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Abstract. For a given graph F we consider the family of (finite) graphs G with the
Ramsey property for F , that is the set of such graphs G with the property that every
two-colouring of the edges of G yields a monochromatic copy of F . For F being a triangle
Friedgut, Rödl, Ruciński, and Tetali (2004) established the sharp threshold for the Ramsey
property in random graphs. We obtained a simpler proof of this result which extends to a
more general class of graphs F including all cycles.

The proof is based on Friedgut’s criteria (1999) for sharp thresholds, and on the recently
developed container method for independent sets in hypergraphs by Saxton and Thomason,
and Balogh, Morris and Samotij. The proof builds on some recent work of Friedgut et al.
who established a similar result for van der Waerden’s theorem.

§1. Introduction

A common theme in extremal and probabilistic combinatorics in recent years concerns
the transfer of classical results to sparse random structures. Prime examples include
Ramsey’s theorem, Turán’s theorem, and Szemerédi’s theorem (see, e.g., [2, 11, 19, 21]).
Here we often want to replace the complete graph Kn or the set of integers rns “ t1, . . . , nu
(implicitly appearing in the classical results mentioned above) by a random graph Gpn, pq
or a random subset of rns.

For example, in the context of Ramsey’s theorem for a given number of colours k and
a graph F , one may consider the class A of all graphs G with the property that every
k-colouring of its edges yields a monochromatic copy of F . This leads to the following
question: When does the binomial random graph Gpn, pq satisfy A asymptotically almost
surely (a.a.s.)? More precisely, for which p “ ppnq we have limnÑ8PpGpn, pq P Aq “ 1? It
turns out that for many natural graph properties there exists a threshold function p̂ “ p̂pnq

such that

lim
nÑ8

PpGpn, pq P Aq “

$

&

%

0, if p “ opp̂q,

1, if p “ ωpp̂q.
(1)
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After establishing a threshold for a given property A, one may study more closely how
quickly the transition from a.a.s. not having A to a.a.s. having A occurs. If one can replace
p “ opp̂q in (1) by p ď p1 ´ εqp̂ for every ε ą 0 and similarly p “ ωpp̂q can be replaced
by p ě p1` εqp̂, then the threshold is sharp and otherwise it is coarse.

In that direction only a few results are known. In [6] Friedgut presents a characterization
of coarse thresholds in a general setting. In case of random graphs it roughly says that a
threshold is coarse if and only if it is correlated to a local property. For example the graph
property “Gpn, pq contains a triangle” depends on local events and has a coarse threshold
while the graph property “Gpn, pq is connected” is a global property and has in fact a
sharp threshold.

Friedgut’s work yields a tool to verify sharp thresholds by contradiction. Supposing to the
contrary that the threshold in question would be coarse, one may use the characterization
of Friedgut to deduce additional structural properties (see e.g. Theorem 4) which might be
used to derive a contradiction.

There are some results in this area based on this approach. For example, it was shown
in [9] that the Ramsey-type property “in every vertex colouring of Gpn, pq with two colours
there is a monochromatic triangle” has a sharp threshold (see [9] for some related results).

Regarding Ramsey-type properties concerning edge colourings the applicability of
Friedgut’s criterion seems more involved. In that direction it was shown by Friedgut,
Rödl, Ruciński, and Tetali in [10] that the Ramsey property for the triangle and two colours
has a sharp threshold. More recently, Friedgut, Hàn, Person and Schacht [8] studied van
der Waerden’s property in random subsets of Z{nZ and established a sharp threshold for
this property. Essentially the same proof yields the sharpness of the threshold for the
Ramsey properties of strictly balanced (see (2) below) k-partite k-uniform hypergraphs
and, hence, in particular for even cycles in graphs and two colours.

We extend this research to non-bipartite graphs. In particular, we obtain a shorter proof
of the triangle result from [10]. We will use the arrow notation from Ramsey theory. For
two graphs G and F we write GÑ pF qer if for all edge colourings of G with r colours there
exists a monochromatic copy of F . If, on the other hand, there is an r-colouring of EpGq
with no monochromatic copy of F , then we write GÛ pF qer. Our first result establishes
the sharp threshold when F is a cycle.

Theorem 1. For a cycle Ck of length k ě 3 there exist positive constants c0 and c1 and a
function cpnq with c0 ă cpnq ă c1 such that for all ε ą 0 we have

lim
nÑ8

PpGpn, pq Ñ pCkq
e
2q “

$

&

%

0, if p ď p1´ εqcpnqn´pk´2q{pk´1q,

1, if p ě p1` εqcpnqn´pk´2q{pk´1q.

We establish the sharpness of the threshold for Ramsey-properties of a more general class
of graphs than cycles. For a graph F “ pV,Eq we write vpF q “ |V pF q| and epF q “ |EpF q|.
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For graphs F with at least one edge let the 2-density m2pF q be defined by

m2pF q “ maxtd2pF
1
q : F 1 Ď F and epF 1q ě 1u ,

where

d2pF
1
q “

$

&

%

epF 1q´1
vpF 1q´2 , if vpF 1q ą 2,
1, if F 1 “ K2.

(2)

If d2pF q “ m2pF q, then F is balanced. Moreover, F is strictly balanced if in addition
d2pF

1q ă m2pF q for all proper subgraphs F 1 Ĺ F with at least one edge. We say a graph F
is nearly bipartite if epF q ě 2 and there is a bipartite graph F 1 and some edge e such that
F “ F 1 ` e “ pV pF 1q, EpF 1q Y teuq. Note that this definition includes all bipartite graphs
with at least two edges. Since for every k ě 3 the cycle Ck of length k is strictly balanced
and nearly bipartite, the following result includes Theorem 1 as a special case.

Theorem 2. For all strictly balanced and nearly bipartite graphs F there exist positive
constants c0 and c1 and a function cpnq with c0 ă cpnq ă c1 such that for all ε ą 0 we have

lim
nÑ8

PpGpn, pq Ñ pF qe2q “

$

&

%

0, if p ď p1´ εqcpnqn´1{m2pF q,

1, if p ě p1` εqcpnqn´1{m2pF q.

We remark that here we defined d2pK2q “ 1 in (2). As a consequence it follows that

m2pF q ą 1 (3)

for every strictly balanced and nearly bipartite graph F , since every nearly bipartite
graph is required to have at least two edges by definition. Moreover, we remark that the
assumptions of Theorem 2 are never met by forests F and for sharp thresholds of Ramsey
properties of trees we refer to [9].

The proof of Theorem 2 refines ideas from the work in [8] and also uses Friedgut’s
criterion for coarse thresholds [6] and the recent hypergraph container results of Balogh,
Morris, and Samotij [1] and Saxton and Thomason [20]. In Section 2 we will introduce
these tools and in addition we will state the two main technical lemmas, Lemmas 7 and 8,
which we will need in the proof of the main result. Section 3 is devoted to the proof of
Theorem 2 based on these tools. In Section 4 and Section 5 we then prove Lemmas 7 and 8,
respectively. We close with a few remarks concerning possible generalisations of Theorem 2
and related open questions.

§2. Main tools and outline of the proof

In this section we introduce the necessary tools for the proof of the main result. For
definiteness we may assume that the vertex sets of Kn and Gpn, pq coincide with rns. We
use the following notation: For a graph B and n ě vpBq we define ΨB,n as the set of
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all injective embeddings of B into the complete graph Kn. So ΨB,n corresponds to the
unlabelled copies of B in Kn and, clearly, |ΨB,n| “ ΘpnvpBqq.

The starting point of the proof is the Rödl-Ruciński theorem (stated below) which
establishes that n´1{m2pF q is the threshold for the property Gpn, pq Ñ pF qe2 for most
graphs F . In view of Theorem 2 we restrict our discussion below to two colours and
to strictly balanced and nearly bipartite graphs F . In particular, owing to (3) we have
m2pF q ą 1 and exclude all forests (some forests exhibit a slightly different behaviour in
this context see [15, Theorem 8.1] for details).

Theorem 3 (Rödl & Ruciński (special case)). For all strictly balanced and nearly bipartite
graphs F , the function p̂ “ p̂pnq “ n´1{m2pF q is the threshold for the property Gpn, pq Ñ pF qe2.
In fact, there exist constants C1 ě C0 ą 0 such that

lim
nÑ8

PpGpn, pq Ñ pF qe2q “

$

&

%

0, if p ď C0n
´1{m2pF q,

1, if p ě C1n
´1{m2pF q.

�

We will strengthen Theorem 3 and show that these thresholds are sharp. For that we will
appeal to Friedgut’s criterion for coarse thresholds which will be introduced in Section 2.1.
Then we present a recent structural result on independent sets in hypergraphs which plays
a crucial rôle in our proof. In Section 2.3 we introduce two somewhat technical probabilistic
lemmas needed for the proof of Theorem 2. Section 2.4 establishes the connection between
independent sets in hypergraphs and colourings of the edges of the random graph without
monochromatic copies of the given graph F considered in our setting.

2.1. Friedgut’s criterion for coarse thresholds. The following characterisation of
coarse thresholds appeared in [7, Theorem 2.4].

Theorem 4. Let A be a monotone graph property with a coarse threshold. Then there
exist p “ ppnq, constants 1

3 ą α ą 0, ε ą 0, τ ą 0, and a graph B satisfying
(i ) α ă PpGpn, pq P Aq ă 1´ 3α and
(ii ) PpB Ď Gpn, pqq ą τ

such that for every graph property G with a.a.s. Gpn, pq P G there exist infinitely many
n P N and for each such n a graph Z P G on n vertices such that the following holds.

(1) PpZ Y hpBq P Aq ą 1´ α , where h P ΨB,n is chosen uniformly at random,
(2) PpZ YGpn, εpq P Aq ă 1´ 2α,

where the random graph Gpn, εpq and Z have the same vertex set. �

Note that the Pp¨q in (i ) (and (ii )), in (1), and in (2) concern different probability
spaces. While in (i ) and (ii ) it concerns the random graph Gpn, pq we consider h chosen
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uniformly at random in (1) and the random graph Gpn, εpq in (2). Below we reformulate
Theorem 4 suited for our application.

Corollary 5. Let F be a strictly balanced and nearly bipartite graph. Assume that the
property GÑ pF qe2 does not have a sharp threshold. Then there exists a function ppnq “
cpnqn´1{m2pF q with C0 ă cpnq ă C1 for some C0, C1 ą 0, there are constants 1

3 ą α ą 0
and ε ą 0, and there is a graph B with B Û pF qe2 such that for infinitely many n P N and
for every family of graphs G on n vertices with a.a.s. Gpn, pq P G there exists a Z P G such
that the following hold

(1) PpZ Y hpBq Ñ pF qe2q ą 1´ α, with h P ΨB,n chosen uniformly at random,
(2) PpZ YGpn, εpq Ñ pF qe2q ă 1´ 2α.

Corollary 5 is just a reformulation of Theorem 4 in our context. We give the details
below.

Proof of Corollary 5. Note that conclusions (1) and (2) of Corollary 5 are identical to (1)
and (2) of Theorem 4 for the monotone graph property A “ tG : G Ñ pF qe2u. Owing to
Theorem 3 we infer that because of (i ) in Theorem 4 the probability ppnq must satisfy
ppnq “ cpnqn´1{m2pF q where C0 ă cpnq ă C1 for constants C0, C1 given by Theorem 3. It is
only left to show that B Û pF qe2 is a consequence of (ii ) of Theorem 4.

Recall that it was shown in [18, Theorem 6] that if B Ñ pF qe2 thenmpBq “
epBq
vpBq

ą m2pF q.
Thus a standard application of Markov’s inequality yields PpH Ď Gpn, pqq “ op1q for
every H with H Ñ pF qe2 and p “ Θpn´1{m2pF qq. Consequently the graph B provided by
Theorem 4 must satisfy B Û pF qe2, due to (ii ) of Theorem 4. �

2.2. Hypergraph containers. We shall also use a recent result concerning independent
sets in hypergraphs, which was obtained independently by Saxton and Thomason [20] and
Balogh, Morris, and Samotij [1]. Here we will use the version from [20].

Let H be an `-uniform hypergraph on m “ |V pHq| vertices. For a subset σ Ă V pHq we
define its degree by

dpσq “ |te P EpHq : σ Ď eu| .

For a vertex v P V and an integer j with 2 ď j ď ` we consider the maximum degree over
all j-element sets σ containing v

dpjqpvq “ maxtdpσq : v P σ Ă V pHq and |σ| “ ju .

We denote by d “ `|EpHq|{m ą 0 the average degree of H and, following the notation
of [20], for τ ą 0 and j “ 2, . . . , ` we set

δj “
1

τ j´1md

ÿ

vPV pHq

dpjqpvq
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and

δpH, τq “ 2p
`
2q´1

ÿ̀

j“2
2´p

j´1
2 qδj .

We write ℘pXq for the power set of X and denote by ℘spXq “ ℘pXq ˆ ¨ ¨ ¨ ˆ ℘pXq the
s-fold cross product of ℘pXq.

Theorem 6 (Saxton & Thomason). Let H be an `-uniform hypergraph on the vertex set rms
and let 0 ă ε ă 1

2 . Suppose that for τ ą 0 we have δpH, τq ď ε{12`! and τ ď 1{144`!2`.
Then there exist a constant c “ cp`q and a collection J Ă ℘prmsq such that the following
holds

(a ) for every independent set I in H there exists T “ pT1, . . . , Tsq P ℘
spIq with |Ti| ď

cτm, s ď c logp1{εq and there exists a J “ JpT q P J only depending on T such
that I Ď JpT q P J ,

(b ) epHrJsq ď εepHq for all J P J and
(c ) log |J | ď cτ logp1{τq logp1{εqm. �

We will apply Theorem 6 to an auxiliary hypergraph described in the following section.

2.3. Main probabilistic lemmas. The hypergraph H to which we will apply Theorem 6
depends on the graph Z P G which will be provided by Friedgut’s criterion (Corollary 5)
applied for the strictly balanced, nearly bipartite graph F . For the verification of the
assumptions of Theorem 6 we will restrict the family G containing Z. Recall that G
can be chosen to be any graph property which is satisfied a.a.s. by Gpn, pq for every p
with p “ Θpn´1{m2pF qq. In what follows we discuss the restrictions for the family G (see
Lemmas 7 and 8 below) and for that we introduce the required notation.

Let Z and B be two subgraphs of the complete graph Kn. We say z P EpZq focuses on
b P EpBq if there exists a copy of F in Z YB which contains z and b. We set

MpZ,Bq “ tz P EpZq : there is b P EpBq such that z focuses on bu . (4)

The pair pZ,Bq is called interactive if EpZq X EpBq “ ∅, Z Û pF qe2, and B Û pF qe2, but
Z Y B Ñ pF qe2. For a collection Ξ Ă ΨB,n of embeddings of B into Kn the pair pZ,Ξq is
called interactive if pZ, hpBqq is interactive for all h P Ξ. Furthermore, a pair pZ,Ξq is
regular if for all h P Ξ every z P EpZq focuses on at most one b P EphpBqq. We call h P ΨB,n

regular w.r.t. Z if pZ, thuq is regular. The hypergraphs H considered here are defined in
terms of regular pairs pZ,Ξq.

For a pair pZ,Ξq with Z Ď Kn and Ξ Ď ΨB,n we define the hypergraph H “ HpZ,Ξq
with vertex set

V pHq “ EpZq

and edge set
EpHq “ tMpZ, hpBqq : h P Ξu .
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For our presentation it will be useful to consider orderings of the edges of the involved
graphs and “order consistent” embeddings. For that we fix an arbitrary ordering of EpKnq

and an ordering of EpBq. For an interactive and regular pair pZ,Ξq and h P Ξ we say that
z PMpZ, hpBqq “ te1, . . . , e`u with e1 ă e2 ă ¨ ¨ ¨ ă e` has index i if z “ ei. Furthermore,
we call pZ,Ξq and HpZ,Ξq index consistent if for all z P EpZq and all h, h1 P Ξ with
z P MpZ, hpBqq XMpZ, h1pBqq the indices of z in MpZ, hpBqq and in MpZ, h1pBqq are
the same. Let b1 ă ¨ ¨ ¨ ă bepBq be the ordering of the edges of B. Then the profile
of MpZ, hpBqq is the function π : r|MpZ, hpBqq|s Ñ repBqs defined by πpiq “ j if and only
if ei focuses on hpbjq. Since the pair pZ,Ξq is regular, for each edge of H each ei focuses
on at most one hpbjq and, hence, the profile is well defined. We say pZ,Ξq has profile π if
all edges MpZ, hpBqq for h P Ξ have profile π. Note that in this case all sets MpZ, hpBqq
have the same cardinality and |MpZ, hpBqq| is called the length of the profile π.

Having established this notation we now state the following technical lemma which gives
one part of the graph property G for the application of Corollary 5. Moreover, we shall also
apply Theorem 6 which results in useful properties of the hypergraph HpZ,Ξq for Z P G
and some appropriately chosen Ξ Ď ΨB,n.

Lemma 7. For all constants C1 ą C0 ą 0, 1
3 ą α ą 0 and graphs F and B, where F is

strictly balanced, there exist α1, β, γ ą 0 and L P N such that for every p “ cpnqn´1{m2pF q

with C0 ď cpnq ď C1 a.a.s. Z P Gpn, pq satisfies the following. If

PpZ Y hpBq Ñ pF qe2q ą 1´ α

then there exists ΞB,n Ď ΨB,n with |ΞB,n| ě α1n2 and Z Y hpBq Ñ pF qe2 for all h P ΞB,n

such that the hypergraph H “ HpZ,ΞB,nq is index consistent for some profile π of length
` ď L and there is a family C of subsets of V pHq satisfying

(1) log |C| ď epZq1´γ,
(2) |C| ě βepZq for all C P C and
(3) every hitting set A of H contains a C P C, i.e., for every A Ď V pHq with eXA ‰ ∅

for all e P EpHq there exists C P C with C Ď A.

Note that in contrast to the assumptions of Theorem 2 for Lemma 7 it is not required
that the given graph F is nearly bipartite. However, for the proof of Theorem 2 we need
another restriction on the family G (in Corollary 5) which is satisfied a.a.s. by Gpn, pq and
makes use of the near-bipartiteness of F . For a nearly bipartite graph F “ F 1 ` e we
consider those pairs of vertices in Kn which complete a copy of the bipartite subgraph F 1

in a given subgraph of Gpn, pq to a full copy of F in Kn. Hence, for a graph G Ď Kn we
define the basegraph BaseF pGq Ď Kn with edge set

 

tx, yu : DF 1 Ď G such that F 1 ` tx, yu forms a copy of F
(

.

We require that for every relatively dense subgraph G1 of Gpn, pq the basegraph spans
many copies of F itself. More precisely, for a graph G on n vertices and a nearly bipartite
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graph F “ F 1 ` e and λ, η ą 0 we say G has the property T pλ, η, F q if for every subgraph
G1 Ă G with epG1q ě λepGq we have that the basegraph BaseF pG1q contains at least ηnvpF q

copies of F .
Lemma 8 gives the second restriction for the family G for our application of Corollary 5.

Assuming that there is no copy of F in the bigger colour class of Z, Lemma 8 will be
helpful to find a copy of F in the intersection of Z XGpn, εpq with the other colour class.

Lemma 8. For all λ ą 0, C1 ą C0 ą 0 and every strictly balanced and nearly bipartite
graph F there exists η ą 0 such that for C0n

´1{m2pF q ď p ď C1n
´1{m2pF q the random graph

Gpn, pq a.a.s. satisfies T pλ, η, F q.

2.4. Colourings and hitting sets. In this section we establish the connection between
hitting sets of the hypergraph HpZ,Ξq and F -free colourings of Z.

Recall that the definition of an interactive pair pZ,Ξq says that for every embedding
h P Ξ Ď ΨB,n the graphs Z and hpBq are edge disjoint and Z Û pF qe2 and B Û pF qe2
but Z Y hpBq Ñ pF qe2. Let b1, . . . , bK be an enumeration of EpBq and fix an F -free
colouring σ : EpBq Ñ tred,blueu. We copy this colouring for every h P Ξ by setting
σh : EphpBqq Ñ tred,blueu with σhphpbiqq “ σpbiq for all i “ 1, . . . , K. Furthermore, let ϕ
be an arbitrary F -free colouring of Z.

Since Z Y hpBq Ñ pF qe2, the joint colouring of Z Y hpBq given by ϕ and σh yields a
monochromatic copy of F and this copy must contain edges of both graphs, of Z and
of hpBq. Thus each edge MpZ, hpBqq of the hypergraph HpZ,Ξq contains an e P EpZq

which focuses on some hpbq with b P EpBq, where we have ϕpeq “ σhphpbqq “ σpbq. We say
such an edge e P EpZq (resp. vertex e P V pHq) is activated by ϕ, σ, and h. We define the
set of activated vertices by

Aσϕ “ AσϕpZ,Ξq “
ď

hPΞ
te P EpZq : e is activated by σ, ϕ and hu Ď V pHq . (5)

Note that by definition for an interactive pair pZ,Ξq every edge MpZ, hpBqq of HpZ,Ξq
contains an activated vertex and, hence, the set of activated vertices Aσϕ is a hitting set
of HpZ,Ξq. In what follows we will use different colourings ϕ of Z but we will always
restrict to the same colouring σ of B.

Suppose that in addition we have a fixed ordering of EpZq and EpBq “ tb1, . . . , bKu.
Further suppose that the interactive pair pZ,Ξq is also index consistent with profile π of
length `. In particular, the hypergraph HpZ,Ξq is `-uniform.

It also follows from the definitions that for z P Aσϕ X Aσϕ1 for two colourings ϕ and ϕ1 we
have ϕpzq “ ϕ1pzq. In fact, for z P Aσϕ there exists an h P Ξ such that z is activated by σ, ϕ
and h. Let i be the index of z in MpZ, hpBqq, then z focuses on hpbπpiqq and, therefore,
ϕpzq “ σpbπpiqq. Repeating the same argument for ϕ1, we obtain from index consistency
that ϕ1pzq “ σpbπpiqq “ ϕpzq. We summarise these observations in the following fact.
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Fact 9. Let pZ,Ξq be an interactive, regular and index consistent pair with profile π and
let σ be an F -free colouring of EpBq and ϕ be an F -free colouring of EpZq. Then
(A1) AσϕpZ,Ξq is a hitting set of HpZ,Ξq and
(A2) for all F -free colourings ϕ1 of EpZq and for all z P Aσϕ XAσϕ1 we have ϕpzq “ ϕ1pzq.

Now we are prepared to give the proof of the main theorem based on the lemmas and
theorems of this section.

§3. Proof of the main theorem

The starting point of the proof is Friedgut’s criterion (see Corollary 5) applied to the
contradictory assumption, that the Ramsey property GÑ pF qe2 for a given strictly balanced
and nearly bipartite graph F has a coarse threshold. For that we define a family of graphs G
having “useful” properties and Lemma 7 and Lemma 8 show that a.a.s. Gpn, pq displays
these properties. Then Friedgut’s criterion asserts for infinitely many n P N the existence
of an n-vertex graph Z P G, a graph B (called booster), constants 1

3 ą α ą 0, ε ą 0
and a family of embeddings Ψ1

B,n Ď ΨB,n with Z Y hpBq Ñ pF qe2 for all h P Ψ1
B,n and

|Ψ1
B,n| ě p1 ´ αq|ΨB,n|, but PpZ Y Gpn, εpq Ñ pF qe2q ă 1 ´ 2α. The goal is to find a

contradiction to the last fact by showing PpZ YGpn, εpq Ñ pF qe2q “ 1´ op1q.
Let Φ be the set of all F -free colourings of Z. We have to show that for any ϕ P Φ

the probability to extend ϕ to an F -free colouring of Z YGpn, εpq is very small. We are
able to show that this probability is of order expp´Ωppn2qq. Now we would like to use a
union bound for all ϕ P Φ. However, we have only little control over |Φ| and the trivial
upper bound 2Θppn2q is too large to combine it with the bound from above expp´Ωppn2qq

to obtain for PpZ YGpn, εpq Û pF qe2q a bound of order op1q by the union bound.
Instead we shall find a partition of Φ into 2oppn2q classes such that two colourings from

the same partition class always agree on a large subset of Z. These subsets are called
cores. Then we will show that the colouring of ϕ restricted to the associated core implies
that ϕ is only with probability at most expp´Ωppn2qq extendible to an F -free colouring
of Z YGpn, εpq. This allows us to use a union bound over all partition classes to get the
desired upper bound on PpZ YGpn, εpq Û pF qe2q of order op1q.

For the definition of the cores we will appeal to the hypergraph H “ HpZ,Ξq which
was defined in Section 2.3. Recall that V pHq “ epZq and hyperedges of H correspond to
embeddings of B in Kn, which are given by a carefully chosen subset Ξ Ď Ψ1B,n. In fact, we
shall select Ξ Ď Ψ1B,n in such a way that we can apply the structural result on independent
sets of hypergraphs by Saxton and Thomason [20] to H (see Lemma 7). In fact, the cores
then correspond to the complements of the almost independent sets from J given by the
Saxton-Thomason theorem (Theorem 6). This yields a small family C of subsets of V pHq,
that means of size 2oppn2q, such that the elements C P C are not too small and every hitting
set of H contains at least one element from C.
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We then associate every F -free colouring ϕ of Z with a hitting set Aσϕ of H (for some
F -free colouring σ of B, see part (A1) of Fact 9) and thus we can associate to each such
colouring ϕ a core C P C contained in Aσϕ. This allows us to define the desired partition of
the set of colourings Φ using the “small” family of cores C. Finally, we use the union bound
to estimate the probability that there is an F -free colouring of Z that can be extended to an
F -free colouring of ZYGpn, εpq by op1q, which contradicts PpZYGpn, εpq Ñ pF qe2q ă 1´2α.
Below we give the details of this proof.

Proof of Theorem 2. Let F “ F 1 ` ta1, a2u be a strictly balanced, nearly bipartite graph
with F 1 being bipartite and assume for a contradiction that the property GÑ pF qe2 does
not have a sharp threshold.

We apply Corollary 5 and obtain a function ppnq “ cpnqn´1{m2pF q with C0 ă cpnq ă C1

for some C1 ą C0 ą 0, constants 1
3 ą α ą 0, ε ą 0 and a graph B with B Û pF qe2.

For these parameters we apply Lemma 7 and obtain constants α1, β, γ ą 0 and L P N.
Set λ “ β{2 and apply Lemma 8, which yields η ą 0. Then let Gn be the family of
graphs G on n vertices that satisfy the conclusions of Lemma 7 and Lemma 8 for the chosen
parameters and 1

4pn
2 ď epGq ď pn2. Since these properties hold a.a.s. in Gpn, pq, it follows

from Corollary 5, that there are infinitely many n P N for which there is some Z P Gn
satisfying

(R1) PpZ Y hpBq Ñ pF qe2q ą 1´ α, with h P ΨB,n chosen uniformly at random,
(R2) PpZ YGpn, εpq Ñ pF qe2q ă 1´ 2α

as well as by Lemma 8

(T) Z has the property T pλ, η, F q

and

(Z) 1
4pn

2 ď epZq ď pn2.

Owing to Z P Gn and (R1) we can use Lemma 7 to find some ΞB,n Ď ΨB,n of size at
least α1n2 with ZYhpBq Ñ pF qe2 for all h P ΞB,n such that the hypergraph H “ HpZ,ΞB,nq
is index consistent with a profile π of length ` ď L and such that there is a family C of
subsets of V pHq with

(C1) log |C| ď epZq1´γ,
(C2) |C| ě βepZq for all C P C and
(C3) every hitting set A of H contains a set C P C.

Our proof is by contradiction and we shall establish such a contradiction to the asser-
tion (R2).

Let Φ be the set of all F -free edge colourings of EpZq and pick an arbitrary F -free
colouring σ of B. We want to split Φ into “few” classes. For this we use the correspondence
between any colouring ϕ P Φ and the hitting set Aσϕ “ AσϕpZ,ΞB,nq of H given by part (A1)
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of Fact 9. Moreover, for C P C we define

ΦC “ tϕ P Φ: C Ď Aσϕu .

Then Φ “
Ť

CPC ΦC (not necessarily disjoint) since by (C3) for every ϕ P Φ the hitting
set Aσϕ contains some C P C and hence ϕ P ΦC .

Part (A2) of Fact 9 asserts that ϕpzq “ ϕ1pzq for all z P AσϕXAσϕ1 and colourings ϕ, ϕ1 P Φ.
In other words, all colourings in ΦC agree on C and, hence, there exists a monochromatic
subset RC Ď C, say coloured red, of size at least |C|{2 ě βepZq{2 “ λepZq (see (C2) and
the choice of λ). For the desired contradiction we add Gpn, εpq to Z. We have to show that

PpZ YGpn, εpq Û pF qe2q “ op1q .

For this purpose we find for all F -free colourings ϕ of Z an upper bound for the probability
that ϕ is extendible to an F -free colouring of ZYGpn, εpq. For ϕ we use only the colouring
on the associated core C Ď Aσϕ, instead of the colouring on all edges of Z. In this way we
can deal with all embeddings ϕ P ΦC at once since they coincide on C.

Since the red colour class RC contains at least λepZq edges it follows from property (T),
that there are at least ηnvpF q copies of F in the basegraph BaseF pRCq of RC w.r.t. F . In
an F -free colouring of Z YGpn, εpq all edges in

UC “ Gpn, εpq X BaseF pRCq

have to be coloured blue since every edge in BaseF pRCq completes a red copy of F 1 in RC

to a copy of F . Consequently, ϕ cannot be extended to an F -free colouring of Z YGpn, εpq
if UC spans a copy of F . However, since BaseF pRCq contains ΩpnvpF qq copies of F and
p “ Ωpn´1{m2pF qq it follows from Janson’s inequality [13] (see also [14]) that it is very
unlikely that UC is F -free. In fact, a standard application of Janson’s inequality asserts
that there exists some γ1 “ γ1pε, η, C0, C1, F q such that

PpF Ę Gpn, εpq X BaseF pRCqq “ PpF Ę UCq ď exp
´

´γ1n
2´ 1

m2pF q

¯

. (6)

We then deduce the desired contradiction to (R2) by

PpZ YGpn, εpq Û pF qe2q ď |C| ¨max
CPC

PpDϕ P ΦC : ϕ is extendible to UCq
(C1)
ď exp

`

epZq1´γ
˘

¨max
CPC

PpF Ę UCq

(Z)
ď exp

`

ppn2
q
1´γ˘

¨max
CPC

PpF Ę UCq

(6)
ď exp

´

pC1n
2´ 1

m2pF q q
1´γ

¯

¨ exp
´

´γ1n
2´ 1

m2pF q

¯

ă α ,

for sufficiently large n, since γ ą 0 and C1, γ, and γ1 are constants independent of n. This
concludes the proof of Theorem 2. �
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§4. Proof of Lemma 7

The key tool to prove Lemma 7 is the container theorem (see Section 2.2). We shall
apply Theorem 6 to the hypergraph HpZ,ΞB,nq. In order to satisfy the assumptions of
Theorem 6 we may enforce some properties on the typical graph Z and the family of
embeddings ΞB,n. Firstly in Section 4.1 we will formulate some properties on Z that hold
a.a.s. for Gpn, pq and which will turn out to be useful for locating a suitable family of
embeddings ΞB,n Ď ΨB,n (see Section 4.2). In Section 4.3 we finally check that for those
choices the assumptions of Theorem 6 are satisfied by the hypergraph HpZ,ΞB,nq.

4.1. Some typical properties of Gpn, pq. Corollary 5 yields a family of embeddings
of B into Kn. We restrict ourselves to regular embeddings with foresight to the later parts
of the proof. Actually we want that for every edge e P EpZq and every embedding h there
is at most one b P EpBq such that e focuses on hpbq. In addition there should be exactly
one copy of F that contains e and hpbq if e focuses on hpbq. There are three ways such that
this fails.

Definition 10. Let F , B, Z be graphs with Z Ď Kn. An embedding h P ΨB,n is bad (with
respect to F and Z) if one of the following holds
(B1) either there is a copy F1 of F in Z Y hpBq that contains at least one edge of

EpZqr EphpBqq and at least two edges of EphpBqq,
(B2) or there are distinct copies F1 and F2 of F in Z Y hpBq and edges e, f1 ‰ f2 with

e P EpZqrEphpBqq and e P EpF1qXEpF2q, f1, f2 P EphpBqq such that f1 P EpF1q

and f2 P EpF2q

(B3) or there are distinct copies F1 and F2 of F in Z Y hpBq and edges e, f with
e P EpZqrEphpBqq and e P EpF1q XEpF2q, f P EphpBqq and f P EpF1q XEpF2q.

Note that (B3) would be a special case of (B2) if we did not require f1 ‰ f2 there.
However, for the later discussion it is better to distinguish these cases, and the idea
of excluding embeddings h because of (B3) will be used in the proof of Lemma 7 (see
Lemma 20).

Fact 11. For F , B and Z let ΞB,n Ď ΨB,n be a family of embeddings such that proper-
ties (B1) and (B2) fail for every h P ΞB,n. Then clearly the pair pZ,ΞB,nq is regular.

We shall show that for the random graph Z “ Gpn, pq only a few embeddings h P ΨB,n

are bad (see (Z5) in Definition 12 and Lemma 13 below), which enables us to focus on
regular pairs pZ,ΞB,nq. Moreover, we shall restrict to typical graphs Z, which render a few
more somewhat technical properties such as containing roughly the expected number of
some special subgraphs. We discuss those properties below.

Let F´ be the family of spanning subgraphs of F obtained by removing some edge and
for a graph G we denote by F´pGq the copies of the members of F´ in G. Furthermore, for
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an edge e P EpGq let F´pG, eq be those copies in F´pGq that contain e. For e1, e2 P
`

V pGq
2

˘

let PpG, e1, e2q be the set of pairs pF1, F2q of two edge disjoint subgraphs of G such that
‚ F1 and F2 are copies of (possibly different) spanning subgraphs of F , each of which
obtained from F by removing two edges,

‚ the intersection V pF1qXV pF2q “ tx1, x2, . . . , xsu contains at least two vertices, and
‚ F1 ` tx1, x2u ` e1 and F2 ` tx1, x2u ` e2 are isomorphic to F .

For s ě 2 let PspG, e1, e2q Ď PpG, e1, e2q be the set of pairs as in PpG, e1, e2q such that F1

and F2 intersect in exactly s vertices. Note that for i “ 1, 2 by definition ei ‰ tx1, x2u

and ei is not required to be an edge of G.
These concepts lead to the following definition of “good” graphs Z, where we impose that

the sizes of the introduced families defined above are close to the respective expectation
in Gpn, pq. Then Lemma 13 states that a.a.s. Gpn, pq is indeed good for the right choice of
parameters.

Definition 12. For graphs F and B and constants D ą 0, ζ ą 0, δ ą 0 and p P p0, 1q we
consider the set of graphs GB,F,n,ppD, ζ, δq on n vertices that is given by Z P GB,F,n,ppD, ζ, δq
if and only if
(Z1) 1

4pn
2 ď epZq ď pn2,

(Z2) |F´pZq| ď Dn2,
(Z3) |F´pZ, eq| ď D

p
for all e P EpZq,

(Z4) |PpZ, e1, e2q| ď
D
pnδ

for all but at most Dpn2

nδ
pairs of distinct edges e1, e2 P EpZq

and
(Z5) |th P ΨB,n : h is bad w.r.t. F and Zu| ď |ΨB,n|

nζ
.

The following Lemma shows that a.a.s. Gpn, pq P GB,F,n,ppD, ζ, δq for D sufficiently large
and ζ and δ sufficiently small (in fact, our choice of δ will imply pnδ Ñ 0).

Lemma 13. For every strictly balanced graph F , for every graph B, and for all constants
C1 ě C0 ą 0 there are constants D ą 0, ζ ą 0, and δ with 0 ă δ ď min

 1
m2pF q

, 1´ 1
m2pF q

(

such that for C0n
´1{m2pF q ď p ď C1n

´1{m2pF q a.a.s. Gpn, pq P GB,F,n,ppD, ζ, δq.

We will split the proof into two parts: First we consider (Z1)-(Z4) which deals with
subgraphs of Z (Lemma 14), and then we deal with the bad embeddings considered in (Z5)
(Lemma 16).

Lemma 14. For constants C1 ě C0 ą 0, a strictly balanced graph F , and p and n

with C0n
´1{m2pF q ď p ď C1n

´1{m2pF q the following holds. There exist constants D ą 0
and δ with 0 ă δ ă min

 1
m2pF q

, 1 ´ 1
m2pF q

(

such that a.a.s. Gpn, pq satisfies the proper-
ties (Z1), (Z2), (Z3), and (Z4) with the parameters p, D, and δ and for the graph F .

For the proof of Lemma 14 we note that property (Z1) follows directly from the
concentration of the binomial distribution and (Z2) follows from (Z1) and (Z3). The
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proof of (Z3) will make use of Spencer’s extension lemma (Theorem 15 stated below).
Finally, (Z4) follows from a standard second moment argument. Below we introduce the
necessary notation for the statement of Theorem 15.

For a graph H and an ordered proper subset R “ px1, . . . , xrq of V pHq the pair pR,Hq
is called rooted graph with roots R. For an induced subgraph H 1 “ HrSs of H with
tx1, . . . , xru Ĺ S we say pR,H 1q is a rooted subgraph of pR,Hq. We define the density of a
rooted graph pR,Hq by

denspR,Hq “ epHq ´ epHrRsq

vpHq ´ |R|
.

Let V pHq r tx1, . . . , xru “ ty1, . . . , yνu for some ν ě 1. For a graph G with some
marked vertices px11, . . . , x1rq an ordered tuple py11, . . . , y1νq is called an pR,Hq-extension of
px11, , . . . , x

1
rq if

‚ the y1i are distinct from each other and from the x1j,
‚ tx1i, y

1
ju P EpGq whenever txi, yju P EpHq and

‚ ty1i, y
1
ju P EpGq whenever tyi, yju P EpHq.

The number of pR,Hq-extensions py11, . . . , y1νq is denoted by Npx11, . . . , x
1
rq. Finally, we

define madpR,Hq as the maximal average degree of a rooted graph pR,Hq by

madpR,Hq “ maxtdenspR,H 1
q : pR,H 1

q is rooted subgraph of pR,Hqu .

Theorem 15 ([24, Theorem 3]). Let pR,Hq be an arbitrary rooted graph and let ε ą 0.
Then there exist t such that if p ě n´1{madpR,Hqplog nq1{t then a.a.s. in Gpn, pq

p1´ εqErNpx1qs ă Npx1q ă p1` εqErNpx1qs

for all x1 “ px11, . . . , x
1
rq chosen from rns. �

Proof of Lemma 14. (Z1) This follows from an application of Chernoff’s inequality.
(Z2) As already mentioned this property follows from (Z1) and (Z3). However, here is a

standard direct proof based on the subgraph containment threshold in random graphs.
For F´ P F´ let X be the random variable that counts the number of copies of F´

contained in Gpn, pq. Using that p “ Θpn´1{m2pF qq combined with the balancedness of F
yields

ErXs “ Θ
`

nvpF qpepF q´1˘
“ Θpn2

q .

Moreover, by the definition of the 2-density the expected number of copies of every
non-trivial subgraph of F´ Ă F is of order Ωppn2q and tends to infinity for n Ñ 8.
Consequently, X converges to ErXs in probability (see, e.g., [15, Remark 3.7]) and we have
PpX ě 2ErXsq Ñ 0 for nÑ 8. Summing over all F´ P F´ yields the claim.

(Z3) Consider a graph F´ P F´ and remove some edge tx1, x2u from F´ and call the
resulting graph F´2. For e P

`

rns
2

˘

let Xe be the random variable that counts the number
of copies of F´2 that build a copy of F´ by adding e and let X be the random variable
that counts the number of copies of F´2 contained in Gpn, pq.
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Now we can use Spencer’s extension lemma (Theorem 15). We consider the rooted
graph ppx1, x2q, F´q. Let F̂ be an induced subgraph of F´ such that ppx1, x2q, F̂ q is a
rooted subgraph of ppx1, x2q, F´q which maximizes the density densppx1, x2q, F̂ q. Since the
graph F Ľ F´ Ě F̂ is strictly balanced we have

m2pF q ą d2pF̂ q “
epF̂ q ´ 1
vpF̂ q ´ 2

“ densppx1, x2q, F̂ q “ madppx1, x2q, F´q .

Consequently, Theorem 15 applied with ε “ 1 implies a.a.s.

Npx11, x
1
2q ď 2EpXeq “ OppepF q´2nvpF q´2

q

for every x11 ‰ x12 P rns. Owing to p “ Θpn´1{m2pF qq and the (strict) balancedness of F we
have that pepF qnvpF q “ Θppn2q and, consequently, for sufficiently large D the claim follows
by summing over all choices of F´ P F´ and tx1, x2u P EpF´q.

(Z4) We show that this property holds a.a.s. for

δ “
1
6 min

!

1
m2pF q

, 1´ 1
m2pF q

)

(7)

and some D ą 0 independent of n. In the proof below we distinguish several cases. In the
first case we only look at configurations from P2pGpn, pq, e1, e2q. Afterwards we consider
configurations from PspGpn, pq, e1, e2q for s ą 2.

Case 1: s “ 2. For two pairs e1 ‰ e2 P
`

rns
2

˘

let Xe1,e2 be the random variable given
by |P2pGpn, pq, e1, e2q| and denote by v1 and u1 the elements of e1 and by v2 and u2 the
elements of e2. We want to use Chebyshev’s Inequality to obtain the claimed bound
for most pairs. Consequently, we estimate the expectation and variance of Xe1,e2 . We
distinguish between the cases e1 X e2 “ ∅ and |e1 X e2| “ 1.

First let e1 X e2 “ ∅. Since C0n
´1{m2pF q ď p ď C1n

´1{m2pF q and F is strictly balanced
we have nvpF qpepF q “ Θppn2q and

nvpF q´2pepF q´1
ď C

epF q´1
1 . (8)

For F0 Ď F with vpF0q ě 2 it follows from F being strictly balanced that there is some
d ą 0 only depending on F and C0 such that

nvpF0qpepF0q ě dpn2 . (9)

The expectation of Xe1,e2 is

ErXe1,e2s ď epF q4n2vpF q´6p2epF q´4 (8)
ď epF q4C

2epF q´2
1 n´2p´2 (10)

and ErXe1,e2s Ñ 0 for n tending to infinity since p “ Θpn´1{m2pF qq and m2pF q ą 1.
Now we estimate the variance of Xe1,e2 . We will show

VarpXe1,e2q ď
c

n2p2

ˆ

1` 1
np2

˙
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for some constant c ą 0 depending only on F , C0 and C1. For this purpose let pFa, Fbq and
pFc, Fdq be two different pairs of graphs that contribute to the number |P2pGpn, pq, e1, e2q|

with

V pFaq X V pFbq “ tx1, x2u, V pFcq X V pFdq “ ty1, y2u

and

V pFaq X V pFcq Ě tu1, v1u “ e1, V pFbq X V pFdq Ě tu2, v2u “ e2 .

Recall that e1 and e2 are by definition of P2pGpn, pq, e1, e2q not necessarily contained in
Gpn, pq and they are not contained as edges in any of the subgraphs Fa, Fb, Fc, and Fd
(where s “ 2 is used). We denote by P2

e1,e2 the family of isomorphism types of possible
pairs ppFa, Fbq, pFc, Fdqq such that the conditions above are satisfied. If it is clear from the
context we will sometimes drop the subscripts e1 and e2 to further ease the notation.

For Q “ ppFa, Fbq, pFc, Fdqq P P2
e1,e2 let SQ be the set of subsets of rns of size vpFa Y

Fb Y Fc Y Fdq that contain u1, v1, u2, and v2. For S P SQ let 1S be the indicator random
variable for the event “there exists a copy of Q in Gpn, pq on the vertex set S”. Then

VarpXe1,e2q ď ErXe1,e2s `
ÿ

QPP2
e1,e2

ÿ

SPSQ

Pp1S “ 1q (11)

For the estimation of the term
ř

QPP2
ř

SPSQ Pp1S “ 1q we use the following notation.
For α, β P ta, b, c, du and ˝ P tY,Xu we set

vα˝β “ vpFα ˝ Fβq and eα˝β “ epFα ˝ Fβq ,

where Fα X Fβ and Fα Y Fβ denotes the normal union and intersection of two graphs.
Moreover, we can extend this to longer expressions of unions and intersections, like vpαXβqYγ ,
and we will make use of this short hand notation in the calculations below. We also set

vαrβ “ vα ´ vαXβ and eαrβ “ eα ´ eαXβ . (12)

Note that eαrβ denotes the number of edges exclusively contained in Fα, which does not
necessarily coincide with epFα´ V pFβqq. We estimate

ř

QPP2
ř

SPSQ Pp1S “ 1q by counting
the number of choices for the vertices of the desired configuration and determine the number
of needed edges. Recalling that every Q P P2

e1,e2 corresponds to ppFa, Fbq, pFc, Fdqq we count
those by first choosing pFa, Fbq, then Fc and then Fd and deal with the vertices and edges
that are counted several times by looking at the intersections between the different copies
of F .
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ÿ

QPP2

ÿ

SPSQ

Pp1S “ 1q

ď
ÿ

QPP2

p4vpF qq! ¨ n2vpF q´6p2epF q´4
¨ nvcrpaYbqpecrpaYbq ¨ nvdrpaYbYcqpedrpaYbYcq (13)

(12)
“ p4vpF qq!

ÿ

QPP2

n4vpF q´6p4epF q´8
¨ n´vcXpaYbqp´ecXpaYbq ¨ n´vdXpaYbYcqp´edXpaYbYcq

“ p4vpF qq!
ÿ

QPP2

n2p´4
pnvpF q´2pepF q´1

q
4n´vcXpaYbqp´ecXpaYbqn´vdXpaYbYcqp´edXpaYbYcq

(8)
ď C

ÿ

QPP2

n2p´4
¨ n´vcXpaYbqp´ecXpaYbq ¨ n´vdXpaYbYcqp´edXpaYbYcq , (14)

where C ą 0 is a constant depending only on F and C1. For the estimation of

fQpn, pq :“ n2p´4
¨ n´vcXpaYbqp´ecXpaYbq ¨ n´vpaYbYcqXdp´epaYbYcqXd (15)

we distinguish several cases depending on the structure of Q.
First we consider terms in (14) with tx1, x2u Ď V pFcq. Since tx1, x2, v1, u1u Ď V pFaXFcq

and Fa X Fc Ď Fa Ă F we know F0 :“ pFa X Fcq ` tx1, x2u ` e1 Ď F . Therefore,

1
nvaXcpeaXc

“
p2

nvpF0qpepF0q

(9)
ď

p2

dpn2 “
p

dn2 .

Similarly, pFb X Fcq ` tx1, x2u Ď F and ppFa Y Fb Y Fcq X Fdq ` ty1, y2u ` e2 Ď F . The
same argument yields

1
nvbXcpebXc

ď
1
dn2 and 1

nvpaYbYcqXdpepaYbYcqXd
ď

p

dn2 .

Applying these bounds and the facts that vaXbXc ď 2 and eaXbXc “ 0 to (15) yields

fQpn, pq “ n2p´4
¨ n´vaXcp´eaXc ¨ n´vbXcp´ebXc ¨ nvaXbXc ¨ n´vpaYbYcqXdp´epaYbYcqXd

ď n2p´4
¨
p

dn2 ¨
1
dn2 ¨ n

2
¨
p

dn2 “
1

d3p2n2 . (16)

By symmetry we obtain the same estimate in the case that tx1, x2u Ď V pFdq and in the
remaining case we may assume

(I) |V pFcq X tx1, x2u| ď 1 and |V pFdq X tx1, x2u| ď 1.
Next we consider those terms in (14) with (I) and vbXc ě 2. By (I) we have vaXbXc ď 1.

We proceed in a similar way as above. This time we use that pFa X Fcq ` e1 Ď F and
similarly that ppFa Y Fb Y Fcq X Fdq ` e2 ` ty1, y2u Ď F and, therefore,

1
nvaXcpeaXc

(9)
ď

1
dn2 and 1

nvpaYbYcqXdpepaYbYcqXd

(9)
ď

p

dn2 .
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Moreover, since we assume vbXc ě 2 we can apply (9) with F0 “ Fb X Fc

1
nvbXcpebXc

ď
1

dpn2 .

Combining these bounds with (15) and vaXbXc ď 1 and eaXbXc “ 0 yields

fQpn, pq ď n2p´4
¨ n´vaXcp´eaXc ¨ n´vbXcp´ebXc ¨ n ¨ n´vpaYbYcqXdp´epaYbYcqXd

ď n2p´4
¨

1
dn2 ¨

1
dpn2 ¨ n ¨

p

dn2 “
1

d3p4n3 . (17)

Next we consider the subcase of (I) when

vbXc “ 1 and V pFcq X tx1, x2u “ ∅ .

Then we have ebXc “ 0 and vaXbXc “ 0. Since pFa X Fcq ` e1 Ď F and ppFa Y Fb Y Fcq X

Fdq ` e2 ` ty1, y2u Ď F we get

1
nvaXcpeaXc

(9)
ď

1
dn2 and 1

nvpaYbYcqXdpepaYbYcqXd

(9)
ď

p

dn2 .

Consequently, in this case we have

fQpn, pq “ n2p´4
¨ n´vaXc´vbXc`vaXbXc´vpaYbYcqXdp´eaXc´ebXc`eaXbXc´epaYbYcqXd

ď n2p´4
¨ n´vaXcp´eaXc ¨ n´1

¨ n´vpaYbYcqXdp´epaYbYcqXd

ď n2p´4
¨

1
dn2 ¨ n

´1
¨
p

dn2 “
1

d2p3n3 . (18)

For the last remaining cases we consider summands in (14) with (I) and
(A ) either vbXc “ 1 and V pFcq X tx1, x2u ‰ ∅ (and, hence, V pFbq X V pFcq Ĺ tx1, x2u),
(B ) or vbXc “ 0.

In both cases together with (I) we get

vbXpaYcqXd “ |tx1, x2u X V pFdq| ď 1 . (19)

Based on (19) we treat both subcases in same way. We consider ppFaYFbq XFcq ` e1 Ď F ,
pFb X Fdq ` e2 Ď F and ppFa Y Fcq X Fdq ` ty1, y2u Ď F and get

1
nvpaYbqXcpepaYbqXc

(9)
ď

1
dn2 ,

1
nvbXdpebXd

(9)
ď

1
dn2 and 1

nvpaYcqXdpepaYcqXd

(9)
ď

1
dn2 ,

which leads to

fQpn, pq “ n2p´4
¨ n´vpaYbqXc´vbXd´vpaYcqXd`vbXpaYcqXd ¨ p´epaYbqXc´ebXd´epaYcqXd`ebXpaYcqXd

(19)
ď n2p´4

¨ n´vpaYbqXcp´epaYbqXc ¨ n´vbXdp´ebXd ¨ n´vpaYcqXdp´epaYcqXd ¨ n

ď n2p´4
¨

ˆ

1
dn2

˙3

¨ n “
1

d3p4n3 . (20)
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Using the bounds from (16), (17), (18) and (20) and pnÑ 8 for nÑ 8 we summarize
that there are constants c1, c ą 0 only depending on F,C0 and C1 such that for sufficiently
large n

fQpn, pq ď c1
ˆ

1
p2n2 `

1
p4n3

˙

.

Since the sum in (14) has finitely many summands, together with (11) and (14) it follows
that

VarpXe1,e2q ď
c

p2n2

ˆ

1` 1
p2n

˙

. (21)

Recall that we want to show that there are at most Dpn2n´δ pairs of edges e1, e2

in Gpn, pq so that Xe1,e2 ą Dp´1n´δ for some constant D ą 0 independent of n and δ ą 0
chosen in (7). For this purpose we use Markov’s Inequality and Chebyshev’s Inequality.
Let t “ p´1n´δ, then Chebyshev’s Inequality tells us

PpXe1,e2 ě ErXe1,e2s ` tq ď
VarpXe1,e2q

t2
.

Let X be the number of pairs pe1, e2q P
`

EpZq
2

˘

with Xe1,e2 ě 2p´1n´δ and e1 X e2 “ ∅.
Since ErXe1,e2s ď t we have

ErXs ď

ˆ

pn2

2

˙

PpXe1,e2 ě ErXe1,e2s ` tq (22)

ď
p2n4

2 ¨
cp2n2δ

p2n2

ˆ

1` 1
np2

˙

“
1
2cp

2n2`2δ
ˆ

1` 1
np2

˙

. (23)

We distinguish the cases n´1p´2 ą 1 and n´1p´2 ď 1. For n´1p´2 ą 1 we have for
sufficiently large n

ErXs ď
cp2n2`2δ

np2 ď cn1`2δ
ď pn2´2δ,

where the last inequality follows from our choice of δ ă 1
4p1´

1
m2pF q

q.
For the case n´1p´2 ď 1 we have for sufficiently large n

ErXs ď cp2n2`2δ
ď pn2´2δ

where the last inequality follows by the choice of δ ă 1
4m2pF q

. Consequently, ErXs ď pn2´2δ

and by Markov’s Inequality

PpX ą pn2´δ
q ď

ErXs

pn2´δ ď n´δ

thus a.a.s. X ď pn2´δ. For sufficiently large n this finishes the case e1 X e2 “ ∅.
It remains the case when |e1 X e2| “ 1. Now let e1, e2 P

`

rns
2

˘

with |e1 X e2| “ 1. We
repeat essentially the same calculations of the first case e1 X e2 “ ∅ with the following
differences.
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‚ For the expectation of Xe1,e2 in (10) we get

ErXe1,e2s “ O

ˆ

1
np2

˙

.

‚ For the variance we will show

VarpXe1,e2q ď
c

np2

ˆ

1` 1
np2

˙

.

In the calculation of the variance there is essentially one difference compared to the
case e1 X e2 “ ∅. In (13) we get

vaYb ´ |tx1, x2u Y tv1, u1u Y tv2, u2u| ď 2vpF q ´ 5

instead of 2vpF q ´ 6 which leads to an additional n factor. This n factor carries
over to

fQpn, pq :“ n3p´4
¨ n´vcXpaYbqp´ecXpaYbq ¨ n´vpaYbYcqXdp´epaYbYcqXd (24)

in (15).
For the following case distinction we repeat in the case tx1, x2u Ď V pFcq the

calculation, but keep the additional n factor. Consequently we get in (16)

fQpn, pq “ O

ˆ

1
p2n

˙

.

Similarly we get with the additional n factor in (17)

fQpn, pq “ O

ˆ

1
p4n2

˙

.

The case vbXc “ 1 and V pFcq X tx1, x2u “ ∅ disappears since Fb and Fc intersect
at least in e1 X e2 Ď tx1, x2u. For the same reason the case vbXc “ 0 disappears.
For the last remaining case in (20) we get again the same bound with an additional
factor of n

fQpn, pq “ O

ˆ

1
p4n2

˙

.

Consequently

VarpXe1,e2q ď
c

np2

ˆ

1` 1
np2

˙

.

‚ The expectation still satisfies ErXe1,e2s ď t for the same choice of t “ p´1n´δ. This
follows since ErXe1,e2s “ Op 1

np2 q, t “ 1
pnδ

and δ ă 1´ 1
m2pF q

.
‚ Let X 1 be the number of pairs pe1, e2q P

`

EpZq
2

˘

satisfying Xe1,e2 ě 2p´1n´δ and
|e1 X e2| “ 1. We know by the condition |e1 X e2| “ 1 that X 1 ď 2p2n3, thus we get
with X 1 instead of X in (22) a factor of 2p2n3 instead of

`

pn2

2

˘

which results in a
factor of n´1 compared to the first case. Consequently the n´1 factor cancels with
the n factor above which leads to the same order of magnitude in (23). Then the
rest of the proof is the same as in the first case.
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Setting D1 ě 2 sufficiently large such that 2p´1n´δ ď D1pn2

nδ
then yields

|P2pZ, e1, e2q| ď
D1

pnδ
(25)

for all but at most D1pn2

nδ
pairs of edges e1, e2 P EpZq.

Case 2: s ą 2. We consider configurations from PspGpn, pq, e1, e2q with s ą 2. For two
pairs e1 ‰ e2 P

`

rns
2

˘

let Ye1,e2 be the random variable given by |PspGpn, pq, e1, e2q|. Here
it is sufficient to use Markov’s inequality instead of Chebyshev’s inequality which will
allow us to avoid the calculation of the variance, but we still have to distinguish the cases
e1 X e2 “ ∅ and |e1 X e2| “ 1.

For the first case let e1 X e2 “ ∅. The expectation of Ye1,e2 is

ErYe1,e2s ď epF q4n2vpF q´4´svpF qsp2epF q´4 (8)
ď epF q4vpF qsC

2epF q´2
1 n´sp´2

ď C 1n´3p´2

with C 1 “ epF q4vpF qsC
2epF q´2
1 . We use Markov’s inequality and get

P

ˆ

Ye1,e2 ě
1
pnδ

˙

ď C 1n´3p´2
¨ pnδ “ C 1p´1n´3`δ .

Let Y be the number of pairs e1, e2 P EpZq with e1 X e2 “ ∅ and Ye1,e2 ě p´1n´δ. Then

ErY s ď

ˆ

pn2

2

˙

C 1n´3`δp´1
ď
C 1pn1`δ

2

and a second use of Markov’s inequality yields

PpY ě pn2´δ
q ď

C 1pn1`δ

2pn2´δ “ op1q

where the last inequality follows from our choice δ ă 1{2 and for sufficiently large n.
We repeat the same proof for the case |e1 X e2| “ 1 with the following differences.
‚ ErYe1,e2s ď C2n´2p´2 for some C2 ą 0.
‚ P

´

Ye1,e2 ě
1
pnδ

¯

ď C2p´1n´2`δ.
‚ ErY s ď 2p2n3C2p´1n´2`δ ď 2C2pn1`δ.
‚ PpY ě pn2´δq ď 2C2pn1`δ

pn2´δ “ op1q.
Consequently for all s ě 3 we have |PspGpn, pq, e1, e2q| ď p´1n´δ for all but at most pn2´δ

pairs of edges e1, e2 P EpZq. Together with (25) this concludes the proof of (Z4) and
finishes the proof of Lemma 14. �

The next lemma concerns property (Z5), which bounds the number of bad embeddings
as defined in Definition 10.

Lemma 16. For all graphs B and all strictly balanced graphs F , for all C1 ě C0 ą 0 and
for C0n

´1{m2pF q ď p ď C1n
´1{m2pF q there exists ζ ą 0 such that a.a.s. Gpn, pq satisfies (Z5).
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Proof of Lemma 16. We shall show that there exist a ξ ą 0 such that for any given h P ΨB,n

we have for sufficiently large n

Pph is bad w.r.t. F and Gpn, pqq ď n´ξ .

Then the lemma follows from Markov’s inequality with ζ “ ξ{2.
Let h P ΨB,n be fixed. We first consider the case that h is bad w.r.t. F and Gpn, pq

because of (B1). Since F is strictly balanced, for all proper subgraphs F0 Ĺ F with
epF0q ě 2 we have

pepF0qnvpF0q “ pn2
¨ pepF0q´1nvpF0q´2

ě pn2
¨ C

epF0q´1
0 n

´ 1
m2pF q

pepF0q´1q`vpF0q´2

“ pn2
¨ C

epF0q´1
0 n

pepF0q´1q
`

vpF0q´2
epF0q´1´

1
m2pF q

˘

“ pn2
¨ C

epF0q´1
0 n

pepF0q´1q
`

1
d2pF0q

´ 1
d2pF q

˘

ě pn2
¨ nξ

1 (26)

for some ξ1 ą 0. We bound the probability for h being bad because of case (B1) by
estimating the number of configurations leading to this event. In this case F0 stands for
the part of F that is contained in hpBq and hence consists of at least two edges. Using
again nvpF q´2pepF q´1 ď C

epF q´1
1 yields

Pph is bad by (B1)q ď
ÿ

F0ĹF,epF0qě2
vpBqvpF0qnvpF q´vpF0qpepF q´epF0q

(26)
ď

ÿ

F0ĹF,epF0qě2
vpBqvpF0qC

epF q´1
1 n´ξ

1

ď n´ξ1

for some ξ1 ą 0 and sufficiently large n.
When we address the case (B2) we can assume that h is not bad because of case (B1).

Hence, it suffices to consider copies F1 and F2 of F each intersecting hpBq in precisely one
edge and F0 :“ F1XF2 having no edge in hpBq. Again we will use nvpF q´2pepF q´1 ď C

epF q´1
1

and that nvpF0qpepF0q ě dpn2 for F0 Ĺ F with epF0q ě 1 for some d ą 0 only depending
on F and C0 (see (9)). Note that two fixed edges of hpBq determine at least three vertices
of F1 Y F2.

Pph is bad by (B2) and not by (B1)q ď
ÿ

F0ĹF
epF0qě1

vpBq4n2vpF q´vpF0q´3p2epF q´epF0q´2

ď
ÿ

F0

vpBq4C
2epF q´2
1

n

pepF0qnvpF0q

ď
ÿ

F0

vpBq4C
2epF q´2
1

1
dpn

ď
ÿ

F0

vpBq4C
2epF q´3
1 d´1n

´p1´ 1
m2pF q

q
ď n´ξ2

for some ξ2 ą 0 since m2pF q ą 1.
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For case (B3) we assume that h is not bad because of case (B1) or case (B2). Again
we bound the probability by the expected number of options to obtain a configuration as
in (B3). In this case F0 stands for the intersection of two different copies of F and includes
at least two edges, e and f from (B3), where f is also contained in hpBq.

Pph is bad by (B3) and not by (B1) or (B2)q ď
ÿ

F0ĹF
epF0qě2

vpBq2n2vpF q´vpF0q´2p2epF q´epF0q´1

ď
ÿ

F0

vpBq2C
2epF q´2
1 ¨ pn2

¨
1

pepF0qnvpF0q

(26)
ď n´ξ3

for some ξ3 ą 0 and, hence, Pph is badq ď n´ξ for any 0 ă ξ ă mintξ1, ξ2, ξ3u and
sufficiently large n. �

4.2. Restricting embeddings of B. In this section we focus on restricting the family
ΨB,n of all embeddings B in Kn to a suitable subset ΞB,n so that we can apply Theorem 6
for the proof of Lemma 7. In particular, our choice of ΞB,n will ensure conditions on the
maximum degree and maximum pair degree of H “ HpZ,ΞB,nq. For the control of the pair
degree of H the following definition will be useful.

Definition 17. For a pair of edges e1, e2 P EpZq and an embedding h P ΞB,n Ď ΨB,n we
write e1 «h e2 if e1 and e2 both focus on hpBq. Moreover, if e1 and e2 focus jointly on
only one edge of hpBq, then we write e1 „h e2. We denote by cΞB,npe1, e2q the number
of h P ΞB,n such that e1 «h e2.

In the next definition and lemma we define the properties of the desired family of
embeddings.

Definition 18. Let F , B be graphs and let α ą 0. We call a family ΞB,n Ď ΨB,n of
embeddings of B into Kn α-normal if the following conditions are satisfied.
(N1) |ΞB,n| ě αn2 and
(N2) |V phpBqq X V ph1pBqq| ď 1 for all h ‰ h1 P ΞB,n.

Lemma 19. Let F and B be graphs. For all constants 1
3 ą α ą 0, D ą 0, 1 ą ζ ą 0,

mint 1
m2pF q

, 1 ´ 1
m2pF q

u ą δ ą 0, and C1 ą C0 ą 0 there exists n0 P N such that for all
n ě n0 and C0n

´1{m2pF q ď p ď C1n
´1{m2pF q the following holds. If Z P GB,F,n,ppD, ζ, δq and

PpZ Y hpBq Ñ pF qe2q ą 1´ α

where h P ΨB,n chosen uniformly at random then there exists Ξ0
B,n Ď ΨB,n such that

( Ξ1 ) Ξ0
B,n is rα-normal for rα “ rαpBq “ 1

13vpBq4vpBq! ą 0,
( Ξ2 ) Z Y hpBq Ñ pF qe2 for all h P Ξ0

B,n,
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( Ξ3 ) for all pairs te1, e2u P
`

EpZq
2

˘

we have cΞ0
B,n
pe1, e2q ď

1
pnδ{2

,
( Ξ4 ) h is not bad w.r.t. F and Z for all h P Ξ0

B,n (see Definition 10), and
( Ξ5 ) for all h P Ξ0

B,n we have EphpBqq X EpZq “ ∅.

A family Ξ0
B,n is prα,Zq-normal if it satisfies conditions ( Ξ1 ), ( Ξ2 ), ( Ξ3 ), ( Ξ4 ), and ( Ξ5 )

for a given Z P GB,F,n,ppD, ζ, δq.

Proof of Lemma 19. Given F , B and the constants as above we set

rα “
1

13vpBq4vpBq! .

Let Z P GB,F,n,ppD, ζ, δq and suppose PpZ Y hpBq Ñ pF qe2q ą 1´ α.
For the construction of Ξ0

B,n we start with the family ΨB,n and remove embeddings
that do not satisfy property (Ξ2 ), embeddings that do not satisfy property (Ξ4 ) and
embeddings that will later lead to problems for ( Ξ3 ). After that we choose at random 2rαn2

embeddings which will induce property ( Ξ3 ) and show that after deleting the embeddings
that intersect in more than one vertex we keep Crαn2 of them with C ą 1. Afterwards
we remove embeddings not satisfying (Ξ5 ). Since epZq “ Θppn2q we keep at least
pCrα ´ op1qqn2 ą rαn2 embeddings h, which finishes the proof.

Since PpZ Y hpBq Ñ pF qe2q ą 1´ α ą 2{3 there is a family Ψ1
B,n Ď ΨB,n of embeddings

of B of size 2
3 |ΨB,n| such that Z Y hpBq Ñ pF qe2 for all h P Ψ1

B,n, i.e., Ψ1
B,n satisfies ( Ξ2 ).

Moreover, since Z P GB,F,n,ppD, ζ, δq there are at most n´ζ |ΨB,n| embeddings that are
bad w.r.t. F and Z. We remove those bad embeddings from Ψ1

B,n. In this way for
sufficiently large n we obtain a family Ψ2

B,n Ď Ψ1
B,n of size at least 1

2 |ΨB,n| that contains
no bad embedding and, therefore, Ψ2

B,n satisfies ( Ξ4 ).
Since Z P GB,F,n,ppD, ζ, δq there are at most Dpn2

nδ
pairs of distinct edges e1, e2 P EpZq such

that |PpZ, e1, e2q| ą
D
pnδ

. For those pairs of edges e1, e2 we delete all embeddings h P Ψ2
B,n

with e1 „h e2. Since |F´pZ, eq| ď D
p
for all e P EpZq for Z P GB,F,n,ppD, ζ, δq we delete at

most

Dpn2

nδ
¨
D

p
vpF q2nvpBq´2

“
D2vpF q2nvpBq

nδ
“ op|ΨB,n|q

embeddings from Ψ2
B,n. So we get for sufficiently large n a family Ψ3

B,n Ď Ψ2
B,n of size at

least 1
3 |ΨB,n| such that for all distinct e1, e2 P EpZq we have

(F1) if e1 „h e2 for some h P Ψ3
B,n, then |PpZ, e1, e2q| ď

D
pnδ

.

Next we will select a subset Ψ4
B,n Ď Ψ3

B,n, which allows us to bound cΨ4
B,n
pe1, e2q for every

pair of edges of Z. For this purpose for

ε “ 2rα “ 2
13vpBq4vpBq!
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we select with repetition εn2 times an element of Ψ3
B,n, where we assume for simplicity

that εn2 is an integer. For every selection S we define a family of embeddings ΨS Ď Ψ3
B,n

by taking all embeddings that were chosen at least once in S. We will show that the
random selection S a.a.s. satisfies that cΨSpe1, e2q ď

1
pnδ{2

for all e1, e2 P EpZq and that
with probability less than 1

2 there are more than ε
2n

2 embeddings that share at least two
vertices with some other embedding in the selection.

First we show that a.a.s. cΨSpe1, e2q ď
1

pnδ{2
for all e1, e2 P EpZq. Since there are no bad

embeddings w.r.t. F and Z in Ψ3
B,n we know that if e focuses on hpBq then e focuses on

exactly one edge in EphpBqq (see property (B1) in Definition 10). Hence, for e1 «h e2 we
may consider the following two cases. Either e1 „h e2 or e1 and e2 focus on two different
edges in hpBq.

For the first case we shall use (F1) and |Ψ3
B,n| ě

1
3

`

n
vpBq

˘

to bound the probability that
e1 „hi e2. In fact,

Ppe1 „hi e2q ď
D

pnδ
¨ vpF q2 ¨

vpBq2 ¨ pn´ 2q ¨ ¨ ¨ pn´ vpBq ` 1q
|Ψ3

B,n|

ď
3DvpF q2vpBq2vpBq!

pn2`δ .

In the second case we shall use (Z3) of Definition 12 for the upper bound on |F´pZ, eq|.
This and the fact that two edges fix at least three vertices yield

Ppe1 «hi e2 and not e1 „hi e2q ď
D2

p2 ¨ vpF q
4
¨
vpBq3 ¨ pn´ 3q ¨ ¨ ¨ pn´ vpBq ` 1q

|Ψ3
B,n|

ď
3D2vpF q4vpBq3vpBq!

p2n3 .

Consequently

Ppe1 «hi e2q ď 3DvpF q2vpBq2vpBq!
ˆ

1
pn2`δ `

DvpF q2vpBq

p2n3

˙

. (27)

Since δ ă 1´ 1
m2pF q

we infer nδ ă C0n
1´ 1

m2pF q ă pn for sufficiently large n. Therefore the
right hand side of (27) is of order Θp 1

pn2`δ q and we can bound

Ppe1 «hi e2q ď
D0

pn2`δ .

where D0 “ 4DvpF q2vpBq2vpBq!. For the expected number of connections we get

ErcΨSpe1, e2qs ď

εn2
ÿ

i“1
Ppe1 «hi e2q ď

εD0

pnδ
.

Consequently, Chernoff’s Inequality yields

P

ˆ

cΨSpe1, e2q ě
3
2 ¨

εD0

pnδ

˙

ď exp
ˆ

´
1
12 ¨

εD0

pnδ

˙

.
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Note that 1
pnδ
ą nβ for some β ą 0 since δ ă 1

m2pF q
, hence, we can apply the union bound

for all pairs of edges e1, e2 P EpZq and get that a.a.s.

cΨSpe1, e2q ď
3εD0

2pnδ ď
1

pnδ{2
.

Finally we verify that most pairs of selected embeddings intersect in at most one vertex.
In fact, for i “ 1, . . . , εn2 let 1hi be the indicator random variable for the event “there is
some j P rεn2sr tiu such that vphipBq X hjpBqq ě 2” and set Y “

řεn2

i“1 1hi . Then

Er1h1s ď pεn
2
´ 1q

`

vpBq
2

˘

¨ vpBqpvpBq ´ 1q ¨ pn´ 2q ¨ ¨ ¨ pn´ vpBq ` 1q
|Ψ3

B,n|
ď D1ε

for some constant D1 “ D1pBq with 0 ă D1 ă
3
2vpBq

4vpBq! independent of ε. Hence,

ErY s ď εn2D1ε “ D1ε
2n2

and by Markov’s Inequality we get

PpY ą 2ErY sq ď 1
2 ,

so there is a selection S of εn2 embeddings such that Y ď 2D1ε
2n2 and cΨSpe1, e2q ď

1
pnδ{2

for all pairs of edges. For this choice of S we can simply delete all those embeddings hi
that intersect with some other embedding hj in at least two vertices. We call the remaining
family Ψ4

B,n. Using D1 ď 3vpBq4vpBq!{2 and the definition ε “ 2rα “ 2
13vpBq4vpBq! yields

|Ψ4
B,n| ě εn2

´ 2D1ε
2n2

ě Crαn2

for some C ą 1 and, hence, Ψ4
B,n satisfies ( Ξ1 )–( Ξ4 ).

To achieve ( Ξ5 ) we make use of epZq ď pn2 (see (Z1) of Definition 12). Since no two
embeddings from Ψ4

B,n share an edge, we may remove all embeddings from Ψ4
B,n which

share at least one edge with Z and this results in the desired family Ξ0
B,n Ď Ψ4

B,n of size at
least rαn2, which finishes the proof. �

For Lemma 7 we have to show that there is a family of embeddings ΞB,n such that the
hypergraph HpZ,ΞB,nq is index consistent with a profile π. Lemma 20 will ensure this.

Lemma 20. For all constants 1 ą rα ą 0 and D ą 0, for all graphs F and B with F being
strictly balanced and with EpBq “ te1, . . . , eKu, there exist α1 ą 0 and L P N such that
every graph Z on n vertices with a fixed ordering of its edge set and the property

(Z) |F´pZq| ď Dn2

satisfies the following.
For every prα,Zq-normal family Ξ0

B,n there is an pα1, Zq-normal family ΞB,n Ă Ξ0
B,n and

there is a profile π of length at most L such that pZ,ΞB,nq is index consistent with profile π.
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Below we consider Z and B to be fixed graphs and for a simpler notation we set

Mh “MpZ, hpBqq

for h P ΨB,n (see (4) for the definition of MpZ, hpBqq). Note that it is rather unlikely
that Mh and Mh1 of H are equal for distinct h, h1 P Ξ0

B,n and, hence, Lemma 20 follows
by a simple averaging argument. We will use Lemma 20 for Z P GB,F,n,ppD, ζ, δq which
satisfies (Z) by (Z2) from Definition 12.

Proof of Lemma 20. Let 1 ą rα ą 0, D ą 0, F and B be given. We define

L “ pepF q ´ 1q 2
rα
vpF q2D and α1 “

rα

2LpKLqL .

Given some Z satisfying (Z) and an prα,Zq-normal family Ξ0
B,n Ď ΨB,n we will restrict Ξ0

B,n

to the promised set ΞB,n with the desired properties.
Note that the family ΞB,n Ď Ξ0

B,n inherits the properties ( Ξ2 )–( Ξ5 ) from the prα,Zq-
normality of Ξ0

B,n since they are independent of rα. Consequently, to establish that ΞB,n

is indeed pα1, Zq-normal, we only have to focus on (Ξ1 ). Since again property (N2) of
Definition 18 is inherited from the normality of Ξ0

B,n, it suffices to show that |ΞB,n| ě α1n2.
Because of (Z) we know that Z contains at most Dn2 copies of some F 1 Ď F with

epF 1q “ epF q ´ 1. Also due to Ξ0
B,n being prα,Zq-normal (see ( Ξ4 )) there are no bad

embeddings w.r.t. F and Z in Ξ0
B,n and thus by Fact 11 the pair pZ,Ξ0

B,nq is regular. In
particular, for every h P Ξ0

B,n we have that every edge e P Mh focuses on exactly one
b P EphpBqq. Furthermore, since every h P Ξ0

B,n also does not satisfy (B3) of Definition 10,
each e PMh focuses on one b P EphpBqq in only one way, i.e. there is only one copy of F in
Z Y hpBq containing b and e. Therefore, `h “ |Mh| is a multiple of epF q ´ 1 and each Mh

gives rise to `h{pepF q ´ 1q copies of graphs F 1 in Z, where each such F 1 is obtained from F

by removing some edge. Clearly, each such pepF q ´ 1q-element subset of Mh might be
completed to a copy of F in at most

`

vpF q
2

˘

´ epF q ` 1 ă vpF q2 ways.
Applying the upper bound on the number of copies of F with one edge removed from (Z)

yields
ÿ

hPΞ0
B,n

`h
epF q ´ 1 ď vpF q2 ¨Dn2 .

So there are at most rαn2{2 embeddings h P Ξ0
B,n with `h ą L, and, consequently, at least

rαn2{2 embeddings h P Ξ0
B,n with `h ď L. Since there are at most K` different profiles of

length `, there must be a profile π of length ` ď L and a subset Ξ1B,n Ď Ξ0
B,n with

|Ξ1B,n| ě
1

LKL
¨
rα

2n
2

such that pZ,Ξ1B,nq has profile π.
Next we apply another averaging argument to achieve index consistency. We consider

some partition Z1 Ÿ . . . Ÿ Z` of Z into ` classes chosen uniformly at random. Recall that
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we ordered the edges of Z. For h P Ξ1B,n consider Mh “ pz1, . . . , z`q with the inherited
ordering of Z. We include h in ΞB,n if zi P Zi for all i “ 1, . . . , `. Clearly Pph P ΞB,nq “ 1

``

and Er|ΞB,n|s “
|Ξ1B,n|
``

, which means there is an ΞB,n Ď Ξ1B,n with

|ΞB,n| ě |Ξ1B,n|{`` ě
1
LL

rαn2

2LKL
“ α1n2 .

Now let h, h1 P ΞB,n and let z P Mh XMh1 . Since z P Zj for some partition class Zj we
know that z has index j in both Mh and Mh1 . Therefore pZ,ΞB,nq is index consistent which
finishes the proof. �

4.3. Proof of Lemma 7. Finally we prove Lemma 7. The previous lemmas will be utilised
to show that the hypergraph HpZ,Ξq satisfies the conditions of Theorem 6 of Saxton and
Thomason about independent sets in hypergraphs.

Proof of Lemma 7. Let constants C1 ą C0 ą 0, 1
3 ą α ą 0 and graphs F and B with F

being strictly balanced be given.
First we fix all constants used in the proof. For the given graphs F and B and

the given constants C1 and C0 Lemma 13 yields constants D ą 0, ζ ą 0, and δ with
0 ă δ ă min

 1
m2pF q

, 1´ 1
m2pF q

(

. Similarly Lemma 20 applied to F , B, D and

rα “
1

13vpBq4vpBq!

yields α1 and L. Fixing an auxiliary constant

k “

ˆ

L

epF q ´ 1

˙ˆ

vpF q

2

˙

allows us to set

β “
α1

DkvpF q2
and γ “

δ

10L . (28)

We shall show that α1, β, γ, and L defined this way have the desired property. For that
let p “ ppnq “ cpnqn´1{m2pF q for some cpnq satisfying C0 ď cpnq ď C1. We shall show
that Gpn, pq a.a.s. satisfies the property of Lemma 7. Hence, in view of Lemma 13 we
may assume that the graphs Z considered in Lemma 7 are from the set GB,F,n,ppD, ζ, δq.
Moreover, let n be sufficiently large, so that Lemma 19 applied with F , B, α, D, ζ, δ, C1

and C0 holds for n.
Now let Z P GB,F,n,ppD, ζ, δq such that for h P ΨB,n chosen uniformly at random we have

PpZ Y hpBq Ñ pF qe2q ą 1´ α.

Then Lemma 19 yields an prα,Zq-normal family of embeddings Ξ0
B,n Ď ΨB,n, i.e., the

family Ξ0
B,n satisfies properties ( Ξ1 )–( Ξ5 ) of Lemma 19 for the parameters chosen above.
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Since Z P GB,F,n,ppD, ζ, δq it satisfies property (Z2) of Definition 12 and, hence, Z satisfies
in particular assumption (Z) of Lemma 20. Consequently, Lemma 20 yields an pα1, Zq-
normal family ΞB,n Ď Ξ0

B,n and a profile π of length ` ď L such that the pair pZ,ΞB,nq is
index consistent for π.

Next we consider the hypergraph H “ HpZ,ΞB,nq defined by

V pHq “ EpZq and EpHq “ tMpZ, hpBqq : h P ΞB,nu ,

where

MpZ, hpBqq “ tz P EpZq : there is b P EphpBqq such that z focuses on bu .

Clearly, H is an `-uniform hypergraph on m “ epZq vertices. Below we show that H
satisfies the assumptions of Theorem 6 for

ε “ 1
4 and τ “ n´

δ
4p`´1q .

Since Z P GB,F,n,ppD, ζ, δq it displays properties (Z1)–(Z5) of Definition 12. In particular,
the property (Z1) guarantees

1
4pn

2
ď epZq “ m ď pn2

ă n2 . (29)

Now we bound epHq. Since ΞB,n is α1-normal, it follows from (N1) and (N2) of Defini-
tion 18 that α1n2 ď |ΞB,n| ď n2 and, consequently, we have epHq ď n2. On the other hand,
for any hyperedge Mh of size ` there are at most

`

`
epF q´1

˘

different copies of some F 1 Ď F

with epF 1q “ epF q ´ 1 in Mh and each such copy can be extended to F by at most
`

vpF q
2

˘

different boosters since all boosters are edge disjoint. Consequently, Mh could be the
hyperedge for at most

`

`
epF q´1

˘`

vpF q
2

˘

ď k different embeddings h P ΞB,n and, therefore, we
have

α1n2

k
ď epHq ď n2 . (30)

Hence, for the average degree of H we obtain

dpHq “ ` ¨
epHq
vpHq

ě ` ¨
α1n2

k
¨

1
pn2 “

`α1

kp
.

We denote by ∆1pHq “ maxvPV pHq |te P EpHq : e contains vu| the maximum vertex
degree and by ∆2pHq “ max

pv,v1qPpV pHq2 q
|te P EpHq : e contains v and v1u| the maximum

codegree of H and below we will bound ∆1pHq and ∆2pHq.
We start with ∆1pHq. Suppose e PMpZ, hpBqq for some h P ΞB,n. Since ΞB,n contains

no bad embeddings w.r.t. F and Z and EphpBqq X EpZq “ ∅ there exists a unique copy
F´ P F´pZ, eq with e P EpF´q and f P hpBq such that F´`f forms a copy of F . Moreover,
since every two distinct embeddings h, h1 P ΞB,n intersect in at most one vertex the degree
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of e in H is bounded by |F´pZ, eq| ¨
`

vpF q
2

˘

. Consequently, it follows from property (Z3)
given by Z P GB,F,n,ppD, ζ, δq that

∆1pHq ď
D

p
¨

ˆ

vpF q

2

˙

.

For ∆2pHq we have to look at pairs of edges of Z. Two edges e1, e2 P EpZq are both
contained in MpZ, hpBqq if and only if e1 «h e2. By ( Ξ3 ) we know cΞB,npe1, e2q ď

1
pnδ{2

, so

∆2pHq ď
1
pn

δ
2
.

Note that pnδ{2 Ñ 0 for nÑ 8 since δ ď 1
m2pF q

.
In order to verify the assumptions of Theorem 6 we estimate δpH, τq for ε and τ defined

above. Indeed we have

δpH, τq “ 2p
`
2q´1

ÿ̀

j“2
2´p

j´1
2 q

1
τ j´1mdpHq

ÿ

vPV pHq

dpjqpvq

ď 2p
`
2q´1

ÿ̀

j“2
2´p

j´1
2 q

1
τ j´1mdpHq

¨m ¨∆2pHq

ď 2p
`
2q´1

ÿ̀

j“2

1
τ `´1dpHq

¨∆2pHq

ď 2p
`
2q´1

¨ ` ¨ n
δ
4 ¨

kp

`α1
¨

1
pn

δ
2

“ 2p
`
2q´1

¨
k

α1
¨

1
n
δ
4

ď
ε

12`! ,

where the last inequality holds for sufficiently large n.
By Theorem 6 there exist some constant c “ cp`q and a family J Ă ℘pV pHqq satisfy-

ing (a ), (b ) and (c ) from Theorem 6. We define

C “ tC Ă V pHq : C “ V pHqr J for one J P J u .

Below we show that C has the desired properties (1), (2) and (3) of Lemma 7.
(1) follows from (c ) since |C| “ |J | and

log |J | ď cτ logp1{τq logp1{εqm ď m ¨ n´
δ

4p`´1q c logp1{τq logp1{εq ď m1´γ ,

where the last inequality follows for sufficiently large n from

mγ
(29)
ă n2γ (28)

ď n
δ
5` ,

since c “ cp`q and logp1{εq are constants independent of n and logp1{τq ă log n.
(2) follows from (b ). Assume for a contradiction that there is C P C with |C| ă βm and

let J “ V r C P J . Then we count the number of hyperedges of H.
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epHq ď epHrV r Csq ` |C| ¨∆1pHq

ă epHrJsq ` βm ¨ D
p

ˆ

vpF q

2

˙

(29)
ď εepHq ` βD

ˆ

vpF q

2

˙

n2

(30)
ď εepHq ` βDk

α1

ˆ

vpF q

2

˙

epHq

“

ˆ

ε`
βDk

α1

ˆ

vpF q

2

˙˙

epHq

(28)
ă epHq

with a contradiction, so |C| ě βm for all C P C.
(3) For a hitting set A of H consider the independent set I “ V r A. Hence by (a ) of

Theorem 6 there exists J P J such that I Ď J and, therefore, A Ě V r J “ C which is an
element of C. �

§5. Proof of Lemma 8

The proof of Lemma 8 follows the proof in [10, Lemma 2.3] and is based on an application
of the regularity method for subgraphs of sparse random graphs which we introduce first.

Let ε ą 0, p P p0, 1s and H “ pV,Eq be a graph. For X, Y Ă V non-empty and disjoint
let

dH,ppX, Y q “
epX, Y q

p|X||Y |

and we say pX, Y q is pε, pq-regular if

|dH,ppX, Y q ´ dH,ppX
1, Y 1q| ă ε

for all subsets X 1 Ď X and Y 1 Ď Y with |X 1| ě ε|X| and |Y 1| ě ε|Y |. We will use the
sparse regularity lemma in the following form (see, e.g., [16]).

Lemma 21. For all ε ą 0 and t0 there exists an integer T0 such that for every function
p “ ppnq " 1{n a.a.s. G P Gpn, pq has the following property. Every subgraph H “ pV,Eq

of G with |V | “ n vertices admits a partition V “ V1 Ÿ . . . Ÿ Vt satisfying
(i ) t0 ď t ď T0,
(ii ) |V1| ď ¨ ¨ ¨ ď |Vt| ď |V1| ` 1 and
(iii ) all but at most εt2 pairs pVi, Vjq with i ‰ j are pε, pq-regular. �

For a partition P as in the last lemma we call the graph R “ RpP , d, εq with vertex set
V pRq “ tV1, . . . , Vtu and edges

tVi, Vju P EpRq ðñ pVi, Vjq is pε, pq-regular with dH,ppVi, Vjq ě d
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the reduced graph w.r.t. P , d, and ε.
The next lemma is a counting lemma for subgraphs of random graphs from [1, 3, 20].

For the proof of Lemma 8 we only need this (and the following lemma) for fixed bipartite
graphs. However, we state those auxiliary lemmas in its general form.

Lemma 22. For every graph F with vertex set V pF q “ r`s and d ą 0 there exist ε ą 0
and ξ ą 0 such that for every η ą 0 there exists C ą 0 such that for p ą Cn´1{m2pF q a.a.s.
G P Gpn, pq satisfies the following.

Let H “ pV1 Ÿ . . . Ÿ V`, EHq be an `-partite (not necessarily induced) subgraph of G with
vertex classes of size at least ηn and with the property that for every edge ti, ju P EpF q
the pair pVi, Vjq in H is pε, pq-regular with density dH,ppVi, Vjq ě d. Then the number of
partite copies of F in H is at least

ξpepF q
ź̀

i“1
|Vi| ,

where a partite copy is a graph homomorphism ϕ : F Ñ H with ϕpiq P Vi. �

The next lemma bounds the number of edges between large sets of vertices of Gpn, pq
as well as the number of copies of some bipartite graphs F ‹ with two vertices from a
prescribed set W .

Lemma 23. Let F ‹ be a graph with two vertices a1, a2 P V pF
‹q with a1a2 R EpF

‹q. For
all plog nq{n ď p “ ppnq ă 1 the random graph G P Gpn, pq satisfies a.a.s. the following
properties.

(A ) For all disjoint subsets U , W Ď V pGq with |U |, |W | ě n{ log log n we have

p|U |2{3 ă eGpUq ă p|U |2 and p|U ||W |{2 ă eGpU,W q ă 2p|U ||W | .

(B ) For all subsets W Ă V pGq there exists a set of edges E0 Ď EpGq with |E0| “ n log n
such that there are at most 2pepF ‹qnvpF ‹q´2|W |2 many copies ϕpF ‹q of F ‹ in the
graph pV pGq, EpGqr E0q with V pϕpF ‹qq XW “ tϕpa1q, ϕpa2qu.

The proof of (A ) follows directly from Chernoff’s inequality and the proof of (B ) is
based on the so-called deletion method in form of the following lemma.

Lemma 24. [15, Lemma 2.51] Let Γ be a set, S Ď rΓss and 0 ă p ă 1. Then for
every k ą 0 with probability at least 1´ expp´ k

2sq there exists a set E0 Ă Γp of size k such
that ΓprE0 contains at most 2µ sets from S where µ is the expected number of sets from S

contained in Γp. �

Proof of Lemma 23. Since part (A ) follows from Chernoff’s inequality, we will only focus
on property (B ), which is a direct consequence of Lemma 24.
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In fact, let V be a set of n vertices, W Ă V and a graph F ‹ with two fixed vertices
a1, a2 P V pF

‹q not forming an edge in F ‹. We use Lemma 24 with Γ “
`

V
2

˘

, s “ epF ‹q,

S “
 

copies ϕpF ‹q of F ‹ in pV,Γq with V pϕpF ‹qq XW “ tϕpa1q, ϕpa2qu
(

,

p, and k “ n log n. In particular, Γp “ Gpn, pq in our setup here. With probability at least
1´ exp

`

´
n logn
2epF ‹q

˘

there exists a set E0 Ď EpGpn, pqq of size at most n log n such that there
are at most

2µ ď 2pepF ‹qnvpF ‹q´2
|W |2

many copies ϕpF ‹q with V pϕpF ‹qq XW “ tϕpa1q, ϕpa2qu in pV,EpGpn, pqq r E0q. The
lemma then follows from the union bound applied for all 2n possible choices W Ă V . �

Finally, we can prove Lemma 8. Let F be a strictly balanced and nearly bipartite
graph. Let G be a typical graph (with respect to the properties of Lemmas 21–23)
in Gpn, pq and let H be a subgraph of G with |EpHq| ě λ|EpGq|. First we apply the sparse
regularity lemma (Lemma 21) to H. Since H is relatively dense in Gpn, pq we infer that the
corresponding reduced graph R (for suitable chosen parameters) has many, i.e. Ωp|V pRq|2q
edges. So we can find many large complete bipartite graphs in R. We conclude that there
is some partition class Vi P V pRq contained in many complete bipartite graphs.

We analyse the graph G0 “ BaseHpF qrVis on the vertex set Vi with edges being those
pairs in

`

Vi
2

˘

that complete a copy of the bipartite graph F 1 Ď F 1 ` e “ F in H to a
copy of F . We say that G0 is p%, dq-dense if for all W Ď V pG0q with |W | ě %|Vi| we have
eG0pW q ě d

`

|W |
2

˘

. It is well known that sufficiently large p%, dq-dense graphs contain any
fixed subgraph (see e.g. [19]).

Lemma 25. For all d ą 0 and F there exist %, c0 ą 0 and n0 P N such that every
p%, dq-dense graph G0 with vpG0q “ n ě n0 contains at least c0n

vpF q copies of F . �

To show the p%, dq-denseness of G0 we consider W Ď Vi with |W | ě %|Vi|. Then by
Lemma 22 we will find many copies of F 1 in H where the missing edge has to be in

`

W
2

˘

.
Together with an upper bound for the number of graphs that are combinations of two
different copies of F 1 ((B ) of Lemma 23) we ensure that not too many copies of F 1 are
completed to F by the same pair in W . Thus there are many edges in BaseHpF qrW s
and G0 is p%, dq-dense.

Proof of Lemma 8. Let λ ą 0, C1 ą C0 ą 0 and let F be a strictly balanced nearly
bipartite graph such that F “ F 1 ` ta1, a2u, where F 1 is bipartite with partition classes
A “ ta1, . . . , aau and B “ tb1, . . . , bbu.

The Sparse Counting Lemma (Lemma 22) applied with F 1 and dCL “ λ{4 yields constants
εCL ą 0 and ξCL ą 0. Since we don’t know whether the given constant C0 is at least 1 or
not, we find it convenient to fix an auxiliary constant

C 10 “ mint1, CepF q´1
0 u . (31)
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Furthermore, we set

d “
pλ{6q2pa´1qb

¨ ξ2
CL ¨ C

2pepF q´1q
0 ¨ C 10

64 ¨ a2ab2b ¨ pvpF q ` 1qvpF q ¨ C2pepF q´1q
1

. (32)

Next we appeal to Lemma 25. For F and for this choice of d this lemma yields constants
%, c0 ą 0 and n0 P N. Furthermore, set

ε “ min
"

%εCL

4 ,
λ

48

*

and t0 “
48
λ
ab . (33)

Lemma 21 applied with ε and t0 yields T0 P N and Lemma 22 applied with ηCL “ %{p2T0q

yields CCL. Finally, we fix the promised

η “ c0T
´vpF q
0

and let C0n
´1{m2pF q ď p “ ppnq ď C1n

´1{m2pF q. For later reference we note that due to the
balancedness of F we have

pepF qnvpF q ď C
epF q´1
1 pn2 (34)

and owing to the choice of C 10 in (31) we have

pepF1qnvpF1q ě C 10pn
2 (35)

for every subgraph F1 Ď F with epF1q ě 1. Moreover, since we applied Lemma 22 for
F 1 Ĺ F , the strict balancedness of F impliesm2pF q ą m2pF

1q. Consequently, for sufficiently
large n we have

CCLn
´1{m2pF 1q ď C0n

´1{m2pF q ď p .

Since we have to show that Gpn, pq a.a.s. satisfies T pλ, η, F q we can assume that n is
arbitrarily large. Consider any G P Gpn, pq that satisfies the properties of Lemma 21
and Lemma 22, as well as property (A ) and property (B ) of Lemma 23 for all bipartite
graphs F ‹ such that F ‹ is the union of two different copies ϕ1pF

1q and ϕ2pF
1q of F 1 with

tϕ1pa1q, ϕ1pa2qu “ tϕ2pa1q, ϕ2pa2qu. In other words, for the rest of the proof we consider a
fixed graph G to which we can apply the Lemmas 21–23 and we will show that such a G
satisfies T pλ, η, F q. For that let H Ď G with

epHq ě λepGq ą
1
3λpn

2

where the second inequality follows from property (A ) of Lemma 23.
Lemma 21 applied to H yields a partition P of the vertices V “ V1 Ÿ . . . Ÿ Vt with at

least p1´ εq
`

t
2

˘

many pε, pq-regular pairs for some t with t0 ď t ď T0. We assume w.l.o.g.
that t divides n. We infer that there are at least λ

6

`

t
2

˘

regular pairs with edge density at
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least λ
4p since otherwise we could bound the number of edges of H by

epHq ď
λ

6

ˆ

t

2

˙

¨ 2p
´n

t

¯2
`

ˆ

t

2

˙

¨
λ

4p
´n

t

¯2
` ε

ˆ

t

2

˙

¨ 2p
´n

t

¯2
` t ¨ p

´n

t

¯2

ď
1
2pn

2
ˆ

λ

3 `
λ

4 ` 2ε` 2
t

˙

(33)
ď

1
3λpn

2 ,

which would contradict the derived lower bound epHq ą 1
3λpn

2.
Let R “ RpP , dCL, εq be the reduced graph w.r.t. the partition P and relative density

dCL “
λ
4 . In particular R has exactly t ě t0 vertices and at least λ

6

`

t
2

˘

edges. It follows
from the theorem of Kővári, Sós and Turán [17] (see, e.g., [4, Lemma 1]) that there are at
least γta`b´1 copies of the complete bipartite graph Ka´1,b in R where1

γ “ γpF, λq “
1
2

1
pa´ 1qa´1bb

ˆ

λ

6

˙pa´1qb

. (36)

Hence, there is a partition class Va0 of P such that Va0 is contained in at least γta`b´2

copies of Ka´1,b in R where Va0 is always contained in partition class A of Ka´1,b for these
copies.

Our goal is to show that the graph G0 induced by BaseF pHq on Va0 is p%, dq-dense, which
due to our choice of c0 and η above leads to c0pn{tq

vpF q ą ηnvpF q copies of F in G0 (see
Lemma 25). So let W Ď Va0 with |W | ě %|Va0 | and fix some partition W “ W1 ŸW2

with |W1| “ |W2| “ |W |{2 (for simplicity, we may assume that |W | is even). Note that
for any j for which pVa0 , Vjq is pε, pq-regular we still have that pW1, Vjq and pW2, Vjq are
p2ε{%, pq-regular.

We will ensure many copies of F 1 with a1 P W1 and a2 P W2 which force edges in
G0 “ BaseF pHqrVa0s. However, we have to make sure that not too many copies force the
same edge in G0. For this purpose we delete some edges by (B ) of Lemma 23 to restrict
the number of graphs F ‹ that are unions of two different copies of F 1 that force the same
edge in G0.

Let ϕ1pF
1q and ϕ2pF

1q be two copies of F 1 satisfying ϕ1pta1, a2uq “ ϕ2pta1, a2uq and
let F ‹ “ ϕ1pF

1q Y ϕ2pF
1q. We find by (B ) of Lemma 23 at most n log n edges EF ‹ such

that there are at most
2pepF ‹qnvpF ‹q´2

|W |2 (37)

copies of F ‹ in pV pHq, EpHq r EF ‹q with ϕ1pa1q, ϕ1pa2q P W1 Y W2. We repeat this
argument for all possible graphs F ‹ that can be created this way and we denote by F‹

1Strictly speaking, in [17] no such lower bound on the number of copies of complete graphs in dense
large graphs is given. However, the proof from [17] combined with standard convexity arguments gives the
bound stated here and such an argument can be found for example in [4, Lemma 1].
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the family of those graphs. Since there are at most 2pa` 1qa´2pb` 1qb such graphs F ‹, in
total we delete at most

2pa` 1qa´2
pb` 1qbn log n “ oppn2

q

edges of H, i.e., for H 1 “ H ´
Ť

F ‹PF‹ EF ‹ we have

epH 1
q ě p1´ op1qqepHq.

In particular, for sufficiently large n the density and the regularity of the pairs in the
partition P is not affected much and pδ, pq-regular pairs in H are still p2δ, pq-regular in H 1.

Lemma 22 yields many copies of F 1 in H 1. In fact, since m2pF
1q ă m2pF q we get

p ě C0n
´ 1
m2pF q ą CCLn

´ 1
m2pF 1q .

For any copy of Ka´1,b in the reduced graph R that contains Va0 among the a´ 1 classes
of the bipartition of Ka´1,b Lemma 22 applied with εCL ě 4ε{% (see (33)) yields at least

ξCLp
epF q´1

´n

t

¯vpF q´2
|W1||W2| “

1
4ξCLp

epF q´1
´n

t

¯vpF q´2
|W |2

partite copies of F 1 in H 1 with a1 P W1 and a2 P W2. Repeating this for the γta`b´2

different copies of Ka´1,b in R that contain Va0 in the described way, in total we obtain at
least

γtvpF q´2
¨

1
4ξCLp

epF q´1
´n

t

¯vpF q´2
|W |2 “

γξCL

4 ¨ pepF q´1nvpF q´2
|W |2

ě
γξCL

4 ¨ C
epF q´1
0 |W |2 (38)

copies of F 1 in H 1 with a1 P W1 and a2 P W2. For a pair of vertices e P
`

W
2

˘

we define

xe “ |tϕpF
1
q copy of F 1 in H 1 : e “ tϕpa1q, ϕpa2quu| .

By (38) we know that
ÿ

ePpW2 q

xe ě
γξCL

4 ¨ C
epF q´1
0 |W |2 . (39)

Let Wą0 “
 

e P
`

W
2

˘

: xe ‰ 0
(

and N “ |Wą0|. Since this N corresponds to the number
of edges in BaseH 1pF qrW s Ď BaseHpF qrW s we shall show that N ě d

`

|W |
2

˘

. For this
purpose we use (39) and an upper bound for

ř

ePpW2 q
x2
e that follows from (37). In fact,

ÿ

ePpW2 q

x2
e

(37)
ď |F‹

| ¨ 2pepF̂ qnvpF̂ q´2
|W |2 (40)

where F̂ is a graph in F‹ that maximises the value of pepF ‹qnvpF ‹q´2 for F ‹ P F‹. We will
show that pepF̂ qnvpF̂ q´2 is bounded by a constant only depending on C0, C1 and F . In
fact, for F ‹ “ ϕ1pF

1q Yϕ2pF
1q P F‹ let F0 “ ϕ1pF

1q Xϕ2pF
1q and e “ tϕ1pa1q, ϕ1pa2qu. In

particular, F0 ` e Ď F and we have
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pepF
‹qnvpF

‹q´2
“
pepF

‹`eqnvpF
‹`eq

pn2 “

`

pepF qnvpF q
˘2

pepF0`eqnvpF0`eq ¨ pn2

(34)
ď

C
2epF q´2
1 pn2

pepF0`eqnvpF0`eq

(35)
ď

C
2epF q´2
1
C 10

.

Combining (40) with the simple upper bound |F‹| ď pvpF q ` 1qvpF q and the last inequality
yields

ÿ

ePpW2 q

x2
e ď 2pvpF q ` 1qvpF qC

2pepF q´1q
1
C 10

|W |2 . (41)

Finally, we establish the p%, dq-denseness of G0. In fact, from the Cauchy-Schwarz
inequality we know

˜

ÿ

ePpW2 q

xe

¸2

“

˜

ÿ

ePWą0

xe

¸2

ď N ¨
ÿ

ePWą0

x2
e “ N ¨

ÿ

ePpW2 q

x2
e .

and, consequently,

N ě

´

ř

ePpW2 q
xe

¯2

ř

ePpW2 q
x2
e

(39),(41)
ě

´

γξCLC
epF q´1
0 |W |2{4

¯2

2pvpF q ` 1qvpF qC2pepF q´1q
1 |W |2{C 10

ą
γ2ξ2

CLC
2pepF q´1q
0 C 10

16pvpF q ` 1qvpF qC2pepF q´1q
1

¨

ˆ

|W |

2

˙

(32),(36)
ě d ¨

ˆ

|W |

2

˙

.

Recalling that W Ď Va0 with |W | ě %|Va0 | was arbitrary, implies that G0 is p%, dq-dense
which finishes the proof. �

§6. Concluding remarks

6.1. Ramsey properties for Z{nZ. The methods used here can be adjusted to obtain
the sharpness for some cases of Rado’s theorem for two colours in Z{nZ. For van der
Waerden’s theorem such a result appeared in [8] and, in fact, the work presented here
relied on some of those ideas. However, the approach in [8] made use of the fact that the
corresponding extremal problem (known as Szemerédi’s theorem) has density 0, which
limits the approach to so-called density regular systems (see, e.g., [5]). Maybe the simplest
regular, but not density regular, instance of Rado’s theorem is the well known result of
Schur [23], which asserts for finite colourings of Z{nZ the existence of a monochromatic
solution for the equation x` y “ z for sufficiently large n. The threshold for this property
appeared in [12] for two colours and in [2, 11] for an arbitrary number of colours. The
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sharpness for two colours is based on some of the ideas used in [8] and the work here, will
appear in the PhD thesis of the second author [22].

6.2. Ramsey properties of nearly partite hypergraphs. Instead of nearly bipartite
graphs one may consider nearly k-partite k-uniform hypergraphs, i.e., k-uniform hypergraphs
with vertex partition V1 Ÿ . . .ŸVk and the property that at most one hyperedge is contained
in V1 and the remaining hyperedges contain exactly one vertex from each vertex class. Again
one may require additional balancedness assumptions (similar as in Theorem 2). However,
for the proof of a lemma corresponding to Lemma 8 one would need a sparse version of the
so-called weak regularity lemma for hypergraphs and a corresponding embedding/counting
lemma for subhypergraphs of random hypergraphs (see, e.g., [3, Section 5.1]). For the
more relaxed version of nearly partite, which would allow the additional hyperedge to span
across more than one vertex class, one would likely need sparse analogues of the strong
hypergraph regularity method for subhypergraphs of random hypergraphs.

6.3. Ramsey properties for more general graphs and more colours. It would be
very interesting to extend Theorem 2 to more general graphs F . The class of nearly
bipartite graphs contains the triangle K3 and an extension for all cliques would be desirable.
The main obstacle seems to establish a suitable analogue of Lemma 8 for this case.

Another limitation is the restriction to two colours only. The Rödl-Ruciński theorem [19]
applies, up to very few exceptions (see, e.g., [15, Section 8.1]), to arbitrary graphs and
any number of colours r ě 2. However, besides for the case of trees (see [9]), all known
sharpness results address only the two-colour case and extending these results to more
than two colours appears an interesting open problem in the area.

Finally, we mention that due to Friedgut’s criterion the c “ cpnq in Theorem 2 is
bounded by constants, but it may depend on n. It seems plausible, that a strengthening of
Theorem 2 for some constant c independent of n also holds. However, this would likely
require a very different approach to these problems.

Acknowledgement. We are indebted to both referees for their thorough reading of the
manuscript and their constructive and helpful remarks.
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