairs (vy,v2) and (v,_1,v,) are the
starting pair and the ending pair of the path, and we frequently call such a tight path
a (v1,v9)-(ve_1, ve)-path. For simplicity we denote a tight path by listing its vertices. A tight
path vivs ... v, together with the edges v,_jvpv; and vpvv9 forms a tight cycle of length £.
A tight cycle which covers all vertices of the hypergraph will be called tight Hamilton cycle.

Similarly, a loose Hamilton cycle in an n-vertex hypergraph (with n even) is a cyclicly ordered
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collection of n/2 edges in such a way that two edges intersect if and only if they are consecutive
and, consequently, they intersect in exactly one vertex.
There are more than one notion of degrees in hypergraphs. Given a hypergraph H

and v € V(H), we define the neighbourhood and the degree of v by
Nyg(v)={e~{v}:veee E(H)} and dgy(u)=|N(u)l,

respectively. Similarly, for u,v € V/(H), we also define their neighbourhood and their codegree
by

Ny (u,v) ={we V(H): {u,v,w}e E(H)} and dg(u,v)=|N(u,v)|.
Let 6;(H) be the minimum degree and d5(H ) the minimum codegree of H.

A possible extension of Dirac’s theorem for hypergraphs was proposed in [11]. The optimal
minimum degree and codegree conditions were obtained for loose Hamilton cycles [4,12] and
for tight Hamilton cycles [17,21]. As the extremal examples for Dirac’s theorem for graphs,
the constructions that show optimality for those results have a very rigid structure. In the
graph case, for instance, the extremal constructions contain large pairs of sets of vertices with
no edges between them.

Motivated by this, we say an n-vertex graph G is (p, d)-dense if for every pair of vertex
sets, X and Y, the number of edges between them is at least d|X||Y| — gn?. Using a result
from Chvétal and Erdés [5], it is not hard to prove that for every «,d > 0 there is an ¢ > 0
for which every sufficiently large (o, d)-dense n-vertex graph with minimum degree at least an
contains a Hamilton cycle. Note that the minimum degree condition can not be dropped, as
this notion of (g, d)-density does not prevent the graph from having isolated vertices.

There are several ways to extend the notion of (g, d)-density to 3-uniform hypergraphs. Here

we consider the following three notions that we symbolise by .., &, and A (see also [2,16,18,19]).

Definition 1.1. Let o, d € (0,1] and let H be a 3-uniform hypergraph on n vertices.
We say that H is (p,d,..)-dense if for every three sets of vertices X,Y, Z we have

e(X,Y,Z) = [{(x,y,2) € X x Y x Z: {a,, 2} € E(H)}| > d|X]||Y]|Z] - on”

We say that H is (o, d,&)-dense if for every set of vertices X and every collection of pairs

of vertices P < V x V we have
e(X,P) = {(z,(y,2)) € X x P: {x,y,z} € E(H)}| = d|X||P| — on®.

We say that H is (o, e,A)-dense if for every two collections of pairs of vertices P,QQ <V xV

we have
e(P,Q) = {((z.y), (y,2)) € P x Q: {,y,2} € B(H)}| > d|Ka(Q, P)| — on®,
where K,(Q, P) = {((z,v), (y,2)) € P x Q}.



LOCALISED CODEGREE CONDITIONS FOR TIGHT HAMILTON CYCLES 3

Observe that . is the weakest notion and A is the strongest (see [18] for details). Our main
result concerns ~&-dense hypergraphs. We consider this notion as a localised codegree condition
since it implies that for every linear sized set X most pairs of vertices will have the same
proportion of neighbours in X as in the whole hypergraph.

We are interested in (asymptotically) optimal assumptions for &-dense hypergraphs to
ensure Hamilton cycles. This line of research can be traced back to the work of Lenz, Mubayi
and Mycroft [13], who proved that for arbitrarily small d, « > 0 there is an ¢ > 0 such that
every sufficiently large (o, d,.%)-dense n-vertex hypergraph with minimum degree an? contains
a loose Hamilton cycle (in fact they proved this result for r-uniform hypergraphs for r > 2).
As this density condition is the weakest one, this theorem implies the same result for the
stronger notions & and A.

Aigner-Horev and Levy [2] proved the same conclusion for tight cycles, but considering
minimum codegree conditions instead of vertex degrees and assuming the strongest density
notion A. More precisely, they proved that for every d,a > 0 there is a o > 0 such that
every sufficiently large (o, d, A)-dense hypergraph with minimum codegree an contains a tight
Hamilton cycle. It turns out that for the &-density an analogous result is not possible due

the following counterexample.

Example 1.2. Let G be a random graph G,_3 /2 and define a 3-uniform hypergraph on
the same set of vertices for which a triple of vertices is a hyperedge, if it forms a triangle
in G or in G. Observe that every tight cycle in H can only use edges, all of which induce
triangles in G or they induce only triangles en G. Finally, add two new vertices x,y in such a
way that Ng(z) = E(G) and Ng(y) = E(G). Then x is covered only by cycles induced by
triangles in G and y is covered only by cycles induced by triangles in G. Hence H contains
no tight Hamilton cycle. Obviously, adding all the edges containing the pair {z,y}, the
hypergraph H only yields a tight Hamilton path, but not a tight Hamilton cycle. One can
show for every that ¢ > 0 with high probability H is (o, 1/4,&)-dense and it has minimum

degree (1/4 — 0)(3) and even minimum codegree (1/4 — g)n.
Our main result asserts that the previous example is essentially best possible.

Theorem 1.3. For every € > 0 there exist 0 > 0 and ngy such that every (o,1/4 + €, &)-dense
3-uniform hypergraph H on n = ng vertices with 61(H) > 5(721) contains a tight Hamilton

cycle.

We also strengthen a result of Aigner-Horev and Levy [2] by showing that their codegree
assumption for tight Hamilton cycles in A-dense hypergraphs can be relaxed to a minimum

vertex degree assumption.
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Theorem 1.4. For every d, a > 0 there exist o > 0 and ng such that every (p,d,a)-dense
3-uniform hypergraph H on n = ny vertices with 6,(H) = oz(g) contains a tight Hamilton

cycle.

Theorem 1.4 was conjectured in [2] and was obtained independently in [8]. The main
purpose of this paper is proving Theorem 1.3. The proof of Theorem 1.4 is based on similar
ideas and we discuss the details in Section 7.

The rest of the paper is organised as follows. In Section 2 we recall the Absorption Method
and introduce its three main parts the Almost Covering Lemma, the Connecting Lemma and
the Absorbing Path Lemma. The proof of those lemmas are given in Sections 4, 5, and 6. In
Section 3 we collect some preliminary observations. In Section 7 we discuss the necessary
changes to the main proof in order to prove Theorem 1.4. We close with a few concluding

remarks in Section 8.

§2. ABSORPTION METHOD

In [21], Rodl, Rucinski and Szemerédi introduced the Absorption Method, which turned
out to be a very useful approach for embedding spanning cycles in hypergraphs. This method
reduces the problem to finding an almost spanning cycle with a small special path in it, called
the absorbing path. The absorbing path A can absorb any small set of vertices into a new
bigger path, with the same ends as A, completing the almost spanning cycle into a Hamilton
cycle.

The almost spanning cycle will be composed from smaller tight paths, which will be
connected to longer paths. For that it would be useful if any given two pairs of vertices (z, y)
and (w, z), being the ends of such smaller paths, can be connected by a short tight path.
However, in view of the assumptions of Theorem 1.3, it is easy to see that not any pair of
pairs can be connected in this way (in particular, there could be pairs with codegree zero).
For that we introduce the following notion of connectable pairs and we will show that for

those pairs there actually exist tight connecting paths between them (see Lemma 2.4 below).

Definition 2.1. Let H = (V, E) be a hypergraph. We say that (x,y) € V xV is -connectable
in H if the set

Zyy ={2€V:zyze E(H) and d(y, z) = S|V},
has size at least §|V|. Moreover, we say that an (a,b)-(c,d)-path is [3-connectable if the
pairs (b,a) and (c,d) are B-connectable.

Observe that the starting pair of the path is asked to be [-connectable in the inverse
direction that as it appears in the path.
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The proof of Theorem 1.3 splits into three lemmas. Let H = (V, E) be a (g, 1/4+¢, &)-dense
hypergraph on n vertices, with 1/n « ¢ « . First we prove that such hypergraphs can be
almost covered by a collection of ‘few’ tight paths. We remark that this is even true under
the weaker assumption of non-vanishing ..-density. A straight forward proof is presented in

Section 4.

Lemma 2.2 (Almost Covering Lemma). For all d,~ € (0, 1] there exist o, 5 > 0, and ng such
that in every (o,d,)-dense hypergraph H on n = ng vertices there ezists a collection of at

most 1/B disjoint 3-connectable paths, that cover all but at most v*n vertices of H.

Next we discuss how to find an absorbing path, which contains a collection of several
smaller structures, called absorbers. For v € V', we call A, € H an absorber for v if both A,
and A, U {v} span tight paths with same ends (we say that A, absorbs v). The main difficulty
is to define the absorbers in such a way that we can prove that every vertex is contained
in many of them. In Section 6 we see that the absobers considered here are in fact more
complicated and absorb sets of three vertices instead of one. This leads to a divisibility issue
which we consider separately in Lemma 6.4. Going further, we can find a relatively small
collection of tight paths which can absorb any sufficiently small given set of vertices. After
finding this collection we connect them together to form one tight path with the absortion

property described in the following lemma.

Lemma 2.3 (Absorbing Path Lemma). For every ¢ > 0 there exist o,[3,7 > 0 and ng
such that the following is true for every positive v < v and every (o,1/4 + &,&)-dense
hypergraph H = (V, E) on n = ng vertices with §;(H) > en?.

For every R = V, with |R| < 2v*n, there exists a tight 3-connectable path A satisfying
V(A) € VN R and |[V(A)| < yn, such that for every U < V(H) \ A with |U| < 3v*n, the

hypergraph H[V (A) U U] has a tight path with the same ends as A.

The set of vertices R in Lemma 2.3 will act as a reservoir of vertices that will be used later
for connecting the tight paths mentioned in Lemmas 2.2 and 2.3, without interfering with the
vertices already used by those tight paths.

The next lemma justifies Definition 2.1 and shows that between every two S-connectable
pairs there exist several short tight paths connecting them. As it was said before, this is used
for connecting the absorbers in the proof of Lemma 2.3. Moreover, observe that all tight
paths mentioned in Lemma 2.2 and 2.3 are S-connectable. This allows us to connect them
together into an almost spanning cycle and the absorbing path in this cycle will absorb all

the remaining vertices to complete the Hamilton cycle.
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Lemma 2.4 (Connecting Lemma). For every e, 8 > 0 there ezist o, > 0 and ny such that
for every (o0,1/4 + e,&)-dense hypergraph H on n = ng vertices the following holds.

For every pair of disjoint ordered (B-connectable pairs of vertices (z,y), (w,z) € V x V there
ezists an integer { < 15 such that the number of (z,y)-(z, w)-paths with € inner vertices is at

least an’

In view of the construction given in Example 1.2, one can see that the 1/4 in the 2-density
assumption in Lemma 2.4 cannot be dropped. In that example, there are two classes of pairs
that cannot be connected by a tight path (namely the pairs in G and in G), although they
are -connectable. Hence, &-density of at least 1/4 is required for Lemma 2.4.

Also Lemma 2.3 requires &-density bigger than 1/4. In the proof of Lemma 2.3 this
assumption will be crucial for connecting the so-called absorbers to a tight path, which makes
use of Lemma 2.4. Moreover, the type of absorbers used here, leads to a ‘divisibility issue’ It
is addressed in Lemma 6.4 for which we also employ the same density assumption.

We now deduce Theorem 1.3 from Lemmata 2.2—2.4.

Proof of Theorem 1.5. Given ¢ > 0 we apply Lemma 2.3 and obtain oy, #; and 4/. Lemma 2.2
applied with d = 1/4 and v = min{v/, £/2} yields g and 3. Applying Lemma 2.4 with ¢ and

6 = ;min{ﬁlv 52}7

reveals o and p3. Finally we set

0 = min{p1, 02/8, 03},

and n be sufficiently large. Having fixed all constants, let H be a (p,1/4 + £,&)-dense
hypergraph on n vertices.

We consider a random set R < V, in which each vertex is present independently with
probability 7. For every positive integer ¢ < 15 consider two pairs (z,y), (w,z) € V x V
between which there are at least an’ paths with £ inner vertices. Let Y = Y (¢, (z,v), (z,w))
count the number of such paths whose inner vertices are contained in R. We point out that Y
is a function determined by n independent random variables, each of which can influence

-1

the value of Y by at most n“~'. Therefore a standard application of Azuma’s inequality

(see [10, Section 2.4]) implies that

o4 11
P <Y < 5 ome> = exp(—Q(n)) < 3 Tond’ (2.1)
for any fixed ¢, (z,y), and (w, z). Moreover, by Markov’s inequality we have that
1
P(|R| = 2v%n) < 3 (2.2)
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Therefore there exists a realisation of R, which from now on will take over the name R, that
is not in the event considered in (2.2) and in any of the events considered in (2.1) (all 4-tuples
of vertices and values of £). Since 7' < v, 0 < o1, and |R| < 29?n, Lemma 2.3 ensures that
we can find a f;-connectable absorbing path A of size smaller than yn and which does not
intersect R.

Let V! =V . (V(A) U R). Since |V(A) u R| < 3yn < n/2, the induced hypergraph H[V’]
is (80,1/4 + ¢,&)-dense. In particular, H[V'] is (89,1/4 + £,.)-dense and since 89 < 0o,
Lemma 2.2 implies that there exists a collection of at most 1/, paths with fSs-connectable
ends in H[V'] that cover all but at most «*n vertices.

Set t = |1/B2 4+ 1] and let (P;),e[q be any cyclic ordering of such paths together with
the absorbing path. Assume that we were able to find connections in R between the
paths Py, P, ..., P;, using inner vertices from R only. Moreover, we make sure that each
connection is made with at most 15 inner vertices. Let C; be the path that begins with P

and ends in P; using those connections. Therefore
V(C;)) nR| <t-15=o0(n).

Now, we want to show that we can connect P; with P, ; to construct C;,;. Observe that
all the tight paths from (P)c[y are S-connectable. This follows from the choice § < f3; for the
absorbing path A. From the paths given by Lemma 2.2 we know that they are S;-connectable
in H[V']. Owing to 8 < f3/2 and |V'| = n/2 the -connectibility follows.

Let (z;,y;) be the ending pair of P; and (z;, w;) the starting pair P;,;. Lemma 2.4 implies
that, for some ¢; < 15, there exist at least an® tight (z;,y;)-(2;, w;) paths, each with ¢; inner
vertices. By the choice of R, the number of (x;,y;)-(z;, w;) paths of length ¢; + 2 whose inner
vertices lie in R is at least y2an’ /2. Since at most [V (C;) n R|n%~! = o(n%) such paths
contain a vertex from Cj, for sufficiently large n large enough we can find one tight path
disjoint from Cj.

Finally, consider C; the final cycle obtained in this process, by connecting P, to P;. Then,
as C; includes all the tight paths in the almost covering the number of vertices not covered
by C} is at most

VN V(C)| < |R| ++°n < 3v°n.

This finishes the proof, since A can absorb these vertices into a new path with the same

endings. 0

§3. PRELIMINARY RESULTS AND BASIC DEFINITIONS

In this section we collect some preliminary results and introduce the necessary notation.
Given n,d € [0,1] and a bipartite graph G = (V] v Vi, E') we say that G is (n, d)-regular if
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for every two sets of vertices X < V; and Y < V5, we have
e(X,Y) — dIX|[Y]] < n|VA[|Va] .

It is easy to see that every dense graph contains a linear sized bipartite regular subgraph,
with almost the same density. That can be proved by a simple application of Szemerédi’s

Regularity Lemma or alternatively by a more direct density increment argument (see [14]).

Lemma 3.1. For all n, d > 0 there exists some p > 0 such that for every n-vertex graph G
with e(G) = dn?/2, there exist disjoint subsets Vi, Vo = V(QG), with |V1| = |Va| = [un| such
that the bipartite induced subgraph G|V, Va] is (n,d’)-regular for some d' > d. O

For a hypergraph H = (V, E) recall its shadow 0H is the subset of V?) of those pairs that
are contained in some edge of H. For disjoint sets of vertices V;, Vo € V with a slight abuse
of notation we write 0H [V}, V3] for the set of ordered pairs in V; x V5 that correspond to

unordered pairs in the shadow, i.e.,
aH[‘/la‘/Q] = {(vlaUQ) € ‘/1 X ‘/2: {Ul,?]g} € 8H} .

Given o,d > 0, a set of ordered pairs of vertices P € V2, and a subset X < V we say that H
is (o,d,&)-dense over (X, P) if for every subset of vertices X’ € X and every subset of

pairs P € P we have
e(X', P') = d|X"||P'| — o| X]||P],

which is a version of &-density restricted to P and X. For the next lemma we also need the
following concept of restricted vertex neighbourhood. Given a vertex v € V and a set of

ordered pairs P € V2 we define its neighbourhood restricted to P by
N(v,P) ={(z,y) € P:vzy e E}.

Lemma 3.2. Let H = (V, E) be a hypergraph, X <V be a set of vertices, and P < V. If H
is (0,d,&)-dense over (X, P) for some constants o, d > 0, then

[{z e X: |N(z, P)| < (d— /0)|P|}| < +ol|X|.

Proof. Let X’ < X be the vertices with less than (d — ,/0)|P| neighbour pairs in P. The
definition of X’ and the (g, d, &)-density of H over (X, P) provide the following upper and
lower bounds on e(X’, P)

d|X"[|P| = o X||P| < e(X", P) < (d = /)| P[ - |X']

and the desired bound on |X’| follows. O
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The following result asserts that hypergraph contains subhypergraph with almost the
same density and such that every pair of vertices with positive codegree has at least Q(|V])
neighbours. This fact can be proved by removing iteratively the edges which contain a pair

with small codegree and we omit the details.

Lemma 3.3. For every 8 > 0 and every n-vertex hypergraph H there is a hypergraph Hg < H
on the same vertex set with e(Hg) > e(H) — Bn® such that for every pair of vertices x, y
either dy,(z,y) = 0 or du,(v,y) = Bn. In particular, if we have dy,(x,y) > 0, then (v,y) is
[B-connectable in H. O

Let F' and F’ be two hypergraphs. We say that F' contains a homomorphic copy of F’
if there is a function ¢ from V(F”) to V(F') such that for every edge xyz € E(F") we have
that ¢(z)p(y)¢(z) € E(F). We denote this fact as F' ™ F and we recall the following well

known consequence from Erdés [7].

Lemma 3.4. For every £ > 0 and k, { € N there is ( > 0 and ng € N such that the following
holds. Let F and F' be hypergraphs such that |V (F)| = k and |V (F')| = ¢ and F' 2 F. If

a hypergraph H on n > ng vertices contains at least én* copies of F', then H contains (n’
copies of F". O

We denote the hypergraph with four vertices and three edges by K f’)_. We refer to the
vertex of degree three as the apexr. Glebov, Kral, and Volec [9] showed that ..-density bigger

than 1/4 yields the existence of a, in fact of many copies of, K 4(3)_.

Theorem 3.5 (Glebov, Kral & Volec, 2016). For every ¢ > 0 there exist o and & > 0

such that every sufficiently large (0,1/4 + €,..)-dense n-vertex hypergraph contains En? copies
(3)—

of Ky . 0

§4. ALMOST COVERING

In this section we present a very straightforward proof of Lemma 2.2.

Proof of Lemma 2.2. Given d,~ > 0 take 8 and p such that
d~®
P=e="3
We show that a maximal collection of S-connectable tight paths, each of which having at
least 3n vertices, must cover all but at most 7?n vertices. We do that by showing that in
every set X < V(H) with at least 7?n vertices there exists a -connectable tight path of

size fn. Indeed, the (g, d,.)-density implies that in such a set X, we have

d X3
ox) > B0 g,
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where we discounted the ordering of triples. In H[X] we remove, iteratively, every edge that
contains an (unordered) pair of vertices with codegree smaller than Sn. In this way, we

remove at most 3n® edges and get a hypergraph with at least

d|X|]?
e(X) — pn® = |6| —on® — fn

6
= (dg_g_ﬁ)nga

edges. Owing to the choice of # and ~ this hypergraph is not empty. Now a tight path

3

with fn vertices can be found in a greedy manner. Moreover, if (z,y) is a pair contained in
such path, then we have that the set

Zyy ={2€V:zyze E and d(y, z) = fn}

has at least Sn vertices. O

§5. CONNECTING LEMMA

We dedicate this section to prove the Connecting Lemma (Lemma 2.4). The proof splits
into several lemmata. The Connecting Lemma asserts that every ordered connectable pair can
be connected to any other ordered connectable pair. In a first step in Lemmata 5.1 and 5.3
we show that there are many connections between large sets of unordered pairs (without
specifying the order of the ending pairs). In fact, these connection can be achieved by paths
consisting of only two edges, which we refer to as cherries (see Definition 5.2 below). On the
price of extending the length by at most two, in Lemma 5.4 we establish that one can even
fix the order of one of the sets of given pairs. On the other hand, this is complemented by
Lemma 5.7 showing that there are many pairs of unordered pairs that can be connected in
any orientation. We call such pairs of pairs turnable (see Definition 5.5 below).

For the proof of the Connecting Lemma we can now start with any given connectable
pair (z,y) and move to its second neighbourhood, which is a large set of ordered pairs. From
that set we shall reach many turnable pairs. Similarly, from any given ending pair (z,w)
we also reach many turnable pairs. These paths give the turnable pairs an orientation, but
since the turnable pairs can be connected in any orientation, we find the desired tight (x,y)-
(z,w)-paths. The detailed presentation of this argument renders the proof of the Connecting

Lemma, which we defer to the end of this section.

Lemma 5.1. For all &, € € (0,1] there exist n, 0 > 0 such that the following holds for
sufficiently large m.
Suppose Vi, Vo, Vi are pairwise disjoint sets of size m and suppose G = (Vi v Vo, P) is

an (n,&)-reqular bipartite graph. If H = (V3 w Vo w V3, E) is a 3-partite hypergraph that
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is (0,1/4 + e,&)-dense over (V3, P), then
|0H[Vy, Vs]| + [0H[Va, V3]| = (1 + ) m?.

Proof. Given £ and € we set

£\ 2
Q=<ﬁ> and N <

ge

36

Let G = (Vi wV,, P)and H = (V} w Vo w V3, E) be given. Since G is bipartite we may
view P as a subset of V] x V5 and, hence, as a set of ordered pairs. Lemma 3.2 applied to V3
and P ensures for the hypergraph H that there are at most ,/om vertices in V3 with less
than (1/4 + ¢ — /0)|P| neighbour pairs in P. We remove such vertices from V5 and let V3 be
the resulting subset of V3.

Consider a fixed vertex vz € V3. By the definition of V3, we have

|N(vs, P)| = (i—l—s—@) |P| = <i+12€) |P|. (5.1)
For i = 1, 2 we consider the neighbourhood of v3 in dH[V;, V3] defined by
Ni(vsg) = {vi e Vi: (v;,v3) € CH[V;, Vg]}
and note that
|N (v, P)| < eq(Ni(vs), Na(vs)) .
Consequently, the (7, §)-regularity of G yields

[N (vs, P)| < €| N1(v3)|[Na(vs)| + nm? . (5.2)

Combining (5.1) and (5.2) with the upper bound on |P| provided by the regularity of G we

obtain

1 1
AN @) [No(s)| = (14 2) [P —dgm® > (14 22 (6~ mpm? — dm? > (14 Le)em®

where the last inequality makes use of the choice of 1. Hence, the AM-GM inequality tells us
2 7
(|N1(U3)| + ’NQ(’U?,)D = 4 |N1(U3)HN2(U3)‘ = (]. + §€>m2
and, consequently, we arrive at

7 \1/2 11
N (03)] + | Na(vs)] = (1 4 55) m> (1 + 1—05>m.
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Finally, summing for all vertices v3 € V5 we obtain the desired lower bound

|0H[VL, Va]| + [0H([Va, V3] = D7 (IN1(vs)] + [Na(vs)])

ngV/

> (e
(- ve

> (1+¢e)m*,

Vsl

where we used the choice of g for last inequality. O

Tight paths of length two will play a special role in our proof and the following notation

will be useful.

Definition 5.2. Given a hypergraph H = (V, E) and disjoint sets p, ¢ € V?), we say that
the edges zyz, yzw € E form a (p, q)-cherry, if p = {z,y} and q = {z, w}.

Moreover, given two sets P, Q < V), we say that edges e, ¢’ € E form a (P,Q)-cherry, if
they form a (p, q)-cherry for some disjoint sets p € P and q € Q.

The next lemma asserts that in &-dense hypergraphs with density larger than 1/4 large

sets of pairs induce many cherries.

Lemma 5.3. For every £, € € (0,1] there exist o, v > 0 such that for every sufficiently
large (0,1/4 +¢,)-dense hypergraph H = (V, E) the following holds. For all sets P, Q < V®

of size at least 3¢n? there are at least vn* (P, Q)-cherries.

Proof. Given & and € we apply Lemma 5.1 and we obtain n and ¢’. Without loss of generality
we may assume that n < /2. Moreover, Lemma 3.1 applied with n and d = ¢ yields
some i > 0 and we fix the desired constants ¢ and v by

0= %365@/ and v =90u’e.
Let H = (V,E) and P, Q < V® satisfy the assumptions of the lemma.

We consider a random balanced bipartition of Aw B of V and let Py = {pe P: p < A} and
Qp ={q€ Q: ¢ < B}. A standard application of Chebyshev’s inequality shows that there
exists a balanced partition of V such that |P4l, |Qg| = ¢n?/2. We apply Lemma 3.1 separately
to the graphs (A, P4) and (B, @p) and obtain four pairwise disjoint vertex sets A;, Ay € A
and By, By € B each of size m > un/2 such that the induced bipartite graphs P[A;, As]
and Q[By, Bs] are both n-regular with density at least &.
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Next for i = 1, 2 we consider the 3-partite subhypergraph H|[B;, P[A1, As]] on A w Ay w B;
with the edge set

{{z,y,2} e V®: 2 e B, and {y, 2} € E(P[A;, A2])} .

Lemma 3.3 applied to H|[B;, P[A1, As]] with 8 = ¢ yields a subhypergraph H;’P. Since our

choice of ¢ guarantees
on® + 0(3m)® < 280n® < ¢ - |By| - e(P[A1, A3))

it follows from the ~-density of H, that H}" is (¢/,1/4 + €,)-dense over (B;, P[A;, Ay]).
Similarly, for 7 = 1, 2 we also define the 3-partite hypergraph HévQ with vertex partition
By v By v A; and note that it is (¢/, 1/4 + ¢, &)-dense over (4;, Q[ B, Ba]).
Applying Lemma 5.1 to the bipartite graph P[A;, A;] and the 3-partite hypergraph H)"*
implies
|0H P [Ar, B]| + [0H ) [As, Bi]| = (1 4 &)m?

Moreover, three further applications of Lemma 5.1 to P[A;, Ay] with Hgvp and to Q[B1, Bs]
with H9 and with H29 show that

2
> (|oH [4r, B[ +[0H 42, B[ ) + 2(\&}[2@31, 1|+ [0HE2[Ba, Al = 4(1 + £)m?

i=1 P

V)

In particular, rearranging the terms shows that
2 2 ’ .
3 2 (loH"1As, Bj]| + [OHEO[By, A ) = 4(1 + )m?
i=1j=1

and, hence, there are some indices iy, jo € {1, 2} such that

Jos

|0HP[Aiy, Bjol| + |0HPC[Bjy, Ai]| = (1 + e)m”
Consequently, set of ordered pairs

R={{y,z} e V?: (y,2) e dH/*"[A;,, B;,] and (z,y) € OH*°[B;,, A;,]}

207 Jo >

has size at least em?.

Finally, we note that every {y,z} € R has positive degree in both hypergraphs HJ>"
and HZJO’Q and, hence, these degrees are at least 3om. Therefore, there are at least 90*m?
distinct vertices x € As_;, and w € Bs_j, such that zyz and yzw form a (P, Q)-cherry.

Summing over all pairs in R yields at least
em? - 90°m?* = vn?

(P, Q)-cherries in H. O
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The following corollary allows us to find many connections between a large sets of unordered

and a large set of ordered pairs.

Lemma 5.4. For every &, € € (0,1] there exist (, o > 0 such that for every sufficiently
large (0,1/4 + ¢, &)-dense n-vertex hypergraph H = (V| E) the following holds.

Let PV x V be a set of ordered pairs and let Q < V) be a set of unordered pairs, each
of size at least ¢n®. There is an { € {2,4} such that there are at least (n‘*? tight paths of

length ¢ which start with an ordered pair from P and ends in (some ordering of) with a pair

from Q.

Proof. Given ¢ and ¢ we apply Lemma 5.3 with £/6 and € and obtain ¢ and v. Lemma 3.4
applied for v/2, 4, and 6 (in place of £, k, and ¢ in Lemma 3.4) yields the promised
constant ¢ > 0. With out loss of generality we may assume that { < v/2 and let n be
sufficiently large.

For a given set of ordered pairs P < V x V let P be the set of unordered pairs obtained
from P by ignoring the order. In particular, |[P| > |P|/2 = &n?/2 and Lemma 5.3 asserts
that there are vn* different (P, Q)-cherries. That is to say there are vn* tight paths on four
vertices of the form wyzw where {z,y} € P and {z,w} € Q.

If for ¢(n* of those cherries we have that (x,y) € P, then the lemma follows with ¢ = 2.
Hence, we may assume that for at least (v — ()n* > vn?/2 of those tight paths we (only)
have (y,x) € P. Consequently, Lemma 3.4 yields (n® blowups of these two edge paths
where the vertices y and z are doubled, i.e., H contains (n® 6-tuples of distinct vertices

) ) s ~1s 9 -7 ‘ )
(33 Y1,Y2, 21, 22 w) such that for every i, ) € {1 2} we have
i, L) E P Zi Wy € Q and z 25 W is a tight |)ath with two edges.
(y) ) ) { 79 } ) Yiz; g g

In particular, every such 6-tuple induces a tight path y;xz,y2wzs which starts with an ordered
pair from P and ends in an unordered pair from () and this concludes the proof of the

lemma. O

For establishing the Connecting Lemma (Lemma 2.4) we shall extend Lemma 5.4 in such a
way that we can connect large sets P and (), where both of them consist of ordered pairs.

For that certain blowups of K f’)fs will be useful and we introduce the following notation.

Definition 5.5. We say a 7-tuple of distinct vertices (ay, as, as, by, by, c,d) € V7 is a turn in

a hypergraph H = (V, E) if for every i € {1,2,3} and j € {1,2} the set {a;,b;,c,d} spans a

copy of a Kf)_ in H with a; being the apex.
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Combining Theorem 3.5 and Lemma 3.4 shows that the hypergraphs with ..-density bigger

than 1/4 contain many turns. Moreover, we observe that in a turn 7" the tight paths
alblcagbg s alblcagdbwg 5 blalcdagbg 3 and b1a10b2a2 (53)

with at most 3 inner vertices connect the pairs {a;,b1} and {as, by} in all four possible

orientations. This motivates the following definition.

Definition 5.6. For a hypergraph H = (V, E) we say two disjoint unordered pairs q, ¢’ € V%)
are (U, L)-turnable, if for every ordering (q1,q2) of q and every ordering (q}, q) of ¢’ there
exists some positive integer ¢ < L such that the number of tight (q1, q2)-(¢}, ¢5)-paths in H

with ¢ inner vertices is at least 9|V |*.

It follows from (5.3) that pairs {a1, b} and {as, bo} that are contained in Q(|V]?) turns are
(9, 3)-turnable for some sufficiently small ¢ > 0. The following variation of this fact, will be

useful in the proof of the Connecting Lemma.

Lemma 5.7. For every ¢ € (0,1] there exist 9, o > 0 such that for every sufficiently
large (0,1/4 + ¢,)-dense hypergraph H = (V, E) the following holds.

There exists a set Q < V?) of size at least V|V|? such that for every q € Q there exists a set
Q' (q) € V@ of size at least V|V|? such that q and ¢’ are (9, 3)-turnable for every ¢' € Q'(q).

Proof. Let H = (V, E) be a sufficiently large (o,1/4 + ¢,..)-dense hypergraph on n vertices.
A combined application of Theorem 3.5 and Lemma 3.4 yields a set T < V7 of at least {n’
turns (aq, as, as, by, by, ¢, d) in H for some sufficiently small ¢ = ((¢) > 0 and we shall deduce

the conclusion of the lemma for

)=5
8

For every pair (a,b) € V x V and i € {1,2} let T;(a,b) be the set of such turns where a and

b play the roles of a; and b;, respectively. We consider the set
T = {(a,a',ag,b, b,e,d) e T:|Ti(a,b) n Ta(a',0)| = Cn3/2}

and note that |7*| = (n"/2. By a standard averaging argument there are at least (n?/4 pairs
(a,b) € V x V for which we have

TL5

|Ti(a,b) " T*| = i

and we denote the set of these ordered pairs by R. Note that for every pair (a,b) € R there is

a set R'(a,b) €V x V with

n’ (5.4)

DO [y

|R'(a,b)| = inQ such that |Ti(a,b) N Tz(d’,b')| =
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for every (a’,b') € R'(a,b). Finally, let @ be the set of unordered pairs derived from R, i.e.,

Q={{n, 2} eV?: (q1,¢) € R}

and for every ¢ = {qi, ¢2} set

Q(q) = {{d. db} e V?: (¢}, ) € R'(q1,42) U R (g2, 1)} -

Clearly,
R (5.4)
Q| = |2| > gn2 =9n? and Q'(q) = 2712 = Un?
and the required number of tight paths for every orientation of ¢ € @ and ¢’ € @’'(q) follows
from (5.3) and (5.4). O

Roughly speaking, the proof of Lemma 2.4 follows from Lemmata 5.4 and 5.7. The definition
of connectable pairs allows us to move from the given ordered pairs (z,y) and (w, z), that
need to be connected, to large sets of ordered pairs P, P’, by considering their second
neighbourhoods. Moreover, Lemma 5.7 yields sets Q € V® and Q'(q) € V® for every q € Q
of turnable pairs. Applying Lemma 2.4 first to P and @ and then to P’ and Q’(q) for all
q € @ leads to the desired tight (x,y)-(z,w)-paths.

Proof of Lemma 2.4. For given e, 5 > 0 let 9 and p; be the constants provided by Lemma 5.7.
We set

¢ = min{d, 5%}
and Lemma 5.4 applied with £ and ¢ yields ( and gs. Finally, we define the promised constants
2y
o =min{or, 02}  and = CB

Let H = (V, E) be a sufficiently large (o, 1/4 + £,2)-dense hypergraph on n vertices and
let (z,y), (w, z) be two disjoint S-connectable pairs. Consider the second neighbourhoods of

these pairs defined by
P={(u,v) eV xV:xyu, yuwe E} and P ={(u',v)eV xV:wz, zu'v' e E}. (5.5)

Owing to the 3-connectability, both sets P and P’ have size at least 3°n? = £n?.

Next, let @ < V® and Q'(¢q) < V@ for every ¢ € Q be the sets of size at least ¥n? > &n?
provided by Lemma 5.7. For every g € (Q we denote by P,(q) (resp. Ps(q)) the number of
tight (u,v)-(q1, g2)-paths having 4 (resp. 6) vertices and (u,v) € P and {qi, ¢2} = ¢q. Moreover,

we normalise these numbers by

Py(q) P6(Q)}

np(Q)=maX{ e
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and note that Lemma 5.4 applied to P and () ensures

D inp(g) = ¢. (5.6)

q€Q
Analogously, we define P;(¢'), F5(¢'), and np/(q¢') for every ¢’ € | J,.o Q'(¢) and Lemma 5.4
applied to P’ and Q)’(q) implies
>, neld) = ¢ (5.7)
q'€Q’(q)
for every ¢ € Q. Recall, that the paths accounted for in (5.6) and (5.7) induce an ordering of
the vertices in g and in ¢’. However, by Lemma 5.7 the pairs ¢ and ¢’ are (¢, 3)-turnable for
every q € @ and ¢’ € Q'(q), which means that these pairs can be connected for any possible

orientation. Consequently, there is some ¢ with
5 < ¢ < max{4,6} + max{1,2,3} + max{4,6} = 15

such that the number of (x,y)-(z, w)-walks in H is at least

(5.7) (5. C279
1 ZHP U Z 77P’ Z 15 ZUP -0 C = ﬁn

€@ 7'eQ’(q €
At most O(n*~1) of these walks might not be a path and, hence, the lemma follows for
sufficiently large n. O

§6. ABSORBING PATH

We dedicate this section to the proof of Lemma 2.3. Similarly as in [17] the absorbers we
consider here have two parts. Moreover, we use an idea of Polcyn and Reiher [15], which
reduces the abundant existence of absorbers to a degenerate Turan problem on the price that
we can only absorb exactly three vertices at each time.

Consider first the complete 3-partite hypergraph K§?§73 with parts A; = {z;,v;, 2z}, for
every ¢ = 1,2, 3. Note that this hypergraph contains the tight paths

T1T2T3Y1Y2Y3%122%3 , (6-1)

and
T1X9X3212923 - (62)

This means that from every copy of K3 33, ordered as a tight path like in (6.1), we may

remove the three inner vertices yi, y2, y3 to obtain a tight path with the same ends. Since we

only consider dense hypergraphs, we can guarantee that many copies K. 353323 exist. In other

words, in such a situation the tight path zix.x321 2923 could absorb the three vertices v, ys,
and y3. However, not every triple might be contained in a K. 3533)3 and this will be addressed

by the second part of the absorbers used here.
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Suppose we want to absorb some arbitrary vertices vy, vo, and v3. The idea, similarly as
in [17], is to exchange v; with y; contained in some K§3§3 Suppose we have found a Kéfg’g
as described above, but additionally we find a path (as a graph) on four vertices with edges
from Ny (v;) n Ng(y;) disjointly for each i = 1,2,3. We argue that this whole structure can
absorb vy, ve, v3. Indeed, if a;b;c;d; is a path on four vertices with edges from Ny (v;) N Ny (y;),
then both P(v;) = a;byv;c;d; and P(y;) = a;by;icid; are tight paths in the hypergraph and
with the same endings. Moreover, the minimum degree and the uniform density imply that
for each vertex v € V, most vertices of V' have {(n*) common neighbours with v, which is
enough to find such paths.

Therefore, if we choose to absorb vy, v, v3, we will consider the tight paths P(vy), P(vs),
and P(v3) and the tight path of Kégg as in (6.1). On the other hand, if we choose not to
absorb them, then we consider the tight paths P(y;), P(y2), and P(y3) and the tight path
of K. §3§3 as in (6.2). We will also show that for each triple of vertices, we can find many of
these configurations, so that we can choose a small amount of them that still can absorb every
triple and also connect them into a single tight path. Observe that this absorbing path can
only absorb sets of vertices with size divisible by three, an issue with which we deal later.

First we prove that for every triple there are many absorbers.

Definition 6.1. Let H = (V, E) be a hypergraph and (v, v, v3) € V3. We say
A= (K ,P,Py,P) eV xVixVixVt,

with K = (x1, %2, 23,91, Y2, Y3, 21, 22, 23) and P; = (a;, b;, ¢;, d;) is an absorber for (vy, vy, vs) if
the ordered sets

(1) T10203Y1Y2Y3212223, T1T2T3212223,

(i1) a;bvicid; and a;by;c;d; for i =1,2,3
induce tight paths in H. All hyperedges of those paths that do not include a vertices

from {vy,vq,v3} are called internal edges of the absorber A.

Formally absorbers are defined to be four tuples. However, sometimes it will be convenient

to view them as 21-tuples of vertices.

Lemma 6.2. For all d, € € (0,1] there exist o, & > 0 such that for sufficiently large n the
following holds.
For every (p,d,)-dense hypergraph H = (V, E) on n vertices with §;(H) > en® and every

triple T = (vy,ve,v3) € V3 of distinct vertices there are at least En*' absorbers for T.

Proof. Given d and ¢ we define some auxiliary constant ¢ = (d/2)?"/3 and set

1 /d\™ Cd2%°
Q:36(2> and 6= "o
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Let H = (V, E) be a (p,d,)-dense hypergraph on n vertices and consider some triple of
vertices T = (vy, v, v3) € V3.
Three applications of Lemma 3.2 each with X =V and for i € [3] with the set of ordered

pairs
{(u,w): {u,w} e NH(Ui)}

tells us, that there are at most 3,/on bad vertices v € V that may fail to satisfy

for some 7 € [3]. Moreover, the (o, d,&)-density of H implies that the edge density of H is at
least d — 2p > d/2 and since the extremal number of any fixed 3-partite hypergraph is o(n?)
we have K. 3533)3 C H for sufficiently large n. In fact, the standard proof of this fact from [7]
yields at least ((d/2)*" — o(1))n? such copies. Consequently, for sufficiently large n there are

at least
d

27
(<2> - 0(1)) n? —3y/on-n® = (n’
copies of K§?§73 in H that contain no bad vertex. Let K = K7 < V¥ be the set of these Kéf’}},g
in H.

Consider some K = (z1,za, X3, Y1, Y2, Y3, 21, 22, 23) € K. Since none of the vertices of K is
bad, for every vertex v from K inequality (6.3) holds for every i € [3]. In particular, for
every i € [3] we have [Ny (y;) n Ng(v;)| = den?/2 and it follows from [3] that there exist at
least ((de/2)® —o(1))n* paths on four vertices with edges from Ng(y;) N Ny (v;). Consequently,
for sufficiently large n, there exist at least

d3e’ ’ d%e?
(55 o) = o 20
4-tuples A = (K, Py, Py, P5) € V9 x V1 x V4 x V* with P, inducing a path in Ny (y;) n Ny (v;)
for i = [3]. Such an A may only fail to be an absorber for T, if it contains some vertex

from T itself or if its 21 vertices are not distinct. However, since there are at most O(n*°)

such “degenerate” A’s the lemma follows for sufficiently large n. O

Note that for the proof of Lemma 6.2 positive A-density was sufficient. However, to address
the aforementioned divisibility issue, we will show that the hypergraphs H considered here
contain a copy of Cs(4), the 4-blow-up of the tight cycle on 8 vertices. For the proof of that,
we make use of the assumption that the 2-density of H is bigger than 1/4.

The Cs(4) is formed by 8 cyclicly ordered independent sets {e;, fi, gi, ki }ic[s) such that the

only edges are the ones with vertices from three consecutive such sets. Note that Cg(4)
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contains the tight path

6162...€8f1f2...fgglgg...gghlhg...hg. (64)

Moreover, by removing the sets {fi}icjs] or {fi, gi}ics] from the path in (6.4) leads to tight
paths with the same ends in Cs(4) with 24 or 16 vertices, respectively. We also remark
that 16, 24 and 32 are congruent to 1, 0 and 2 modulo 3, respectively. Therefore, if we connect
such tight path to the absorbing path, we can decide to remove some of the vertices so that

the size of the leftover set is divisible by 3.

Lemma 6.3. For all e > 0 there exist o, 9 > 0 such that every sufficiently large (0, 1/4+¢,)-
dense hypergraph H = (V, E) contains 9|V [** copies of Cs(4).

Proof. Given € > 0 we apply Theorem 3.5 to obtain o; and £&. Then, the application of
Lemma 5.3 to £/6 and ¢ yields g and v. Set ¢ = min{g;, 02} and let n be sufficiently large.

Let H = (V, E) be a (p,1/4 + ¢, &)-dense hypergraph on n vertices. In view of Lemma 3.4
it suffices to show that H contains (n® copies of Cg for some ¢ > 0.

Theorem 3.5 implies that H contains at least én* copies of Kf’)_. Let R be the set of
ordered pairs (a,x) such that both vertices are contained in at least £n?/2 of these K. 4(3)_
with a being the apex. By double counting we infer |R| > &n?/2.

For every (a,z) € R, let P, , < V@ be those pairs {y, z} that span such a copy of K4(3)7
together with @ and . We apply Lemma 5.3 to P = ) = F,, and infer that there are
at least vn? (P, Q)-cherries, i.e., tight paths with 4 vertices starting and ending at a pair
from P, ,.

Let F' be the hypergraph with vertex set {a,x,y,y’, z, 2’} such that the following holds.
The vertices {a,x,y, 2z} and {a,z,y’, 2’} span copies of Kf’)_ with apex a and F' contains
a ({y, 2}, {y/, #’})-cherry. Observe that since y and z (resp. ¢’ and 2’) play a symmetric role
in K £3)_, regardless of the orientation of the pairs {y, z} and {1/, 2’} in the cherry the resulting
hypergraph is isomorphic. Without loss of generality we will assume that the cherry is a tight

path of the form yzy'z’. By the reasoning above, H contains at least

£ 6

IR|-vn* = 2vn
2
copies of F'. We argue that there is a homomorphism of Cg in F. Indeed, if we consider the
vertices of F' in the following cyclic ordering
zayzy' 2 ay’

one can check that every consecutive triple forms an edge in F. Since there are at least (n®)
copies of F'in H, then by Lemma 3.4 and taking ¢ small enough, we have that there are at
least (n® copies of Cs. O
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We are now ready to prove Lemma 2.3.

Proof of Lemma 2.3. Given ¢ > 0 the constants appearing in this proof will satisfy the

following hierarchy

1
I1>ex» &0 B 0,a»y =>v>» —, (6.5)
n

where the auxiliary constants &, ¢/, and a are provided by Lemmata 6.2, 6.3, and 2.4 and
it is easy to check that (6.5) complies with the quantification of these lemmata. Let H be
a (0,1/4 + €,2)-dense hypergraph with §;(H) > en? and let R be a subset of V with at
most 2v%n vertices. Fix the subhypergraph Hs © H provided by Lemma 3.3.

For T € V3, let Az be the set of those absorbers for 7" in H that have no vertex in R and
all its 36 internal edges from Hg. It follows from Lemma 6.2 applied with d = 1/4 + ¢ and ¢

that

6.5)
|Ar| = &n®' — 21| R|n* — 6 - 36(e(H) — e(Hg))n'® = &n®' — 42~4°n*" — 216 fn®! (> §n21 .

Let A = |J,Ar be the union over all triples T € V3 and consider a random collection of

absorbers C € A in which each element of A is present independently with probability

- A3
P oAl
Since E|A| = p|A|, Markov’s inequality ensures that
1
P(IC| = ~v"*n) < 5 (6.6)
Moreover, for every T' € V? we have
4/3 21 4/3 5
7' n YN ©5)
E|C = > : > > 4y°n,
IC n Ar| = p|Ar| oAl 9 1 Yn
Chernoft’s inequality combined with the union bound over all triples yields
P(3T e V?: |C n Ar| < 37°n) < o(1). (6.7)
Letting Y be the number of pairs of distinct absorbers A, A’ € C that share a vertex we note
8/3p2 4414830 (65) v%n
EY —p2.n2'.912. 920 = 7 4410 < <
p°n n 1A n 2 1
and by Markov’s inequality, we have
1
P(Y = v°n) < 1 (6.8)

Consequently, with positive probability none of the bad events from (6.6), (6.7), and (6.8)

happen. In particular, there exists a realisation of C such that

Ic| < 4*3n, IC N Ar| = 37*n for every T € V?, and Y ()| <~*n.
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For every pair of absorbers accounted in Y (C) we remove one of the involved absorbers in an

arbitrary way and obtain a subset B < C of pairwise vertex disjoint absorbers satisfying
Bl <|C| <4**n  and B Ar| > |C n Ap| —7*n = 29*n for every T e V3.

Recall that if the absorbing path would only contain the absorbers from B, then it could only
absorb sets U with a cardinality that is divisible by 3. We address this divisibility issue by
adding a copy of Cg(4) to the path. Lemma 6.3 guarantees at least ¥n3? copies of Cg(4) in H.
Similarly, as for the estimate of Az, we infer that there is one such Cs(4) which is vertex
disjoint from the set R and from all absorbers from B and which only contains edges from Hg.

In fact, this follows from

In®* — 32 |R[n®! — 21|B|n* — 6 - ¢(Cs(4)) (e(H) — e(Hg))n*
> In®? — 642032 — 214303 — 3072 fn*? “9y.
Fix an ordering of the vertices of such a Cg(4) that induces a tight path (see, e.g., (6.4)) and
denote this path by Pc.

In order to obtain the final absorbing path, each absorber (K, Py, P>, P3) € B will be
viewed as a collection of four tight paths: xyxox3212923 and a;b;y;¢;d;, for © = 1,2,3, as in
Definition 6.1. Therefore, together with joining Po we have to connect ¢ = 4|B| + 1 tight
paths to build the promised absorbing path A. For each of the connections we will appeal to
Lemma 2.4 and each application will require to add up at most 15 inner vertices.

Let (P;)ie[q be an arbitrary enumeration of all these tight paths that need to be connected.
We continue in an inductive manner starting with A; = Py, let A; be the already constructed
tight path containing P; for every ¢ < j. Since every connection requires at most 15 inner

vertices and the longest path in (F);cr has 32 vertices we have

t
V(A)I+ D V(P < 15(j — 1) +32t < 47t < AT(4|B[+1) < 47(4y**n+1) < n. (6.9)
i=j+1
Suppose now that we want to connect P;, which ends in (z,y), to Pj;1, which starts
at (z,w). Since all tight paths P, with i € [¢] have its edges in Hg, by Lemma 3.3 they
are -connectable. Therefore, Lemma 2.4 implies that there are at least an’ tight paths,
with ¢ < 15 inner vertices, connecting (x,y) with (z,w) in H. Consequently, in view of (6.9)
and |R| < 2v*n our choice of v in (6.5) shows that at least one of such connecting paths must

be vertex disjoint from
t

V(4)u | vp)urg,

which concludes the inductive step and proves the existence of the tight path A;.;.
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Finally, let A = A; be the final tight path and let U = V \ V(A) with |U] < 3y?n. First
we remove 0, 8 or 16 vertices from Pg in A and reallocate them to U to get a set U’ with size
divisible by three. Moreover |U’| < 3v*n + 16 < 3(v*n + 6) and, hence, U’ can be split into
at most v?n + 6 disjoint triples. Since each triple has at least 27?n > 7?n + 6 absorbers in A,

we can greedily assign one for each and absorb all of them into A. O

§7. PROOF OF THEOREM 1.4

In this section we discuss the few modifications necessary in the proof of Theorem 1.3 in
order to prove Theorem 1.4. Recall that both theorems have the same minimum vertex degree
assumption. However, where Theorem 1.4 requires the given hypergraph H to be A-dense for
some positive density, Theorem 1.3 requires &-density bigger than 1/4. In other words, the
uniform density assumptions of both theorems are incomparable.

The proof of Theorem 1.3 consist of three main parts, namely Lemmata 2.2—2.4. Observe
that Lemma 2.2 can be applied directly under the conditions of Theorem 1.4, but for
Lemmata 2.3 and 2.4 we have the assumption of &-density at least 1/4 which is not provided
by Theorem 1.4. We start with the discussion of the Connecting Lemma in the context of
Theorem 1.4 in the next section and defer the discussion of the adjustments for the Absorbing
Path Lemma (Lemma 2.3) to Section 7.2.

7.1. Connecting Lemma for Theorem 1.4. The following lemma will play the role of

Lemma 2.4 in the proof of Theorem 1.3.

Lemma 7.1 (Connecting Lemma for A-density conditions). For every d, 5 > 0 there exist o,
a > 0 and an ng such that for every (o,d,A)-dense hypergraph H on n = ng vertices the
following holds.

For every ¢ € {5,6,7} and for every pair of disjoint ordered (B-connectable pairs (x,y),

(w,2) € V x V, the number of (x,y)-(z,w)-paths with £ inner vertices is at least an’.

Proof of Lemma 7.1 (sketch). We begin with the following observation. Let P, P < V x V

each of size at least (n?) we show that
there are at least Q(n®) p-p’-paths with one inner vertex and p € P, p' € P'. (7.1)

Note that every (o,d,a)-dense hypergraph is (g, d,&)-dense and in view of Lemma 3.2
applied to P and V there is a set X < V such that |X| = Q(n) and for every x € X we
have |N(z, P)| = Q(n?). Similarly, another application of Lemma 3.2 to P’ and X yields a
set X' < X of size ©(n) such that

IN(z, P)| =Q(n*)  and  [N(z,Q)] = Qn?)
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for every x € X’. Consequently, a standard averaging argument tells us that each of the sets

Q={(p2,2) eV x X": |{p1 € V: (p1,p2) € P and pipox € E}| = Q(n)}

and
Q' = {(z,p)) e X' x V: [{py e V: (p},ph) € P’ and zpp) € E}| = Q(n)}

has size ©(n?). Finally, the &-density of H applied to Q and Q' yields Q(n®) p-p’-paths
starting in P and ending in P’ with an inner vertex from X, i.e., it establishes (7.1).

For given connectable pairs (z,y) and (w, z) letting P and P’ be their second neighbourhoods
as defined in (5.5), yields the conclusion of Lemma 7.1 for ¢ = 5.

For ¢ = 6 we note that ~-density implies that there are Q(n?) 3’-connectable pairs (y,y’)
with zyy’ € F for sufficiently small 5’ = §'(d) > 0. Applying the same argument as above for
every such pair (y,y’) proves the case ¢ = 6. Finally, for ¢/ = 7 the same reasoning applied to

the connectable pairs (y/,y") with zyy', yy'y” € E concludes the proof. O

7.2. Absorbing Path Lemma for Theorem 1.4. Recall that the proof of Lemma 2.3
required ~-density bigger than 1/4 in only two places:

(7) for the connection of the absorbers to a tight path and

(7) in Lemma 6.3 for addressing the divisibility issue of the size of the absorbable sets,

while for the abundant existence of the absorbers &-density d for any d > 0 is sufficient (see
Lemma 6.2). As shown in Section 7.1 for the connecting lemma positive A-density suffices,
which addresses (7). Moreover, in Lemma 7.1 we are even free to choose the length of the

connecting paths, which renders the divisibility issue from (77) in this context.

§8. CONCLUDING REMARKS

We briefly discuss a few open problems for 3-uniform hypergraphs and possible generalisa-

tions of Theorems 1.3 and 1.4 to k-uniform hypergraphs.

8.1. Problems for 3-uniform hypergraphs. Theorems 1.3 and 1.4 concern asymptotically
optimal assumptions for uniformly dense hypergraphs that guarantee the existence of Hamilton
cycles. The following notation will be useful for the further discussion.
Definition 8.1. Given x € {~., &, A} and a € {1,2}. We say a pair of reals (d,«) is (*,a)-
Hamilton if the following assertion holds:

For every € > 0 there exist o > 0 and ngy such that every (o,d + €, x)-dense hypergraph
H = (V,E) with |V]| =n > ng and 6,(H) > (a +¢)(,",) contains a tight Hamilton cycle.

We remark that we can restrict our attention to tight Hamilton cycles, since the result of
Lenz, Mubayi, and Mycroft [13] asserts that already (0,0) would be (*, a)-Hamilton for loose

cycles for every choice of » € {2 A} and a € {1,2}. For tight Hamilton cycles Aigner-Horev
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and Levy [2] showed that (0,0) is (A, a)-Hamilton for a = 2 and this was extended by Gan
and Han [8] and by Theorem 1.4 to a = 1. It remains to characterise the minimal pairs (d, o)
that are (x, a)-Hamilton for the four combinations » € {., &} and a € {1, 2}.

Example 1.2 shows that for (d, a) being (&, 1)-Hamilton we must have

—_

max{d, a} > (8.1)

1
On the other hand, Theorem 1.3 asserts that for d = 1/4 already a = 0 suffices. It would be
interesting to determine the smallest value a. ; such that d = 0 suffices. In view of (8.1) we
have a1 > 1/4 and the result from [17] bounds . ; by 5/9. Since all known lower bound
constructions for that result are lacking to be &-dense it seems plausible that a.; < 5/9.

Similarly, let a.. o be the infimum over all @ > 0 such that (0, «) is (&, 2)-Hamilton. Here it
follows from [21] that a. o < 1/2. Moreover, Example 1.2 yields a hypergraph with minimum
codegree (1/4 — o(1))n that fails to contain a tight Hamilton cycle. Therefore, we have
Q.2 > 1/4 and at this point we are not aware of any reason that excludes the possibility
that a, o matches this lower bound.

Problem 8.2. Determine o ; and o s.

For tight Hamilton cycles in ..-dense hypergraphs the problem appears to be more delicate
as the following unbalanced version of Example 1.2 shows. Instead of a uniformly chosen
bipartition of F(K,_5) we may colour the edges independently red with probability p and blue
with probability 1 —p. Let H), be the resulting hypergraph, where the rest of the construction
is carried out in the same way as in Example 1.2. By symmetry we may assume p > 1/2 and
for the same reasons as in Example 1.2 the hypergraph H, contains no tight Hamilton cycle.

Moreover, for every fixed p > 0 we have with high probability that
01(H,) = (min{l —p,p* + (1 =p)°} —0)(3) and &(H,) = ((1-p)*—o)n

and that H, is (o, p* + (1 — p)3,)-dense. For p close to 1 this shows that there is no d < 1
such that (d,0) is (=, a)-Hamilton for a € {1,2}. In particular, there is no straightforward
analogue of Theorem 1.3 in this setting.

It would be intriguing if this construction is essentially optimal for every p > 1/2. In such
an event it would imply a resolution of the following problems, where the lower bound would

be obtained from H, for p = 2/3 and p = 1/2.
Problem 8.3. Is it true that:

(i) (1/3,1/3) is (=, 1)-Hamilton?
(i) (1/4,1/4) is (=, 2)-Hamilton?
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8.2. Possible generalisations to k-uniform hypergraphs. The notion of tight Hamil-
ton cycles straight forwardly extends to k-uniform hypergraphs. Moreover, the definition
of uniformly dense hypergraphs is inspired from the theory of quasirandom hypergraphs
(see, e.g., [1,22] and the references therein). Below we briefly recall the generalisation of
Definition 1.1 for general k-uniform hypergraphs, where we follow the presentation from [20].

Given a nonnegative integer k, a finite set V, and a set Q < [k] we write V@ for the
set of all functions from @ to V. It will be convenient to identify the Cartesian power V¥
with V¥l by regarding any k-tuple @ = (vy,...,v;) as being the function i — v;. We denote
by ¥ — ¥ | Q the projection from V¥ to V¢ and the preimage of any set Gg = V¢ is denoted
by

Ki(Gg) ={veV*: (v]Q) e Gg}.

We may think of Gg € V© as a directed hypergraph (where vertices in the directed hyperedges
are also allowed to repeat). More generally, for a subset Q < §£([k]) of the power set of [k]
and a family ¢ = {Gq: Q € Q} with G < Ve for all Q € Q, we define
K@) = [ Ki(Gq). (8.2)
QeQ
Moreover, if H = (V, E) is a k-uniform hypergraph on V', then ey (¥) denotes the cardinality
of the set
Ey(@) = {(v1,...,00) € Kp(9): {v1,..., 00} € E}.

Now we are ready to state the generalisation of Definition 1.1.

Definition 8.4. Let o, d € (0,1], let H = (V, E') be a k-uniform hypergraph on n vertices, and
let Q@ < P([k]) be given. We say that H is (o, d, Q)-dense if for every family 4 = {Gg: Q € Q}

associating with each Q € Q some Gg < V¥ we have
en(9) = d|Kip(9)| — on”.
It is easy to check that for k = 3 the following subsets of £([3])

Q. = {{1}a {2}7 {3}} , Q.= {{1}7 {2a 3}} , and Q= {{L 2}7 {173}}

correspond to -, &-, and A-dense hypergraphs. More precisely, for every x € {.., &, A} we have
that a 3-uniform hypergraph is (g, d, *)-dense if and only if it is (g, d, Q,)-dense.

Example 1.2 straight forwardly extends to k-uniform hypergraphs. In fact, we may consider
a random bipartition G w G of the (k — 1)-element subsets of an (n — 2)-element set and we
define a k-uniform hypergraph containing only those hyperedges with the property that all of
its (k — 1)-element subsets are in the same partition class. Finally, we may add two vertices z

and y such that the (k — 1)-uniform link of z is G and the (k — 1)-uniform link of y is G.
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We remark that for k = 2 this construction leads to two disjoint cliques with ~ n/2 vertices,
which is a lower bound construction for Dirac’s theorem [6] in graphs.

It is easy to check that the resulting k-uniform hypergraph H does not contain a tight
Hamilton cycle and for every fixed o > 0 it is (o, 2' 7%, Q)-dense for

Q={Qe[k]*?:1eQ}u{{2,....k}}

with high probability for sufficiently large n. Note that for k = 3 we have Q = Q. and H
provides a lower bound for Theorem 1.3. It seems plausible that the hypergraph H is
essentially optimal for Q-dense hypergraphs also for k£ > 3, i.e., that O-dense k-uniform
n-vertex hypergraphs with density bigger than 2% and minimum vertex degree Q(n*=!)
contain a tight Hamilton cycle. This would be an interesting extension of Theorem 1.3 to
k-uniform hypergraphs.

Moreover, one can check that for
Q ={{1,...,k—1}{1,...,k—2,k}}

the hypergraph H constructed above is not (g, d, @')-dense for any fixed d > 0 and sufficiently
small o > 0. Note that for £ = 3 we have Q" = 9, and, in fact, Theorem 1.4 asserts that
(0,d, Q)-dense hypergraphs with minimum vertex degree Q(n?) contain a Hamilton cycle for
any d > 0 and sufficiently small o. We remark that the proof of Theorem 1.4 discussed in
Section 7 extends to k-uniform ©Q’-dense hypergraphs with an appropriate minimum vertex

degree condition.
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