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Abstract. P. Erdős [On extremal problems of graphs and generalized graphs, Israel Journal
of Mathematics 2 (1964), 183–190] characterised those hypergraphs F that have to appear
in any sufficiently large hypergraph H of positive density. We study related questions for
3-uniform hypergraphs with the additional assumption that H has to be uniformly dense
with respect to vertex sets. In particular, we characterise those hypergraphs F that are
guaranteed to appear in large uniformly dense hypergraphs H of positive density. We also
review the case when the density of the induced subhypergraphs of H may depend on the
proportion of the considered vertex sets.

§1. Introduction

Unless said otherwise, all hypergraphs considered here are 3-uniform. For such a hyper-
graph H “ pV,Eq the set of vertices is denoted by V “ V pHq and we refer to the set of
hyperedges by E “ EpHq. Moreover, we denote by BH Ď V p2q the subset of all two element
subsets of V , that contains all pairs covered by some hyperedge e P E. For a hyperedge
tx, y, zu P E we sometimes simply write xyz P E.

A classical extremal problem introduced by Turán [17] asks to study for a given hypergraph
F its extremal function expn, F q sending each positive integer to the maximum number of
edges that a hypergraph of order n can have without containing F as a subhypergraph. In
particular, one often focuses on the Turán density πpF q of F defined by

πpF q “ lim
nÑ8

expn, F q
`

n
3

˘ .

The problem to determine the Turán densities of all hypergraphs is known to be very hard
and so far it has been solved for a few hypergraphs only. A general result in this area due
to Erdős [1] asserts that a hypergraph F satisfies πpF q “ 0 if and only if it is tripartite in
the sense that there is a partition V pF q “ X Ÿ Y Ÿ Z such that every edge of F contains
precisely one vertex from each of X, Y , and Z.
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Following a suggestion by Erdős and Sós [3] we studied variants of Turán’s problem for
uniformly dense hypergraphs [10–13]. Instead of finding the desired hypergraph F in an
arbitrary “host” hypergraph H of sufficiently large density one assumes in these problems
that there are no “sparse spots” in the edge distribution of H. There are various ways to
make this precise and we refer to [11, Section 4] and [13, Section 2] for a more detailed
discussion. Here we consider two closely related concepts, where the hereditary density
condition pertains to large sets of vertices (see Sections 1.1 and 1.2 below).

1.1. Uniformly dense hypergraphs with positive density. The first concept we dis-
cuss here continues our work from [10–13]. Roughly speaking, this notion guarantees
density d for all hypergraphs induced on sufficiently large vertex sets of linear size.

Definition 1.1. For real numbers d P r0, 1s and η ą 0 we say that a hypergraph H “ pV,Eq

is pd, η, 1q-dense if for all U Ď V the estimate
ˇ

ˇU p3q X E
ˇ

ˇ ě d

ˆ

|U |

3

˙

´ η |V |3

holds, where U p3q denotes the set of all three element subsets of U .

The Turán densities associated with this concept are defined by

π1pF q “ sup
 

d P r0, 1s : for every η ą 0 and n P N there exists

an F -free, pd, η, 1q-dense hypergraph H with |V pHq| ě n
(

.

Our main result characterises all hypergraphs F with π1pF q “ 0.

Theorem 1.2. For a 3-uniform hypergraph F , the following are equivalent:

(a ) π1pF q “ 0.
(b ) There is an enumeration of the vertex set V pF q “ tv1, . . . , vfu and there is a three-

colouring ϕ : BF Ñ tred, blue, greenu of the pairs of vertices covered by hyperedges
of F such that every hyperedge tvi, vj, vku P EpF q with i ă j ă k satisfies

ϕpvi, vjq “ red, ϕpvi, vkq “ blue, and ϕpvj, vkq “ green.

It is easy to see that tripartite hypergraphs F satisfy condition (b ). Moreover, it
follows from the work in [8] that every linear hypergraph F satisfies π1pF q “ 0. Linear
hypergraphs have the property that every element of BF is contained in precisely one
hyperedge of F . Consequently, we may consider an arbitrary vertex enumeration of F and
then a colouring of BF satisfying condition (b ) is forced. However, there are hypergraphs
displaying condition (b ), that are neither tripartite nor linear. For example, one can
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Figure 1.1. Colouring of BCp3q´5 showing that π1
`

C
p3q´
5

˘

“ 0. The ordering
demanded by Theorem 1.2 (b ) is from left to right, i.e., x ă w ă v ă z ă y,
whereas on the cycle the vertices are ordered alphabetically with edges
vwx,wxy, xyz, yzv.

check that the hypergraph obtained from the tight cycle on five vertices by removing one
hyperedge is such a hypergraph F (see Figure 1.1).

The easier implication of Theorem 1.2 is “(a ) ùñ (b ).” For its proof we exhibit a
“universal” hypergraph H all of whose subhypergraphs obey condition (b ) and all of whose
linear sized induced subhypergraphs have density 1

27 ´ op1q. In other words, our argument
establishing this implication does actually yield the following strengthening.

Fact 1.3. If a hypergraph F does not have property (b ) from Theorem 1.2, then π1pF q ě
1
27 .

Proof. Given a positive integer n consider a three-colouring ϕ : rnsp2q Ñ tred, blue, greenu
of the pairs of the first n positive integers. We define a hypergraph Hϕ with vertex set rns
by regarding a triple ti, j, ku with 1 ď i ă j ă k ď n as being a hyperedge if and only if
ϕpi, jq “ red, ϕpi, kq “ blue, and ϕpj, kq “ green. Standard probabilistic arguments show
that when ϕ is chosen uniformly at random, then for any fixed η ą 0 the probability that Hϕ

is p1{27, η, 1q-dense tends to 1 as n tends to infinity. On the other hand, as F does not
satisfy condition (b ) from Theorem 1.2, it is in a deterministic sense the case that F is never
a subgraph of Hϕ no matter how large n becomes. Thus we have indeed π1pF q ě

1
27 . �

The combination of Theorem 1.2 and Fact 1.3 leads immediately to the following
consequence, which shows that π1 “jumps” from 0 to at least 1

27 .

Corollary 1.4. If a hypergraph F satisfies π1pF q ą 0, then π1pF q ě
1
27 .

At this point the optimality of Corollary 1.4 is unknown and it remains an open problem
to determine the infimum over all non-zero values of π1p¨q.

1.2. Uniformly dense hypergraphs with vanishing density. The second concept we
discuss here is closely related to the one from Definition 1.1. It was introduced by Erdős



4 CHR. REIHER, V. RÖDL, AND M. SCHACHT

and Sós in [3] (see also [2, page 24]). To prepare its definition we need a concept of being
d-dense when d can be a function rather than just a single number and we shall consider
sequences of hypergraphs instead of just one individual hypergraph.

Definition 1.5. (a ) Let
á

H “ pHnqnPN be a sequence of hypergraphs with |V pHnq| Ñ 8

as n Ñ 8 and let d : p0, 1q ÝÑ p0, 1q be a function. We say that
á

H is d-dense
provided that for every η P p0, 1q there is an n0 P N such that for n ě n0 every
U Ď V pHnq with |U | ě η |V pHnq| satisfies

ˇ

ˇU p3q X EpHnq
ˇ

ˇ ě dpηq

ˆ

|U |

3

˙

.

(b ) A hypergraph F is called frequent if for every function d : p0, 1q ÝÑ p0, 1q and every
d-dense sequence

á

H “ pHnqnPN of hypergraphs there is an integer n0 such that F is
a subhypergraph of every Hn with n ě n0.

Erdős and Sós [3, Proposition 3] described the following instructive example pTnqnPN of a
sequence of ternary hypergraphs that is d-dense for some function dp¨q, but not uniformly
dense in the sense of Definition 1.1. Take the vertex set of Tn to be the set t0, 1, 2un of all
sequences with length n all of whose entries are 0, 1, or 2. Given three distinct vertices of
Tn, say á

x “ px1, . . . , xnq, áy “ py1, . . . , ynq, and á
z “ pz1, . . . , znq there is a least integer i P rns

for which xi “ yi “ zi is not the case and we put a hyperedge táx, áy,ázu into EpTnq if and
only if this index i satisfies txi, yi, ziu “ t0, 1, 2u. It was stated in [3] that the sequence of
ternary hypergraphs is d-dense for some appropriate function dp¨q and a short proof of this
fact appeared in [4]. In Section 5 we obtain the following improvement.

Proposition 1.6. The sequence of ternary hypergraphs pTnqnPN is d-dense for any function
d : p0, 1s Ñ p0, 1s with dpηq ă 1

4η
2

log2p3q´1 .

Considering subsets U Ď V pTnq of the form U “ t0, 1ur ˆ t0, 1, 2un´r shows that Propo-
sition 1.6 is optimal whenever η “ p2{3qr for some r P N. Since ternary hypergraphs are
d-dense for some function dp¨q, it follows that every frequent hypergraph must be contained
in some ternary hypergraph and Erdős wondered in [2] whether the converse of this holds as
well. This was indeed verified by Frankl and Rödl in [4] and the following characterisation
can be viewed as an analogue of Theorem 1.2 for d-dense hypergraphs.

Theorem 1.7. A hypergraph F is frequent if, and only if it occurs as a subhypergraph of a
ternary hypergraph. �

It is not hard to show (see Lemma 5.3) that if F is a subhypergraph of some ternary
hypergraph, then F Ď T|V pF q| and, consequently, Theorem 1.7 entails, that it is decidable
whether a given hypergraph is frequent or not.
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Organisation. The proof of the implication “(b ) ùñ (a )” of Theorem 1.2 utilises the
hypergraph regularity method that is revisited in Section 2. This method allows us in
Section 3 to reduce the problem of embedding hypergraphs satisfying the condition (b ) in
Theorem 1.2 into uniformly dense hypergraphs to a problem concerning so-called reduced
hypergraphs. This reduction will be carried out in Section 3 and the main argument will
then be given in Section 4. In Section 5 we prove Proposition 1.6, which implies the forward
implication of Theorem 1.7.

For a more complete presentation we include a short proof of the backward implication of
Theorem 1.7 as well, which follows the lines of the proof in [4]. In contrast to the proof of
the implication “(b ) ùñ (a )” of Theorem 1.2 this proof is somewhat simpler and is based
on a supersaturation argument. Extensions of our results to k-uniform hypergraphs with
k ą 3 will be discussed in the concluding remarks.

§2. Hypergraph regularity

A key tool in the proof of Theorem 1.2 is the regularity lemma for 3-uniform hypergraphs.
We follow the approach from [15,16] combined with the results from [7] and [9].

For two disjoint sets X and Y we denote by KpX, Y q the complete bipartite graph with
that vertex partition. We say that a bipartite graph P “ pX Ÿ Y,Eq is pδ2, d2q-regular if
for all subsets X 1 Ď X and Y 1 Ď Y we have

ˇ

ˇepX 1, Y 1q ´ d2|X
1
||Y 1|

ˇ

ˇ ď δ2|X||Y | ,

where epX 1, Y 1q denotes the number of edges of P with one vertex in X 1 and one vertex in Y 1.
Moreover, for k ě 2 we say a k-partite graph P “ pX1 Ÿ . . . Ÿ Xk, Eq is pδ2, d2q-regular,
if all its

`

k
2

˘

naturally induced bipartite subgraphs P rXi, Xjs are pδ2, d2q-regular. For a
tripartite graph P “ pX Ÿ Y ŸZ,Eq we denote by K3pP q the triples of vertices spanning a
triangle in P , i.e.,

K3pP q “
 

tx, y, zu Ď X Y Y Y Z : xy, xz, yz P E
(

.

If the tripartite graph P is pδ2, d2q-regular, then the triangle counting lemma implies

|K3pP q| ď d3
2|X||Y ||Z| ` 3δ2|X||Y ||Z| . (2.1)

We say a 3-uniform hypergraph H “ pV,EHq is regular w.r.t. a tripartite graph P if it
matches approximately the same proportion of triangles for every subgraph Q Ď P .

Definition 2.1. A 3-uniform hypergraph H “ pV,EHq is pδ3, d3q-regular w.r.t. a tripartite
graph P “ pX Ÿ Y Ÿ Z,EP q with V Ě X Y Y Y Z if for every tripartite subgraph Q Ď P

we have
ˇ

ˇ|EH XK3pQq| ´ d3|K3pQq|
ˇ

ˇ ď δ3|K3pP q| .
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Moreover, we simply say H is δ3-regular w.r.t. P , if it is pδ3, d3q-regular for some d3 ě 0.
We also define the relative density of H w.r.t. P by

dpH|P q “
|EH XK3pP q|

|K3pP q|
,

where we use the convention dpH|P q “ 0 if K3pP q “ ∅. If H is not δ3-regular w.r.t. P ,
then we simply refer to it as δ3-irregular.

The regularity lemma for 3-uniform hypergraphs, introduced by Frankl and Rödl in [5],
provides for a hypergraph H a partition of its vertex set and a partition of the edge sets of
the complete bipartite graphs induced by the vertex partition such that for appropriate
constants δ3, δ2, and d2

(1 ) the bipartite graphs given by the partitions are pδ2, d2q-regular and
(2 ) H is δ3-regular for “most” tripartite graphs P given by the partition.

In many proofs based on the regularity method it is convenient to “clean” the regular
partition provided by the lemma. In particular, we shall disregard hyperedges of H that
belong to K3pP q where H is not δ3-regular or where dpH|P q is very small. These properties
are rendered in the following somewhat standard corollary of the regularity lemma.

Theorem 2.2. For every d3 ą 0, δ3 ą 0 and m P N, and every function δ2 : N Ñ p0, 1s,
there exist integers T0 and n0 such that for every n ě n0 and every n-vertex 3-uniform
hypergraph H “ pV,Eq the following holds.

There exists a subhypergraph Ĥ “ pV̂, Êq Ď H, an integer ` ď T0, a vertex partition
V1 Ÿ . . . Ÿ Vm “ V̂ , and for all integers i, j with 1 ď i ă j ď m there exists a partition
P ij “ tP ij

α “ pVi Ÿ Vj, E
ij
α q : 1 ď α ď `u of KpVi, Vjq satisfying the following properties

(i ) |V1| “ ¨ ¨ ¨ “ |Vm| ě p1´ δ3qn{T0,
(ii ) for every 1 ď i ă j ď m and α P r`s the bipartite graph P ij

α is pδ2p`q, 1{`q-regular,
(iii ) Ĥ is δ3-regular w.r.t. all tripartite graphs

P ijk
αβγ “ P ij

α Ÿ P
ik
β Ÿ P

jk
γ “ pVi Ÿ Vj Ÿ Vk, E

ij
α Ÿ E

ik
β Ÿ E

jk
γ q , (2.2)

with 1 ď i ă j ă k ď m and α, β, γ P r`s, and dpĤ|P ijk
αβγq is either 0 or at least d3,

(iv ) and for every 1 ď i ă j ă k ď m we have

eĤpVi, Vj, Vkq ě eHpVi, Vj, Vkq ´ pd3 ` δ3q|Vi||Vj||Vk| . �

Owing to their special rôle we shall refer to the tripartite graphs considered in (2.2) as
triads.

A proof of Theorem 2.2 based on a refined version of the regularity lemma from [15,
Theorem 2.3] can be found in [10, Corollary 3.3].
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We shall use the counting/embedding lemma, which allows us to embed hypergraphs of
fixed isomorphism type into appropriate and sufficiently regular and dense triads of the
partition provided by Theorem 2.2. It is a direct consequence of [9, Corollary 2.3].

Theorem 2.3 (Embedding Lemma). Let a hypergraph F with vertex set rf s and d3 ą 0 be
given. Then there exist δ3 ą 0 and functions δ2 : NÑ p0, 1s and N : NÑ N such that the
following holds for every ` P N.
Suppose P “ pV1 Ÿ . . . Ÿ Vf , EP q is a pδ2p`q,

1
`
q-regular, f-partite graph whose vertex

classes satisfy |V1| “ ¨ ¨ ¨ “ |Vf | ě Np`q and suppose H is an f -partite, 3-uniform hypergraph
such that for all edges ijk of F we have

(a ) H is δ3-regular w.r.t. to the tripartite graph P rVi Ÿ Vj Ÿ Vks and
(b ) dpH|P rVi Ÿ Vj Ÿ Vksq ě d3,

then H contains a copy of F . In fact, there is a monomorphism q from F to H with qpiq P Vi
for all i P rf s. �

In an application of Theorem 2.3 the tripartite graphs P rVi Ÿ Vj Ÿ Vks in (a ) and (b )
will be given by triads P ijk

αβγ from the partition given by Theorem 2.2. For the proof of
the direction “(b ) ùñ (a )” of Theorem 1.2 we consider for a fixed hypergraph F obeying
condition (b ) and fixed ε ą 0 a sufficiently large uniformly dense hypergraph H of density ε.
We will apply the regularity lemma in the form of Theorem 2.2 to H. The main part of the
proof concerns the appropriate selection of dense and regular triads, that are ready for an
application of the embedding lemma. In Section 3 we formulate a statement about reduced
hypergraphs telling us that such a selection is indeed possible and in Section 4 we give its
proof.

§3. Moving to reduced hypergraphs

In our intended application of the hypergraph regularity method we need to keep track
which triads are dense and regular and natural structures for encoding such information
are so-called reduced hypergraphs. We follow the terminology introduced in [12, Section 3].

Consider any finite set of indices I, suppose that associated with any two distinct
indices i, j P I we have a finite nonempty set of vertices P ij, and that for distinct pairs
of indices the corresponding vertex classes are disjoint. Assume further that for any
three distinct indices i, j, k P I we are given a tripartite hypergraph Aijk with vertex
classes P ij, P ik, and Pjk. Under such circumstances we call the

`

|I|
2

˘

-partite hypergraph A
defined by

V pAq “
ď

¨

ti,juPIp2q

P ij and EpAq “
ď

¨

ti,j,kuPIp3q

EpAijk
q
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a reduced hypergraph. We also refer to I as the index set of A, to the sets P ij as the vertex
classes of A, and to the hypergraphs Aijk as the constituents of A. The order of the indices
appearing in the pairs and triples of the superscripts of the vertex classes and constituents
of A plays no rôle here, i.e., P ij “ Pji and Aijk “ Akij etc. For µ ą 0 such a reduced
hypergraph A is said to be µ-dense if

|EpAijk
q| ě µ |P ij

| |P ik
| |Pjk

|

holds for every triple ti, j, ku P Ip3q.
In the light of the hypergraph regularity method, the proof of Theorem 1.2 reduces to

the following statement whose proof will be given in the next section.

Lemma 3.1. Given µ ą 0 and f P N there exists an integer m such that the following
holds. If A is a µ-dense reduced hypergraph with index set rms, vertex classes P ij, and
constituents Aijk, then there are

(i ) indices λp1q ă ¨ ¨ ¨ ă λpfq in rms and
(ii ) for each pair 1 ď r ă s ď f there are three vertices P λprqλpsq

red , P λprqλpsq
blue , and P λprqλpsq

green

in Pλprqλpsq

such that for every triple of indices 1 ď r ă s ă t ď m the three vertices P λprqλpsq
red , P λprqλptq

blue ,
and P λpsqλptq

green form a hyperedge in Aλprqλpsqλptq.

At the end of this section we will prove that this lemma does indeed imply Theorem 1.2.
For this purpose it will be more convenient to work with an alternative definition of π1 that
we denote by π . In contrast to Definition 1.1 it speaks about being dense with respect to
three subsets of vertices rather than just one.

Definition 3.2. A hypergraph H “ pV,Eq of order n “ |V | is pd, η, q-dense if for every
triple of subsets X, Y, Z Ď V the number e pX, Y, Zq of triples px, y, zq P X ˆ Y ˆ Z

with xyz P E satisfies
e pX, Y, Zq ě d |X| |Y | |Z| ´ η n3 .

Accordingly, we set

π pF q “ sup
 

d P r0, 1s : for every η ą 0 and n P N there exists

an F -free, pd, η, q-dense hypergraph H with |V pHq| ě n
(

. (3.1)

Applying [13, Proposition 2.5] to k “ 3 and j “ 1 we deduce that every hypergraph F
satisfies

π pF q “ π1pF q . (3.2)
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Consequently it is allowed to imagine that in clause (a ) of Theorem 1.2 we would have
written π pF q “ 0 instead of π1pF q “ 0.

Proof of Theorem 1.2 assuming Lemma 3.1. The implication “(a ) ùñ (b )” is implicit in
Fact 1.3, meaning that we just need to consider the reverse direction. Suppose to this end
that a hypergraph F satisfying condition (b ) and some ε ą 0 are given. We need to check
that for ε " η " n´1 every pε, η, q-dense hypergraph H of order n contains a copy of F .

Of course, we may assume that V pF q “ rf s holds for some f P N. Plugging F and
d3 “

ε
4 into the embedding lemma we get a constant δ3 ą 0, a function δ2 : NÑ p0, 1s, and

a function N : NÑ N. Evidently we may assume that δ3 ď
ε
4 , that δ2p`q ! `´1, and that

N is increasing. Applying Lemma 3.1 with µ “ ε
8 and f we obtain an integer m. Given d3,

δ3, m, and δ2p¨q we get integers T0 and n0 from Theorem 2.2. Finally we choose

η “
εp1´ δ3q

3

4T 3
0

and n1 “ 2T0 ¨NpT0q .

Now consider any pε, η, q-dense hypergraph H of order n ě n1. We contend that F
appears as a subhypergraph of H. To see this we take

‚ a subhypergraph Ĥ “ pV̂, Êq Ď H,
‚ a vertex partition V1 Ÿ . . . Ÿ Vm “ V̂ ,
‚ an integer ` ď T0,
‚ and pair partitions P ij “ tP ij

α “ pVi Ÿ Vj, E
ij
α q : 1 ď α ď `u of KpVi, Vjq for all

1 ď i ă j ď m

satisfying the conditions (i )–(iv ) from Theorem 2.2. The reduced hypergraph A corre-
sponding to this situation has index set rms, vertex classes P ij and a triple tP ij

α , P
ik
β , P

jk
γ u

is defined to be an edge of the constituent Aijk if and only if dpĤ|P ijk
αβγq ě d3. As we shall

verify below,
A is µ-dense. (3.3)

Due to Lemma 3.1 this means that there are
‚ indices λp1q ă ¨ ¨ ¨ ă λpfq in rms and
‚ for each pair 1 ď r ă s ď f there are vertices P λprqλpsq

red , P
λprqλpsq
blue , P λprqλpsq

green P Pλprqλpsq

such that for every triple of indices 1 ď r ă s ă t ď m the three vertices P λprqλpsq
red , P λprqλptq

blue ,
and P λpsqλptq

green form a hyperedge in Aλprqλpsqλptq. These vertices correspond to bipartite graphs
forming dense regular triads. Since we have

|Vλp1q| “ ¨ ¨ ¨ “ |Vλpfq| ě
p1´ δ3qn

T0
ě

n1

2T0
“ NpT0q ě Np`q ,

the embedding lemma is applicable to the hypergraph Ĥ and to the f -partite graph with ver-
tex partition

Ť

¨ rPrf s Vλprq and edge set
Ť

¨ rsPBF P
λprqλpsq
ϕpλprq,λpsqq, where ϕ : BF Ñ tred, blue, greenu
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denotes any colouring exemplifying that F does indeed possess property (b ) from Theo-
rem 1.2. Consequently, the monomorphism guaranteed by Theorem 2.3 yields a copy of F
in Ĥ Ď H.

So to conclude the proof it only remains to verify (3.3). Suppose to this end that some
triple ti, j, ku P rms3 is given. We have to verify that

|EpAijk
q| ě µ |P ij

| |P ik
| |Pjk

| “
ε

8`
3 . (3.4)

Using that H is pε, η, q-dense we infer

eHpVi, Vj, Vkq ě ε |Vi| |Vj| |Vk| ´ ηn
3

and by our choice of η it follows that

|Vi| |Vj| |Vk| ě

ˆ

p1´ δ3q

T0

˙3

n3
“

4η
ε
n3 .

So altogether we have
eHpVi, Vj, Vkq ě

3
4ε |Vi| |Vj| |Vk| .

In combination with δ3 ď
ε
4 “ d3 and condition (iv ) from Theorem 2.2 this entails

eĤpVi, Vj, Vkq ě
1
4ε |Vi| |Vj| |Vk| . (3.5)

On the other hand, by the triangle counting lemma (2.1) and δ2 ! `´1 each triad P ijk
αβγ

satisfies
K3

`

P ijk
αβγ

˘

ď
`

`´3
` 3δ2p`q

˘

|Vi| |Vj| |Vk| ď 2`´3
|Vi| |Vj| |Vk| ,

for which reason
eĤpVi, Vj, Vkq ď |EpA

ijk
q| ¨ 2`´3

|Vi| |Vj| |Vk| .

Together with (3.5) this proves (3.4) and, hence, the implication from Lemma 3.1 to
Theorem 1.2. �

§4. Proof of Theorem 1.2

This entire section is devoted to the proof of Lemma 3.1. We begin by outlining the main
ideas of this proof. The argument proceeds in three stages. In the first of them we will
choose a subset X Ď rms and for any two indices r ă s from X some vertex P rs

red P Prs such
that if r ă s ă t are from X, then P rs

red has large degree in Arst, where “large” means at
least µ1 |Prt| |Pst| for some µ1 depending only on µ. This argument will have the property
that for fixed f and µ the size of X can be made as large as we wish by starting from a
sufficiently large m. Then, in the next stage, we shrink the set X further to some Y Ď X

and select vertices P rt
blue P Prt for all indices r ă t from Y such that if r ă s ă t are from Y

then the pair-degree of P rs
red and P rt

blue in Arst is still reasonably large, i.e., at least µ2 |Pst|
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for some µ2 that depends again only on µ. Finally for some Z Ď Y of size f we will manage
to pick vertices P st

green for s ă t from Z such that whenever r ă s ă t are from Z the triple
P rs

redP
rt
blueP

st
green appears in Arst. For this to succeed we just need |Y | and hence also |X| and

m to be large enough depending on f and µ. We then enumerate Z “ tλp1q, . . . , λpfqu in
increasing order to conclude the argument.

The construction we use for the first stage proceeds in m˚ “ |X| steps. In the first step
we just select 1 P X. In the second step we put 2 into X and we will also make a decision
concerning P 12

red. For that we ask every candidate k P r3,ms that might be put into X in
the future to propose suitable choices for P 12

red. This leads us to consider for each such k the
set P12

k,red Ď P12 of vertices with degree µ
2 ¨ |P

1k| |P2k| in A12k. Since A is µ-dense we have
|P12

k,red| ě
µ
2 ¨ |P

12| for each k ě 3. Thus we can choose a vertex P 12
red in such a manner that

it belongs to P12
k,red for many k’s. From now on we restrict our attention to such k’s only.

The third step begins by putting the smallest such k into X. If this happens to be, e.g., 7
then we ask each still relevant k ą 7 for an opinion about the possible choices for the pair
pP 17

red, P
27
redq and then we choose these two vertices in such a way that there are sufficiently

many possibilities to continue. The general situation after h such steps is described in
Lemma 4.1 below and the simpler Corollary 4.2 contains all that is needed for our intended
application.

When reading the statement of the following lemma it might be helpful to think of M , m,
and ε there as being m, m˚, and µ

2 from the outline above. Also, n1, . . . , nh correspond
to the indices which were already put into X whilst nh`1, . . . , nm are the indices that still
have a chance of being put into X in the future.

Lemma 4.1. Given ε P p0, 1q and positive integers m ě h there exists a positive integer
M “Mpε,m, hq for which the following is true. Suppose that we have

‚ nonempty sets Prs for 1 ď r ă s ďM and
‚ further sets Prs

t,red Ď Prs with |Prs
t,red| ě ε |Prs| for 1 ď r ă s ă t ďM ,

then there are indices n1 ă ¨ ¨ ¨ ă nm in rM s and there are elements P nrns
red P Pnrns for

1 ď r ă s ď h such that

P nrns
red P

č

tPps,ms

Pnrns
nt,red .

Proof. We argue by induction on h. For the base case h “ 1 we may take Mpε,m, 1q “ m

and nr “ r for all r P rms; because no vertices P rs
red have to be chosen, the conclusion holds

vacuously.
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Now suppose that the result is already known for some integer h and all relevant pairs
of ε and m, and that an integer m ě h` 1 as well as a real number ε P p0, 1q are given. Set

m1
“ h` 1`

R

m´ h´ 1
εh

V

and M “Mpε,m, h` 1q “Mpε,m1, hq .

To see that M is as desired, let sets Prs and Prs
t,red as described above be given. Due to the

definition of M , there are indices n1 ă ¨ ¨ ¨ ă nm1 in rM s and certain P nrns
red P Pnrns such

that P nrns
red P Pnrns

nt,red holds whenever 1 ď r ă s ă t ď m1 and s ď h. We set

P “ Pn1nh`1 ˆ ¨ ¨ ¨ ˆ Pnhnh`1 .

For each h-tuple pP1, . . . , Phq P P we write

QpP1, . . . , Phq “
 

t P rh` 2,m1
s : Pr P Pnrnh`1

nt,red for every r P rhs
(

. (4.1)

By counting the elements of

tpt, P1, . . . , Phq : t P QpP1, . . . , Phqu

in two different ways and using the lower bounds |Pnrnh`1
nt,red | ě ε|Pnrnh`1 | we get

ÿ

pP1,...,PhqPP

|QpP1, . . . , Phq| “
m1
ÿ

t“h`2

h
ź

r“1
|Pnrnh`1

nt,red | ě pm1
´ h´ 1q εh |P| .

Hence, we may fix an h-tuple pP1, . . . , Phq P P with

|QpP1, . . . , Phq| ě pm
1
´ h´ 1qεh ě m´ h´ 1 .

Now let `h`2 ă ¨ ¨ ¨ ă `m be any elements from

Q “ tnt : t P QpP1, . . . , Phqu

in increasing order. Set

`r “ nr for all r P rh` 1s as well as P nr,nh`1
red “ Pr for all r P rhs .

We claim that the indices `1 ă ¨ ¨ ¨ ă `m and the elements P nrns
red with 1 ď r ă s ď h` 1

satisfy the conclusion. To see this let any 1 ď r ă s ă t ď m with s ď h ` 1 be given.
We have to verify P `r`s

red P P`r`s
`t,red. If s ď h this follows directly from `r “ nr, `s “ ns,

`t P tns`1, . . . , nm1u, and the inductive choice of the latter set. For the case s “ h ` 1 if
follows from t ě h`2, that there is some q P QpP1, . . . , Phq with `t “ nq. The first property
of q entails in view of (4.1) that Pr P Pnrnh`1

nq ,red and, as P nr,nh`1
red “ Pr, this is exactly what

we wanted. �
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The reason for having the two parameters m and h in this lemma is just that this
facilitates the proof by induction on h. In applications one may always set h “ m, since
this gives the strongest possible conclusion for fixed m. Thus it might add to the clarity of
exposition if we restate this case again, using the occasion to eliminate some double indices
as well.

Corollary 4.2. Suppose that for M " maxpm, ε´1q we have

‚ nonempty sets Prs for 1 ď r ă s ďM and
‚ further sets Prs

t,red Ď Prs with |Prs
t,red| ě ε |Prs| for 1 ď r ă s ă t ďM ,

then there is a subset X Ď rM s of size m and there are elements P rs
red P Prs for r ă s

from X such that
P rs

red P
č

t

 

Prs
t,red : t ą s and t P X

(

. �

As discussed above, this statement will be used below for choosing the vertices P rs
red. The

selection principle we use for choosing the P st
green is essentially the same, but we have to

apply the symmetry r ÞÝÑM ` 1´ r to the indices throughout. To prevent confusion when
this happens within another argument, we restate the foregoing result as follows.

Corollary 4.3. Suppose that for M " maxpm, ε´1q we have

‚ nonempty sets Pst for 1 ď s ă t ďM and
‚ further sets Pst

r,green Ď Pst with |Pst
r,green| ě ε |Pst| for 1 ď r ă s ă t ďM ,

then there is a subset Z Ď rM s of size m and there are elements P st
green P Pst for s ă t

from Z such that
P st

green P
č

r

 

Pst
r,green : r ă s and r P Z

(

.

Proof. Set Prs
˚ “ PM`1´s,M`1´r for 1 ď r ă s ď M and Prs

t,red “ PM`1´s,M`1´r
M`1´t,green for

1 ď r ă s ă t ď M . Then apply Corollary 4.2, thus getting a certain set X and some
elements P rs

red. It is straightforward to check that

Z “ tM ` 1´ x : x P Xu

and P st
green “ PM`1´t,M`1´s

red are as desired. �

The statement that follows coincides with [13, Lemma 7.1], where a short direct proof is
given. For reasons of self-containment, however, we will show here that it follows easily
from the above Corollary 4.3. Subsequently it will be used in the proof of a lemma playing
a rôle similar to that of Lemma 4.1, but preparing the selection of the vertices P rt

blue rather
than P rs

red. Specifically, the statement that follows will be used in that step of the proof of
the next lemma that corresponds to choosing P1, . . . , Ph in the proof of Lemma 4.1.
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Corollary 4.4. Suppose that for M " maxpm, ε´1q we have
‚ nonempty sets W1, . . . ,WM and
‚ further sets Drs Ď Ws with |Drs| ě ε |Ws| for 1 ď r ă s ďM ,

then there is a subset Z Ď rM s of size m and there are elements ds P Ws for s P Z such that

ds P
č

r

 

Drs : r ă s and r P Z
(

.

Proof. Let M be so large that the conclusion of Corollary 4.3 holds with m ` 1 in place
of m and with the same ε. Now let the sets Ws and Drs as described above be given.

Set Pst “ Ws for 1 ď s ă t ď M and Pst
r,green “ Drs for 1 ď r ă s ă t ď M . By

hypothesis Pst
r,green is a sufficiently large subset of Pst, so by our choice of M there is a set

Z˚ Ď rM s of size m` 1 together with certain elements P st
green P Pst for s ă t from Z˚ such

that P st
green P Pst

r,green holds whenever r ă s ă t are from Z˚. Set z “ maxpZ˚q, Z “ Z˚rtzu,
and ds “ P sz

green for all s P Z. We claim that Z and the ds are as demanded.
The condition |Z| “ m is clear, so now let any pair r ă s from Z be given. Then

r ă s ă z are from Z˚, whence ds “ P sz
green P Psz

r,green “ Drs. �

The next lemma deals with the selection of “blue” vertices.

Lemma 4.5. Given ε P p0, 1q and nonnegative integers m ě h there exists a positive integer
M “Mpε,m, hq for which the following is true. Suppose that we have

‚ nonempty sets Prt for 1 ď r ă t ďM and
‚ further sets Prt

s,blue Ď Prt with |Prt
s,blue| ě ε |Prt| for 1 ď r ă s ă t ďM ,

then there are indices n1 ă ¨ ¨ ¨ ă nm in rM s and there are elements P nrnt
blue P Pnrnt for all

1 ď r ă t ď m with r ď h such that

P nrnt
blue P

č

s

 

Pnrnt
ns,blue : r ă s ă t

(

.

Proof. Again we argue by induction on h with the base case h “ 0 being trivial.
For the induction step we assume that the lemma is already known for some h and

all possibilities for m and ε, and proceed to the case m ě h ` 1. We contend that
M “Mpε,m1, hq is as desired when m1 is chosen so large that the conclusion of Corollary 4.4
holds for pm1 ´ h´ 1,m´ h´ 1q here in place of pM,mq there – with the same value of ε.

So let any sets Prt and Prt
s,blue as described above be given. The choice of M guarantees

the existence of some indices n1 ă ¨ ¨ ¨ ă nm1 in rM s together with certain elements P nrnt
blue

satisfying the conclusion of Lemma 4.5 with m1 in place of m. The m indices we are
requested to find will be n1, . . . , nh`1 and pm´ h´ 1q members of the set tnh`2, . . . , nm1u,
so in order to gain notational simplicity we may assume nr “ r for all r P rm1s. Thus we
have P rt

blue P Prt
s,blue whenever 1 ď r ă s ă t ď m1 and r ď h.
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Let us now define Wj “ Ph`1,h`j`1 for all j P rm1 ´ h´ 1s and Dij “ Ph`1,h`j`1
h`i`1,blue for all

i ă j from rm1 ´ h´ 1s. Then the conditions of Corollary 4.4 are satisfied, meaning that
there is a subset Z of rm1 ´ h´ 1s of size m´ h´ 1 together with certain elements dj P Wj

for j P Z such that we have dj P Dij whenever i ă j are from Z.
We contend that the set of the m indices we are supposed to find can be taken to be

rh` 1s Y
`

ph` 1q ` Z
˘

.

To see this we may for simplicity assume Z “ rm´ h´ 1s, so that the set of our m indices
is simply rms. Recall that we have already found above certain elements P rt

blue P Prt for
1 ď r ă t ď m with r ď h such that P rt

blue P Prt
s,blue holds whenever 1 ď r ă s ă t ď m

and r ď h. So it remains to find further elements P h`1,t
blue P Ph`1,t for t P rh ` 2,ms with

P h`1,t
blue P Ph`1,t

s,blue whenever h ` 2 ď s ă t ď m. To this end, we use the vertices obtained
by applying Corollary 4.4 and set P h`1,t

blue “ dt´h´1 for all t P rm ` 2, hs. Observe that
P h`1,t

blue P Wt´h´1 “ Ph`1,t holds for all relevant t. Moreover, if h` 2 ď s ă t ď m, then we
have indeed P h`1,t

blue “ dt´h´1 P Ds´h´1,t´h´1 “ Ph`1,t
s,blue. Thereby the proof by induction on h

is complete. �

For the same reasons as before we restate the case h “ m as follows.

Corollary 4.6. Suppose that for M " maxpm, ε´1q we have

‚ nonempty sets Prt for 1 ď r ă t ďM and
‚ further sets Prt

s,blue Ď Prt with |Prt
s,blue| ě ε |Prt| for 1 ď r ă s ă t ďM ,

then there is a subset Y Ď rM s of size m and there are elements P rt
blue P Prt for r ă t from

Y such that

P rt
blue P

č

s

 

Prt
s,blue : r ă s ă t and s P Y

(

. �

After these preparations we are ready to verify Lemma 3.1.

Proof of Lemma 3.1. Suppose

m " m˚ " m˚˚ " maxpf, µ´1
q .

Consider any three indices 1 ď r ă s ă t ď m. For a vertex P P Prs we denote the degree
of P in Arst by dtpP q. In other words, this is the number of pairs pQ,Rq P Prt ˆ Pst with
tP,Q,Ru P EpArstq. Further, we set

Prs
t,red “

 

P P Prs : dtpP q ě µ
2 ¨ |P

rt
| |Pst

|
(

.
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Since

µ |Prs
| |Prt

| |Pst
| ď

ˇ

ˇE
`

Arst
˘
ˇ

ˇ “
ÿ

PPPrs

dtpP q “
ÿ

PPPrsrPrs
t,red

dtpP q `
ÿ

PPPrs
t,red

dtpP q

ď
µ
2 ¨ |P

rs
| |Prt

| |Pst
| ` |Prs

t,red| |Prt
| |Pst

| ,

we have |Prs
t,red| ě

µ
2 ¨ |P

rs|. So applying Corollary 4.2 with
`

m,m˚, µ2
˘

here in place of
pM,m, εq there we get a set X Ď rms of size m˚ together with some vertices P rs

red satisfying
the condition mentioned there. For simplicity we relabel our indices in such a way that
X “ rm˚s, intending to find the required indices λp1q, . . . , λpfq in rm˚s. This completes
what has been called the first stage of the proof in the outline at the beginning of this
section.

Next we look at any three indices 1 ď r ă s ă t ď m˚. Recall that we just achieved
dtpP

rs
redq ě

µ
2 ¨ |P

rt| |Pst|. We write ppP,Qq for the pair-degree of any two vertices P P Prs

and Q P Prt in Arst, i.e., for the number of triples of this hypergraph containing both P
and Q. Let us define

Prt
s,blue “

 

Q P Prt : ppP rs
red, Qq ě

µ
4 ¨ |P

st
|
(

.

Starting from the obvious formula

dpP rs
redq “

ÿ

QPPrt

ppP rs
red, Qq ,

the same calculation as above discloses |Prt
s,blue| ě

µ
4 ¨ |P

rt|. So we may apply Corollary 4.6
with

`

m˚,m˚˚,
µ
4

˘

here instead of pM,m, εq there in order to find a subset Y of rm˚s of
size m˚˚ together with certain vertices P rt

blue. As before it is allowed to suppose Y “ rm˚˚s,
in which case we have ppP rs

red, P
rt
blueq ě

µ
4 ¨ |P

st| whenever 1 ď r ă s ă t ď m˚˚.
Having thus completed the second stage we look at any three indices 1 ď r ă s ă t ď m˚˚.

Let Pst
r,green denote the set of all vertices R from Pst for which the triple tP rs

red, P
rt
blue, Ru

belongs to Arst. Due to our previous choices we have |Pst
r,green| ě

µ
4 ¨ |P

st|. So we may apply
Corollary 4.3 with

`

m˚˚, f,
µ
4

˘

here rather than pM,m, εq there, thus getting a certain set
Z Ď rm˚˚s and certain vertices P st

green P Pst for s ă t from Z. As always we may suppose that
Z “ rf s, so that tP rs

red, P
rt
blue, P

st
greenu becomes a triple of Arst whenever 1 ď r ă s ă t ď f .

Now it is plain that the indices λprq “ r for r P rf s are as desired. �

§5. Uniformly dense with vanishing density

We reprove Theorem 1.7 from [4] and we devote to each implication a separate section.
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5.1. The forward implication. The statement that every frequent hypergraph is con-
tained in one and, hence, eventually in all sufficiently large ternary hypergraphs, is a
direct consequence of the fact that the sequence pTnqnPN is itself d-dense for an appropriate
function d : p0, 1s Ñ p0, 1s. This observation is due to to Erdős and Sós [3] who left the
verification to the reader. In [4, Proposition 3.1] it was shown that the sequence of ternary
hypergraphs is d-dense for some function dpηq “ η% with % ą 10. Here we sharpen this
estimate and establish Proposition 1.6, which gives the optimal exponent

% “
2

log2p3q ´ 1 « 3.419 . . . . (5.1)

More precisely, we prove the following lemma, which yields Proposition 1.6.

Lemma 5.1. For % given in (5.1), ` ě 1, X Ď V pT`q, and |X| “ η ¨ 3` we have

epXq ě
1
4η

%
¨
|X|3

6 ´
3
8 ¨ 3

` .

For the proof of this lemma we shall utilise the following inequality.

Fact 5.2. If x, y, z P r0, 1s and τ “ %` 3 for % given in (5.1), then

xτ ` yτ ` zτ ` 24xyz ě 33´τ
px` y ` zqτ .

Proof. In the proof the following identity will be handy to use

2τ´1
“ 3τ´3 . (5.2)

As the unit cube is compact, there is a point px˚, y˚, z˚q P r0, 1s3 at which the continuous
function f : r0, 1s3 Ñ R given by

px, y, zq ÞÝÑ xτ ` yτ ` zτ ` 24xyz ´ 33´τ
px` y ` zqτ

attains its minimum value, say ξ. Due to symmetry we may suppose that x˚ ě y˚ ě z˚.
Assume for the sake of contradiction that ξ ă 0.

Since τ ą 1, convexity implies

xτ ` yτ ě 2
´x` y

2

¯τ

“ 21´τ
px` yqτ

(5.2)
“ 33´τ

px` yqτ .

Consequently, fpx, y, 0q ě 0 for all real x, y P r0, 1s and we have x˚, y˚, z˚ ą 0.
The minimality of ξ implies

xτ˚ξ ď xτ˚f
`

1, y˚
x˚
, z˚
x˚

˘

“ xτ˚ ` y
τ
˚ ` z

τ
˚ ` 24xτ´3

˚ ¨ x˚y˚z˚ ´ 33´τ
px˚ ` y˚ ` z˚q

τ

“ ξ ` 24pxτ´3
˚ ´ 1qx˚y˚z˚ ,
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i.e., 24p1 ´ xτ´3
˚ qx˚y˚z˚ ď ξp1 ´ xτ˚q, which due to the assumption ξ ă 0 is only possible

if x˚ “ 1. In other words, the function x ÞÝÑ fpx, y˚, z˚q from r0, 1s to R attains its
minimum at the boundary point x “ 1 and for this reason we have dfpx,y˚,z˚q

dx

ˇ

ˇ

x“1 ď 0, i.e.,

τ ` 24 y˚z˚ ď τ ¨ 33´τ
p1` y˚ ` z˚qτ´1 . (5.3)

Next we observe that the function z ÞÝÑ fp1, 1, zq from r0, 1s to R is concave, because
d2fp1, 1, zq

dz2 “ pτ ´ 1qτ
`

zτ´2
´ 33´τ

p2` zqτ´2˘

“ pτ ´ 1qτ
ˆ

p3zqτ´2 ´ 3p2` zqτ´2

3τ´2

˙

ă 0 .

Together with

fp1, 1, 0q “ 2´ 33´τ
¨ 2τ (5.2)

“ 0 and fp1, 1, 1q “ 27´ 33´τ
¨ 3τ “ 0

this proves that fp1, 1, zq ě 0 holds for all z P r0, 1s, which in view of x˚ “ 1 yields y˚ ă 1.
Thus the function y ÞÝÑ fp1, y, z˚q from r0, 1s to R attains its minimum at the interior
point y “ y˚ and we infer dfp1,y,z˚q

dy

ˇ

ˇ

y“y˚
“ 0, i.e.,

τyτ´1
˚ ` 24z˚ “ τ ¨ 33´τ

p1` y˚ ` z˚qτ´1 .

In combination with (5.3) this proves 24p1´ y˚qz˚ ě τp1´ yτ´1
˚ q and recalling y˚ ě z˚ we

arrive at
24p1´ y˚qy˚ ě τp1´ yτ´1

˚ q ą
32
5 p1´ y

5
˚q , (5.4)

where we used τ “ % ` 3 ą 6.4 for the last inequality (see (5.1)). Dividing by p1 ´ y˚qy˚

leads to
1` y˚ ` y2

˚ ` y
3
˚ ` y

4
˚

y˚
“

1´ y5
˚

p1´ y˚qy˚
(5.4)
ă

15
4 . (5.5)

Now for the function h : p0, 1q Ñ R given by hptq “ 1
t
` 1` t` t2 ` t3 we have

h1ptq ă 0 ðñ t2p1` 2t` 3t2q ă 1 .

Consequently, there is a unique point t˚ P p0, 1q, at which h attains its global minimum
and a short calculation reveals t˚ P

“5
9 ,

4
7

‰

.
From (5.5) we may now deduce

ˆ

1
t˚
` 1` t˚

˙

` t2˚ ` t
3
˚ ă

15
4 .

Since t ÞÝÑ 1
t
` 1` t is decreasing on p0, 1q, this may be weakened to

7
4 ` 1` 4

7 `
ˆ

5
9

˙2

`

ˆ

5
9

˙3

ă
15
4 ,

which, however, is not the case. Thus ξ ě 0 and Fact 5.2 is proved. �
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Lemma 5.1 follows by a simple inductive argument from the inequality from Fact 5.2.

Proof of Lemma 5.1. The case ` “ 1 is clear, since then the right-hand side cannot be
positive. Proceeding inductively we assume from now on that the lemma holds for `´ 1 in
place of ` and look at an arbitrary set X Ď V pT`q.

Let V pT`q “ V1 Ÿ V2 Ÿ V3 be a partition of the vertex set of T` such that

‚ each of V1, V2, and V3 induces a copy of T`´1

‚ and all triples v1v2v3 with vi P Vi for i “ 1, 2, 3 are edges of T`.

Setting Xi “ X X Vi and ηi “ |Xi|{3`´1 for i “ 1, 2, 3 we get

epXq “ epX1q ` epX2q ` epX3q ` |X1||X2||X3|

ě

ˆ

η%`3
1 ` η%`3

2 ` η%`3
3 ` 24 η1η2η3

4

˙

`

3`´1˘3

6 ´ 3 ¨ 3
8 ¨ 3

`´1

from the induction hypothesis. In view of Fact 5.2 it follows that

epXq ě
27η%`3

4 ¨

`

3`´1˘3

6 ´
3
8 ¨ 3

` , (5.6)

where
η “

η1 ` η2 ` η3

3 “
|X1| ` |X2| ` |X3|

3` “
|X|

3` ,

meaning that (5.6) simplifies to the desired estimate

epXq ě
η%

4 ¨
|X|3

6 ´
3
8 ¨ 3

` . �

We conclude this subsection by observing that frequent hypergraphs on ` vertices must
be contained in the ternary hypergraph on 3` vertices.

Lemma 5.3. If a hypergraph F on ` vertices is frequent, then it is a subhypergraph of the
ternary hypergraph T`.

Proof. It follows from Lemma 5.1 that there is some n P N with F Ď Tn. Thus it suffices
to prove that if F Ď Tn and vpF q “ `, then F Ď T` holds as well. We do so by induction
on `, the base case ` ď 3 being clear.

Now let any hypergraph F appearing in some ternary hypergraph and with ` ě 4 vertices
be given and choose n P N minimal with F Ď Tn. Take a partition V pTnq “ V1 Ÿ V2 Ÿ V3

such that each of V1, V2, and V3 induces a copy of Tn´1 and such that all further edges
of Tn are of the form v1v2v3 with vi P Vi for i “ 1, 2, 3. By the minimality of n each of
the three sets Vi X V pF q with i “ 1, 2, 3 contains less than ` vertices, so by the induction
hypothesis they induce suphypergraphs of Tn that appear already in T`´1. Therefore we
have indeed F Ď T`. �
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5.2. The backward implication. For completeness we include a proof of the fact that
subhypergraphs of ternary hypergraphs are indeed frequent. This proof follows the lines
of the work in [4] and will be done by induction on the order of the hypergraph whose
frequency we wish to establish. In order to carry the induction it will help us to address
the corresponding supersaturation assertion directly. Let us recall to this end that a
homomorphism from a hypergraph F to another hypergraph H is a map ϕ : V pF q ÝÑ V pHq

sending edges of F to edges of H; explicitly, this means that tϕpxq, ϕpyq, ϕpzqu P EpHq is
required to hold for every triple xyz P EpF q. The set of these homomorphisms is denoted
by HompF,Hq and hompF,Hq “ |HompF,Hq| stands for the number of homomorphisms
from F to H.

Proposition 5.4. Given a hypergraph F which is a subhypergraph of some ternary hyper-
graph and a function d : p0, 1q Ñ p0, 1q, there are constants η, ξ ą 0 such that

hompF,Hq ě ξvpHqvpF q

is satisfied by every hypergraph H with the property that epUq ě dpεq|U |3{6 holds whenever
U Ď V pHq, ε P rη, 1s, and |U | ě ε |V pHq|.

Proof. We argue by induction on vpF q. The base case vpF q ď 2 is clear, since then F

cannot have any edge and η “ ξ “ 1 works. For vpF q “ 3 we take η “ 1 as well
as ξ “ dp1q. As every edge of H gives rise to six homomorphisms from F to H we get
indeed hompF,Hq ě 6epHq ě dp1qvpHq3.

For the induction step let a hypergraph F with vpF q ě 4 and a function d : p0, 1q Ñ p0, 1q
be given. Let ` ě 2 be minimal with F Ď T`. For simplicity we will suppose that F is in
fact an induced subhypergraph of T`.

Again we take a partition V pT`q “ V1 Ÿ V2 Ÿ V3 such that Vi spans a copy of T`´1 for
i “ 1, 2, 3 and all further edges of T` are of the form v1v2v3 with vi P Vi for i “ 1, 2, 3. By
symmetry we may suppose, after a possible renumbering of indices, that |V pF q X V3| ě 2
holds. Let F12 and F3 be the restrictions of F to V1YV2 and V3, respectively. Moreover, we
will need the hypergraph F˚ arising from F by deleting all but one vertex from V pF q X V3.
An alternative and perhaps helpful description of F˚ is that it can be obtained from F12 by
adding a new vertex z and all triples v1v2z with v1 P V pF q X V1 and v2 P V pF q X V2.

Intuitively the reason why there should be many homomorphisms from F into an n-vertex
hypergraph H satisfying some local density condition is the following. Due to vpF˚q ă vpF q

we may assume by induction that hompF˚, Hq “ ΩpnvpF˚qq. This means that there is a
collection of ΩpnvpF12qq homomorphisms ϕ from F12 to H that can be extended in Ωpnq
many ways to a member of HompF˚, Hq. For each such ϕ the set Aϕ Ď V pHq consisting
of the possible images of the new vertex z in such an extension inherits a local density
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condition, because its size is linear, and a further use of the induction hypothesis shows that
there are ΩpnvpF3qq homomorphisms from F3 to Aϕ. These homomorphisms can in turn be
regarded as extensions of ϕ to members of HompF,Hq. This argument can be performed
for any ϕ and thus we get HompF,Hq ě ΩpnvpF12qq ¨ ΩpnvpF3qq “ ΩpnvpF qq.

Proceeding now to the details of this derivation let η˚ and ξ˚ denote the constants
obtained by applying the induction hypothesis to F˚ and dp¨q. The minimality of `
implies vpF3q ă vpF q and therefore we may apply the induction hypothesis to F3 and
the function d1 : p0, 1q Ñ p0, 1q defined by ε ÞÝÑ dpε ¨ ξ˚{2q, thus obtaining two further
constants η3 and ξ3. We contend that

η “ min
`

η˚,
1
2ξ˚η3

˘

and ξ “
ξ
vpF3q`1
˚ ξ3

2vpF3q`1

have the requested properties.
Now let any hypergraph H with epUq ě dpεq|U |3{6 for all ε P rη, 1s U Ď V pHq with

|U | ě ε |V pHq| be given and put n “ vpHq. Due to η˚ ě η we have

hompF˚, Hq ě ξ˚n
vpF˚q . (5.7)

For every homomorphism ϕ P HompF12, Hq we consider the set

Aϕ “
 

v P V pHq : ϕY tpz, vqu P HompF˚, Hq
(

of vertices that can be used for extending ϕ to a homomorphism ϕ Y tpz, vqu from F˚

to H. It will be convenient to identify these sets with the subhypergraphs of H they induce.
Finally we define

Φ “
 

ϕ P HompF12, Hq : |Aϕ| ě 1
2ξ˚n

(

to be the set of those homomorphisms from F12 to H that admit a substantial number of
such extensions.

Since vpF˚q “ vpF12q ` 1 we obtain from (5.7)

ξ˚n
vpF12q`1

ď
ÿ

ϕPHompF12,Hq

|Aϕ| ď |Φ| ¨ n` nvpF12q ¨ 1
2ξ˚n ,

whence
|Φ| ě 1

2ξ˚n
vpF12q . (5.8)

Moreover it is clear that

hompF,Hq “
ÿ

ϕPHompF12,Hq

hompF3, Aϕq (5.9)

and the next thing we show is that for every ϕ P Φ we have

hompF3, Aϕq ě ξ3
`1

2ξ˚n
˘vpF3q . (5.10)
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Owing to our inductive choice of η3 and ξ3 it suffices for the verification of this estimate
to show that if ε P rη3, 1s, U Ď Aϕ, and |U | ě ε|Aϕ|, then epUq ě d1pεq|U |3{6. But since
ϕ P Φ leads to |U | ě 1

2εξ˚n, this follows immediately from 1
2εξ˚ ě

1
2ξ˚η3 ě η, the definition

of d1, and from our choice of H.
Taken together (5.9), (5.10), and (5.8) yield

hompF,Hq ě
ÿ

ϕPΦ
hompF3, Aϕq ě |Φ| ¨ ξ3

`1
2ξ˚n

˘vpF3q
ě
ξ
vpF3q`1
˚ ξ3

2vpF3q`1 nvpF q ,

as desired. �

Proposition 5.4 implies that all subhypergraphs of ternary hypergraphs are frequent and
combined with Lemma 5.3 this shows that being frequent is a decidable property.

§6. Concluding remarks

6.1. Hypergraphs with uniformly positive density. In [13, Section 2] we defined for
a given antichain A Ď ℘prksq and given real numbers d P r0, 1s, η ą 0 the concept of
a k-uniform hypergraph being pd, η,A q-dense. An obvious modification of (3.1) does then
lead to corresponding generalised Turán densities πA pF q of k-uniform hypergraphs F . Now
the question presents itself to determine πA pF q for all antichains A and all hypergraphs F .
At the moment this appears to be a hopelessly difficult task, as it includes, among many
further variations, the original version of Turán’s problem to determine the ordinary Turán
density πpF q of any hypergraph F .

For the time being it might be more reasonable to focus on the case A “ rkspk´2q (or
stronger density assumptions), as it might be that for this case one can establish a theory
that resembles to some extent the classical theory for graphs initiated by Turán himself
and developed further by Erdős, Stone, and Simonovits and many others.

Another possible direction is to characterise for given A the hypergraphs F with
πA pF q “ 0 and here it seems natural to pay particular attention to the symmetric case,
when A “ rkspjq contains all j-element subsets of rks. Let us now describe an extension
of Thereom 1.2 to this setting. First of all, a k-uniform hypergraph H “ pV,Eq is said to
be pd, η, jq-dense, for real numbers d P r0, 1s, η ą 0, and j P rk ´ 1s, if for every j-uniform
hypergraph G on V the collection KkpGq of all k-subsets of V inducing a clique Kpjq

k in G
obeys the estimate

ˇ

ˇE XKkpGq
ˇ

ˇ ě d
ˇ

ˇKkpGq
ˇ

ˇ´ η |V |k .
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One then defines for every k-uniform hypergraph F

πjpF q “ sup
 

d P r0, 1s : for every η ą 0 and n P N there exists an F -free,

pd, η, jq-dense, k-uniform hypergraph H with |V pHq| ě n
(

and [13, Proposition 2.5] shows that these densities πjp¨q agree with the densities πrkspjqp¨q
alluded to in the first paragraph of this subsection.

For j “ k´1 it is known that every k-uniform hypergraph F satisfies πk´1pF q “ 0, which
follows for example from the work in [6]. Thereom 1.2 address the case j “ k ´ 2 for k “ 3
and for general k we obtain the following characterisation.

Theorem 6.1. For a k-uniform hypergraph F , the following are equivalent:

(a ) πk´2pF q “ 0.
(b ) There are an enumeration of the vertex set V pF q “ tv1, . . . , vfu and a k-colouring

ϕ : BF Ñ rks of the pk ´ 1q-sets of vertices covered by hyperedges of F such that
every hyperedge e “ tvip1q, . . . , vipkqu P EpF q with ip1q ă ¨ ¨ ¨ ă ipkq satisfies

ϕper tvip`quq “ ` for every ` P rks . (6.1)

This can be established in the same way as Theorem 1.2, but using the hypergraph
regularity lemma for k-uniform hypergraphs. For the corresponding notion of reduced
hypergraphs we refer to [13, Definition 4.1] and for guidance on the reduction corresponding
to Section 3 above we refer to the part of the proof of [13, Proposition 4.5] presented in
Section 4 of that article.

For j P rk´3s we believe Theorem 6.1 extends in the natural way, where the k-colouring ϕ
in part (b ) is replaced by a

`

k
j`1

˘

-colouring of the pj ` 1q-sets covered by an edge of F and
condition (6.1) is replaced by a statement to the effect that the edges of F are rainbow and
mutually order-isomorphic when one takes these colours into account.

For j “ 0 such a characterisation leads to k-partite k-uniform hypergraphs F and, hence,
such a result renders a common generalisation of Erdős’ result from [1] and Theorem 6.1
and we shall return to this in the near future.

Despite this progress the problem to describe for an arbitrary (asymmetric) antichain
A Ď ℘prksq the k-uniform class tF : πA pF q “ 0u remains challenging. In the 3-uniform
case the investigation of tF : π pF q “ 0u and tF : π pF q “ 0u, where “ t1, 23u and
“ t12, 13u, shows that algebraic structures enter the picture and this is currently work in

progress of the authors.
We close this section with the following questions that compares π pF q “ π1pF q with πpF q

for 3-uniform hypergraphs.
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Question 6.2. Is π1pF q ă πpF q for every 3-uniform hypergraph F with πpF q ą 0 ?

Roughly speaking, this questions has an affirmative answer, if no 3-uniform hypergraph F
with positive Turán density has an extremal hypergraph H that is uniformly dense with
respect to large vertex sets U Ď V pHq (see also [3, Problem 7] for a related assertion). In
light of the fact, that all known extremal constructions for such 3-uniform hypergraphs F
are obtained from blow-ups or iterated blow-ups of smaller hypergraphs, which fail to be
pd, η, 1q-dense for all d ą 0 and sufficiently small η ą 0, the answer to Question 6.2 might be
affirmative. Recalling that πpF q “ π0pF q may suggest many generalisations of Question 6.2
to k-uniform hypergraphs F of the form: For which F do we have πjpF q ă πipF q for
0 ď i ă j ă k? At this point this is only known for i “ 0 and j “ k ´ 1 and Question 6.2
is the first interesting open case.

6.2. Hypergraphs with uniformly vanishing density. Definition 1.5 admits a straigth-
forward generalisation to k-uniform hypergraphs: one just replaces all occurrences of the
word “hypergraph” by “k-uniform hypergraph” and all occurrences of the number 3 by k.

The sequence of ternary hypergraphs generalises to a sequence pT pkqn qnPN of k-uniform
hypergraphs that might be called k-ary and are defined as follows. The vertex set of T pkqn

is rksn and given k vertices áx1, . . . ,
á
xk, say with coordinates áxi “ pxi1, . . . , xinq for i P rks one

looks at the least number m P rns for which x1m “ ¨ ¨ ¨ “ xkm fails and declares táx1, . . . ,
á
xku

to be an edge of T pkqn if and only if tx1m, . . . , xkmu “ rks holds. The proof of Theorem 1.7
(and of Lemma 5.3) generalises in the following way (see [4]).

Theorem 6.3. A k-uniform hypergraph F on ` vertices is frequent if, and only if it is a
subhypergraph of the k-ary hypergraph T pkq` on k` vertices. �

Some further questions concerning frequent hypergraphs arise naturally and below we
discuss a few of them.

In the context of 3-uniform hypergraphs one may use three sets instead of one set in the
definition of d-dense (see Definition 1.5 (a )) and this leads to a question that is somewhat
different from the one answered by Theorem 1.7. This happens because the – perhaps
on first sight expected – analogue of (3.2) does not hold. More explicitly, we say that a
sequence

á

H “ pHnqnPN of 3-uniform hypergraphs with vpHnq Ñ 8 as nÑ 8 is pd, q-dense
for a function d : p0, 1q Ñ p0, 1q provided that for every η ą 0 there is some n0 P N such
that for every n ě n0 and all choices of X, Y, Z Ď V pHnq with |X||Y ||Z| ě η|V pHnq|

3 there
are at least dpηq|X||Y ||Z| ordered triples px, y, zq P X ˆ Y ˆZ with xyz P EpHnq. Besides,
a 3-uniform hypergraph F is called -frequent if for every function d : p0, 1q Ñ p0, 1q and
every pd, q-dense sequence

á

H “ pHnqnPN of 3-uniform hypergraphs there exists an n0 P N

with F Ď Hn for every n ě n0.
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The relation of this concept to being d-dense is as follows: If a sequence
á

H of 3-uniform
hypergraphs is pd, q-dense, then, by looking only at the case X “ Y “ Z in the definition
above, one sees that

á

H is also d-dense. On the other hand, being d-dense does not even
imply being pd1, q-dense for any function d1. As an example we mention that the sequence
of ternary hypergraphs fails to be pd, q-dense for every d : p0, 1q Ñ p0, 1q.

As a corollary of Theorem 1.7 subhypergraphs of ternary hypergraphs are -frequent,
but the converse implication may not hold. This leads to the following intriguing problem.

Problem 6.4. Characterise -frequent 3-uniform hypergraphs.

Similar to studying πjp¨q for k-uniform hypergraphs for every j ă k one may study
dense sequences with respect to different uniformities. More precisely, for a given integer
j P rk ´ 1s and a function d : p0, 1q Ñ p0, 1q we say that a sequence

á

H “ pHnqnPN of
k-uniform hypergraphs with vpHnq Ñ 8 as nÑ 8 is pd, jq-dense if for every η ą 0 there
is an n0 P N such that for every n ě n0 and every j-uniform hypergraph G on V pHnq with
|KkpGq| ě η|V pHnq|

k the estimate
ˇ

ˇEpHnq XKkpGq
ˇ

ˇ ě dpηq|KkpGq|

holds. Moreover, a k-uniform hypergraph F is defined to be j-frequent if for every func-
tion d : p0, 1q Ñ p0, 1q and every pd, jq-dense sequence

á

H “ pHnqnPN of k-uniform hyper-
graphs there exists an n0 P N with F Ď Hn for every n ě n0. In particular, 1-frequent is
the same as frequent in the sense of Theorem 6.3.

Similar as discussed above the k-ary hypergraphs show that there is a subtle difference
between pd, 1q-dense sequences and pd, rksp1qq-dense sequences (where we take k sets instead
of one set). However, for j ě 2 one can follow the argument presented in the proof
of [13, Proposition 2.5] to show that a k-uniform hypergraph F is j-frequent if and only
if it is rkspjq-frequent (defined in the obvious way). As a result one can show that every
k-uniform hypergraph F is pk ´ 1q-frequent by following the inductive proof on the number
of edges of the counting lemma for hypergraphs. This leaves open to characterise the
j-frequent hypergraphs for j P r2, k ´ 2s.

Finally, we mention that one may also consider pd,A q-dense sequences of hypergraphs
for asymmetric antichains A and characterising A -frequent hypergraphs is widely open.
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