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Abstract. We study structural properties of graphs with bounded clique number and
high minimum degree. In particular, we show that there exists a function L “ Lpr, εq,
such that every Kr-free graph G on n vertices with minimum degree at least p 2r´5

2r´3 ` εqn

is homomorphic to a Kr-free graph on at most L vertices. It is known that the required
minimum degree condition is approximately best possible for this result.

For r “ 3 this result was obtained by Łuczak [On the structure of triangle-free graphs
of large minimum degree, Combinatorica 26 (2006), no. 4, 489–493] and, more recently,
Goddard and Lyle [Dense graphs with small clique number, J. Graph Theory 66 (2011),
no. 4, 319-331] deduced the general case from Łuczak’s result. Łuczak’s proof was based
on an application of Szemerédi’s regularity lemma and, as a consequence, it only gave rise
to a tower-type bound on Lp3, εq. The proof presented here replaces the application of
the regularity lemma by a probabilistic argument, which yields a bound for Lpr, εq that is
doubly exponential in polypεq.

§1. Introduction

1.1. Chromatic thresholds of graphs. The graphs we consider here are finite, undirected,
simple, and have no loops and for a graph G “ pV,Eq we denote by V “ V pGq its vertex
set and by E “ EpGq Ď V p2q “ tX Ď V : |X| “ 2u its edge set. We are interested in
structural properties of large graphs G with large minimum degree that do not contain a
fixed graph F as (not necessarily induced) subgraph, i.e., G is F -free. Let

ForbpF q “ tG : F Ę Gu

be the class of F -free graphs and for n P N we set

ForbnpF q “ tG P ForbpF q : |V pGq| “ nu .

For example, if F “ Kr is a clique with r vertices and δpGq ě pr´2qt |V pGq|
r´1 u, then Turán’s

theorem [17] implies that G is pr ´ 1q-partite and, in particular, the chromatic number
of graphs G is bounded by a constant independent of |V pGq|. More generally, Andrásfai,
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Erdős, and Sós [2] raised the following question: For a given graph F and an integer k, what
is the smallest minimum degree condition such any (large) graph G P ForbpF q satisfying
this minimum degree condition has chromatic number at most k? Here we are interested in
the case when the minimum degree condition yields an upper bound on χpGq independent
from the graph G itself. This leads to the so called chromatic threshold for a given graph F

δχpF q “ inf
 

α P r0, 1s : there is some k P N such that

every G P ForbpF q with δpGq ě α|V pGq| satisfies χpGq ď k
(

.

If F 1 Ď F , then ForbpF 1q Ď ForbpF q, so obviously δχpF 1q ď δχpF q. Moreover, it follows from
the Erdős–Stone theorem [6] that δχpF q ď χpF q´2

χpF q´1 for every graph F with at least one edge.
For F “ K3 it was shown in [5] that δχpK3q ě 1{3. In the other direction, Thomassen [15]
obtained a matching upper bound and, therefore, δχpK3q “ 1{3. In fact, Erdős and
Simonovits [5] asked whether all triangle-free graphs G with δpGq ě p1{3 ` op1qq|V pGq|
are 3-colorable. This was answered negatively by Häggkvist [8], but recently Brandt and
Thomassé [3] showed that the chromatic number of such graphs is bounded by four. Goddard
and Lyle [7] and Nikiforov [13] extended these results from the triangle to arbitrary cliques.
They showed

δχpKrq “
2r ´ 5
2r ´ 3 (1.1)

for every r ě 3 that and χpGq ď r ` 1 for every Kr-free graph G with δpGq ą 2r´5
2r´3 |V pGq|.

In the case when F “ C2r`1 is an odd cycle of length at least five it was shown by
Thomassen [16] that the chromatic threshold is zero and Łuczak and Thomassé [12] proved
that

δχpF q R p0, 1{3q

for all graphs F and that δχpF q “ 0 if F is nearly bipartite (a graph is nearly bipartite
if it is triangle-free and it admits a vertex partition into two parts such that one part is
independent and the other part induces a graph with maximum degree one). Recently,
Allen et al. [1] extended the work of Łuczak and Thomassé and determined the chromatic
threshold for every graph F .

1.2. Homomorphism thresholds of graphs. Viewing χpGq ď r as the property that G
admits a (graph) homomorphism into Kr, which we denote by G hom

ÝÝÑ Kr, one may ask for a
graph G P ForbpF q, whether Kk can be replaced by a graph H of bounded size (independent
of G), that is F -free itself. More precisely, in [15] Thomassen posed the following question:
For which constant α, does there exist a finite family of triangle-free graphs such that every
triangle-free graph on n vertices with minimum degree greater than αn is homomorphic
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to some graph of this family? To formalise this question we define the homomorphism
threshold of a graph F

δhompF q “ inf
 

α P r0, 1s : there is some k P N and a graph H P ForbkpF q such that

every G P ForbpF q with δpGq ě α|V pGq| satisfies G hom
ÝÝÑ H

(

.

Thomassen then asked to determine δhompK3q. Since G hom
ÝÝÑ H implies χpGq ď |V pHq|, we

clearly have
δhompF q ě δχpF q.

Łuczak [10] proved δhompK3q “ 1{3 and, hence, for the triangle K3 the homomorphism
threshold and the chromatic threshold are equal. The work of Goddard and Lyle [7]
generalised Łuczak’s result and showed

δhompKrq “ δχpKrq “
2r ´ 5
2r ´ 3 (1.2)

for every r ě 3. Łuczak’s proof in [10] and the generalisation of Goddard and Lyle [7],
which uses Łuczak’s result as a base case in an inductive proof, utilise Szemerédi’s regularity
lemma [14] and lead to a tower-type bound on the size of the Kr-free homomorphic image
H in terms of r and the given minimum degree density δpGq{|V pGq|. We give a different
proof of the upper bound of (1.2) based on a simple probabilistic argument, which avoids
the regularity lemma and yields a doubly exponential dependency.

Theorem 1.1. For every integer r ě 3 and every ε ą 0 there exits some L “ 22polypr,1{εq

such that for every Kr-free graph G with

δpGq ě
´2r ´ 5

2r ´ 3 ` ε
¯

|V pGq|

there exists a Kr-free graph H on at most L vertices with G hom
ÝÝÑ H.

It seems an interesting open question to determine the homomorphism threshold for
other graphs than cliques. In particular, the case of odd cycles of length at least five seems
to be a first interesting open case. Very recently, in [4, 11] an upper bound of the form

δhompC2k`1q ď
1

2k ` 1
was obtained and it would be interesting to establish a matching lower bound.

Question 1. Is δhompC2k`1q “
1

2k`1 for k ě 2?

A somewhat related question concerns the homomorphism threshold for forbidden families
of graphs. Note that the definitions of ForbpF q and δhompF q straightforwardly extend from
one forbidden graph F to forbidden families F of graphs. In view of Question 1 it is natural
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to consider the family C2k`1 “ tC3, . . . , C2k`1u of odd cycles of length at most 2k ` 1. We
remark that for these families the homomorphism threshold was obtained and in [4,11] it
was shown that δhompC2k`1q “

1
2k`1 .

Organisation. In the next section we review a few useful facts for the proof of the main
theorem. The proof of Theorem 1.1 is presented in Section 3.

§2. Simple observations

For an integer r ě 3 and ε ą 0 the following subclass of ForbpKrq will play a prominent
rôle

Fpr, εq “
 

G P ForbpKrq : δpGq ě
`2r´5

2r´3 ` ε
˘

|V pGq|
(

,

and Theorem 1.1 asserts that there exists some function L “ Lpr, εq and H P ForbLpKrq

such that for every G P Fpr, εq we have G hom
ÝÝÑ H. For a subset U Ď V we define the

common (or joint) neighbourhood of U as

NpUq “
č

uPU

Npuq .

For later reference we note that the size of NpUq can be easily bounded from below in
terms of the minimum degree of G “ pV,Eq by

|NpUq| ě |U | ¨ δpGq ´ p|U | ´ 1q ¨ |V | . (2.1)

We begin with a few observations concerning common neighbourhoods in maximal Kr-free
graphs, i.e., Kr-free graphs G “ pV,Eq with the property that pV,EYtxyuq contains a copy
of Kr for every xy P V p2q r E.

Proposition 2.1. For r ě 3 let G “ pV,Eq be a maximal Kr-free graph. If two distinct
vertices u, v P V are non-adjacent, then |Npuq XNpvq| ě rδpGq ´ pr ´ 2q|V |.

Proof. Since G “ pV,Eq is maximal Kr-free and uv R E, the common neighbourhood
NpuqXNpvq induces aKr´2. Applying (2.1) to the r´2 vertices w1, . . . , wr´2 that spanKr´2

in the joint neighbourhood of u and v yields Nptw1, . . . , wr´2uq ě pr ´ 2qδpGq ´ pr ´ 3q|V |.
Moreover, since Nptw1, . . . , wr´2uq must be disjoint from Npuq YNpvq, we obtain

|V | ě pr ´ 2qδpGq ´ pr ´ 3q|V | ` |Npuq YNpvq|

“ pr ´ 2qδpGq ´ pr ´ 3q|V | ` |Npuq| ` |Npvq| ´ |Npuq XNpvq|

and the proposition follows. �
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In the proof of the last proposition we used the observation that the neighbourhood of
any two non-adjacent vertices in a maximal Kr-free graph induces a Kr´2. Next we note
that for maximal Kr-free graphs in Fpr, εq, we can strengthen this observation and ensure
that the clique Kr´2 is disjoint from an arbitrary given small set of vertices.

Proposition 2.2. For r ě 3 and ε ą 0, let G “ pV,Eq be a maximal Kr-free graph
from Fpr, εq. If two distinct vertices u, v P V are non-adjacent in G and U Ď V satisfies
|U | ă ε|V |, then Kr´2 Ď GrpNpuq XNpvqqr U s.

Proof. Given u, v and U as stated, we first consider any set of r´3 vertices w1, . . . , wr´3 P V

and owing to (2.1) we have

Nptw1, . . . , wr´3uq ě pr ´ 3qδpGq ´ pr ´ 4q|V | .

Moreover, since u and v are non-adjacent Proposition 2.1 tells us that

|Npuq XNpvq| ě rδpGq ´ pr ´ 2q|V | .

Consequently, the joint neighbourhood of u, v and w1, . . . , wr´3 satisfies

|Nptu, v, w1, . . . , wr´3q| ě Nptw1, . . . , wr´3uq ´ p|V | ´ |Npuq XNpvq|q

ě p2r ´ 3qδpGq ´ p2r ´ 5q|V |

and the minimum degree condition from G P Fpr, εq implies that

|Nptu, v, w1, . . . , wr´3q| ě p2r ´ 3qε|V | ě 3ε|V | ą |U | .

Summarising, we have shown that any collection of r´3 vertices together with u and v have a
joint neighbour outside of U . Selecting w1 from pNpuqXNpvqqrU and inductively wi`1 from
Nptu, v, w1, . . . , wiqr U for i “ 1, . . . , r ´ 3 yields the desired clique on w1, . . . , wr´2. �

Our final observation asserts that any sufficiently large subset of vertices induces a Kr´2

in a graph G from Fpr, εq.

Proposition 2.3. For r ě 3 and ε ą 0 let G “ pV,E) be a graph from Fpr, εq. If Z Ď V

satisfies |Z| ě p2r´6
2r´3 ` εq|V |, then Kr´2 Ď GrZs.

Proof. Similarly as in the proof of Proposition 2.2 we consider an arbitrary set of pr ´ 3q
vertices w1, . . . , wr´3 P V and from (2.1) we infer

|Nptw1, . . . , wr´3uq X Z| ě pr ´ 3qδpGq ´ pr ´ 4q|V | ´ p|V | ´ |Z|q

ě

´

pr ´ 3q2r ´ 5
2r ´ 3 `

2r ´ 6
2r ´ 3 ´ pr ´ 3q

¯

|V | ` pr ´ 2qε|V |

“ pr ´ 2qε|V | ą 0 .
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Consequently, any set of k´ 3 vertices has a joint neighbour in Z. Hence, selecting w1 in Z
and inductively wi`1 from Nptw1, . . . , wiuq XZ for i “ 1, . . . , r´ 3 yields the desired clique
on w1, . . . , wr´2. �

§3. Proof of the main result

In the proof of Theorem 1.1 we partition the vertex set of a maximal Kr-free graph
G P Fpr, εq into a bounded number of stable sets, which are the preimages of the desired
graph homomorphism. Moreover, we show that any two such independent sets are spanning
only complete or empty bipartite graphs between them. Consequently, G is a blow-up of a
Kr-free graph of bounded size, which is equivalent to the property that G has a Kr-free
homomorphic image of bounded size.

We obtain the independent sets in two steps: Roughly speaking, in the first step we
consider a random subset X Ă V pGq of bounded size and partition the vertices of V pGq
according to their neighbourhood in X and as it will turn out most (in fact all but one) of
these sets will be independent. However, since X has only bounded size, a small (but linear
sized) set of vertices may have no or only a few neighbours in X and we deal with those
vertices in the second step, by considering the neighbourhood into the independent sets
from the first step.

Proof of Theorem 1.1. Let r ě 3. Owing to (1.1) we have δχpKrq “
2r´5
2r´3 and since by

definition δχpKrq ď δhompKrq, we have to prove the matching upper bound on δhompKrq.
Let ε ą 0 and set

m “ maxtr, r4 lnp8{εq{ε2s` 1u , T “ 2m , and L “ 2T ` T . (3.1)

We will show that for any n ą L and for every maximal Kr-free graph G “ pV,Eq

from Fpr, εq there exists some H P ForbLpKrq such that G hom
ÝÝÑ H, which clearly suffices

to prove the theorem.
In the first part we consider a random subset X Ď V of size m chosen uniformly at

random from all m-element subsets of V and we consider the random set

UX “
!

v P V : |Npvq XX| ă
`2r´5

2r´3 `
ε
2

˘

m
)

of vertices with “small” degree in X. We show that with positive probability |UX | ď εn{4
and |X X UX | ď εm{4.

It follows from Chernoff’s inequality for the hypergeometric distribution (see, e.g., [9,
eq. (2.6) and Theorem 2.10]) that for a given vertex v P V we have

Ppv P UXq ď expp´ε2m{4q . (3.2)
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Consequently,
Er|UX |s ď expp´ε2m{4q ¨ n

(3.1)
ă εn{8

and by Markov’s inequality we have

Pp|UX | ď εn{4q ą 1{2 . (3.3)

In other words, with probability more than 1{2 all but at most εn{4 vertices inherit
approximately the minimum degree condition on the randomly chosen set X.

Next we show that with probability at least 1{2 the intersection of X with UX is small.
This follows from a standard double counting argument. In fact, the same argument
giving (3.2) shows that for every v P V there are at most expp´ε2pm´ 1q{4q

`

n´1
m´1

˘

different
pm´ 1q-element subsets Y of V for which

|Npvq X Y | ď
`2r´5

2r´3 `
ε
2

˘

¨ pm´ 1q . (3.4)

Hence, there are at most n expp´ε2pm ´ 1q{4q
`

n´1
m´1

˘

pairs pv, Y q such that (3.4) holds.
Therefore, there are at most

n ¨ expp´ε2pm´ 1q{4q
`

n´1
m´1

˘

εm{4
(3.1)
ď

1
2

ˆ

n

m

˙

m-element subsets X Ď V that contain at least εm{4 vertices v such that v and Y “ Xrtvu
satisfy (3.4). Combining this with (3.3) shows that there exists an m-element set X Ď V

with the promised properties

|UX | ď
ε

4n and |X X UX | ă
ε

4m.

Finally, we set

Y “ X r UX and UY “
!

v P V : |Npvq X Y | ă
`2r´5

2r´3 `
ε
4

˘

|Y |
)

and we note that the induced subgraph on Y satisfies

GrY s P Fpr, ε{4q

and since UY Ď UX we also have

|UY | ď |UX | ď εn{4 .

Next we define a vertex partition of V r UY given by the neighbourhoods in Y . For that
we say two vertices v, w P V rUY are equivalent w.r.t. Y , if they have the same neighbours
in Y , i.e., NpvqXY “ NpwqXY . Let V1 Ÿ . . . ŸVt “ V rUY be the corresponding partition
given by the equivalence classes and let Yi be the neighbourhood of the vertices from Vi

in Y , i.e., for any vi P Vi we have

Npviq X Y “ Yi .



8 HEINER OBERKAMPF AND MATHIAS SCHACHT

Clearly, t ď 2|Y | ď 2|X| “ 2m “ T and by definition of UY we have |Yi| ě
`2r´5

2r´3 `
ε
4

˘

|Y | for
every i P rts.

We observe that the vertex classes V1, . . . , Vt are independent sets in G, i.e., for every
i “ 1, . . . , t we have

EGpViq “ ∅ . (3.5)

In fact, since every vertex v P V rUY has at least p2r´5
2r´3 `ε{4q|Y | neighbours in Y and since

the induced subgraph GrY s P Fpr, ε{4q it follows from Proposition 2.3 applied to GrY s and
Z “ Yi that Yi induces a Kr´2. Consequently, the Kr-freeness of G implies that no two
vertices vi, wi P Vi can be adjacent in G and (3.5) follows.

Next we observe that the induced bipartite graphs given by the partition of equivalence
classes contain no or all edges, i.e., for every 1 ď i ă j ď t we have

eGpVi, Vjq “ 0 or eGpVi, Vjq “ |Vi||Vj| . (3.6)

Suppose for a contradiction that there are (not necessarily distinct) vertices vi, wi P Vi
and vj, wj P Vj such that vivj P EpVi, Vjq and wiwj R EpVi, Vjq. Due to the edge vivj
the intersection Yi X Yj must be Kr´2-free and, hence, in view of Proposition 2.3 applied
to GrY s and Z “ Yi X Yj we have

|Yi X Yj| ă
´2r ´ 6

2r ´ 3 `
ε

4

¯

|Y |

and, therefore,

|Yi Y Yj| “ |Yi| ` |Yj| ´ |Yi X Yj| ą
´

22r ´ 5
2r ´ 3 ´

2r ´ 6
2r ´ 3 `

ε

4

¯

|Y | “
´2r ´ 4

2r ´ 3 `
ε

4

¯

|Y | . (3.7)

Next we use that wi P Vi and wj P Vj are non-adjacent. Owing to the maximality of G
we can apply Proposition 2.2 to G and UY and obtain a clique Kr´2 outside UY in the joint
neighbourhood of wi and wj. Let R be the vertex set of this Kr´2. Since R Ď V r UY and
since the sets Vk are independent for every k “ 1, . . . , t the set R intersects r ´ 2 classes
Vk1 , . . . , Vkr´2 different from Vi and Vj. We consider the joint neighbourhood of R in Y

NpRq X Y “ Yk1 X ¨ ¨ ¨ X Ykr´2

and note that

|NpRq X Y |
(2.1)
ě pr ´ 2q

´2r ´ 5
2r ´ 3 `

ε

4

¯

|Y | ´ pr ´ 3q|Y | “
´ 1

2r ´ 3 `
ε

4

¯

|Y | .

However, combined with (3.7) this implies that either Yi XNpRq ‰ ∅ or Yj XNpRq ‰ ∅.
In either case this gives rise to a Kr in G, which yields the desired contradiction and (3.6)
follows.

Note that (3.5) shows that GrV r UY s is homomorphic to a graph H 1 on t ď T and it
follows from (3.6) that GrV r UY s is a blow-up of H 1. So in particular H 1 is Kr-free.
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It remains to deal with the vertices in UY . For that we first observe that for every vertex
u P UY and i “ 1, . . . , t we have

Npuq X Vi “ ∅ or Npuq X Vi “ Vi . (3.8)

In fact, suppose for a contradiction, that for some vi, wi P Vi we have uvi P E while u and wi
are not adjacent. Again the maximality of G and Proposition 2.2 show that Npuq XNpwiq
contains a Kr´2 avoiding UY . However, since by (3.5) and (3.6) the vertices vi and wi have
the same neighbourhood in V rUY the same Kr´2 is also in the neighbourhood of vi, which
together with vi and u yields a Kr in G. This contradicts Kr Ę G and (3.8) follows.

Next we partition UY according to the neighbourhoods of its vertices in V r UY . For
every S Ď rts “ t1, . . . , tu we set

VS “

"

u P UY : Npuqr UY “
ď

sPS

Vs

*

,

which yields a partition of UY into at most 2t ď 2T classes. Similar as in (3.6) and (3.8) we
next observe that for any S, S 1 Ď rts with S ‰ S 1 we have

eGpVS, VS1q “ 0 or eGpVS, VS1q “ |VS||VS1 | . (3.9)

The proof is very similar to the proof of (3.8). Suppose for a contradiction without loss of
generality there exist vertices vS, wS P VS and u P VS1 such that uvS P E while u and wS are
not adjacent. Then by the maximality of G Proposition 2.2 yields a Kr´2 in Npuq XNpwSq
avoiding UY . Owing to (3.8) the vertices vS and wS have the same neighbourhood in V rUY
and, hence, the same Kr´2 is also in the neighbourhood of vS, which together with vS and
u yields a Kr in G. This contradicts Kr Ę G and (3.9) follows.

The last thing we have to show is that VS is independent in G, i.e., for every S Ď rts we
have

EGpVSq “ ∅ . (3.10)

This is a direct consequence of (3.8) and Proposition 2.3. In fact, it follows from (3.8) that
any two vertices u, v P VS have the same neighbourhood in V r UY . Hence, their joint
neighbourhood has size at least p2r´5

2r´3 `
3ε
4 qn and Proposition 2.3 yields a Kr´2 in the joint

neighbourhood of u and v. Therefore, u and v cannot be adjacent in G and (3.10) follows.
Summarising, we have shown that there exists a vertex partition

t
ď

¨

i“1
Vi Ÿ

ď

¨

SĎrts

VS “ V

of V into independent sets (see (3.5) and (3.10)) such that all naturally induced bipartite
graphs are either complete or empty (see (3.6), (3.8), and (3.9)). Hence, there exists a
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graph H on 2T ` T ď L vertices such that G is a blow-up of H and, therefore, G hom
ÝÝÑ H

and H itself must be Kr-free. This concludes the proof of Theorem 1.1. �

We close by noting that the same approach used in the proof of Theorem 1.1 can be
used to show Thomassen’s result from [16] that the chromatic threshold of odd cycles of at
least five is 0. Moreover, an adaptation of this proof also led to an upper bound for the
homomorphism threshold for odd cycles in [4].
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