HYPERGRAPHS WITH VANISHING TURAN DENSITY IN
UNIFORMLY DENSE HYPERGRAPHS
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ABSTRACT. P.Erdé8s [On extremal problems of graphs and generalized graphs, Israel Journal
of Mathematics 2 (1964), 183-190] characterised those hypergraphs F' that have to appear
in any sufficiently large hypergraph H of positive density. We study related questions for
3-uniform hypergraphs with the additional assumption that H has to be uniformly dense
with respect to vertex sets. In particular, we characterise those hypergraphs F' that are
guaranteed to appear in large uniformly dense hypergraphs H of positive density. We also
review the case when the density of the induced subhypergraphs of H may depend on the

proportion of the considered vertex sets.

§1. INTRODUCTION

Unless said otherwise, all hypergraphs considered here are 3-uniform. For such a hyper-
graph H = (V| E) the set of vertices is denoted by V' = V(H) and we refer to the set of
hyperedges by E = E(H). Moreover, we denote by dH < V® the subset of all two element
subsets of V', that contains all pairs covered by some hyperedge e € E. For a hyperedge
{z,y, 2z} € F we sometimes simply write zyz € E.

A classical extremal problem introduced by Turan [17] asks to study for a given hypergraph
F' its extremal function ex(n, F') sending each positive integer to the maximum number of
edges that a hypergraph of order n can have without containing F' as a subhypergraph. In

particular, one often focuses on the Turdn density w(F') of F' defined by

F
7(F) = lim L((Z’ )
= (5)
The problem to determine the Turan densities of all hypergraphs is known to be very hard
and so far it has been solved for a few hypergraphs only. A general result in this area due
to Erdés [1] asserts that a hypergraph F satisfies 7(F') = 0 if and only if it is tripartite in
the sense that there is a partition V(F) = X v Y v Z such that every edge of F' contains

precisely one vertex from each of X, Y, and Z.
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Following a suggestion by Erdés and Sés [3] we studied variants of Turdn’s problem for
uniformly dense hypergraphs [10-13]. Instead of finding the desired hypergraph F' in an
arbitrary “host” hypergraph H of sufficiently large density one assumes in these problems
that there are no “sparse spots” in the edge distribution of H. There are various ways to
make this precise and we refer to [11, Section 4] and [13, Section 2] for a more detailed
discussion. Here we consider two closely related concepts, where the hereditary density

condition pertains to large sets of vertices (see Sections 1.1 and 1.2 below).

1.1. Uniformly dense hypergraphs with positive density. The first concept we dis-
cuss here continues our work from [10-13]. Roughly speaking, this notion guarantees

density d for all hypergraphs induced on sufficiently large vertex sets of linear size.

Definition 1.1. For real numbers d € [0, 1] and > 0 we say that a hypergraph H = (V| E)
is (d,n,1)-dense if for all U < V' the estimate

U
‘U(S) A E" > d(‘g‘) _77|V|3
holds, where U®) denotes the set of all three element subsets of U.

The Turan densities associated with this concept are defined by

™ (F) = sup{d € [0,1]: for every n > 0 and n € N there exists
an F-free, (d,n,1)-dense hypergraph H with |V (H)| > n} .

Our main result characterises all hypergraphs F' with m (F) = 0.

Theorem 1.2. For a 3-uniform hypergraph F', the following are equivalent:
(a) m(F)=0.
(b) There is an enumeration of the vertex set V(F) = {vy,...,vs} and there is a three-

colouring ¢: OF — {red, blue, green} of the pairs of vertices covered by hyperedges
of F' such that every hyperedge {v;,v;, vy} € E(F) with i < j < k satisfies

o(v;,v;) =red, @(v;,v,) = blue, and ¢(vj,v;) = green.

It is easy to see that tripartite hypergraphs F' satisfy condition (b). Moreover, it
follows from the work in [8] that every linear hypergraph F satisfies 71(F) = 0. Linear
hypergraphs have the property that every element of 0F is contained in precisely one
hyperedge of F. Consequently, we may consider an arbitrary vertex enumeration of F' and
then a colouring of JF satisfying condition (b ) is forced. However, there are hypergraphs

displaying condition (), that are neither tripartite nor linear. For example, one can
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F1Gure 1.1. Colouring of 86’5(3)_ showing that m (C’E(,3)_) = (. The ordering
demanded by Theorem 1.2 (b) is from left to right, i.e., z <w <v < z <y,
whereas on the cycle the vertices are ordered alphabetically with edges

VWIT, WIY, TYZ, YZV.

check that the hypergraph obtained from the tight cycle on five vertices by removing one
hyperedge is such a hypergraph F' (see Figure 1.1).

The easier implication of Theorem 1.2 is “(a) = (b).” For its proof we exhibit a
“universal” hypergraph H all of whose subhypergraphs obey condition () and all of whose
linear sized induced subhypergraphs have density 2—17 —o(1). In other words, our argument

establishing this implication does actually yield the following strengthening.

Fact 1.3. If a hypergraph F does not have property (b) from Theorem 1.2, then w1 (F) > 2—17

Proof. Given a positive integer n consider a three-colouring ¢: [n]® — {red, blue, green}
of the pairs of the first n positive integers. We define a hypergraph H,, with vertex set [n]
by regarding a triple {i, j, k} with 1 < i < j < k < n as being a hyperedge if and only if
©(i,7) =red, (i, k) = blue, and ¢(j, k) = green. Standard probabilistic arguments show
that when ¢ is chosen uniformly at random, then for any fixed > 0 the probability that H.,
is (1/27,m,1)-dense tends to 1 as n tends to infinity. On the other hand, as F' does not
satisfy condition (b) from Theorem 1.2, it is in a deterministic sense the case that F' is never

a subgraph of H, no matter how large n becomes. Thus we have indeed m(F') > O

1
27"
The combination of Theorem 1.2 and Fact 1.3 leads immediately to the following

consequence, which shows that m; “jumps” from 0 to at least 2%

Corollary 1.4. If a hypergraph F satisfies w(F) > 0, then m (F) > 5.

At this point the optimality of Corollary 1.4 is unknown and it remains an open problem

to determine the infimum over all non-zero values of m(-).

1.2. Uniformly dense hypergraphs with vanishing density. The second concept we

discuss here is closely related to the one from Definition 1.1. It was introduced by Erdés
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and S6s in [3] (see also [2, page 24]). To prepare its definition we need a concept of being
d-dense when d can be a function rather than just a single number and we shall consider

sequences of hypergraphs instead of just one individual hypergraph.

Definition 1.5.  (a) Let H = (Hp)new be a sequence of hypergraphs with |V (H,,)| — o
as n — o and let d: (0,1) — (0,1) be a function. We say that H is d-dense
provided that for every n € (0,1) there is an ng € IN such that for n > ng every
Uc V(H,) with |U| = n|V(H,)| satisfies

U® ~ E(H,)| > d(n)(g‘) .

(b) A hypergraph F'is called frequent if for every function d: (0,1) — (0,1) and every
d-dense sequence H = (H,)qew of hypergraphs there is an integer ny such that F is
a subhypergraph of every H,, with n > n,.

Erdds and Sos [3, Proposition 3| described the following instructive example (7, ),en of a
sequence of ternary hypergraphs that is d-dense for some function d(-), but not uniformly
dense in the sense of Definition 1.1. Take the vertex set of T, to be the set {0,1,2}" of all
sequences with length n all of whose entries are 0, 1, or 2. Given three distinct vertices of
Tn,say & = (x1,...,20), Y = (Y1,---,Yn), and z = (21, ..., z,) there is a least integer i € [n]
for which x; = y; = z; is not the case and we put a hyperedge {z,y, z} into E(T,) if and
only if this index 7 satisfies {x;, y;, z;} = {0, 1,2}. It was stated in [3] that the sequence of
ternary hypergraphs is d-dense for some appropriate function d(-) and a short proof of this

fact appeared in [4]. In Section 5 we obtain the following improvement.

Proposition 1.6. The sequence of ternary hypergraphs (T, )nen is d-dense for any function
2
d: (0,1] — (0,1] with d(n) < pFa@T,

Considering subsets U < V (T},) of the form U = {0,1}" x {0, 1,2}"" shows that Propo-
sition 1.6 is optimal whenever n = (2/3)" for some r € IN. Since ternary hypergraphs are
d-dense for some function d(-), it follows that every frequent hypergraph must be contained
in some ternary hypergraph and Erdds wondered in [2] whether the converse of this holds as
well. This was indeed verified by Frankl and Rodl in [4] and the following characterisation

can be viewed as an analogue of Theorem 1.2 for d-dense hypergraphs.

Theorem 1.7. A hypergraph F is frequent if, and only if it occurs as a subhypergraph of a
ternary hypergraph. O

It is not hard to show (see Lemma 5.3) that if F' is a subhypergraph of some ternary
hypergraph, then F' < Tjy(r)| and, consequently, Theorem 1.7 entails, that it is decidable

whether a given hypergraph is frequent or not.
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Organisation. The proof of the implication “(b) = (a)” of Theorem 1.2 utilises the
hypergraph regularity method that is revisited in Section 2. This method allows us in
Section 3 to reduce the problem of embedding hypergraphs satisfying the condition (b) in
Theorem 1.2 into uniformly dense hypergraphs to a problem concerning so-called reduced
hypergraphs. This reduction will be carried out in Section 3 and the main argument will
then be given in Section 4. In Section 5 we prove Proposition 1.6, which implies the forward
implication of Theorem 1.7.

For a more complete presentation we include a short proof of the backward implication of
Theorem 1.7 as well, which follows the lines of the proof in [4]. In contrast to the proof of
the implication “(b) == (a)” of Theorem 1.2 this proof is somewhat simpler and is based
on a supersaturation argument. Extensions of our results to k-uniform hypergraphs with

k > 3 will be discussed in the concluding remarks.

§2. HYPERGRAPH REGULARITY

A key tool in the proof of Theorem 1.2 is the regularity lemma for 3-uniform hypergraphs.
We follow the approach from [15,16] combined with the results from [7] and [9].

For two disjoint sets X and Y we denote by K(X,Y') the complete bipartite graph with
that vertex partition. We say that a bipartite graph P = (X v Y, E) is (09, d2)-regular if
for all subsets X’ < X and Y’ € Y we have

|e(X"Y") = dao X'|IY|| < 02/ X[IY],
where e(X’,Y”) denotes the number of edges of P with one vertex in X’ and one vertex in Y.
Moreover, for k > 2 we say a k-partite graph P = (X; v ... v Xy, E) is (d, dy)-regular,
if all its (g) naturally induced bipartite subgraphs P[X;, X;] are (d2, ds)-regular. For a
tripartite graph P = (X wY w Z, E) we denote by K3(P) the triples of vertices spanning a

triangle in P, i.e.,
Ks(P)={{z,y,2} =S X Y U Z: zy,xz,yz € E}.
If the tripartite graph P is (09, ds)-regular, then the triangle counting lemma implies
Ks(P)] < dy| XI[Y[|Z] + 36:| XY | Z] . (2.1)
We say a 3-uniform hypergraph H = (V, Ey) is regular w.r.t. a tripartite graph P if it

matches approximately the same proportion of triangles for every subgraph @ < P.

Definition 2.1. A 3-uniform hypergraph H = (V, Ey) is (03, d3)-regular w.r.t. a tripartite
graph P = (X wY v Z, Ep) with V 2 X UY u Z if for every tripartite subgraph @ < P
we have

By A K3(Q)] — ds|K3(Q)]| < 65|K3(P)] .
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Moreover, we simply say H is d3-reqular w.r.t. P, if it is (03, d3)-regular for some ds > 0.
We also define the relative density of H w.r.t. P by
|En 0 K3(P)]
Ks(P)|
where we use the convention d(H|P) = 0 if K£3(P) = @. If H is not ds-regular w.r.t. P,

then we simply refer to it as d3-irreqular.

d(H|P) =

The regularity lemma for 3-uniform hypergraphs, introduced by Frankl and Rodl in [5],
provides for a hypergraph H a partition of its vertex set and a partition of the edge sets of
the complete bipartite graphs induced by the vertex partition such that for appropriate
constants 03, d9, and ds

(1) the bipartite graphs given by the partitions are (ds, ds)-regular and

(2) H is d3-regular for “most” tripartite graphs P given by the partition.
In many proofs based on the regularity method it is convenient to “clean” the regular
partition provided by the lemma. In particular, we shall disregard hyperedges of H that
belong to IC3(P) where H is not ds-regular or where d(H|P) is very small. These properties

are rendered in the following somewhat standard corollary of the regularity lemma.

Theorem 2.2. For every d3 > 0, 3 > 0 and m € N, and every function éo: N — (0, 1],
there exist integers Ty and ng such that for every n = ng and every n-vertex 3-uniform
hypergraph H = (V| E) the following holds.

There exists a subhypergraph H = (V E) C H, an integer { < Ty, a vertex partition

Viv...uV, = V and for all integers i, j with 1 < i < j < m there exists a partition
P = {P;J = (V; wV;,E9): 1 <a<ty of K(V;, V) satisfying the following properties
(1) Vil =+ = V| = (1 = d3)n/ T,

(ii) for every 1 <i < j < m and a € [€] the bipartite graph PY is (55(¢),1/f)-regular,
(i) H is 65-reqular w.r.t. all tripartite graphs

P = Pi o PF o Pk = (Vo V,uV, BT v B v EF), (2:2)

(67

withl1 <i<j<k<manda, 3, vel[l], and d(]:!|P;]5k;) is either O or at least ds,

(i) and for every 1 <i < j <k < m we have
GQ(Vi,V},Vk) 2GH(mv‘G?Vk)*(d3+53)|vi||v}||vk|' O

Owing to their special role we shall refer to the tripartite graphs considered in (2.2) as
triads.

A proof of Theorem 2.2 based on a refined version of the regularity lemma from [15,
Theorem 2.3] can be found in [10, Corollary 3.3].



HYPERGRAPHS WITH VANISHING TURAN DENSITY 7

We shall use the counting/embedding lemma, which allows us to embed hypergraphs of
fixed isomorphism type into appropriate and sufficiently regular and dense triads of the

partition provided by Theorem 2.2. It is a direct consequence of [9, Corollary 2.3].

Theorem 2.3 (Embedding Lemma). Let a hypergraph F with vertez set [f] and d3 > 0 be
given. Then there exist 03 > 0 and functions d3: IN — (0,1] and N: N — N such that the
following holds for every £ € IN.

Suppose P = (Vi w ... v Vi, Ep) is a (02(0), %)—regular, f-partite graph whose vertex
classes satisfy V1| = -+ = |Vy| = N(¢) and suppose H is an f-partite, 3-uniform hypergraph
such that for all edges ijk of F' we have

(a) H is 03-reqular w.r.t. to the tripartite graph P[V; v V; v Vi] and

(b) d(H|P|V; wV; wVi]) = ds,
then H contains a copy of F'. In fact, there is a monomorphism q from F to H with q(i) € V;
for alli € [f]. O

In an application of Theorem 2.3 the tripartite graphs P[V; v V; w Vi] in (a) and (b)
will be given by triads PZY]B’“7 from the partition given by Theorem 2.2. For the proof of
the direction “(b) = (a)” of Theorem 1.2 we consider for a fixed hypergraph F' obeying
condition () and fixed € > 0 a sufficiently large uniformly dense hypergraph H of density e.
We will apply the regularity lemma in the form of Theorem 2.2 to H. The main part of the
proof concerns the appropriate selection of dense and regular triads, that are ready for an
application of the embedding lemma. In Section 3 we formulate a statement about reduced
hypergraphs telling us that such a selection is indeed possible and in Section 4 we give its

proof.

§3. MOVING TO REDUCED HYPERGRAPHS

In our intended application of the hypergraph regularity method we need to keep track
which triads are dense and regular and natural structures for encoding such information
are so-called reduced hypergraphs. We follow the terminology introduced in [12, Section 3].

Consider any finite set of indices I, suppose that associated with any two distinct
indices 4,7 € I we have a finite nonempty set of vertices P¥, and that for distinct pairs
of indices the corresponding vertex classes are disjoint. Assume further that for any
three distinct indices 4,7,k € I we are given a tripartite hypergraph AY* with vertex
classes P, P* and P’*. Under such circumstances we call the ('Q)—partite hypergraph A
defined by

V4= () P and  EA)= [] BEA

{i,gj}el® {i.j kel
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a reduced hypergraph. We also refer to I as the index set of A, to the sets P¥ as the vertex
classes of A, and to the hypergraphs A%* as the constituents of A. The order of the indices
appearing in the pairs and triples of the superscripts of the vertex classes and constituents
of A plays no role here, i.e., P9 = Pi* and AY* = A¥J etc. For p > 0 such a reduced
hypergraph A is said to be u-dense if

BLAT)| > o [P [P [P

holds for every triple {4, j, k} € I3,
In the light of the hypergraph regularity method, the proof of Theorem 1.2 reduces to

the following statement whose proof will be given in the next section.

Lemma 3.1. Given p > 0 and f € N there exists an integer m such that the following
holds. If A is a p-dense reduced hypergraph with index set [m], vertex classes P¥, and
constituents A“¥ then there are
(7) indices A(1) < -+ < A(f) in [m] and
(ii) for each pair 1 <r < s < f there are three vertices Poy™® PATAS) - gng P
in PMNPAs)

such that for every triple of indices 1 <r < s <t < m the three vertices PQEIWS), 1;\1512)/\(t)f
and P;g‘z)lf‘(t) form a hyperedge in ANDASAE),

At the end of this section we will prove that this lemma does indeed imply Theorem 1.2.
For this purpose it will be more convenient to work with an alternative definition of m; that
we denote by .. In contrast to Definition 1.1 it speaks about being dense with respect to

three subsets of vertices rather than just one.

Definition 3.2. A hypergraph H = (V, E) of order n = |V| is (d,n,..)-dense if for every
triple of subsets X,Y,Z < V the number e.(X,Y, Z) of triples (z,y,2) € X xY x Z

with zyz € F satisfies

(XY, Z) = d|X||Y||Z] - nn’.
Accordingly, we set

T.(F) = sup{d € [0,1]: for every n > 0 and n € IN there exists
an F-free, (d,n,)-dense hypergraph H with |V/(H)| > n}. (3.1)

Applying [13, Proposition 2.5] to k = 3 and j = 1 we deduce that every hypergraph F’

satisfies

7o (F) = m(F). (3.2)
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Consequently it is allowed to imagine that in clause (a) of Theorem 1.2 we would have
written 7. (F') = 0 instead of m(F) = 0.

Proof of Theorem 1.2 assuming Lemma 3.1. The implication “(a) = (b)” is implicit in
Fact 1.3, meaning that we just need to consider the reverse direction. Suppose to this end
that a hypergraph F' satisfying condition (b) and some € > 0 are given. We need to check
that for € » n » n~! every (g,7,.)-dense hypergraph H of order n contains a copy of F.
Of course, we may assume that V(F) = [f] holds for some f € N. Plugging F' and
ds = § into the embedding lemma we get a constant d3 > 0, a function d;: IN — (0, 1], and
a function N: IN — N. Evidently we may assume that d5 < £, that 65(¢) « ¢!, and that
N is increasing. Applying Lemma 3.1 with p = ¢ and f we obtain an integer m. Given d3,

d3, m, and 0o(+) we get integers Ty and ng from Theorem 2.2. Finally we choose

g(1 —d3)3
77:(47_633> and ’n,1=2T0N(T0)

Now consider any (g,n,.~)-dense hypergraph H of order n > n;. We contend that F
appears as a subhypergraph of H. To see this we take
e a subhypergraph = (V,E) < H,

e a vertex partition V; v ... vV, = V,

an integer ¢ < Ty,

e and pair partitions PY = {PY = (V; w V;, EY): 1 < a < £} of K(V;,V;) for all

l<i<j<m
satisfying the conditions (7)—(iv) from Theorem 2.2. The reduced hypergraph A corre-
sponding to this situation has index set [m], vertex classes P and a triple {PY, P§*, PI*}
is defined to be an edge of the constituent A“* if and only if d(H |P;]Bk;) > d3. As we shall
verify below,
A is p-dense. (3.3)

Due to Lemma 3.1 this means that there are

e indices A(1) < --- < A(f) in [m] and

e for cach pair 1 < r < s < f there are vertices Pag M) pYIAE) pArA(s) ¢ pAr)

iy lue green

such that for every triple of indices 1 < r < s < ¢ < m the three vertices Prc*) pir) A(t),

and PX®A®) form a hyperedge in AMNMASAG - These vertices correspond to bipartite graphs

green

forming dense regular triads. Since we have

1—903)n
‘V)\(l)‘ == ‘V)\(f)’ = <To Z*ZN(T@) ZN(g),

the embedding lemma is applicable to the hypergraph H and to the f-partite graph with ver-

tex partition (1,15 Vae) and edge set ), .cop 2((;2;\)(5)(3))7 where ¢: 0F — {red, blue, green}
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denotes any colouring exemplifying that I’ does indeed possess property (b) from Theo-
rem 1.2. Consequently, the monomorphism guaranteed by Theorem 2.3 yields a copy of F
in H < H.

So to conclude the proof it only remains to verify (3.3). Suppose to this end that some

triple {7, j, k} € [m]? is given. We have to verify that
[B(AT)| = u [P9| [P [P] = 26, (3.4)
Using that H is (e,7,..)-dense we infer
en(Vis Vis Vi) = < Vi Vi Vil —

and by our choice of 7 it follows that
(1—433)\° 4n
vl > (G2 = s
So altogether we have

en(Vi, Vj, Vi) = 3e Vil [V;] Vil -

In combination with §3 < £ = d3 and condition (7v) from Theorem 2.2 this entails

%
e (Vi, Vi, Vi) = e Vil [Vj] VAl (3.5)

On the other hand, by the triangle counting lemma (2.1) and §; « £~! each triad P;]B}i/
satisfies

Ka(Pi) < (67 + 302(0) Vil IV [Vil < 267V IV Vil

apy
for which reason
ey (Vi Vi, Vi) < [E(ATR)[ - 207 |Vi] V3 Vi -
Together with (3.5) this proves (3.4) and, hence, the implication from Lemma 3.1 to
Theorem 1.2. O

§4. PROOF OF THEOREM 1.2

This entire section is devoted to the proof of Lemma 3.1. We begin by outlining the main
ideas of this proof. The argument proceeds in three stages. In the first of them we will
choose a subset X < [m] and for any two indices r < s from X some vertex P.% € P such
that if » < s < t are from X, then P’ has large degree in A", where “large” means at
least p/ |[P"||P5!| for some p’' depending only on p. This argument will have the property
that for fixed f and u the size of X can be made as large as we wish by starting from a
sufficiently large m. Then, in the next stage, we shrink the set X further to some Y € X
and select vertices P/} € P for all indices r < t from Y such that if r < s < ¢ are from YV’

then the pair-degree of P.5 and PJf . in A™" is still reasonably large, i.e., at least p” |P*|
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for some p” that depends again only on u. Finally for some Z € Y of size f we will manage
to pick vertices Pyl., for s <t from Z such that whenever r < s <t are from Z the triple

o Plle Poteen appears in A, For this to succeed we just need |Y| and hence also | X| and
m to be large enough depending on f and u. We then enumerate Z = {A(1),...,\(f)} in
increasing order to conclude the argument.

The construction we use for the first stage proceeds in m* = | X| steps. In the first step
we just select 1 € X. In the second step we put 2 into X and we will also make a decision
concerning P2. For that we ask every candidate k € [3,m] that might be put into X in
the future to propose suitable choices for P12. This leads us to consider for each such k the
set Pi2.q = P'? of vertices with degree & - [P'F|[P?*] in A'?*. Since A is p-dense we have
[P Tedl = 5 L -|P™2| for each k = 3. Thus we can choose a vertex P.Z in such a manner that
it belongs to Pk 'oq for many k’s. From now on we restrict our attention to such £’s only.
The third step begins by putting the smallest such &k into X. If this happens to be, e.g., 7
then we ask each still relevant & > 7 for an opinion about the possible choices for the pair
(P, P2T) and then we choose these two vertices in such a way that there are sufficiently
many possibilities to continue. The general situation after h such steps is described in
Lemma 4.1 below and the simpler Corollary 4.2 contains all that is needed for our intended
application.

When reading the statement of the following lemma it might be helpful to think of M, m,
and ¢ there as being m, m*, and £ from the outline above. Also, ni,...,n; correspond
to the indices which were already put into X whilst nyq,...,n,, are the indices that still

have a chance of being put into X in the future.

Lemma 4.1. Given € € (0,1) and positive integers m = h there exists a positive integer

M = M(g,m,h) for which the following is true. Suppose that we have

e nonempty sets P™ for 1 <r <s< M and
o further sets Pii.q S P with |Pyi.q| = €|P™| for 1 <r <s<t< M,

then there are indices ny < -+ < ny, in [M] and there are elements Py’ € P™" for
1 <r <s<h such that

preis < s
red nt,red *

te(s,m]

Proof. We argue by induction on h. For the base case h = 1 we may take M (e, m,1) =m
and n, = r for all r € [m]; because no vertices P~5 have to be chosen, the conclusion holds

vacuously.
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Now suppose that the result is already known for some integer h and all relevant pairs

of £ and m, and that an integer m > h + 1 as well as a real number € € (0, 1) are given. Set

[m—h—l

0 } and M = M(e,m,h+1)= M(e,m' h).

To see that M is as desired, let sets P"* and P4 as described above be given. Due to the

definition of M, there are indices ny < -+ < n,y in [M] and certain PLy" € P™™ such

that Piy* € P,y holds whenever 1 <7 <s <t <m' and s < h. We set

(@ — 'Pnlnh+1 DR % 'Pnhnh+1 .
For each h-tuple (Py,..., P,) € & we write

Q(Py,...,P) ={te[h+2,m]: P, eP, " for every r € [h]}. (4.1)

n¢,red

By counting the elements of
{(t,Pl,...,Ph)Z tEQ(Pl,...,Ph)}

in two different ways and using the lower bounds |P, | = e|P™"+1| we get

Y, lew,....p Z H\Psf?éld“\/ (m' —h-1)e"|2|.
(P1,...,Pp)e? t=h+27=

Hence, we may fix an h-tuple (P, ..., P,) € & with
Q(P.,....,P)|=(m —h—1e">m—h—-1.
Now let ¢,,5 < --- < £, be any elements from

={n: teQ(Pr,..., )}

in increasing order. Set
0, =n, for all r € [h + 1] as well as Poy""** = P, for all r € [h].

We claim that the indices ¢; < --- < ¢, and the elements P." with 1 <r <s<h+1
satisfy the conclusion. To see this let any 1 < r < s <t < m with s < h + 1 be given.
We have to verify Pois e Pirt Trea- 1T s < h this follows directly from (¢, = n,, {; = n,
by € {ngi1,...,nm}, and the inductive choice of the latter set. For the case s = h + 1 if
follows from ¢ > h + 2, that there is some ¢ € Q(P, ..., P,) with ¢, = n,. The first property
of ¢ entails in view of (4.1) that P, € P,"0i" and, as Py = P,, this is exactly what

we wanted. O
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The reason for having the two parameters m and h in this lemma is just that this
facilitates the proof by induction on h. In applications one may always set h = m, since
this gives the strongest possible conclusion for fixed m. Thus it might add to the clarity of
exposition if we restate this case again, using the occasion to eliminate some double indices

as well.

Corollary 4.2. Suppose that for M » max(m,e™1) we have

e nonempty sets P™ for 1 <r <s< M and
o further sets Piy.q S P with |Pyi.q| = e|P™| for 1 <r <s<t< M,
then there is a subset X < [M] of size m and there are elements PL5 € P™ forr < s
from X such that
redeﬂ{ foqi t>sandte X}. O

As discussed above, this statement will be used below for choosing the vertices Pr%. The
selection principle we use for choosing the Pl is essentially the same, but we have to

apply the symmetry r — M + 1 —r to the indices throughout. To prevent confusion when

this happens within another argument, we restate the foregoing result as follows.

Corollary 4.3. Suppose that for M » max(m,e™!) we have
e nonempty sets P for 1 < s <t < M and

o further sets Pilyen © P with |Pllyeen| = €|P¥| for 1 <r <s <t <M,
then there is a subset Z < [M] of size m and there are elements P, € P* for s <t

from Z such that

green T,green

pst ﬂ{PSt cr<sandreZ}.

Proof. Set P = P for | < v < s < M and Pl = PHISTUE for
1 <r<s<t< M. Then apply Corollary 4.2, thus getting a certaln set X and some

elements P[7. It is straightforward to check that
Z={M+1—-x: xeX}

MA1—t,M+1— :
and Pt = P M0 are as desired. O

green I

The statement that follows coincides with [13, Lemma 7.1], where a short direct proof is
given. For reasons of self-containment, however, we will show here that it follows easily
from the above Corollary 4.3. Subsequently it will be used in the proof of a lemma playing
a role similar to that of Lemma 4.1, but preparing the selection of the vertices P/}, rather
than P[7. Specifically, the statement that follows will be used in that step of the proof of

the next lemma that corresponds to choosing P, ..., P, in the proof of Lemma 4.1.
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Corollary 4.4. Suppose that for M » max(m,e™1) we have

e nonempty sets Wi, ..., Wy and
e further sets D,s € Wy with |D,s| = ¢ |Wy| for 1 <r <s< M,

then there is a subset Z < [M] of size m and there are elements ds € Wy for s € Z such that

dseﬂ{Drs: r<sandreZ}.

Proof. Let M be so large that the conclusion of Corollary 4.3 holds with m + 1 in place

of m and with the same . Now let the sets W, and D, as described above be given.

Set P = Wy for 1 < s <t < Mand P, =Dforl <r<s<t< M By
hypothesis Py, .., is a sufficiently large subset of P*, so by our choice of M there is a set
Z* < [M] of size m + 1 together with certain elements Pg.., € P* for s <t from Z* such
that Pyl € Piyeen holds whenever r < s < t are from Z*. Set z = max(Z*), Z = Z* \{z},

and ds = B, for all s € Z. We claim that Z and the ds are as demanded.
The condition |Z| = m is clear, so now let any pair r < s from Z be given. Then

* Sz Sz —
r < s <z are from Z*, whence ds = Py, € Plhcen = Drs. O

The next lemma deals with the selection of “blue” vertices.

Lemma 4.5. Given e € (0,1) and nonnegative integers m = h there exists a positive integer

M = M(e,m, h) for which the following is true. Suppose that we have

e nonempty sets P for 1 <r <t < M and
o further sets Pl S P with [Pl = e|P™| for1<r <s<t<M,

then there are indices ny < --- < ny,, in [M] and there are elements Pliet € P ™ for all
1 <r<t<mwithr <h such that

nnt Nyt .
thJe Eﬂ{ nrblue T<S<t}'

Proof. Again we argue by induction on h with the base case h = 0 being trivial.

For the induction step we assume that the lemma is already known for some A and
all possibilities for m and ¢, and proceed to the case m > h + 1. We contend that
M = M (e,m/, h) is as desired when m/ is chosen so large that the conclusion of Corollary 4.4
holds for (m" — h — 1,m — h — 1) here in place of (M, m) there — with the same value of .

So let any sets P and P’}

«blue a8 described above be given. The choice of M guarantees

the existence of some indices ny; < -+ < n,, in [M] together with certain elements Pyt
satisfying the conclusion of Lemma 4.5 with m’ in place of m. The m indices we are
requested to find will be ny,...,n,41 and (m — h — 1) members of the set {nsia,..., N},
so in order to gain notational simplicity we may assume n, = r for all r € [m’]. Thus we

have PIf € whenever 1 <7 <s<t<m and r < h.

s blue
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Let us now define W; = Ph1A+it1 for all j e [m' —h — 1] and D;; = P;Zi;ﬁﬁ“ for all
i < j from [m’ — h — 1]. Then the conditions of Corollary 4.4 are satisfied, meaning that
there is a subset Z of [m' — h — 1] of size m — h — 1 together with certain elements d; € W;
for j € Z such that we have d; € D;; whenever ¢ < j are from Z.

We contend that the set of the m indices we are supposed to find can be taken to be
[h+1]u ((h+1)+ 2).

To see this we may for simplicity assume Z = [m — h — 1], so that the set of our m indices
is simply [m]. Recall that we have already found above certain elements P[], € P for
1 <r <t <mwith r < h such that B € P}, holds whenever 1 <r <s <t <m
and r < h. So it remains to find further elements P/t5* e PPt for ¢ € [h + 2, m] with
P]ﬁ;l te PZ Tb whenever h +2 < s <t < m. To this end, we use the vertices obtained
by applying Corollary 4.4 and set Pﬁjel = dy_p_y for all t € [m + 2,h]. Observe that
Pl e W,y = PP holds for all relevant t. Moreover, if h +2 < s < t < m, then we
have indeed P&jel t—d g€ Dy p1t-p-1 = PZ alu’é . Thereby the proof by induction on A

is complete. [l
For the same reasons as before we restate the case h = m as follows.

Corollary 4.6. Suppose that for M >» max(m,e~') we have

e nonempty sets P for 1 <r <t < M and
o further sets Pl S P with [Pl = c|P™| for1<r <s<t<M,

then there is a subset Y < [M] of size m and there are elements Pl € P™ forr <t from
Y such that

Pl € ﬂ{'Psblue'r<s<tandseY}. O

After these preparations we are ready to verify Lemma 3.1.
Proof of Lemma 3.1. Suppose
M > My » My » max(f, u~ ).

Consider any three indices 1 <r < s <t < m. For a vertex P € P" we denote the degree
of P in A" by d;(P). In other words, this is the number of pairs (Q, R) € P x P with
{P,Q, R} € E(A™"). Further, we set

Trea = {P € Pt di(P) = § - [PT[|[P*]}.
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Since

pPEIP P < [E(A™)] = > du(P)= Y d(P)+ > dy(P

Peprs PP Pl PEPye

< & P[P [P + [Pireal PP

rs

we have P[5, = 5 - |P"™|. So applying Corollary 4.2 with (m,m*, &) here in place of
(M, m,e) there we get a set X < [m] of size m, together with some vertices Pr% satisfying
the condition mentioned there. For simplicity we relabel our indices in such a way that
X = [m*], intending to find the required indices A(1),..., A(f) in [m*]. This completes
what has been called the first stage of the proof in the outline at the beginning of this

section.
Next we look at any three indices 1 < r < s <t < m,. Recall that we just achieved
di(P) = 5 - [P™||P*|. We write p(P, Q) for the pair- degree of any two vertices P € P"*

and Q) € 73” in A", i.e., for the number of triples of this hypergraph containing both P
and (). Let us define

sblue = {Q € 7)7’15 ( rTefi?Q) = % PSt’}

Starting from the obvious formula

d(Fs) = Y, (P, Q)
Qeprt
the same calculation as above discloses |Prf,,.| = 4 - [P™]. So we may apply Corollary 4.6
with (m, Mas, &) here instead of (M, m,e) there in order to find a subset Y of [m,] of

size My, together with certain vertices thle As before it is allowed to suppose Y = [m..],

in which case we have p(P, Bif,.) = 4§ - |P*| whenever 1 <r < s <t < M.

Having thus completed the second stage we look at any three indices 1 <7 < s <t < M.
Let Pgt ... denote the set of all vertices R from P** for which the triple {P.5, Pf.., R}

r,green red’

belongs to A™*. Due to our previous choices we have |P? -|P#t|. So we may apply

green | = 4

Corollary 4.3 with (m**, f, 7) here rather than (M, m,e) there, thus getting a certain set

7 < [my] and certain vertices Pyl € P* for s < t from Z. As always we may suppose that
Z = [f], so that {P}%, Pl{,, Psle} becomes a triple of A™ whenever 1 <r <s <t < f.
Now it is plain that the indices A(r) = r for r € [ f] are as desired. O

§5. UNIFORMLY DENSE WITH VANISHING DENSITY

We reprove Theorem 1.7 from [4] and we devote to each implication a separate section.
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5.1. The forward implication. The statement that every frequent hypergraph is con-
tained in one and, hence, eventually in all sufficiently large ternary hypergraphs, is a
direct consequence of the fact that the sequence (7T},)nen is itself d-dense for an appropriate
function d: (0,1] — (0,1]. This observation is due to to Erdés and Sés [3] who left the
verification to the reader. In [4, Proposition 3.1] it was shown that the sequence of ternary
hypergraphs is d-dense for some function d(n) = n? with ¢ > 10. Here we sharpen this
estimate and establish Proposition 1.6, which gives the optimal exponent

2

= — — ~3419.... 5.1
loza(3) — 1 51)

0

More precisely, we prove the following lemma, which yields Proposition 1.6.

Lemma 5.1. For ¢ given in (5.1), ¢ > 1, X € V(T}), and | X| = n - 3* we have
1, |XP 3
X)>ope 2L o 2gt
e(X) = ==~ g

For the proof of this lemma we shall utilise the following inequality.
Fact 5.2. Ifz, y, z€ [0,1] and 7 = 0+ 3 for o given in (5.1), then
oT Ay 2T F24ayz =3 T (rFy+2)7.
Proof. In the proof the following identity will be handy to use
27t =373, (5.2)

As the unit cube is compact, there is a point (z,¥s, 2+) € [0, 1]* at which the continuous
function f: [0,1]> — R given by

(z,y,2) —> 2" +y" + 27 +24ayz — 3 T (x +y+ 2)"

attains its minimum value, say &. Due to symmetry we may suppose that x, > y, > z,.
Assume for the sake of contradiction that £ < 0.

Since 7 > 1, convexity implies

T +y

Ty = 2( > =2 (x4 y)" (5.2) 3w +y)".

Consequently, f(x,y,0) = 0 for all real x,y € [0, 1] and we have z,, Y, z. > 0.
The minimality of £ implies
e <alf(1, % 2) = o +yl + 2] + 24207 mayeze — 37T (T + Yo + 2)7

) T T
= 6 + 24(%;_3 - 1)-73*3/*2* )
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i.e., 24(1 — 2773)xyys2ze < &(1 — 27), which due to the assumption ¢ < 0 is only possible

if z, = 1. In other words, the function x —— f(z,ys,2) from [0,1] to R attains its

df (@,ys,24) <0 ie
) ]

minimum at the boundary point z = 1 and for this reason we have o ‘le

T+ 24yeze <T-37T(14ys +24)7 . (5.3)

Next we observe that the function z — f(1, 1, z) from [0, 1] to R is concave, because

d?f(1,1, 2)

02 =(T=-D7 (27 ?=3"72+2)7?
o (B

Together with

F,L,00=2-3"".20 @0 and  f(1,1,1)=27-37.37 =0

this proves that f(1,1,z) = 0 holds for all z € [0, 1], which in view of z, = 1 yields y, < 1.

Thus the function y — f(1,y, z,) from [0,1] to R attains its minimum at the interior

Af(Ly.zs) 0, ie.,

point y = y, and we infer dy ’y:y*

YL 242, =735 (1 4y + 2)7 L

In combination with (5.3) this proves 24(1 — y4)z, = 7(1 — yZ ') and recalling y, > 2, we

arrive at
(01— e > 7110 ) > (1 - 42), (5.4
where we used 7 = p + 3 > 6.4 for the last inequality (see (5.1)). Dividing by (1 — )y«
leads to
Lbyetyetyetye 1oy 615 (5.5)
Y (1 — Y )y 4

Now for the function h: (0,1) — R given by h(t) = 7 + 1+ ¢ + ¢* + t* we have
R(t) <0 <= 3 (1+2t+3t%) <1.

Consequently, there is a unique point ¢, € (0,1), at which h attains its global minimum

and a short calculation reveals ¢, € [g, %]

From (5.5) we may now deduce

1 15
1+t 2 < =,
(t +1+ )+ + 1

Since t — + 1 + ¢ is decreasing on (0, 1) this may be weakened to

—+1+ =+ 5Y’ <§
9 4"’
=0

which, however, is not the case. Thus ¢ and Fact 5.2 is proved. U
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Lemma 5.1 follows by a simple inductive argument from the inequality from Fact 5.2.

Proof of Lemma 5.1. The case ¢ = 1 is clear, since then the right-hand side cannot be
positive. Proceeding inductively we assume from now on that the lemma holds for £ — 1 in
place of £ and look at an arbitrary set X < V(7}).

Let V(Ty) = Vi w V3 w V3 be a partition of the vertex set of T; such that

e cach of Vi, V5, and V3 induces a copy of T,_;

e and all triples vivovs with v; € V; for i = 1,2, 3 are edges of Tj.

Setting X; = X n'V; and n; = | X;[/3°7! for i = 1,2, 3 we get

e(X) = e(Xy) + e(Xa) + e(X3) + | Xq]| Xa|| X5

(Tt gt 24 (3°7Y)° 5.3 g
- 4 6 8
from the induction hypothesis. In view of Fact 5.2 it follows that
3
2mnets (3717 3,
X) > : - -3, 5.6
e(x) > 2 2L (5.6
where
_mtmptns X[+ [ X[+ X X
3 3¢ 3t
meaning that (5.6) simplifies to the desired estimate
n° |XP 3,
X)z— ———--3. O
=75 "8

We conclude this subsection by observing that frequent hypergraphs on ¢ vertices must

be contained in the ternary hypergraph on 3¢ vertices.

Lemma 5.3. If a hypergraph F on { vertices is frequent, then it is a subhypergraph of the
ternary hypergraph T.

Proof. 1t follows from Lemma 5.1 that there is some n € N with F' < T,,. Thus it suffices
to prove that if ' < T,, and v(F) = ¢, then F' < T} holds as well. We do so by induction
on ¢, the base case ¢ < 3 being clear.

Now let any hypergraph F' appearing in some ternary hypergraph and with ¢ > 4 vertices
be given and choose n € N minimal with F' < T,,. Take a partition V(T},) = V; v Vo w V3
such that each of Vi, V5, and V3 induces a copy of T,_; and such that all further edges
of T, are of the form vv9v3 with v; € V; for ¢ = 1,2,3. By the minimality of n each of
the three sets V; n V(F') with ¢ = 1,2, 3 contains less than ¢ vertices, so by the induction
hypothesis they induce suphypergraphs of T,, that appear already in T, ;. Therefore we
have indeed F' < Tj. O
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5.2. The backward implication. For completeness we include a proof of the fact that
subhypergraphs of ternary hypergraphs are indeed frequent. This proof follows the lines
of the work in [4] and will be done by induction on the order of the hypergraph whose
frequency we wish to establish. In order to carry the induction it will help us to address
the corresponding supersaturation assertion directly. Let us recall to this end that a
homomorphism from a hypergraph F' to another hypergraph H is a map ¢: V(F) — V(H)
sending edges of F' to edges of H; explicitly, this means that {p(z), o(y), p(2)} € E(H) is
required to hold for every triple xyz € E(F'). The set of these homomorphisms is denoted
by Hom(F, H) and hom(F, H) = |Hom(F, H)| stands for the number of homomorphisms
from F to H.

Proposition 5.4. Given a hypergraph F' which is a subhypergraph of some ternary hyper-
graph and a function d: (0,1) — (0, 1), there are constants 1, > 0 such that

hom(F, H) > &v(H)*™)

is satisfied by every hypergraph H with the property that e(U) = d(g)|U|?/6 holds whenever
UcV(H), een1], and |U| = e |V(H)|.

Proof. We argue by induction on v(F'). The base case v(F) < 2 is clear, since then F
cannot have any edge and n = £ = 1 works. For v(F) = 3 we take n = 1 as well
as £ = d(1). As every edge of H gives rise to six homomorphisms from F' to H we get
indeed hom(F, H) = 6e(H) = d(1)v(H)3.

For the induction step let a hypergraph F' with v(F') = 4 and a function d: (0,1) — (0,1)
be given. Let ¢ > 2 be minimal with F' € T},. For simplicity we will suppose that F'is in
fact an induced subhypergraph of 7.

Again we take a partition V(7;) = V] w V5 w V3 such that V; spans a copy of T;_; for
1 =1,2,3 and all further edges of T} are of the form v,vyv3 with v; € V; for i = 1,2,3. By
symmetry we may suppose, after a possible renumbering of indices, that |V (F) n V3| > 2
holds. Let F}5 and F3 be the restrictions of F' to Vi u V45 and Vs, respectively. Moreover, we
will need the hypergraph F arising from F' by deleting all but one vertex from V(F') n V.
An alternative and perhaps helpful description of F is that it can be obtained from Fi, by
adding a new vertex z and all triples v1v92 with vy € V(F) n'Vj and vy € V(F) N V5.

Intuitively the reason why there should be many homomorphisms from F' into an n-vertex
hypergraph H satisfying some local density condition is the following. Due to v(F,) < v(F)
we may assume by induction that hom(Fy, H) = Q(n*®*)). This means that there is a
collection of Q(n*#12)) homomorphisms ¢ from Fi5 to H that can be extended in Q(n)
many ways to a member of Hom(F, H). For each such ¢ the set A, < V(H) consisting

of the possible images of the new vertex z in such an extension inherits a local density
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condition, because its size is linear, and a further use of the induction hypothesis shows that
there are Q(n¥#»)) homomorphisms from F3 to A,. These homomorphisms can in turn be
regarded as extensions of ¢ to members of Hom(F, H). This argument can be performed
for any ¢ and thus we get Hom(F, H) = Q(n*12)) . Q(n(3)) = Q(n*(),

Proceeding now to the details of this derivation let 7, and &, denote the constants
obtained by applying the induction hypothesis to F, and d(-). The minimality of ¢
implies v(F3) < v(F) and therefore we may apply the induction hypothesis to F3 and
the function d’': (0,1) — (0,1) defined by ¢ — d(e - €/2), thus obtaining two further

constants 73 and &3. We contend that

5;}(F3)+1€3
. 1
n = mm(n*, 55*773) and ¢ = C9u(Fs)+1

have the requested properties.
Now let any hypergraph H with e(U) > d(¢)|U|*/6 for all € € [n,1] U < V(H) with
\U| = e |V (H)| be given and put n = v(H). Due to 1, = n we have

hom(F,, H) > &n*) . (5.7)
For every homomorphism ¢ € Hom(Fi,, H) we consider the set
A, ={veV(H): p U{(z,v)} € Hom(F,, H)}

of vertices that can be used for extending ¢ to a homomorphism ¢ U {(z,v)} from F,
to H. It will be convenient to identify these sets with the subhypergraphs of H they induce.
Finally we define

® = {p € Hom(Fis, H): |Ay| = &0}

to be the set of those homomorphisms from Fis to H that admit a substantial number of

such extensions.
Since v(Fy) = v(Fi2) + 1 we obtain from (5.7)

f*nv(Fu)H < 2 ]A¢| < |q>| - 4+ npt(F12) | %f*n,
peHom (F12,H)

whence
0] > e, (5.8)
Moreover it is clear that
hom(F,H) = > hom(Fs, Ay) (5.9)
peHom (F12,H)

and the next thing we show is that for every ¢ € & we have

hom(Fy, A,) > &3(h¢n) ™. (5.10)
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Owing to our inductive choice of n3 and &3 it suffices for the verification of this estimate
to show that if € € [3,1], U € A,, and |U| = £|A,|, then e(U) = d'(¢)|U|*/6. But since
v € ® leads to |U| = %55*71, this follows immediately from %55* > %é*ng, > 7, the definition
of d’, and from our choice of H.

Taken together (5.9), (5.10), and (5.8) yield

U(F3)+1

o(Fs) £
how(F ) > 35 bom(Fi, 4,) > (2] (36) "™ > St
e

as desired. 0

Proposition 5.4 implies that all subhypergraphs of ternary hypergraphs are frequent and
combined with Lemma 5.3 this shows that being frequent is a decidable property.

§6. CONCLUDING REMARKS

6.1. Hypergraphs with uniformly positive density. In [13, Section 2| we defined for
a given antichain &/ < §([k]) and given real numbers d € [0,1], n > 0 the concept of
a k-uniform hypergraph being (d,n, &7)-dense. An obvious modification of (3.1) does then
lead to corresponding generalised Turdn densities o (F') of k-uniform hypergraphs F. Now
the question presents itself to determine 7, (F) for all antichains &/ and all hypergraphs F'.
At the moment this appears to be a hopelessly difficult task, as it includes, among many
further variations, the original version of Turan’s problem to determine the ordinary Turan
density m(F') of any hypergraph F.

For the time being it might be more reasonable to focus on the case &/ = [k]*~? (or
stronger density assumptions), as it might be that for this case one can establish a theory
that resembles to some extent the classical theory for graphs initiated by Turan himself
and developed further by Erdos, Stone, and Simonovits and many others.

Another possible direction is to characterise for given &/ the hypergraphs F with
7 (F) = 0 and here it seems natural to pay particular attention to the symmetric case,
when &7 = [k]") contains all j-element subsets of [k]. Let us now describe an extension
of Thereom 1.2 to this setting. First of all, a k-uniform hypergraph H = (V, E) is said to
be (d,n, j)-dense, for real numbers d € [0,1], n > 0, and j € [k — 1], if for every j-uniform
hypergraph G on V' the collection K (G) of all k-subsets of V' inducing a clique K ,ﬁj ) in G

obeys the estimate
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One then defines for every k-uniform hypergraph F

7;(F) = sup{d € [0, 1]: for every n > 0 and n € IN there exists an F-free,
(d,n, j)-dense, k-uniform hypergraph H with |V (H)| > n}

and [13, Proposition 2.5] shows that these densities 7;(-) agree with the densities mp,0)(*)
alluded to in the first paragraph of this subsection.

For j = k—1 it is known that every k-uniform hypergraph F' satisfies m_1(F) = 0, which
follows for example from the work in [6]. Thereom 1.2 address the case j = k — 2 for k =3

and for general k£ we obtain the following characterisation.

Theorem 6.1. For a k-uniform hypergraph F, the following are equivalent:
(a) mp—o(F) = 0.
(b) There are an enumeration of the vertex set V(F) = {vy,...,vs} and a k-colouring

p: OF — [k] of the (k — 1)-sets of vertices covered by hyperedges of F such that
every hyperedge e = {v;y, ..., Vi) } € E(F) with i(1) < --- <i(k) satisfies

ole~A{vip}) =€  for every (€ [k]. (6.1)

This can be established in the same way as Theorem 1.2, but using the hypergraph
regularity lemma for k-uniform hypergraphs. For the corresponding notion of reduced
hypergraphs we refer to [13, Definition 4.1] and for guidance on the reduction corresponding
to Section 3 above we refer to the part of the proof of [13, Proposition 4.5] presented in
Section 4 of that article.

For j € [k—3] we believe Theorem 6.1 extends in the natural way, where the k-colouring ¢
k
j+1
condition (6.1) is replaced by a statement to the effect that the edges of F' are rainbow and

in part (b) is replaced by a ( )—colouring of the (7 + 1)-sets covered by an edge of F' and
mutually order-isomorphic when one takes these colours into account.

For j = 0 such a characterisation leads to k-partite k-uniform hypergraphs F' and, hence,
such a result renders a common generalisation of Erdds’ result from [1] and Theorem 6.1
and we shall return to this in the near future.

Despite this progress the problem to describe for an arbitrary (asymmetric) antichain
o/ < P([k]) the k-uniform class {F': 7, (F) = 0} remains challenging. In the 3-uniform
case the investigation of {F': m.(F) = 0} and {F: my\(F) = 0}, where & = {1,23} and
A = {12,13}, shows that algebraic structures enter the picture and this is currently work in
progress of the authors.

We close this section with the following questions that compares 7. (F') = w1 (F') with 7(F)
for 3-uniform hypergraphs.
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Question 6.2. Is m(F) < 7n(F) for every 3-uniform hypergraph F' with 7(F) > 07

Roughly speaking, this questions has an affirmative answer, if no 3-uniform hypergraph F
with positive Turan density has an extremal hypergraph H that is uniformly dense with
respect to large vertex sets U < V(H) (see also [3, Problem 7] for a related assertion). In
light of the fact, that all known extremal constructions for such 3-uniform hypergraphs F’
are obtained from blow-ups or iterated blow-ups of smaller hypergraphs, which fail to be
(d,m, 1)-dense for all d > 0 and sufficiently small > 0, the answer to Question 6.2 might be
affirmative. Recalling that m(F') = mo(F') may suggest many generalisations of Question 6.2
to k-uniform hypergraphs F' of the form: For which F' do we have m;(F) < m(F') for
0 <i<j<k? At this point this is only known for ¢ = 0 and j = k — 1 and Question 6.2

is the first interesting open case.

6.2. Hypergraphs with uniformly vanishing density. Definition 1.5 admits a straigth-
forward generalisation to k-uniform hypergraphs: one just replaces all occurrences of the
word “hypergraph” by “k-uniform hypergraph” and all occurrences of the number 3 by k.

The sequence of ternary hypergraphs generalises to a sequence (7/*)),,c of k-uniform
hypergraphs that might be called k-ary and are defined as follows. The vertex set of 7/(*)
is [k]™ and given k vertices x1, ..., T, say with coordinates z; = (z;1, ..., ) for i € [k] one
looks at the least number m € [n] for which xy,, = - -+ = 2y, fails and declares {z1, ..., x}
to be an edge of T*) if and only if {1, ..., Tkm} = [k] holds. The proof of Theorem 1.7

(and of Lemma 5.3) generalises in the following way (see [4]).

Theorem 6.3. A k-uniform hypergraph F' on { vertices is frequent if, and only if it is a
subhypergraph of the k-ary hypergraph T, @(k) on k* vertices. 0

Some further questions concerning frequent hypergraphs arise naturally and below we
discuss a few of them.

In the context of 3-uniform hypergraphs one may use three sets instead of one set in the
definition of d-dense (see Definition 1.5 (a)) and this leads to a question that is somewhat
different from the one answered by Theorem 1.7. This happens because the — perhaps
on first sight expected — analogue of (3.2) does not hold. More explicitly, we say that a
sequence H = (Hp)new of 3-uniform hypergraphs with v(H,,) — o0 as n — w0 is (d, )-dense
for a function d: (0,1) — (0, 1) provided that for every n > 0 there is some ny € IN such
that for every n = ng and all choices of XY, Z < V(H,,) with | X||Y||Z| = n|V(H,)|® there
are at least d(n)|X||Y||Z] ordered triples (x,y,z) € X x Y x Z with zyz € E(H,). Besides,
a 3-uniform hypergraph F is called .. -frequent if for every function d: (0,1) — (0,1) and
every (d,)-dense sequence H = (H,)nen of 3-uniform hypergraphs there exists an ng € IN

with F' < H,, for every n = ny.
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The relation of this concept to being d-dense is as follows: If a sequence H of 3-uniform
hypergraphs is (d,..)-dense, then, by looking only at the case X =Y = Z in the definition
above, one sees that H is also d-dense. On the other hand, being d-dense does not even
imply being (d’,..)-dense for any function d’. As an example we mention that the sequence
of ternary hypergraphs fails to be (d,..)-dense for every d: (0,1) — (0, 1).

As a corollary of Theorem 1.7 subhypergraphs of ternary hypergraphs are .. -frequent,

but the converse implication may not hold. This leads to the following intriguing problem.
Problem 6.4. Characterise .. -frequent 3-uniform hypergraphs.

Similar to studying m;(-) for k-uniform hypergraphs for every j < k one may study
dense sequences with respect to different uniformities. More precisely, for a given integer
j € [k — 1] and a function d: (0,1) — (0,1) we say that a sequence H = (Hp)new of
k-uniform hypergraphs with v(H,,) — 0 as n — oo is (d, j)-dense if for every n > 0 there
is an ng € IN such that for every n > ny and every j-uniform hypergraph G on V(H,,) with
\Kr(G)| = n|V(H,)|* the estimate

|E(H,) 0 Ki(G)| = d(n)|Ki(G))]

holds. Moreover, a k-uniform hypergraph F' is defined to be j-frequent if for every func-
tion d: (0,1) — (0,1) and every (d, j)-dense sequence H = (H,)nen of k-uniform hyper-
graphs there exists an ng € N with F' € H,, for every n > ngy. In particular, 1-frequent is
the same as frequent in the sense of Theorem 6.3.

Similar as discussed above the k-ary hypergraphs show that there is a subtle difference
between (d, 1)-dense sequences and (d, [k]V))-dense sequences (where we take k sets instead
of one set). However, for j = 2 one can follow the argument presented in the proof
of [13, Proposition 2.5] to show that a k-uniform hypergraph F' is j-frequent if and only
if it is [k]“)-frequent (defined in the obvious way). As a result one can show that every
k-uniform hypergraph F' is (k — 1)-frequent by following the inductive proof on the number
of edges of the counting lemma for hypergraphs. This leaves open to characterise the
j-frequent hypergraphs for j € [2, k — 2].

Finally, we mention that one may also consider (d, o7)-dense sequences of hypergraphs

for asymmetric antichains @/ and characterising .o7-frequent hypergraphs is widely open.
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