MONOCHROMATIC TREES IN RANDOM GRAPHS
YOSHIHARU KOHAYAKAWA, GUILHERME OLIVEIRA MOTA, AND MATHIAS SCHACHT

ABSTRACT. Bal and DeBiasio [Partitioning random graphs into monochromatic compo-
nents, Electron. J. Combin. 24 (2017), Paper 1.18] put forward a conjecture concerning
the threshold for the following Ramsey-type property for graphs G: every k-colouring of
the edge set of G yields k pairwise vertex disjoint monochromatic trees that partition the

whole vertex set of G. We determine the threshold for this property for two colours.

§1. INTRODUCTION

For a graph G = (V, E) we write G — Il if for every 2-colouring of F, say with colours

red and blue, there exist two monochromatic trees 77, T5 < G such that
V(Tl) V) V(Tg) = V,

i.e., V can be split into two sets each inducing a spanning monochromatic component. Here
we allow one of the trees to be empty and we also allow both trees to be monochromatic of
the same colour. In [1, Conjecture 8.1] Bal and DeBiasio conjectured that if

211&71)1/2

n

p=p(n)>(1+€)(

for some £ > 0, then asymptotically almost surely (a.a.s.) the binomial random graph G(n, p)

satisfies G(n,p) — Iy, i.e.,

lim P(G(n,p) — II) = 1.

n—o0
One can observe that the conjectured condition on p would be best possible. In fact,
ifp<(1- 8)(21%)1/2 for some € > 0, then a.a.s. G(n,p) has diameter at least three
(see, e.g., [3, Chapter 10]) and, hence, it contains two non-adjacent vertices u and v with

disjoint neighbourhoods. Colouring all edges incident to u or v red and all other edges blue

2010 Mathematics Subject Classification. 05C80 (05D10, 05C55).

Key words and phrases. Random graphs, Ramsey theory.
The first author was partially supported by FAPESP (Proc. 2013/03447-6, 2013/07699-0), by CNPq

(Proc. 459335/2014-6, 310974/2013-5) and by Project MaCLinC/USP. The second author was supported
by FAPESP (Proc. 2013/11431-2, 2013/20733-2) and partially by CNPq (Proc. 459335/2014-6). The
collaboration of the authors was supported by CAPES/DAAD PROBRAL (Proc. 430/15) and by FAPESP
(Proc. 2013/03447-6).



2 Y. KOHAYAKAWA, G. O. MOTA, AND M. SCHACHT

produces a colouring that requires at least three monochromatic trees in any decomposition
of V(G(n,p)), since u and v cannot be in the same red tree.

Bal and DeBiasio showed that a.a.s. G(n,p) — Ily provided that p > C ln—")l/3 for
some suitable constant C' > 1. We improve on that result by showing that (h‘T”)1 ?

threshold for that property.
Theorem 1.1. If p = p(n) » (1“7”)1/2, then a.a.s. G(n,p) — Il,.

Combined with the discussion above, Theorem 1.1 implies that (ln—”)l/ ? is the threshold

for the property G — II,. We remark that our proof also yields a semi-sharp threshold,
M)l/Q

since with not much additional effort we could replace the assumption p > ( -

by p>C (1“7”)1/ ? for some suitable constant C' > 1. However, for a simpler presentation we
chose to avoid these calculations and we will only consider the case stated in Theorem 1.1.
In fact, since Theorem 1.1 implies that the threshold function for the monotone graph
property G — Il is not of the form n~® for some rational a € Q¢ it follows from
Friedgut’s criterion [7, Theorem 1.4] that G — Il has indeed a sharp threshold, i.e., there
exist constants ¢; > ¢g > 0 and a function ¢: N — R with ¢y < ¢(n) < ¢; for every n € N
such that for every £ > 0 we have
0, ifp<(1—e)e(n)(n)"?

lim P(G(n,p) — II) = 5
iy P ?) 1, ifp> (14 e)e(n)(2e)"?.

n

In view of the question of Bal and DeBiasio [1] it remains to show that ¢(n) is a constant
independent of n and that we have ¢(n) = /2.

Finally, we remark that Bal and DeBiasio [1] also considered multicoloured extensions
of this problem and several other interesting variants. Among other they proposed an

extension of Theorem 1.1 for r-colourings of the edges of G(n,p). More precisely, Bal

and DeBiasio conjectured that if p = p(n) > (1 + ¢) (m%)l/r for some € > 0, then a.a.s.
every r-colouring of the edges of G(n,p) admits a partition of V(G) into at most r sets
each inducing a spanning monochromatic component. It was noted by Ebsen, Mota, and

Schnitzer [6] that this conjecture fails to be true and that for r > 3 the threshold for the

Inn

_1
)T“. We present their example in Proposition 4.1 in
n

partition property is at least (
Section 4.

Roughly speaking, the proof of Theorem 1.1, given in Section 3, splits into two parts.
We shall define what we mean by an extremal colouring of the edges of a graph, and we
shall consider the extremal and the non-extremal cases separately. We shall first consider
the somewhat simpler case of non-extremal colourings in Section 3.1. Extremal colourings

will be harder to handle and such colourings will be analysed in Section 3.2. Before the
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discussion of these two cases we collect a few observations concerning random graphs in

Section 2.

§2. PRELIMINARIES

We consider finite simple graphs and follow standard notation and terminology (see [2,4,5]

and [3,8]). We shall make use of the following simple lemma on random graphs.

Lemma 2.1. If p = p(n) » ((Inn)/n)'2, then for every ¢ > 0 a.a.s. G € G(n,p) satisfies

the following properties.

(i) Bvery vertex v € V(G) has degree dg(v) = (1 + &)pn and every pair of distinct
vertices u, w € V(G) has |Ng(u) n Ng(w)| = (1 £ €)p*n joint neighbours.

(i) For every vertex v € V(G) and all disjoint subsets U <V and W < Ng(v) with
\U| = 100/p and |W| = pn/100 the number eq(U, W) of edges in the induced
bipartite graph G|U, W] satisfies eq(U, W) > p|U||W|/2.

(@ii) For every vertex v e V(G) and J < Ng(v) with |J| = pn/100, we have that all but
at most 100/p vertices z € V(G) ~\ J satisfy |Ng(z) n J| > p*n,/200.

(iv) For every verter y € V(G) and A w B = U € Ng(y) with |U| = |Ng(y)| — p*n/100
and |A|, |B| = p*n/2, the induced bipartite graph G[A, B] contains at least p*n/100
vertices of degree at least p*n/100.

(v) Every subgraph H < G with minimum degree §(H) = (1/2 + ¢)pn is connected.

(vi) Ewvery subgraph H < G on at most 100/p vertices is 10 Inn-degenerate.

Proof. Properties (7)—(vi) in Lemma 2.1 follow from the concentration of the binomial
distribution. In fact, property (7) is a direct consequence of Chernoft’s inequality.

Property (ii) also follows from that inequality by the following argument. For disjoint
subsets U, W < V' Chernofl’s inequality (see, e.g., [8, Theorem 2.1]) yields

P(ea(U.W) < 3plU|IW) < exp(~plU][W]/8).

Summing over all possible choices of v € V' and all subsets U < V and W < Ng(v)

considered in the property, we arrive at

P(property (if) fails) <n Y. <Z) (Z)pwexp(—puw/S)

u>100/p w=pn/100

<n Z Z exp(ulnn) ( ) exp(—puw/8)

u>100/p w=pn/100

<n Z Z exp(ulnn + 6w — puw/8) .

u>100/p w=pn/100
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Since puw/16 — 6w > w/4 for u > 100/p and, since puw/16 > up®n/1600 » wlnn
for w = pn/100 and p » ((Inn)/n)"2, it follows that
PP ( property (ii) fails) < n Z Z exp(—w/4) = o(1),
100/p<us<n w=pn/100
which concludes the proof of Lemma 2.1 (7).
Property (iii) follows from (77). Given a vertex v and a subset J < Ng(v) of size at

least pn/100 we consider the set
U={zeV(G)\J: |Ng(z) nJ| <p*n/200}.
Assuming for a contradiction that |U| > 100/p we infer from (i) that
eq(U, J) > p|U||J|/2 = p|U| - pn/200 = p*n|U|/200,

which contradicts the definition of the set U. Consequently, |U| < 100/p and property (i)
is established.
The proof of property (iv) makes use of the fact that a.a.s. for every y € V and every
subset A € Ng(y) with p?n/2 < |A] < |Ng(y) ~ A| we have
ec(4, Na(y) ~ A) > 245p2n|A| | 2.1)
In fact, property (iv) follows from (2.1) and we prove this implication first. Let a vertex y
and sets A, B and U be as in the statement of (7). Without loss of generality, we
may suppose |A| < |B| < |Ng(y) ~ 4|, and hence we can apply (2.1). Removing all
vertices from A that have less than p*n /50 neighbours in Ng(y) \ A and using the bound
|NG(y) N Ng(a)| < 2p°n for all a € A, which is given by (i), we deduce from (2.1) that at

least
4p*n|A|/25 — |Alp°n/50 7| Al - p’n

2pn 100~ 100
vertices in A have at least p?n/50 neighbours in Ng(y) \ A. Since B = (Ng(y) ~ A) N\ B’
for some |B’| < p*n/100, property (iv) follows and it is left to verify (2.1).

For the proof of (2.1) we may assume that |A| < |[Ng(y) \ A| and we consider two cases
depending on the size of A. If |A] = 100/p inequality (2.1) is a consequence of property (ii)
applied with v = y and the disjoint sets A and Ng(y) \ A combined with the first part
of (7), which leads to

(i) 1 (i) 1 1 4
ec (A, No(y) N A) = Ep‘AHN(;(y) NAl = §p|A‘ gbn > 2—5p2n|A|.
For the case |A| < 100/p we have p?n|A| » p|A|?>. Hence, we may use the concentration
inequality P(X > t) < exp(—t) for binomially distributed random variables X satisfy-
ing E[X] < t/7 (see, e.g., [8, Corollary 2.4]) to derive that, for every fixed set A, we
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have
P(2ec(A) > p°n|A|/4) < exp(—p°n|A|/4).

Summing over all sets A of size at most 100/p yields

P(3A < V with |A] < 100/p such that 2eq(A) > p*n|A|/4)

100/p
< Z n®exp(—p®na/4) = o(1), (2.2)
a=pn/4
where the last inequality follows from our assumption on p. We infer (2.1) from (2.2).
Given y € V(G) and A = Ng(y) with p?n/2 < |A] < 100/p we appeal to the second
assertion of property (7) with ¢ = 1/2 for all pairs of the form y, a with a € A. Summing
|INa(y) n Ng(a)| over all a € A yields

) 1

( 6P2n|A|

1 2.2
ec (A, No(y) \ A) > §p2n|A| —2eq(A) >
and (2.1) follows. This concludes the proof of property (iv).

For property (v) we observe that for p » (Inn)/n and every fixed 6 > 0, again Chernoff’s

inequality implies that a.a.s., for every subset U < V', we have
2eq(U) < p|lU|? + 6pn|U]| . (2.3)

To prove (2.3), one can analyse the cases in which dn/|U| < 3/2, 3/2 < on/|U| < 7
and dn/|U| = 7 separately. For the first two cases, one can use one of the standard forms
of Chernoff’s inequality, as given in, e.g., [8, Corollary 2.3]. For the third case, one can
again use [8, Corollary 2.4].

Next we consider an arbitrary component C' of the subgraph H < G and let U = V(C).

Combining (2.3) for 6 = ¢ with the minimum degree assumption tells us that
\U| - (1/2 + &)pn < 2eq(U) < p|U|* + epn|U],

which implies |[U| > n/2. Consequently, every component of H spans more than n/2
vertices, which implies that H is connected.

For the proof of (vi) it suffices to show that every subset U < V' of size at most 100/p
contains a vertex of degree at most 10Inn. However, this follows from the observation that

for every such set U we have
eq(U) <|U|-5lnn,

which again can be deduced from the concentration inequality given in [8, Corollary 2.4]. [
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§3. PROOF OF THE MAIN RESULT

We introduce some further notation and classify the two-colourings into two classes (see
Definition 3.1 below). For a colouring ¢: E' — {red, blue} of the edges of a graph G = (V, E)
we write ¢ — Iy to indicate that there exist two monochromatic trees 77, T < G such
that

V(T) V(D) =V.

In particular, G — Il if o — Il5 holds for all 2-colourings ¢ of E. We denote the two

edge disjoint spanning monochromatic subgraphs induced by ¢ by GZ, and G, i-e.,
Gra= (Vig~'(red)) and G, = (V.p ' (blue)).
For a vertex v € V' we consider its red- and blue-neighbourhood
Nia(v) = {ue N(v): p({v,u}) =red} and  Ny,.(v) = {ue N(v): ¢({v,u}) = blue}

and the corresponding degrees df (v) = |[N2y(v)| and df),.(v) = |Nij.e(v)]. We roughly

T

classify the vertices depending on these degrees by defining the following sets
R ={veV:di,(v) > 1d(v)} and B?={veV:d.(v)> idv)}. (3.1)

These sets might not be disjoint, but every vertex is a member of at least one of them and
vertices v in the symmetric difference of these sets have at least 2d(v)/3 neighbours in one
colour. In the proof of Theorem 1.1 we consider two cases depending, whether there is a

monochromatic path between some vertex in R¥ and a different vertex in B¥.

Definition 3.1. Let G = (V, E) be a graph and ¢: E — {red, blue}. We say ¢ is extremal
if there is a pair of distinct vertices r € R? and b € B¥ for which no monochromatic r-b-path

exists. If no such pair of vertices exists, then we say o is non-extremal.

For the proof of Theorem 1.1 we consider non-extremal and extremal colourings ¢
separately. Before we proceed, let us remark that the property G — Il is an increasing
property, that is, if GG is a spanning subgraph of G’ and G — Il holds, then G’ — II, also
holds. This implies that it suffices to prove Theorem 1.1 under the additional hypothesis
that p = o(1).

3.1. Non-extremal colourings. The following proposition addresses the case when ¢ is

non-extremal.

Proposition 3.2 (Non-extremal case). If p = p(n) » ((Inn)/n)"? and p = o(1), then
a.a.s. G € G(n,p) satisfies ¢ — Il for every non-extremal colouring ¢: E(G) — {red, blue}.
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In the proof of Proposition 3.2 we shall make use of the following simple observation,
which is closely related to the fact that every 2-colouring of the edges of the complete

graph yields a monochromatic spanning tree.

Lemma 3.3. Let G = (V, E) be a graph and ¢: E — {red,blue}. If for a subset U < V
all pairs of vertices u, v’ € U are connected by a monochromatic path, then there exists a
monochromatic tree T with V(T) 2 U.

Proof. Let T be a monochromatic tree containing the maximum number of vertices from U.
We may assume that 7" is colored red. If there is some vertex u € U ~\ V(T'), then it
must be connected to every vertex u’' € U n V(T') by a blue u-u/-path, which results in a

monochromatic tree containing at least one more vertex from U than T U

With this observation at hand we can now establish the proof of the proposition.

Proof of Proposition 3.2. Owing to p » (1“7”) V2 e may and shall assume that for e = 1/10
the graph G = (V, E) € G(n, p) satisfies properties (i)—(vi) given in Lemma 2.1. Moreover,
let p: E'— {red, blue} be a non-extremal colouring, which is fixed throughout the proof.
For simpler notation, we suppress the superscript ¢ in terms like G, N2 (v), divg(v), R?,
and their blue counterparts.

If one of the sets R or B, say R, is empty, then it follows from property (i) that every
vertex in G satisfies dpe(v) = (2/3 — €)pn. Hence, by property (v) there exists a blue
spanning tree of G and ¢ — Ils.

Since ¢ is non-extremal, between every vertex r € R and every b € B there exists a
monochromatic r-b-path. In particular, vertices contained in the intersection R n B are
connected to every other vertex by a monochromatic path.

Below we show that there exist monochromatic components Cieq S Greq and Chue S Ghlue
covering V', i.e.,

V(Cblue) Y V(Ored) =V. (32)

Consider a monochromatic component C' containing the most number of vertices. In
particular, any pair of vertices in C' can be connected by a monochromatic path. If C' would
be completely contained in R or B, say without loss of generality in R, then we can fix
an arbitrary vertex v € B and Lemma 3.3 would show that there exists a monochromatic
component containing C' and v, which violates the maximal choice of C'. Therefore, C'
intersects each set R and B in at least one vertex, say v, € R and v, € B and without loss
of generality we may assume C' is coloured red.

Then for every vertex u € R~ V(C') the monochromatic v,-u-path must be blue and,

hence, all pairs of vertices in R \. V(C') are connected by a blue path. Consequently, all
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pairs of vertices in
(V(C’) N B) V) (R N V(C)) (3.3)

are connected by monochromatic paths and another application of Lemma 3.3 yields a
monochromatic component C’ containing the vertices from (3.3). Similarly, there exists a

monochromatic component C” containing all vertices from
(V(C)nR) U (B\V(0)).

In particular, C" and C” cover all vertices of G. If both these components have the same
colour then we either found two disjoint monochromatic trees covering V' or one such tree,
ie., p —> Iy If C" and C” are of different colours then (3.2) follows.

It is left to deduce the proposition from (3.2). Let Cieq S Grea and Cppe S Ghlue
satisfy (3.2). We may assume that both components are maximal, i.e., every vertex in
the complement of C.q has only blue neighbours in C}.q and, analogously, every vertex
in the complement of Ch,,. has only red neighbours in Cy,.. We consider the symmetric

difference of C.eq and Ch,e and let
Ored = V(Cred) ~N V(Cblue) and Oblue = V<Cblue> ~N V(Cred)

be the two parts of the symmetric difference, where vertices in O,.q are only contained
in Cleq and those from Oy, are only contained in Cy,.. Note that the maximal choice
of Cieq and Ciye implies that there is no edge between O,.q and Oye. In fact, there is
not even a monochromatic path between O,oq and Oy, since every edge leaving O,q is
blue and every edge entering Oyy,e is red. Owing to the assumption that every vertex in R
is connected by a monochromatic path with every vertex in B we arrive at one of the
following two cases
(I) Orea = @ or Oppye = @,

(IT) Oreqa U Oplue € R\ B or Oyeq U Opee € B N\ R.

To see that one of the cases must occur, let us assume case (I) does not hold and let v € O,eq
and u € Ope. As noted above it is not possible that one of the vertices is contained in R,
while the other one is a member of B. Consequently, both of them must be contained
in R~ B orin B\ R. Repeating the same argument for pairs (v, u’) with «’ € Oy, and
pairs (v',u) with v' € Oyeq yields case (II).

Next we note that case (I) asserts that one of the parts of the symmetric difference of Ceq
and Chpe is empty, which combined with (3.2) implies the existence of a monochromatic
spanning tree in G.

For case (II) we can assume without loss of generality that Oyeq U Ope © R\ B. We

infer from the maximality of Cleq that no vertex in Oy has a red neighbour in Cleq, and,
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therefore,

Nred (U) - Oblue

for every v € Oppye. Since Ope € R\ B it follows from property (7) that Gyeq induced
on Opye has minimum degree (2/3 —e)pn. Consequently, property (v) yields a red spanning
tree on Oy and combined with a red spanning tree on Cq we found two vertex disjoint

red trees covering GG, which concludes the proof of Proposition 3.2. O

3.2. Extremal colourings. In this section we consider extremal colourings ¢ and establish
an analogous proposition as in the non-extremal case. Together Propositions 3.2 and 3.4
establish Theorem 1.1.

Proposition 3.4 (Extremal case). If p = p(n) » ((lnn)/n)l/2 and p = o(1), then
a.a.s. G € G(n,p) satisfies ¢ —> Ily for every extremal colouring ¢: E(G) — {red, blue}.

Proof. As in the proof of Proposition 3.2 we may and shall assume that G = (V, E) € G(n, p)
satisfies properties (7)—(vi) for € = 1/100 given in Lemma 2.1. Let ¢: E — {red, blue} be
a fixed extremal colouring and again, for simpler notation, in what follows we suppress the
superscript ¢ in terms like GY,;, N2y (v), df4(v), R?, and their blue counterparts.

Let r € R and b € B be two distinct vertices for which no monochromatic r-b-path
exists. We shall build a red and a blue tree with roots r and b. We sometimes refer to r as
the red root and to b as the blue root. The trees will be built in two stages. In the first
stage every vertex v € V ~ {r, b} will be assigned a preferred colour o(v), which indicates
its “preference”. In fact, the preferred colour o(v) will be chosen in such a way that v
can be connected in the ‘right colour’ to r or b in a robust way, that is, there will be
‘many’ o(v)-coloured paths from v to the root of colour g(v). The preferred colours will be
assigned vertex by vertex and earlier choices may influence those chosen later. However, in
this process it might turn out that a later vertex v needs to be connected to the blue tree
through an earlier vertex u with o(u) = red (thus u would in principle belong to the red
tree that we are building). To resolve such conflicts, we finalise the choices in a second
round after every vertex has chosen its preferred colour and, in fact, here some vertices
may get connected to the tree opposite to its preferred colour (e.g., because of v above we
may decide to override u’s preference (o(u) = red) and connect u to the blue tree). Below

we give the details of this approach.

First stage: choosing preferred colours. We begin with the neighbours of r and b

which are connected by an edge of the ‘right colour’ to the respective root. For those
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vertices v, we set the preferred colour to the obvious choice:

red, if v € Nyea(r) N Npue()
o(v) = (3.4)
blue, ifve Nblue(b) AN Nred(r) .
For symmetry reasons we defer the assignment of o(v) to the vertices v in Nyeq(7) N Npjue(d)
for a moment. Next we consider the edges between Nieq(r) and Nype(b). Recall that we
assume that properties (¢)—(vi) in Lemma 2.1 hold for G. Recall also that we suppose

that p = o(1). Both assertions in property (7), combined with the definition of the sets R

and B, allow us to invoke property (ii) to obtain that

€a (Nred(r) AN Nblue(b)a Nblue<b) N Nred(r)) = g ‘

At least half of these edges have the same colour and, by symmetry, we may assume that

Nred(r> AN Nblue(b)’ ‘Nblue(b) N Nred(r){ .

they are red. We continue with the following claim.

Claim 3.5. At least pn/100 vertices v € Npe(b) N Nyea(1) satisfy

2
n
[ Nyea(v) A (Neea () ~ Noe(D))| > 1’2—5 . (3.5)
Proof. The vertices v € Npje(b) N\ Nyea(r) with
[Nred(v) 0 (Nred (1) N Noe(0))] < g‘NredO") N Nolue ()] (3.6)

can account for at most (p/8)|Nyed(7)  Nitue () || Nowe(b) N Nyea(r)| red edges between the
sets Ned(r) N Npe(d) and Npjue(b) . Nyea(r), of which there are at least

1
Zp‘Nred<71) N Nblue<b)HNblue<b> ~N Nred(r)‘ .
Therefore, in view of property (7), there must be at least

B |Nrea(r) N Nitue(D)| | Notue (D) N Nrea(r)] pn

(Eertn > e NoeB)  Neal)] = T (37)

vertices v € Npjue(b) N Nyea(r) with
[Noea) © () ~ Noaae8))] > Z[ o) < Nosu8)] > 21 (3.8)
as required. O

The vertices v satisfying (3.5) play a special role in the proof, since they can be used to
connect other vertices to both roots, as they are blue neighbours of b and connect (robustly)
by red paths of length two to r. Furthermore, the vertices in Nyeq(r) N Npe(b) are even

direct neighbours of both roots in the right colour. We will refer to the vertices in

J = {v € Nye(b) N Nyea(r): v satisfies (3.5)} U (Nrea(r) N Noe(b)) (3.9)
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as the joker vertices. Note that Claim 3.5 implies
[J] > = (3.10)

For the presentation, it will also be simpler to give all joker vertices the same preferred
colour and, hence, we set

o(v) = blue
for all v € Nyeq(1) N Npe(b). This way we have defined o(v) for every v € Nyeq(r) U Nppue (D).

Among the vertices not considered so far we turn first to those with a decent number of

joker vertices as neighbours. More precisely, we set
2

X = {x eV (Noea(r) U Nowe(b) U {r,0}) ¢ [N (2) 1 J] > %} . (3.11)

In particular, every vertex x € X has more than p?n/400 jokers as neighbours in one colour
and this will be its preferred colour, i.e., for every z € X we set
red, if |Npa(z) nJ > pn

o(x) = eeal) 0 1 10 (3.12)

blue, if [Nye(z) nJ| > 55,

for vertices = satisfying both conditions in (3.12), we pick the value of p(z) arbitrarily.

Note that, for every vertex v which has been assigned a preferred colour g(v) already,
there exists a p(v)-coloured path from v to the root of colour p(v). (3.13)

We shall keep this invariant in the assignment of the preferred colours to the remaining
vertices.
Before we continue, we make the following remark, which partly explains some of the

underlying ideas in our approach.

Remark 3.6. If we have reached every vertex of G at this point (that is, if V' = {r,b} U
Nrea(r) U Npe(b) U X), then we can finish the proof as follows. For every vertex in J we
decide independently with probability 1/2 whether we attach it to the red tree or to the
blue tree and every other vertex will be attached to the tree matching its preferred colour.
This clearly works for the vertices in Nyeq(7) U Npiue(b). Moreover, since every vertex © € X
connects to at least ZQTS » Inn neighbours in J in its preferred colour, at least one of those
neighbours will obtain that colour in the random assignment (with high probability) and
this would conclude the proof. Note that, for this argument to work, it would suffice if the

joker vertices in Npjue(b) N Nyea(r) had just one red neighbour in Nyeq(7) N\ Nppue(b). .

Unfortunately, some vertices may have only a few neighbours in .J, and therefore we
could have that V' # {r, b} U Nyea(r) U Npe(b) U X. Let

Y =V~ (Nea(r) U Npe(b) U {r, b} U X) .
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We now proceed to define o(y) for every y € Y. Since J S Nyue(b) we can apply
property (7ii) to obtain that

100
m=Y|<—. (3.14)
p
Consequently, we infer from property (vi) that we can order the vertices in Y as y1,...,Ym
in such a way that for every ¢ € [m] we have
|N(yi) ) Y;H‘ <10lnn for Vi = {Yit1,-- -, Ym}- (3.15)

We shall assign the preferred colours to the vertices in Y in this order. Let ¢ € [m] and
suppose the preferred colours p(y;) for j € [ — 1] were already fixed. We consider two cases
depending on the preferred colours appearing in the neighbourhood of y;. We split N (y;)

according to the preferred colours of the vertices, i.e., we consider the partition

N(y;) = (N(yi) n o' (red)) w (N(y;) n o~ (blue)) w (N(y:) N Yie1) -

We say y; is canonically connected in red (resp. blue) if y; connects in red (resp. blue)
to many vertices with preferred colour red (resp. blue), i.e.,
2
_ pn
Nre ) ! d = —
[Neea(ys) 0 07" (red)| = o5
(resp. | Npe(yi) n 07 (blue)| = p?n/400). If y; fails to be canonically connected in either

(3.16)

colour, then we say it is non-canonically connected.
We set o(y;) = red (resp. o(y;) = blue) if y; is canonically connected in red (resp. blue).
Clearly, by induction, with this choice of p(y;) we also ensure property (3.13).

It is left to consider vertices y; that are non-canonically connected. Since

(Nblue(yi> N Q_l(red)) o (Nred(yi) N Q_l(blue))
= N(yi) ~ ((Nred(yi) N Q_l(red)) W (Nblue(yi) M g_l(blue)) W (N(yz) N Yi+1)> )
in this case we have

-1 -1 p*n
[ (Votae() 0 07 (o)) © (Nea(y) 0 07 (b)) > [N )] — 20— 1010

> !N(%)‘ —%-

In other words, the preferred colour o(v) of almost all neighbours v of y; mismatches the

(3.17)

colour of the edge {y;, v}, i.e., ({yi,v}) # o(v). Next we show that both mismatching sets
are large enough to ensure quite a few edges crossing these sets. More precisely, we will

show that the induced bipartite subgraph
Gmis(yi) = G[Nblue(yi) N Q_l<red)7 Nred(yi) M Q_l(blue)]

(3.18)
contains p*n/100 vertices of degree at least p*n/100.
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Note that the existence of any edge {u, v} in the graph Gs(y;) allows us to connect y; in
colour ¢({u,v}) to the root of colour ¢({u,v}). More precisely, if u € Nye(y;) N 0~ (red)
and v € Nyeq(y;) N 0 H(blue) and p({u,v}) = red, then there exists a red y;-r-path using
the red u-r-path guaranteed by (3.13) and the red edges {y;, v} and {v, u}. This then would
allow us to assign preferred colour red to y;. However, for a path as above we use v for a
red path, even though v’s preferred colour is blue (o(v) = blue). Such “conflicts” will be
resolved in the second stage and for that we need a more “robust” way to connect y; to
the root of its preferred colour. We prepare for that by proving (3.18). We also remark
that the proof of (3.18) is the only place in the proof where it will be essential that there
is no monochromatic path between r and b and that p » (1“7”)1/ 2
Proof of (3.18). As it turns out, it suffices to establish a suitable lower bound on the
cardinality of the two types of mismatching neighbourhoods of y;; namely, it is enough to

prove that

1 1
‘Nblue(yi) N g_l(red)‘ > §p2n and |Nred(yi) N Q_l(blue)‘ > §p2n. (3.19)

Indeed, property (iv) tells us that (3.19) combined with (3.17) yields (3.18).
For the proof of (3.19) we first observe that

Noe (i) 0 0 (red) = (N(yi) N g_l(red)) ~ (Nred(yi) ) Q_l(red))
2 (N(yi) n N(r) no ' (red)) N (Neea(yi) N o' (red)) . (3.20)

We shall next consider the joint neighbourhood of y; and r. Note that no v € Nye(r)
can have preferred colour blue. In fact, if o(v) = blue, then there exists a blue v-b-path
in G (see (3.13)) and combined with ¢({r,v}) = blue this leads to a blue path between r
and b, which was excluded by the choice of » and b. Moreover, every red neighbour v of r
outside Nyeq(1) N Nplue(b) S J (i-e., every v € Nyea(r) N (Nrea(r) N Npwe(d))) was assigned

preferred colour red in (3.4). Therefore,
N(r) < o Hred) u JUY;,

whence we deduce that

0)

Nowe(®:) 0 0~ red) 2 (N (i) A M) ~ (Yis U J 0 (Nrea(g) 0 0~ (xed))) -

From (3.15), the fact that y; ¢ X (see (3.11)), and the fact that y; is not canonically
connected in red (see (3.16)), we infer that

2 2
[Nune(ys) 0 07 (red)| = [N(yi) 0 N(r)| = 10Inn — o5 — 7o
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Therefore, the first inequality in (3.19) follows from property (i) and p?n » Inn. The
second inequality in (3.19) follows by the symmetric argument with colours exchanged. As
observed above, this establishes (3.18) as well. O

Finally, we define the preferred colour of y; by

red, if E(Guis(yi)) N ¢ (red) induces D7 vertices of degree > pn

oly:) = 200 200 (3.21)
blue, otherwise.

Recalling the discussion following (3.18) we note that also in this case we ensure prop-
erty (3.13) for the vertex y;. Note that in view of property (iv), if o(y;) is blue, then
E(Guis(yi)) n o (blue) induces ’2’%8 vertices of degree > ’2’27”.

This concludes the discussion of the first stage and we assigned preferred colours o(v) to
every vertex v € V ~ {r, b}. For that we considered the vertices in (Nyeq(7) U Nppe(b)) N J,
in the joker set J, in the set X connected “robustly” to the joker set, and in the remaining
set Y differently. Moreover, the vertices in Y were treated differently depending on whether
they are canonically connected or not.

For later reference we note the following properties in addition to (3.13) for every vertex

from the set (J N (Nrea(r) N Noie(b))) w X w0 Y.
(a) Ifve J~N (Nwea(r) N Npwe(b)), then it follows from the definition (3.9) of J that

p°n
|Neea(v) N (Nrea(r) N Nowe(b))| = o5

(b) If x € X, then it follows from (3.12) that

p°n
‘Ng(x)(x) N J| = H

o

(¢) If y; € Y is canonically connected in colour o(y;), then it follows from (3.16) that

2

400

3
N

|(Nogo) (wi) N Yi) o (olw))| =

(d) If y; € Y is not canonically connected in either colour, then by (3.21) the bipartite
subgraph of G with edges of colour g(y;) induced across the two types of mismatched
vertices in N(y;) \ Y;, which we denote by

Gotyy) [(Nblue(yi) N o H(red)) N Y, (Neea(yi) 0o ' (blue)) N Y;] :

contains at least p?n/200 vertices of degree at least p?n,/200.
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Second stage: finalising the choices. We shall now assign final colours to the vertices
of G to establish ¢ — II5. More precisely, we shall define a function f: V' — {red, blue}
with f(r) = red and f(b) = blue so that

Grea[f ' (red)] and Gie[f ' (blue)] are connected. (3.22)

Since our process for defining f is somewhat lengthy, we first give a rough outline. The
assignment of the colours f(v) for v € V will be achieved in two rounds.

The function f will start as a partial function with domain dom f close to half of V. At
this stage, on most of dom f, we shall have f = p, but for about half of the joker vertices v
we shall ‘switch’ and pick as v’s final colour the colour opposite to its preferred colour:
f(v) = o(v), where g(v) = red if o(v) = blue and g(v) = blue if p(v) = red. At this point,
we shall have that

Grea[f*(red) N Y] and  Gpue[f *(blue) N\ Y] are connected. (3.23)

(The comment above is somewhat similar to Remark 3.6.) From this point in the proof
onwards, we shall increase dom f in smaller steps. It will be convenient to say that,
once f(v) has been defined for a vertex v, the vertex v has been finalised. Also, we remark
that, once we choose the value of f(v) for some v, we shall not change it afterwards.

What we discussed above corresponds to most of the first round. However, still in the
first round, we shall have to finalise some other vertices z ¢ dom f, setting f(z) = 9(z)
so that we can improve (3.23) by replacing Y by some substantially smaller subset Y’
(in fact, |Y’| will roughly be |Y'|/2). This final stage of the first round is encapsulated in
Claim 3.8 below.

In the second round of our procedure defining f, we pick the colour of the remaining
vertices v € V' ~. dom f. This process will be guided by the vertices in Y’. This concludes
our outline of what comes next, and we proceed to define f precisely.

Consider a random bipartition Zy v Z; = V ~ {r, b} where every vertex v € V ~ {r, b} is
included independently with probability 1/2 into Zy or Z;. Since p*n » Inn we deduce
from (a)—(d) that with positive probability there exists a partition Zy w Z; = V' ~ {r, b}
such that for every vertex in (J N Neea(r) N Nblue(b)) w X wY the following holds:

((Zl) IfveJ~ (Nred(T‘) N Nblue(b))> then Nred(v) N (Nred(r) AN Nblue(b)) M ZO #* .
(b") If x € X, then Ny (x) nJ n Z # @ for both £ € {0, 1}.

(¢') If y; € Y is canonically connected in colour o(y;), then

(Nogo (W) NY3) 0o Ho(ys) N Zo # & .
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(d") If y; € Y is non-canonically connected, then there exists an edge {u,v} € E(G yy,))
such that

we (Nogy(y:) 0 07 (e(w:) 0 Zo) N Y;

and

ve (Ng(yi)(yi) o (o) N Zl) \Y;,
where, we recall, 9(y;) denotes the colour different from o(y;).

Note that we considered at most n such sets of size Q(p*n) in (a)—(c¢) and O(n-p*n) = O(n?)
stars of size Q(p?n) in (d). Consequently, the existence of a partition Zy w Z; = V ~ {r, b}
satisfying (a’)—(d’) indeed follows from p*n » Inn and a standard application of Chernoff’s
inequality. We fix such a partition for the remainder of the proof.

After this preparatory random splitting we start defining the final colours f(v) for v e V.

We start with 7 and b in the obvious manner:
flr) =red and f(b) = blue.

Moreover, every v € Zy will be assigned its preferred colour and every joker vertex in Z;
will be assigned the opposite of its preferred colour:
flv) = ol e 2 (3.24)
o(v), ifvednZ.

Note that we now have dom f = Z; u J. We have thus committed ourselves in which
of the two monochromatic subgraphs in (3.22) the vertices in Zy u J are. We mention
that, owing to the definition of g, our tendency is to set f(v) = o(v) for the remaining
vertices v € Z; N J =V ~ dom f. However, if we do this blindly, assertion (3.22) will not
hold. In what follows, we shall “switch” the colour of some vertices v € Z; . J and we
shall set f(v) = o(v) (in the same way we did for the vertices in Z; n J). Such switchings
will basically be forced on us as we proceed to increase dom f in our proof.

Before we continue, we make the following remark, which is closely related to the
discussion in Remark 3.6.
Remark 3.7. Suppose every vertex of Y is canonically connected in some colour. Then
properties (a")—(¢’) and an inductive argument would show that (3.22) holds for our current

function f. .

Remark 3.7 above deals with the lucky case in which every vertex of Y is canonically

connected in some colour. In general, there will be vertices y in Y that are non-canonically
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connected. Such vertices y will force us to set f(z) = 9(z) for some z € Z; \ J also. This

is made precise in the following claim.
Claim 3.8. There exists a subset Z] < Z1 ~. J for which the following holds. If we set

f(z) =2(2) (3.25)
for every z € Zi, then dom f = Zyu J u Z] U {r,b} and (3.22) holds.

Proof. We first consider our current function f with dom f = Zyu J and verify the following
fact.

Fact 3.9. Assertion (3.23) holds for f.

Proof. We consider the different types of vertices encountered in the first stage separately.
First we recall that vertices v € (Nyed(”) U Npie(b)) N J are directly connected to their

respective roots in colour g(v). Consequently, all vertices
Ve Zg N ((Nred(’f’) U Nblue<b)) AN J)

are in the same component in Gy = G, as the respective root.

Secondly, we consider the joker vertices. Note that nothing needs to be shown for
the vertices v € Nieq(r) N Npwe(b) as they are directly connected to both roots in the
appropriate colour and, hence, for these vertices it does not matter which final colour f(v)
is assigned to them. Moreover, for every joker vertex v € Jn Zy we have f(v) = o(v) = blue
and since J S Npe(b), these vertices are also directly connected to b in G f(v)- For the
remaining joker vertices v € (J N (Nyea(r) N Npe(b))) N Z1 we appeal to (a’). Owing
to (3.24) the final colour f(v) of v is red and, by (a’), every such v has at least one red
neighbour u in Zy N (Nieda(r) N Npwe(b)) € dom f. Since we have f(u) = p(u) = red, the
vertex v is also connected to 7 in Greq[f ™! (red)].

Next we move to the vertices  in X n Z; and for those vertices we appeal to (b').
If f(z) = o(z) = red, then (b’) applied with £ = 1 tells us that = has at least one red
neighbour v € JnZ; < dom f (i.e., thereis v € Nyeq(z)nJnZ; < dom f). Since p(v) = blue
and, therefore, f(v) = red (see (3.24)), we infer from the discussion above that z is
connected by a red path to 7 in Greq[f (red)]. If f(z) = o(z) = blue, then the same
argument with (b") applied with £ = 0 yields that x is connected by a blue path to b
in Gpe[f~*(blue)]. O

We shall now improve Fact 3.9: we shall prove that (3.22) holds for f, as long as we
enlarge the domain of f suitably. Roughly speaking, what we have to do is to ‘attach’ the
vertices in Y N Zy to Greq[f ! (red)] or to Gpe|[f*(blue)], with edges (or paths) of the
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correct colour. We shall proceed vertex by vertex following the order y, ..., y,, (ignoring
vertices outside Zj). For certain vertices y; € Y n Zy, this will be a matter of realizing
that a suitable edge is there; for other vertices y; € Y n Zy, we may have to finalise a
vertex v € Z; N\ J: every time we do this, we add v to Z] and Z] increases (we start
with Z] = @). Let us remark that, when we put a vertex v in Z] and finalise it, we shall
set f(v) = o(v). At the end of this process, assertion (3.22) will hold for our f. We now
go into the details of this process.

We proceed inductively and use the fixed ordering of the vertices in Y. At first we
have dom f = Zy u J and Z] = @. Suppose now that 1 < i< m, y; € Y n Zy, and the
vertices in some set 7] € Z; \ J have been finalised with f(z") = 9(2’) for every 2’ € Z].

Suppose further that
Grea[f '(red) N Y;] and Ghue[f '(blue) \Y;] are connected. (3.26)

We now finalise y; analysing two cases.
Case 1. If y; is canonically connected in colour o(y;), then we proceed in a similar
manner as for the vertices in X n Zy. In fact, it follows from (¢’) that in this case y; has a

neighbour v € Ny, (y;) N\ Y; such that

i

flyi) = o(ys) = o(v) = f(v),

where the first and last identities follow from the fact that y; € Zy and v € Z;. Since
v € (dom f)\Y;, the inductive assumption (3.26) and the edge {y;, v} of colour o(y;) = f(v;)
tells us that Gy [f ' (f(y:)) \ Yis1] is connected, completing the induction step in this
case.

Case 2. We now consider the case in which y; € Y n Zj is non-canonically connected. In
this case we may have to enlarge the set Z] by adding some vertex v, but we will ensure the
monochromatic connection for v as well. By symmetry we may assume that the preferred

colour of y; is red and, since y; € Zy, we have

o(yi) = f(y;) = red.
Let {u,v} be the edge given by (d’) of colour g(y;) = red. In particular,
ue (o (red) N Zp) N Y;.

Therefore, we already finalised u and f(u) = red. Furthermore, by the induction assump-
tion (3.26), we already know that u is connected to r by a red path in Gyeq[f!(red) \ Y;].

Furthermore,

ve (o (blue) n Z;) N Y;.
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In case v has already been put into Z; in this inductive process, then we already “switched”
its colour and finalised it to be red. If not, then we add v to Z] at this point and finalise it
with f(v) = red. In any case we may use the red edges {u,v} and {v,y;} to connect the
vertices v and y; to r by a red path in Gyeq[f~!(red) \ Yi41]. This concludes our induction

step in this case and completes the proof of Claim 3.8. O

It is left to finalise the colours of the vertices in Z; \ (J u Z]). Again we consider the
vertices separately, according to their membership in the sets Nyeq(r) U Nppe(b), X or Y.
This time we reverse the order in which we deal with the vertices and begin with the
vertices in Y.

We iterate over the vertices in Y n (Z; \ (J U Z1)) in reverse order: yp,, ..., y:. In this
process, we shall finalise the vertices y ¢ dom f that we encounter one by one. For some y,
it may happen that some other vertex v ¢ dom f has to be finalised also. When this does
happen, we shall say that v has been pulled forward and we shall always let f(v) = o(v),
that is, we shall switch the colour of v. We now describe this inductive process precisely.

Let i € [m] be the largest index such that y; has not been finalised yet. We proceed
as in the proof of Claim 3.8. If y; is canonically connected in colour o(y;), then we
set f(y;) = o(y;). Owing to (c¢’) there exists a neighbour in v € Ny, (v;) N Zy with
preferred colour o(v) = p(y;). Since v € Zy, in fact, we already have f(v) = p(v) and, in
view of Claim 3.8, the vertex v is connected to the root of the corresponding colour with
an f(v)-coloured path. Extending this path with the edge {v,y;} of colour f(y;) = f(v)
to y; concludes this case.

Next we consider the case in which y; is non-canonically connected. In this case we
also set f(y;) = o(y;), but we shall make use of the edge {u, v} of colour o(y;) guaranteed
by (d'). Since u € 0~ (0(y;)) N Zo, the colour f(u) of u was chosen in the first round of the
second stage already, and we have f(u) = o(u) = o(y;) = f(y;). Claim 3.8 then tells us
that there is a path from u to the root of colour f(y;) in Gy [f~'(f(y:))]. On the other
hand, the vertex v is contained in Z; \'Y; and o(v) = 9(y;). We now proceed differently
depending on whether or not v € dom f.

If f(v) has not been set already, then we pull this vertex forward and finalise its colour
opposite to its preferred colour, i.e., we treat the vertex v as the vertices z € Z7 in (3.25).
As a result we obtain f(v) = f(y;) and, since the edges {u, v} and {v, y;} are coloured f(y;),
we ensure the invariant that y; and v are connected to the root of colour f(y;) = f(v)
in Gy [f 7 (f(9:)]-

If f(v) has already been set before, then either (a) v € (J n Z;) u Z] and, by (3.24)

and (3.25), the final colour of v was set opposite to its preferred colour, or else (b) v was
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pulled forward because of some other vertex y; with j > i. However, also in case (b),
the colour of v was switched and we have f(v) = 0(v) = o(y;) = f(y;). Consequently, in
both cases (a) and (b), we already established a connection of v to the root of colour f(v)
in Gl f~'(f(v))]. Extending this path with the edge {v,y;} of colour f(v) = f(y;)
establishes the required connection for y;. Here, we are using that v € Z; \'Y; being
in (J n Zy) u Z] or being pulled forward are the only reasons that could have led to the
finalisation of v. This concludes the discussion of the vertices in Y.

Next we move to the vertices in X. Note that some of the vertices x € X n(Z;~ (Z; U J))
may have been pulled forward to attach some y € Y that is non-canonically connected.
However, such a vertex x was finalised and the desired connection to the root of colour f(x)
was established on that occasion.

For every vertex x € X ~\ dom f, we simply set

By (b') there exist vertices u € J n Zy and v € J n Zy, both contained in Ny, (x). Since all
joker vertices were assigned preferred colour blue and u € Zj, we have f(u) = o(u) = blue.
On the other hand, since v € Jn Zy, we infer from (3.24) that f(v) = red. Hence, no matter
what f(z) is, there exists a path from z to the root of colour f(z) in Gpu)[f~(f(x))].

It is left to finalise the remaining vertices v € (Nyea(r) U Npwe(b)) N (Z1 (21 U J))
that have not been pulled forward. Obviously, setting f(v) = red if v € Nyeq(r) and blue
otherwise connects v to the root in the appropriate colour.

Summarising, we finalised every vertex v € V in such a way that v is connected to the
root of colour f(v) in Gy [f~(f(x))] (i-e., assertion (3.22) holds). Consequently, the
partition

f(red) w f 1 (blue) = V

shows that ¢ — Ily, which concludes the proof of Proposition 3.4. 0

§4. EXTENSION FOR MORE COLOURS

In this section we show that Theorem 1.1 does not extend in the expected way to more
than two colours. For r > 2 and a graph G = (V| E) we write G — 11, if for every

r-colouring of E there exist r monochromatic trees T1,...,T, < G such that
V) v...uV(T,)=V.

Since it is not hard to obtain a lower bound construction for the threshold p = p(n) for

G(n,p) — 11, as long as there are r vertices with no joint neighbour, one may wonder

“ﬂ)l/r

whether p = p(n) = ( - is the sharp threshold for this property. Such a conjecture
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was indeed put forward by Bal and DeBiasio [1, Conjecture 8.1]. However, it was noted by
Ebsen, Mota, and Schnitzer [6] that for » > 3 the threshold is larger and we include their

example below.

Inn

1
Proposition 4.1. For any integer r = 3 and p = p(n) < (7) 1 g.a.s. G € G(n,p) fails
to satisfy G — 1I,.

Proof. For a simpler presentation we only prove the proposition for r = 3, since the
adjustments for r > 3 are rather straightforward. Suppose p = p(n) < (1“7")1/ *. We show
that a.a.s. G = (V, F) € G(n,p) admits a 3-colouring of E with colours red, blue, and
green such that there is no partition V(G) = V(T}) v V(Ty) v V(T3) with monochromatic
trees 11, Ty, T3 < G.

By our choice of p a.a.s. there are four vertices r, b, g, and z that are independent in G

and that have no common neighbour, i.e.,
N(EZ)NnN(r)nNOb) nN(g) =9.

Below we write N(r, g,b) for the joined neighbourhood N(r) n N(g) n N(b).

We now describe a colouring ¢: E — {red, blue, green} with the desired property. The
edges incident to r are coloured red, those incident to b are coloured blue, and those incident
to g are coloured green. This choice ensures that we need at least three monochromatic
trees to partition V' and below we will ensure that z cannot be connected to any of these
three trees.

Next we colour the edges induced in
X =N(r)uN(b)u N(g).

in such a way that for every vertex x € X . N(r,b, g), the edges incident to x are coloured
with at most two of the three colours and we fix one of the “missing colours” that do not
appear on edges incident to x, which we denote by mc(x). The following colourings have
this property:

For every edge we list at least one allowed colour and if an edge is assigned to more than

one allowed colour, then one may pick arbitrarily one of the allowed colours

e edges within N(r) are allowed to be coloured red, within N(b) are allowed to be
coloured blue, and within N(g) are allowed to be coloured green;

e edges between N(r) \ N(b) and N(b) \ (N(r) u N(g)) are coloured red, between
N(b)~N(g) and N(g)~ (N(b)uN(r)) are coloured blue, and between N(g)~ N (r)
and N(r) \ (N(g) u N(b)) are coloured green.
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Then we colour the edges incident with z. Edges zz with z € X \ N(r, b, g) are coloured
with colour me(z). Note that from the definition of mc(z), if zz is coloured green, then
there is no monochromatic green path between g and x, and similar for the symmetric
cases.

Let Y be the set of vertices not considered so far, i.e., Y = V(G) N~ (X u {r,b, g, z}).
It remains to colour the edges incident to Y. We will prevent z to be connected by a
monochromatic path to r, b, or g using vertices from Y. For that, we give colour blue to the
edges zy with y € Y, while edges between N (r,b,g) and Y and within Y are coloured red.
For the edges yx with y € Y and x € X ~ N(r,b, g), the colours {red, green} \ {mc(x)} are
allowed. Since for every z € X \ N(r,b,g) and every y € Y the colours of the edges zx
and yx are different, and the only edge incident to x that has colour me(x) is zz, there
is no monochromatic path from x to r, b or g containing vertices from Y. Moreover,
one can check that for any colouring ¢ as described, it is impossible to connect z by a

monochromatic path with r, b, or g and, hence ¢ has the desired property. O

It would be interesting to determine the threshold for G(n,p) — II, for r > 3 and to
decide if the lower bound in Proposition 4.1 is optimal. We remark that the construction
given in Proposition 4.1 also works for covering (instead of partitioning) the vertices

of G(n,p) with monochromatic trees.

Acknowledgement. The first author thanks Louis DeBiasio for introducing him to the

problems considered in [1].
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