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Abstract. We study forcing pairs for quasirandom graphs. Chung, Graham, and Wilson
initiated the study of families F of graphs with the property that if a large graph G has
approximately homomorphism density pepF q for some fixed p P p0, 1s for every F P F , then G
is quasirandom with density p. Such families F are said to be forcing. Several forcing
families were found over the last three decades and characterising all bipartite graphs F
such that pK2, F q is a forcing pair is a well-known open problem in the area of quasirandom
graphs, which is closely related to Sidorenko’s conjecture. In fact, most of the known forcing
families involve bipartite graphs only.

We consider forcing pairs containing the triangle K3. In particular, we show that if pK2, F q

is a forcing pair, then so is pK3, F
▷q, where F▷ is obtained from F by replacing every edge

of F by a triangle (each of which introduces a new vertex). For the proof we first show
that pK3, C

▷

4 q is a forcing pair, which strengthens related results of Simonovits and Sós and
of Conlon et al.

§1. Introduction

The systematic study of quasirandom graphs was initiated by Thomason [53,54] and Chung,
Graham, and Wilson [12] and over the last 30 years many generalisations and extensions to
directed graphs [23], tournaments [7], hypergraphs [1,4–6,16,26,34,36,55], set systems [8],
permutations [19], groups [22], subsets of cyclic groups and finite fields [10,56], and sparse
graphs [11,15,32] were established by several researchers (see, e.g., the surveys [33,35] for a
more detailed discussion). Roughly speaking, a given discrete structure is quasirandom if it
shares important properties with a “truly random” structure of the same size. In the context
of graphs this is made precise by mimicking the uniform edge distribution of the random
graph Gpn, pq.

Definition 1.1. For ε ą 0 and p P p0, 1s we say a graph G “ pV,Eq is pε, pq-quasirandom, if
for all subsets X, Y Ď V we have

ˇ

ˇeGpX, Y q ´ p |X| |Y |
ˇ

ˇ ď ε|V |2 ,

where edges contained in the intersection X X Y are counted twice in eGpX, Y q.

In the context of quasirandom graphs we often consider sequences of graphs
á

G “ pGnqnPN

with |V pGnq| Ñ 8. Then we may say that the sequence
á

G is p-quasirandom if for every ε ą 0
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all but finitely many members of the sequence are pε, pq-quasirandom. For a simpler discussion,
we sometimes say that a graph G is p-quasirandom without any reference to the sequence,
by which we mean that some sufficiently large graph G is pε, pq-quasirandom for some small
unspecified ε ą 0. If the density p is of no particular importance, then we may just say G is
quasirandom.

A large part of the theory of quasirandom graphs concerns equivalent characterisations
of p-quasirandom graph sequences. Early results in that direction implicitly appeared in [2, 3,
20, 41] and Chung, Graham, and Wilson [12] gave six alternative characterisation. Since then
many more such characterisations were found (see, e.g., [9, 16,28,30,42–44,47–50,57]).

Here we focus on characterisations that rely on the densities of graph homomorphisms
of given graphs F into large graphs G. We denote by hompF,Gq the number of graph
homomorphisms from F into G and the homomorphism density tpF,Gq is defined by

tpF,Gq “
hompF,Gq
|V pGq||V pF q|

.

Let us recall that a pair of graphs pF1, F2q is said to be forcing if for every p P p0, 1s and ε ą 0
there is some δ ą 0 such that the following holds: if a graph G satisfies

tpF1, Gq ě p1´ δqpepF1q and tpF2, Gq ď p1` δqpepF2q (1.1)

then it is pε, pq-quasirandom. This notion goes back to [12] and has frequently been discussed
in the literature. The most classical example of such a family is the pair pK2, C4q. The
statement that the pair pK2, F q is forcing for every bipartite graph F that is not a forest,
called the forcing conjecture, can be traced back to Skokan and Thoma [50] (see also [14]).
It has been the subject of intensive study that led to its verification in various cases. For
the most recent contributions to the forcing conjecture and the closely related conjectures of
Erdős and Simonovits [46] and of Sidorenko [45] we refer to [14,17,18,25,31,37,51].

Until recently all known forcing pairs contained bipartite graphs only. In fact, already
Chung, Graham, and Wilson [12] noted that pK2, K3q (and also pK1,2, K3q) is not a forcing
pair, by giving an example of n-vertex graphs G with all vertices having degree close to n{2
and with tpK3, Gq « 1{8, but containing independent sets and cliques of size tn{4u. However,
it was shown by Simonovits and Sós [48] that such a situation can be avoided by appealing to
the hereditary nature of quasirandom graphs, i.e., if G “ pV,Eq is p-quasirandom, then the
induced subgraphs GrU s are p-quasirandom for linear sized subsets U Ď V . Simonovits and
Sós then showed that requiring

tpF,GrU sq “
´

1˘ δ |V |
|U |

¯

pepF q (1.2)

for a given graph F with at least one edge and for all U Ď V forces G to be p-quasirandom.
Recently, Conlon, Hàn, Person, and Schacht [16] (see also [24]) observed that condition (1.2)
gives rise to a forcing pair pF,MF q for an appropriate graph MF depending on F .
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We study forcing pairs involving triangles. For that case it was
shown in [16] that the pair pK3,Mq is forcing, where M denotes the
line graph of the 3-dimensional Boolean cube, depicted on the right.
The idea behind the proof is roughly as follows: Three successive appli-
cations of the Cauchy–Schwarz inequality yield tpM,Gq ě tpK3, Gq

8

for any graph G “ pV,Eq. On the other hand, the assumption (1.1)
for pK3,Mq tells us tpK3, Gq Á p3 and tpM,Gq À p24 for some real
p P p0, 1s. Consequently, an approximate equality must hold in each
of these three steps, and it may be argued that this is in turn only possible if for all subsets
A, B, C Ď V we have

4pA,B,Cq « p3
|A| |B| |C| ,

where 4pA,B,Cq denotes the number of triangles with a vertex in A, a vertex in B, and a
vertex in C. This yields (1.2) for F “ K3 and the Simonovits–Sós theorem implies that G is
p-quasirandom.

b b
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Our main result shows that the same effect as above can be achieved
with two applications of the Cauchy–Schwarz inequality only. This
implies that the pair pK3, C

▷

4 q is forcing, where C▷4 is obtained from
the 4-cycle C4 where every edge is replaced by a triangle (each of
which introduces a new vertex), i.e., the graph shown on the left. As
we shall explain in more detail below, we have tpC▷4 , Gq ě tpK3, Gq

4

for all graphs G, and if approximate equality holds for some graph G,
then it satisfies the assumption of the following theorem, which weakens the assumption of
the Simonovits–Sós theorem in the triangle case.

Theorem 1.2. For every p P p0, 1s and ε ą 0 there is an η ą 0 such that any graph G “ pV,Eq
satisfying

4pA,B, V q “ p3
|A| |B| |V | ˘ η |V |3 (1.3)

for all A,B Ď V is pε, pq-quasirandom.

The following corollary renders the aforementioned connection between condition (1.3)
and tpC▷4 , Gq « tpK3, Gq

4 and strengthens the result of Conlon et al. that pK3,Mq is a forcing
pair.

Corollary 1.3. The pair pK3, C
▷

4 q is forcing.

As it turns out Corollary 1.3 applied in the context of weighted graphs allows the following
general result, which is our main result on forcing pairs involving triangles.

Corollary 1.4. If pK2, F q is a forcing pair, then so is pK3, F
▷q.

Organisation. We prove Theorem 1.2 in Section 2 and Corollary 1.3 in Section 3. In
Section 4 we switch to the analytical language of graphons and prove Corollary 1.4. We
conclude by recording some further observations and problems for future research in Section 5.
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§2. The two sets condition

The proof of Theorem 1.2 is based on the regularity method for graphs. This means that
we use a regularity lemma and a counting lemma in order to reduce the problem at hand
to a somewhat different one that speaks about a certain “reduced graph.” In the present
situation we need to conceive this reduced graph as a weighted graph. Such objects may also
be regarded as symmetric matrices with entries from the unit interval. The precise statement
we shall require is stated as Lemma 2.1 below. The interested reader may check that this
lemma could conversely also be deduced from Theorem 1.2.

Lemma 2.1. Given any real numbers p P p0, 1s and ε ą 0 there is a real δ ą 0 such that
the following holds: Let pdijqi,jPrts P r0, 1stˆt be a symmetric matrix such that for all distinct
indices i, j P rts we have

dij

ÿ

kPrts

dikdjk “ pp
3
˘ δqt . (2.1)

Then dij “ p˘ ε holds for all i, j P rts.

Proof. Throughout the proof we work with the hierarchy δ ! % ! p, ε for some auxiliary
chosen constant %, where we write α ! β to signify that α will be chosen sufficiently small
depending on β.

b

x

by b z

b
w

a b

b a

Since the sum on the left-hand side of (2.1) is at most t, we have
dij ě p3 ´ δ ě p3{2 for all i, j P rts. The main idea is to choose three
indices x, y, z P rts such that the difference dxy´ dxz is as large as possi-
ble. In the picture to the left, these indices x, y, and z are represented
as “vertices” and the labels a and b attached to the “edges” xy and xz
indicate that we set a “ dxy and b “ dxz, respectively. The vertex w,
which is shown there as well, will be chosen later in the argument.

The maximality of a´ b entails

dyi ě b and dzi ď a for all i P rts . (2.2)

By (2.1) we have

a ¨
ÿ

iPrts

dxidyi ď pp
3
` δqt and b ¨

ÿ

iPrts

dxidzi ě pp
3
´ δqt ,

whence
ÿ

iPrts

dxipadyi ´ bdziq ď 2δt .

Now (2.2) yields

adyi ´ bdzi “ apdyi ´ bq ` bpa´ dziq ě
`

pdyi ´ bq ` pa´ dziq
˘

p3
{2 ě 0

for all i P rts, so it follows that
ÿ

iPrts

pdyi ´ bq `
ÿ

iPrts

pa´ dziq ď 8p´6δt , (2.3)
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where neither sum on the left-hand side is negative. Thus there is an index w P rts with
pdwy ´ bq ` pa ´ dwzq ď 8p´6δ. In particular, the numbers a “ dwz ď a and b “ dwy ě b

(see (2.2)) satisfy
|a´ a| ` |b´ b| ď 8p´6δ . (2.4)

Applying (2.1) to the pairs pw, yq and pw, zq in place of pi, jq and subtracting the resulting
estimates we obtain

ˇ

ˇ

ˇ

ÿ

iPrts

dwipadzi ´ bdyiq

ˇ

ˇ

ˇ
ď 2δt .

Thus the triangle inequality and (2.3) lead to

|aa´ bb| ¨ p3t{2 ď
ˇ

ˇ

ˇ

ÿ

iPrts

dwipaa´ bbq
ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ÿ

iPrts

dwiapa´ dziq

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ

ÿ

iPrts

dwibpdyi ´ bq
ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ

ÿ

iPrts

dwipadzi ´ bdyiq

ˇ

ˇ

ˇ

ď 2p1` 4p´6
qδt ,

i.e., |aa´ bb| ď 4p´3p1` 4p´6qδ. Consequently (2.4) yields

p3
pa´ bq ď a2

´ b2
ď |aa´ bb| ` a|a´ a| ` b|b´ b| ď 4p´3

p1` 4p´6
qδ ` 8p´6δ

and thus a´ b ď 4p´6p1` 2p´3 ` 4p´6qδ ď %.
Now for any four indices i, j, k, ` P rts the extremal choice of a´ b gives

|dij ´ dk`| ď |dij ´ di`| ` |di` ´ dk`| ď 2pa´ bq ď 2% .

In other words, there is an interval of length 2% containing all the dij . In the light of (2.1) and
the smallness of % this interval needs to be contained in pp´ ε, p` εq. Thereby Lemma 2.1 is
proved. �

As we have already said, our proof of Theorem 1.2 depends on Szemerédi’s regularity
lemma [52], a version of which we would like to state next.

Theorem 2.2 (Regularity lemma). For every positive real number δ there is a positive
integer T such that every graph G “ pV,Eq admits a partition V “ V0 Ÿ V1 Ÿ . . . Ÿ Vt of its
vertex set obeying the following conditions:

(a ) t ď T , |V0| ď δ |V |, and |V1| “ . . . “ |Vt| ą 0.
(b ) For each i P rts there are at most δt many indices j P rts such that the pair pVi, Vjq is

not δ-quasirandom. �

Here a pair pA,Bq of nonempty subsets of V , say with density d “ epA,Bq
|A| |B|

, is said to
be δ-quasirandom if we have epX, Y q “ d |X| |Y | ˘ δ |A| |B| for all X Ď A and Y Ď B.

The above statement differs in several aspects from the “standard” regularity lemma and
we briefly discuss those differences:
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‚ The crucial property obtained for most pairs pVi, Vjq is often taken to be something
called δ-regularity∗ rather than δ-quasirandomness. These two concepts are known to
be equivalent up to polynomial losses in the involved constants, and in fact δ-regularity
implies δ-quasirandomness. Our reason for working with this notion here is that allows
a slightly cleaner presentation of the proof.

‚ Instead of the second condition one usually finds a weaker clause just stating that at
most δt2 pairs pVi, Vjq fail to be quasirandom in the literature. The above version has
also been used and to obtain it, one may apply the standard version of the regularity
lemma with some appropriate δ1 ! δ in place of δ and then relocate all classes Vi

with i ą 0 that violate (b ) to V0.
‚ Usually one requires also a lower bound t0 on the number of vertex classes t in advance
and then one obtains T ě t ě minpt0, |V |q rather than just T ě t in the first part
of (a ). The rationale behind this is that in many applications one has no intentions
of “looking inside the individual Vi,” wherefore it brings certain advantages to have
these sets reasonably small. In our current situation, however, even the extreme
outcome t “ 1 would be useful. In view of (b ) it would mean that the pair pV1, V1q is
δ-quasirandom, and since, provided that δ is small, V1 would be almost all of V pGq,
this is essentially all we need to infer for the proof of Theorem 1.2.

In the course of proving Theorem 1.2 we will also need to be able to count triangles after
regularising G. This will be rendered by the following strong, but well-known, form of the
triangle counting lemma.

Lemma 2.3 (Triangle counting lemmma). Let A, B, and C denote three nonempty subsets
of V pGq for some graph G. Suppose that the pairs pB,Cq, pC,Aq, and pA,Bq have edge
densities α, β, and γ respectively, and that at least two of these three pairs are δ-quasirandom.
Then 4pA,B,Cq “ pαβγ ˘ 2δq|A| |B| |C|. �

We apply Lemma 2.1 together with the regularity method in form of Theorem 2.2 and
Lemma 2.3 and deduce Theorem 1.2.

Proof of Theorem 1.2. We begin by choosing certain auxiliary constants obeying the hierarchy

η ! T´1
! δ ! ε, p ,

where T is the integer obtained by applying the regularity Theorem 2.2 with δ. Now let any
graph G “ pV,Eq satisfying

4pA,B, V q “ p3
|A| |B| |V | ˘ η |V |3 (2.5)

for all A,B Ď V be given. The regularity lemma yields a partition

V pGq “ V0 Ÿ V1 Ÿ . . . Ÿ Vt

∗A pair pA,Bq of subsets of G is said to be δ-regular if |dpX,Y q ´ dpA,Bq| ď δ holds for all X Ď A

and Y Ď B with |X| ě δ|A| and |Y | ě δ|B|.
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satisfying the above clauses (a ) and (b ). For i, j P rts we denote the density of the pair pVi, Vjq

by dij. The assumption (2.5) is only going to be used in the special case A,B P tV1, . . . , Vtu.
It then discloses the following useful property of the numbers dij:

dij

ÿ

kPrts

dikdjk “ pp
3
˘ 9δqt , (2.6)

for all i, j P rts. To see this, we consider any two indices i, j P rts. Let Ri denote the set
of all k P rts for which the pair pVi, Vkq is not δ-quasirandom, let Rj be defined similarly
with respect to j, and set R “ Ri Y Rj. Owing to condition (b ) from Theorem 2.2 we
have |Ri| ď δt and |Rj| ď δt, whence |R| ď 2δt. Let us write M “ |V1| “ . . . “ |Vt|.
Then Mt “ |V | ´ |V0| ě p1 ´ δq |V |. As we may assume δ ď 1

2 , is follows that |V | ď 2Mt,
whence |V0| ď 2δMt. Now we have

ˇ

ˇ

ˇ
4pVi, Vj, V q ´M

3dij

ÿ

kPrts

dikdjk

ˇ

ˇ

ˇ
ď 4pVi, Vj, V0q `

ÿ

kPrts

ˇ

ˇ4pVi, Vj, Vkq ´M
3dijdikdjk

ˇ

ˇ .

Here the first term may be estimated trivially by

4pVi, Vj, V0q ď |V0| |Vi| |Vj| ď 2δM3t .

Moreover, for k P rtsrR the triangle counting lemma (Lemma 2.3) tells us that
ˇ

ˇ4pVi, Vj, Vkq ´M
3dijdikdjk

ˇ

ˇ ď 2δM3 ,

while for k P R we still have the obvious bound
ˇ

ˇ4pVi, Vj, Vkq ´M
3dijdikdjk

ˇ

ˇ ďM3 .

Due to |R| ď 2δt all this combines to
ˇ

ˇ

ˇ
4pVi, Vj, V q ´M

3dij

ÿ

kPrts

dikdjk

ˇ

ˇ

ˇ
ď 6δM3t . (2.7)

On the other hand, plugging A “ Vi and B “ Vj into (2.5) we learn
ˇ

ˇ4pVi, Vj, V q ´ p
3M2

|V |
ˇ

ˇ ď η |V |3 ,

which in turn yields
ˇ

ˇ4pVi, Vj, V q ´ p
3M3t

ˇ

ˇ ď p3M2`
|V | ´Mt

˘

` η |V |3 .

In view of

M2`
|V | ´Mt

˘

` η |V |3 “M2
|V0| ` η |V |

3
ďM3`2δt` 8ηt3

˘

ďM3tp2δ ` 8ηT 2
q

a suitable choice of η leads to
ˇ

ˇ4pVi, Vj, V q ´ p
3M3t

ˇ

ˇ ď 3δM3t .

Together with (2.7) this concludes the proof of (2.6).
We may assume that depending on ε and p the constant δ has been chosen so small

that Lemma 2.1 guarantees dij “ p ˘ ε
2 for all i, j P rts. Let us write S for the set of all
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pairs pi, jq P rts2 such that the pair pVi, Vjq is not δ-quasirandom. Notice that condition (b )
from Theorem 2.2 implies |S| ď δt2.

Now for any A,B Ď V we have
ˇ

ˇ

ˇ
epA,Bq ´ p |A| |B|

ˇ

ˇ

ˇ
ď

t
ÿ

i“0

t
ÿ

j“0

ˇ

ˇ

ˇ
epAX Vi, B X Vjq| ´ p |AX Vi| |B X Vj|

ˇ

ˇ

ˇ
. (2.8)

Each term on the left-hand side having i “ 0, j “ 0, or pi, jq P S may be bounded from above
by |Vi| |Vj|, so altogether these terms contribute at most

|V |2 ´
`

|V | ´ |V0|
˘2
` |S|M2

ď 2δ |V |2 ` δM2t2 ď 3δ |V |2 .

Owing to the quasirandomness, each of the remaining terms on the right hand side of (2.8)
may be estimated as follows:

ˇ

ˇ

ˇ
epAX Vi, B X Vjq ´ p |AX Vi| |B X Vj|

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ
epAX Vi, B X Vjq ´ dij |AX Vi| |B X Vj|

ˇ

ˇ

ˇ
` |dij ´ p| |Vi| |Vj|

ď
`

δ ` ε
2

˘

|Vi| |Vj|

So taken together these terms amount to at most pδ ` ε
2

˘

|V |2, and in view of δ ! ε we finally
we arrive at

ˇ

ˇepA,Bq ´ p |A| |B|
ˇ

ˇ ď
`

4δ ` ε
2

˘

|V |2 ď ε |V 2
|

for arbitrary A,B Ď V . This proves that G is indeed pε, pq-quasirandom. �

§3. Proof of Corollary 1.3

In this section we deduce Corollary 1.3. The only thing we need to check is the following
proposition, which combined with Theorem 1.2 yields the corollary.

Proposition 3.1. Suppose that a graph G “ pV,Eq satisfies

tpK3, Gq ě p1´ δqp3 and tpC▷4 , Gq ď p1` δqp12

for some p, δ P p0, 1s. Then

4pA,B, V q “ p3
|A| |B| |V | ˘ 8δ1{4p3

|V |3

holds for all A,B Ď V .

Besides the Cauchy–Schwarz inequality itself the proof will also use the following known
and easy to confirm result on situations where equality almost holds.

Fact 3.2. Let x1, . . . , xn, α, and ν denote any real numbers satisfying
n
ÿ

i“1
xi “ αn and

n
ÿ

i“1
x2

i “ pα
2
` ν2

qn .

Then we have
řm

i“1 xi “ αm˘ νn for any m “ 0, 1, . . . , n. �
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Proof of Proposition 3.1. Let G “ pV,Eq, p, and δ be as in the hypothesis and let A,B Ď V

be arbitrary.

bu b y

bx

bv b z We begin the proof by setting up some notation: Let S denote the graph
obtained by gluing two triangles together at a vertex (see the picture on the
left). We consider the homomorphism densities of K3, S, and C▷4 and define
the the real numbers a, b, and c so as to obey

hompK3, Gq “ ap3n3 , (3.1)
hompS,Gq “ bp6n5 , (3.2)

and

hompC▷4 , Gq “ cp12n8 , (3.3)

where n “ |V |. Notice that the assumption translates to a ě 1´ δ and c ď 1` δ. Given a
vertex x P V we write Tx for the number of pairs py, zq P V 2 such that xyz is a triangle in G.
Moreover, for any two vertices u, v P V we denote the number of triples px, y, zq P V 3 with
ux, uy, vx, vz, xy, xz P E by Su,v (see figure). In terms of these numbers the equations (3.1),
(3.2), and (3.3) rewrite as

ÿ

xPV

Tx “ ap3n3 , (3.4)
ÿ

xPV

T 2
x “

ÿ

pu,vqPV 2

Su,v “ bp6n5 , (3.5)

and
ÿ

pu,vqPV 2

S2
u,v “ cp12n8 . (3.6)

Thus the Cauchy–Schwarz inequality implies

p1´ δq4 ď a4
ď b2

ď c ď 1` δ . (3.7)

Due to Fact 3.2 (applied with α “ ap3n2 and ν “ p3n2
?
b´ a2), (3.4), and (3.5) we have

4pA, V, V q “
ÿ

xPA

Tx “ ap3n2
|A| ˘

?
b´ a2 ¨ p3n3 .

Owing to 1´ δ ď a ď 1` δ and
?
b´ a2 ď 3

?
δ (see (3.7)), this leads to

4pA, V, V q “ p3n2
|A| ˘ 4δ1{2p3n3 . (3.8)

Similarly Fact 3.2 (applied with α “ bp6n3 and ν “ p6n3
?
c´ b2), (3.5), and (3.6) give

ÿ

pu,vqPA2

Su,v ď bp6n3
|A|2 `

?
c´ b2 ¨ p6n5

ď
`

p1` δq |A|2 ` 3δ1{2n2˘p6n3 ,

whence
ÿ

yPV

4pA, y, V q2 “
ÿ

pu,vqPA2

Su,v ď p|A|
2
` 4δ1{2n2

qp6n3 . (3.9)
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Now if Q and R denote the real numbers satisfying
ÿ

yPV

4pA, y, V q “ p3n2Q and
ÿ

yPV

4pA, y, V q2 “ p6n3R ,

then (3.8) and (3.9) entail

Q “ |A| ˘ 4δ1{2n and R ď |A|2 ` 4δ1{2n2 , (3.10)

whilst a final application of Fact 3.2 (applied with α “ p3nQ and ν “ p3n
?
R ´Q2) reveals

4pA,B, V q “ p3nQ |B| ˘ p3n2
a

R ´Q2 . (3.11)

It follows from (3.10) that R ´Q2 ď 12δ1{2n2 and owing to (3.11) we obtain
ˇ

ˇ

ˇ
4pA,B, V q ´ p3

|A| |B|n
ˇ

ˇ

ˇ
ď p3n |B|

ˇ

ˇQ´ |A|
ˇ

ˇ` 4δ1{4p3n3

ď p3n3
p4δ1{2

` 4δ1{4
q ď 8δ1{4p3n3 ,

as desired. �

§4. Proof of Corollary 1.4

4.1. Notation. We mostly follow the notation from Lovász’s research monograph [38] and in
this subsection we remind the reader of what we actually need. By W we mean the space of
all bounded symmetric measurable functions from the unit square r0, 1s2 to the set of reals.
So W is a linear space whose members are sometimes referred to as kernels. It is known that
for each kernel W the maximum

}W }l “ max
"

ˇ

ˇ

ˇ

ż

AˆB

W px, yq dx dy
ˇ

ˇ

ˇ
: A,B Ď r0, 1s measurable

*

exists and that W ÞÝÑ }W }l is a norm on W , the so-called cutnorm. If }W }l “ 0 holds for
W P W , then this kernel vanishes almost everywhere, i.e., the set tpx, yq P r0, 1s2 : W px, yq ‰ 0u
has measure zero (see [38, Section 8.2.3]).

The group of measure preserving bijections form the unit interval onto itself is denoted
by Sr0,1s. This group acts in an obvious way on the space of kernels by

Wϕ
px, yq “ W pϕpxq, ϕpyqq

for all W P W , ϕ P Sr0,1s, and x, y P r0, 1s. The cut distance δlpW1,W2q between two kernels
W1, W2 P W is defined by

δlpW1,W2q “ inf
 

}W1 ´W
ϕ
2 }l : ϕ P Sr0,1s

(

.

Actually, this infimum is known to be a minimum, but this fact is rarely needed and we shall
make no use of it.

Those W P W that satisfy W px, yq P r0, 1s for all x, y P r0, 1s are called graphons and
the set of all graphons is denoted by W0. With each graph G “ pV,Eq we can associate
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a graphon WG by taking an arbitrary partition r0, 1s “
Ť

¨ vPV Pv of the unit interval into
measurable pieces of measure |V |´1 and defining for all x, y P r0, 1s

WGpx, yq “

$

&

%

1, if uv P E, where x P Pu, y P Pv

0, else.

This graphon depends, of course, not only on G but also on the underlying partition, but
modulo the action of Sr0,1s mentioned above it is uniquely determined by G.

An important insight due to Lovász and Szegedy [39] is the compactness of the pseudometric
space pW0, δlq. In fact, the compactness easily implies the regularity lemma for graphs (see
also [38, Theorem 9.23]). This result does actually occupy a central place in the limit
theory of dense graphs. Besides, it is beautifully complemented by the fact that the set
tWG : G is a graphu is dense in pW0, δlq.

Given a graph F and a kernel W the homomorphism density tpF,W q is defined to be the
multidimensional integral

tpF,W q “

ż

r0,1sV pF q

ź

uvPEpF q

W pxu, xvq
ź

uPV pF q

dxu .

This stipulation extends the usual definition of homomorphism densities for graphs in the
sense that tpF,WGq “ tpF,Gq holds for all graphs F and G.

Analytically speaking, the global counting lemma asserts that for every graph F the
map W ÞÝÑ tpF,W q from pW0, δlq to r0, 1s is Lipschitz continuous with Lipschitz con-
stant epF q (see [38, Theorem 10.23]).

4.2. Forcing families. Let us write W ” p for a kernel W and a real number p if W agrees
almost everywhere with the constant function whose value is always p.

Lemma 4.1. A pair of graphs pF1, F2q is forcing if and only if we have W ” p for every real
p P p0, 1s and every graphon W with tpFi,W q “ pepFiq for i “ 1, 2.

Proof. This is implicit in the discussion from [38, Section 16.7.1]. �

Theorem 1.2 is the discrete analogue of the following statement.

Theorem 4.2. If a graphon W and a real p P p0, 1s are such that

W px, yq

ż 1

0
W px, zqW py, zq dz “ p3

holds for almost all px, yq P r0, 1s2, then W ” p.

One way to show this proceeds by carefully repeating the proof of Lemma 2.1 in this
analytical setting. This is not hard, but somewhat technical, and hence we would like to
present an alternative argument here.
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Proof of Theorem 4.2. Define a graphon U by

Upx, yq “ W px, yq

ż 1

0
W px, zqW py, zq dz (4.1)

for all x, y P r0, 1s. Now the assumption U ” p3 leads to tpK3,W q “ tpK2, Uq “ p3 and
tpC▷4 ,W q “ tpC4, Uq “ p12. Since the pair pK3, C

▷

4 q is forcing, it follows by Lemma 4.1 that
we have indeed W ” p. �

We conclude this section with the proof of our main result on forcing pairs involving
triangles.

Proof of Corollary 1.4. Suppose that W is a graphon and p P p0, 1s is a real number such
that

tpK3,W q “ p3 and tpF▷,W q “ p3epF q . (4.2)
In view of Lemma 4.1 we have to prove that W ” p. To this end, we look again at the
graphon U defined by (4.1). The hypothesis (4.2) rewrites in terms of U as

tpK2, Uq “ p3 and tpF,Uq “ p3epF q .

Since the pair pK2, F q is forcing, it follows that U ” p3, and in the light of Theorem 4.2 we
get indeed W ” p. �

§5. Concluding Remarks

We close with a few remarks and open problems for future research.
‚ Corollary 1.4 raises the general problem to characterise all graphs F with the property
that the pair pK3, F q is forcing. However, given our current state of knowledge and
the fact that this is still open for pK2, F q it appears unclear how to even formulate a
plausible conjecture in this regard.

‚ The proof of Theorem 1.2 presented in Section 2 is based on Szemerédi’s regularity
lemma and as a consequence this proof requires that η´1 behaves like an exponential
tower of height polypε´1, p´1q. We would like to thank L. M. Lovász for pointing out to
us that a different argument utilising the Frieze–Kannan regularity lemma [21] shows
that η´1 “ 2pεpq´Θp1q would suffice as well. To see this one exploits that the assumption
of Theorem 1.2 implies tpK3, Gq « p3 and tpC▷4 , Gq « p12. Due to the global counting
lemma this gives us two approximate equalities for the densities dij arising in a
Frieze–Kannan regular partition of G. As in the proof of Proposition 3.1 two reverse
applications of the Cauchy–Schwarz inequality then entail that the assumption (2.1)
of Lemma 2.1 holds with at most opt2q exceptions. Working a little bit harder in the
proof of this lemma it can then be shown that this is enough to imply that there
are at most opt2q pairs pi, jq P rts2 for which dij « p fails. This, however, is in turn
equivalent to G being p-quasirandom.

Recently, it was shown by Conlon, Fox, and Sudakov [13] that the corresponding
dependency of the parameters in the Simonovits–Sós theorem for the triangle is in
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fact linear (see also [27,40] for further results). In view of these results, it seems an
interesting open question whether Theorem 1.2 holds also for η “ polypε, pq.

‚ It appears to be an intriguing open problem to find the appropriate generalisation of
Theorem 1.2 (and Corollary 1.3) for graphs other than the triangle. At this point even
for cliques Kk with k ě 4 this is an open problem. For integers 1 ď ` ď k we say Kk

is `-forcing, if every graph G “ pV,Eq satisfying for all subsets X1, . . . , X` Ď V

KkpX1, . . . , X`q “ pp
k
2q|V |k´`

ź̀

i“1
|Xi| ` op|V |

k
q

for some p P p0, 1s is p-quasirandom, where KkpX1, . . . , X`q denotes the number of
k-tuples

pv1, . . . , vkq P X1 ˆ ¨ ¨ ¨ ˆX` ˆ V
k´`

that span a Kk in G. The Simonovits–Sós theorem implies for every k ě 2 that Kk

is k-forcing and it is not hard to show that no clique is 1-forcing. Theorem 1.2 tells
us that K3 is 2-forcing and it would be interesting to determine for every k ě 4 the
smallest ` such that Kk is `-forcing. The proof of Theorem 1.2 can be adjusted to
show that ` “ rk`1

2 s suffices and this was also noted independently by Hubai et al. [29].
Currently, we are not aware of any reason that rules out the possibility that every
clique Kk is 2-forcing or that there is a universal bound independent of k.

‚ One may also consider hypergraphs extensions of those results. For example, one may
investigate, whether the tetrahedronKp3q

4 is 3-forcing for the notion of quasirandomness
investigated in [6, 34].
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