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Dedicated to the memory of Professor Miroslav Fiedler

Abstract. We consider quasirandom properties for Cayley graphs of finite abelian groups.
We show that having uniform edge-distribution (i.e., small discrepancy) and having large
eigenvalue gap are equivalent properties for such Cayley graphs, even if they are sparse.
This positively answers a question of Chung and Graham [“Sparse quasi-random graphs”,
Combinatorica 22 (2002), no. 2, 217–244] for the particular case of Cayley graphs of
abelian groups, while in general the answer is negative.

§1. Introduction

Professor Miroslav Fiedler discovered a very fruitful relationship between connectivity
properties of graphs and their spectra. Among other things, his works [14,15] from the 1970s,
together with other pioneering work [12,13,18], gave birth to what is now known as spectral
partitioning of graphs. Fiedler considered the so called combinatorial Laplacian LpGq of
graphs G and their spectrum 0 “ λ1 ď λ2 ď ¨ ¨ ¨ ď λn (n “ |V pGq|). Generalizing the fact
that G is connected if and only if λ2 ą 0, Fiedler named λ2 the algebraic connectivity of G
and went on to prove that λ2 is a lower bound for the standard connectivity of G (unless G
is the complete graph). Furthermore, he also considered partitioning the vertex set of G by
considering the coordinates of the eigenvector belonging to λ2. The algebraic connectivity
of a graph is now sometimes referred to as the Fiedler value and the associated eigenvector
is referred to as the Fiedler vector. Alon [1] and Sinclair and Jerrum [26] later proved that
graphs with small Fiedler value can be partitioned according to the Fiedler vector in a
direct way to produce a cut that is small in relative terms (that is, in terms of the ratio of
the number of cut edges to the number of separated vertices).
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While a small Fiedler value tells us that the graph in question may be split along a “small
cut”, a large Fiedler value implies that the graph is an expander, that is, it has no cuts that
are “small” [3,29]. In this paper, we investigate the relation between such “edge-distribution
properties” and spectra, but focusing on the case of “uniform edge-distribution”, by which
we mean the quasirandom case, in the sense of Chung, Graham and Wilson [9].1 Since we
shall be concerned with Cayley graphs, which are regular graphs, for simplicity, we shall
work with adjacency matrices and not with combinatorial Laplacians.

Let an n-vertex graph G be given. The eigenvalues of G are simply the eigenvalues of
the n by n, 0–1 adjacency matrix of G, with 1 indicating edges. Let λk “ λkpGq be the
kth largest eigenvalue of G, in absolute value. Recall that G is said to be “quasirandom”
if the edges of G are “uniformly distributed” (we postpone the precise definition; see
Definition 1.1). A fundamental result relating the λi to quasirandomness states that there
is a large gap between λ1 and λk pk ě 2q if and only if G is quasirandom.

The assertion above may be turned precise in different ways. We are interested in the
form given by Chung, Graham, and Wilson [9]. Recall that [9] presents a “theory of
quasirandomness” for graphs, exhibiting several, quite disparate almost sure properties of
graphs that are, quite surprisingly, equivalent in a deterministic sense. Earlier work in this
direction is due to Thomason [30] (see also [31]), and also Alon [1], Alon and Chung [2],
Frankl, Rödl and Wilson [16], and Rödl [24]. One of the so-called “quasirandom properties”
that is presented in [9] is the “eigenvalue gap” between λ1 and λk (k ě 2).

Chung and Graham [8] set out to investigate the extension of the results in [9] to sparse
graphs, that is, graphs with vanishing edge-density. As it turns out, a naïve approach to
such a project is doomed to fail, as the results in [9] do not generalize to the “sparse case”
in the expected manner (for a thorough discussion on this point, the interested reader is
referred to [8] and also to [4, 7, 10, 19–21]). In particular, having succeeded in proving that
eigenvalue gap does imply uniform distribution of edges in the sparse case, Chung and
Graham asked whether the converse also holds (see [8, p. 230]). An affirmative answer to
this question would fully generalize the relationship between these two concepts to the
sparse case.

However, Krivelevich and Sudakov [21] showed that the answer to the question posed
by Chung and Graham is negative, by constructing a suitable family of counterexamples.
Here, our aim is to show that the answer is positive if one considers Cayley graphs of
finite abelian groups, regardless of the density of the graph. It is worth noting that several

1Owing to this focus, spectral graph partitioning will not be discussed here; the interested reader is
referred to, e.g., Spielman [27] and Spielman and Teng [28].
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explicit constructions of quasirandom graphs are indeed Cayley graphs (see, e.g., [31]
and [21, Section 3]).

We use the following notation. If G “ pV,Eq is a graph, we write epGq for the number
of edges |E| in G. If U Ă V is a set of vertices of G, then GrU s denotes the subgraph
of G induced by U . Furthermore, if W Ă V is disjoint from U , then we write GrU,W s
for the bipartite subgraph of G naturally induced by the pair pU,W q. We also sometimes
write EpU,W q “ EGpU,W q for the edge set of GrU,W s.

If δ ą 0, we write x „δ y to mean that

p1´ δqy ď x ď p1` δqy.

Moreover, sometimes it will be convenient to write O1pδq for any term β that satisfies |β| ď δ.
Observe that, clearly x „δ y is equivalent to x “ p1`O1pδqqy.

Definition 1.1 (DISCpδq). Let 0 ă δ ď 1 be given. We say that an n-vertex graph G

pn ě 2q satisfies property DISCpδq if the following assertion holds: for all U Ă V pGq

with |U | ě δn, we have

eGpUq “ epGrU sq „δ epGq

ˆ

|U |

2

˙Nˆ

n

2

˙

.

The following concept of DISC2 is very much related to DISC, as we shall see next.

Definition 1.2 (DISC2pδ
1q). Let 0 ă δ1 ď 1 be given. We say that an n-vertex graph G

pn ě 2q satisfies property DISC2pδ
1q if the following assertion holds: for all disjoint U

and W Ă V pGq with |U |, |W | ě δ1n, we have

eGpU,W q “ epGrU,W sq „δ1 epGq|U ||W |

Nˆ

n

2

˙

.

The following fact is very easy to prove and we omit its proof.

Fact 1.3. For any 0 ă δ1 ď 1, there is 0 ă δ “ δpδ1q ď 1 such that any graph that
satisfies DISCpδq must also satisfy DISC2pδ

1q.

Given a graph G, let A “ pauvqu,vPV pGq be the 0–1 adjacency matrix of G, with 1 denoting
edges. The eigenvalues of G are simply the eigenvalues of A. Since A is symmetric, its
eigenvalues are real. As usual, we adjust the notation so that these eigenvalues are such
that

λ1 ě |λ2| ě ¨ ¨ ¨ ě |λn| (1)

(the fact that λ1 ě 0 follows, for instance, from the fact that the sum of the λi is equal to
the trace of A, which is 0).
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Definition 1.4 (EIGpεq). Let 0 ă ε ď 1 be given. We say that an n-vertex graph G

satisfies property EIGpεq if the following holds. Let d̄ “ d̄pGq “ 2epGq{n be the average
degree of G, and let λ1, . . . , λn be the eigenvalues of G, with the notation adjusted in such
a way that (1) holds. Then

(i ) λ1 „ε d̄,
(ii ) |λi| ď εd̄ for all 1 ă i ď n.

Finally, we define Cayley graphs.

Definition 1.5 (Cayley graph GpΓ, Aq). Let Γ be an abelian group and let A Ă Γ r t0u
be symmetric, that is, A “ ´A. The Cayley graph G “ GpΓ, Aq is defined to be the graph
on Γ, with two vertices γ and γ1 P Γ adjacent in G if and only if γ1 ´ γ P A.

We only consider finite graphs and finite abelian groups. The main aim is to answer a
question of Chung and Graham from [8] in the positive for an interesting class of graphs.

Theorem 1.6. For every ε ą 0, there exist δ ą 0 and n0 such that the following holds.
Let G “ GpΓ, Aq be a Cayley graph for some abelian group Γ with n “ |Γ| ě n0 elements
and a symmetric set A “ ´A Ď Γ r t0u. If G satisfies property DISCpδq, then G

satisfies EIGpεq.

The proof of this theorem is given in Section 2. We close this introduction with a few
remarks concerning Theorem 1.6.

We first observe that Theorem 1.6, together with the results of Chung and Graham [8],
imply that properties DISC and EIG are equivalent for Cayley graphs. More precisely, by
DISC implies EIG for Cayley graphs we mean the following: for every ε ą 0 there is a
δ “ δpεq ą 0 such that, for any sequence of positive integers pnkqk with nk Ñ 8 as k Ñ 8,
and any sequence pGkqk of Cayley graphs with |V pGkq| “ nk, we have that if all but finitely
many graphs Gk satisfy DISCpδq, then all but finitely many Gk satisfy EIGpεq. Theorem 1.6
tells us that DISC implies EIG for sequences of Cayley graphs. In [8, Theorem 1] it is
proved that EIG implies DISC in the same sense for sequences of arbitrary graphs with
average degree tending to infinity. This establishes the equivalence of the properties DISC
and EIG for Cayley graphs with diverging average degree.

Secondly, we note that in general it is not true that DISC implies EIG for arbitrary
sequences of graphs. This was already pointed out by Krivelevich and Sudakov in [21]. For
every ε ą 0 and every δ ą 0, they constructed an infinite sequence of graphs that satisfy
DISCpδq but fail to satisfy (i) in the definition of EIGpεq (see Definition 1.4).

The following example is a different probabilistic construction: For p “ ppnq Ñ 0
with pn " 1 as n Ñ 8, consider the graph G given by the union of the random graph
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Gpn, pq and a disjoint clique of size αpn for some constant α ą 0. Such a graph G has
density p1 ` op1qqp and for every fixed δ ą 0 with high probability it satisfies DISCpδq.
However, αpn´ 1 is one of the eigenvalues of its adjacency matrix and, hence, G fails to
satisfy (ii ) in the definition of EIGpεq for any fixed ε P p0, αq.

We also remark that in [8], it is proved that, under some additional conditions, DISC
implies EIG for sequences of sparse graphs. This additional assumption combined with
DISC implies that almost every graph in the sequence contains the “expected number” of
closed walks of length ` for some even ` ě 4. More precisely, for a sequence of graphs Gn

with average degree d̄n we say it satisfies CIRCUIT` if the number of closed walks of
length ` in Gn is p1` op1qqpd̄nq`. We remark that Theorem 1.6 is not a consequence of the
result of Chung and Graham, since there exist sequences of Cayley graphs satisfying DISC,
and hence by Theorem 1.6 also EIG, but fail to have CIRCUIT` for any fixed even ` ě 4.
We next sketch the construction of such a sequence.

Let

p “ ppnq “
log2 n

n

and consider the random cyclic Cayley graph Cn,p “ GpZ{nZ, Aq, where independently for
every a P pZ{nZq r t0u both elements a and ´a are included in A with probability p{2.
It follows from standard Chernoff-type estimates that asymptotically almost surely Cn,p
satisfies DISC and has average degree d̄n “ p1` op1qpn. Consequently, by Theorem 1.6 it
also satisfies EIG.

On the other hand, owing to the choice of p we have

pn2
" ppnq`

for every fixed even ` ě 4 and sufficiently large n. Hence, for every even ` ě 4 in expectation
the number of “degenerated walks” which only use one edge is " pd̄nq`. This implies that
with positive probability Cn,p satisfies DISC and EIG, but fails to satisfy CIRCUIT` for
every even ` ě 4. Using appropriate blowups of such graphs yields sequences of Cayley
graphs with these properties for any density p with log2 n{n ! p ! 1.

Finally, we remark that very recently Conlon and Zhao [11] extended Theorem 1.6 for
Cayley graphs for arbitrary (not necessarily abelian) finite groups.

Acknowledgements. The proof of Theorem 1.6 presented here is based on an idea of
Tim Gowers [17]. The authors proved this result with a longer combinatorial argument
(which can be found in the appendix of the arXiv version of this article). On learning
about the result, Tim Gowers suggested the alternative, elegant proof given below. We are
grateful to him for letting us include his proof here.
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§2. Proof of the main result

2.1. Eigenvalues of Cayley graphs of abelian groups. Theorem 2.1 below tells us
how to compute the eigenvalues of Cayley graphs of abelian groups (Theorem 2.1 follows
from a more general result due to Lovász [22]; see also [23, Exercise 11.8] and [6]).

Before we state Theorem 2.1, we recall some basic facts about group characters (for
more details see, e.g., Serre [25]). Let Γ be a finite abelian group. In this case, an
irreducible character χ of Γ may be viewed as a group homomorphism χ : Γ Ñ S1, i.e.,
χpa ` bq “ χpaqχpbq for all a, b P Γ, where S1 is the multiplicative group of complex
numbers of absolute value 1. If Γ has order n, then there are n irreducible characters, say,
χ1, . . . , χn, and these characters satisfy the following orthogonality property:

xχi, χjy “
ÿ

γPΓ
χipγqχjpγq “ 0 (2)

for all i ‰ j. These facts and a simple computation suffice to prove the following well
known result, the short proof of which we include for completeness. We shall use the
following notation: if X is a set, we also write X for the t0, 1u-indicator function of X, so
that Xpaq “ 1 if a P X and Xpaq “ 0 otherwise.

Theorem 2.1. Let G “ GpΓ, Aq be a Cayley graph for some finite abelian group Γ and a
symmetric set A “ ´A Ď Γ r t0u. For any character χ : Γ Ñ S1 of Γ, put

λpχq
“ xA,χy “

ÿ

aPA

χpaq. (3)

Then the eigenvalues of G are the λpχq, where χ runs over all n “ |Γ| irreducible characters
of Γ.

Proof. Let χ : Γ Ñ S1 be an irreducible character of Γ. Let λpχq be as defined in (3).
Consider the vector vpχq “ pχpγqqTγPΓ, with entries indexed by the elements of Γ “ V pGq.
Let A “ paγγ1qγ,γ1PΓ be the adjacency matrix of G.

Fix γ P Γ. Observe that the γ-entry pAvpχqqγ of the vector Avpχq is

pAvpχq
qγ “

ÿ

aPA

χpγ ´ aq “
ÿ

aPA

χpγ ` aq “
´

ÿ

aPA

χpaq
¯

χpγq “ λpχqχpγq ,

and hence Avpχq “ λpχqvpχq; that is, vpχq is an eigenvector of A with eigenvalue λpχq.
Let χj : Γ Ñ S1 (1 ď j ď n) be the irreducible characters of Γ and set vj “ vpχjq for

all 1 ď j ď n. By (2), xvj,vj1y “ 0 if j ‰ j1. Therefore, the vj (1 ď j ď n) form an
orthogonal basis of eigenvectors of the matrix A and, hence, λpχjq (j “ 1, . . . , n) are indeed
all the eigenvalues of G. �
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Remark 2.2. The eigenvalue λ1 “ d “ |A| may be obtained from (3) by letting χ be the
trivial character χpxq “ 1 for all x P Γ.

2.2. The proof. We shall prove that  EIGpεq ñ  DISCpδq. By Theorem 2.1 and
Remark 2.2, our assumption implies that there is a character χ ı 1 such that

|λpχq
| “ | xA,χy | ě ε|A|. (4)

We shall fix this χ and we shall use it to construct sets X and Y Ă V pGq that “witness”
the fact that  DISCpδq holds.

First we introduce some notation. Let 0 ď χargpγq ă 2π be defined by χpγq “ eiχargpγq.
For γ P Γ, let

cpγq “ Repχpγqq “ cospχargpγqq

and
spγq “ Impχpγqq “ sinpχargpγqq.

Applying the orthogonality relation (2) to χ and the trivial character χ ” 1, denoted below
by 1, gives us that

0 “ x1, χy “
ÿ

γPΓ
eiχargpγq

“
ÿ

γPΓ
pcpγq ` i spγqq .

Consequently,
ÿ

γPΓ
cpγq “

ÿ

γPΓ
spγq “ 0. (5)

Given two functions f and g : Γ Ñ C, let f ˚ g : Γ Ñ C be their convolution, given by

pf ˚ gqpαq “
ÿ

γPΓ
fpα ´ γqgpγq.

In what follows, we let m be the cardinality of the image of χ:

m “ |tχpγq : γ P Γu|.

Since χ ı 1, we have m ą 1. We shall need the following fact.

Lemma 2.3. We have

(i )
ÿ

γPΓ
c2
pγq “

$

&

%

n if m “ 2

n{2 if m ą 2;
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(ii )
B

A,
1
2p1` cq ˚

1
2p1` cq

F

“
1
4n|A| `

1
4 xA, c ˚ cy (6)

“

$

&

%

1
4n|A| `

1
4n xA, cy if m “ 2

1
4n|A| `

1
8n xA, cy if m ą 2.

(7)

We postpone the proof of Lemma 2.3 to Section 2.3, and proceed to prove our main
theorem. Let ´X and Y Ă Γ be generated at random as follows: we include γ P Γ
in ´X with probability ppγq “ p1 ` cpγqq{2 and we include γ P Γ in Y with the same
probability ppγq. with all these events independent.

By (5) we have
ř

γPΓ ppγq “ n{2. Therefore, by a Chernoff type inequality (see, e.g.,
Alon and Spencer [5, Theorem A.1.4]), we have

P
ˆ

|X| “

ˆ

1
2 ` op1q

˙

n

˙

“ 1´ op1q (8)

and
P
ˆ

|Y | “

ˆ

1
2 ` op1q

˙

n

˙

“ 1´ op1q. (9)

In view of Lemma 2.3 (i ), we have
ÿ

γPΓ
pp´γqppγq “

ÿ

γPΓ
p2
pγq “

1
4
ÿ

γPΓ
p1` cpγqq2 (5)

“
1
4n`

1
4
ÿ

γPΓ
cpγq2 “

3
8n

if m ą 2 and
ř

γPΓ pp´γqppγq “ n{2 if m “ 2. Consequently, if m ą 2, we have

P
ˆ

|X X Y | “

ˆ

3
8 ` op1q

˙

n

˙

“ 1´ op1q

and hence, in view of (8) and (9), we have

P
ˆ

|X Y Y | “

ˆ

5
8 ` op1q

˙

n

˙

“ 1´ op1q. (10)

Similarly, if m “ 2, we have

P
ˆ

|X X Y | “

ˆ

1
2 ` op1q

˙

n

˙

“ 1´ op1q (11)

and
P
ˆ

|X Y Y | “

ˆ

1
2 ` op1q

˙

n

˙

“ 1´ op1q. (12)

On the other hand, in view of our assumption (4) and A “ ´A we have

ε|A| ď | xA,χy | “ | xA, cy |.
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Recall that ppγq “ p1` cpγqq{2 is the probability that we include γ in ´X and in Y . By
the linearity of the expectation and the independence, we have2

EpxA, p´Xq ˚ Y yq “ E
´

ÿ

aPA

ÿ

γPΓ
p´Xqpa´ γqY pγq

¯

“
ÿ

aPA

ÿ

γPΓ
E pp´Xqpa´ γqqE pY pγqq “

ÿ

aPA

ÿ

γPΓ
ppa´ γqppγq

“

B

A,
1
2p1` cq ˚

1
2p1` cq

F

. (13)

By Lemma 2.3 (ii ), we thus have
ˇ

ˇ

ˇ

ˇ

EpxA, p´Xq ˚ Y yq ´
1
4n|A|

ˇ

ˇ

ˇ

ˇ

ě
1
8n| xA, cy | ě

1
8εn|A|. (14)

On the other hand,

xA, p´Xq ˚ Y y “
ÿ

aPA

ÿ

γPΓ
p´Xqpa ´ γqY pγq “

ÿ

aPA

ÿ

γPΓ
Xp´a ` γqY pγq “ epX, Y q,

with the edges in X X Y counted twice. Since 0 ď epX, Y q ď n|A|, the random variable

η “ ηpX, Y q “ xA, p´Xq ˚ Y y ´
1
4n|A| “ epX, Y q ´

1
4n|A|

satisfies
´

1
4n|A| ď η ď

3
4n|A|. (15)

Let q be the probability that |η| ď εn|A|{16. Then, by (14) and (15),
1
8εn|A| ď |Epηq| ď Ep|η|q ď

1
16εn|A|q `

3
4n|A|p1´ qq,

and, consequently,

P
ˆ

|η| ď
1
16εn|A|

˙

“ q ď
1´ ε{6
1´ ε{12 ď 1´ 1

12ε. (16)

First consider the case in which m ą 2. Putting together (8)–(10) and (16) we see that
there are sets X and Y Ă Γ for which we have

|X| “

ˆ

1
2 ` op1q

˙

n, |Y | “

ˆ

1
2 ` op1q

˙

n,

|X X Y | “

ˆ

3
8 ` op1q

˙

n, |X Y Y | “

ˆ

5
8 ` op1q

˙

n,

and
ˇ

ˇ

ˇ

ˇ

epX, Y q ´
1
4n|A|

ˇ

ˇ

ˇ

ˇ

ě
1
16εn|A|. (17)

2In (13), we write p´Xq for the characteristic function of the set ´X “ t´x : x P Xu.



10 YOSHIHARU KOHAYAKAWA, VOJTĚCH RÖDL, AND MATHIAS SCHACHT

Fix such sets X and Y . Suppose that none of the sets X r Y , Y rX, X Y Y , and X X Y
violates DISCpδq. Then for sufficiently large n we have

ˇ

ˇ

ˇ

ˇ

epX r Y q ´
1

128n|A|
ˇ

ˇ

ˇ

ˇ

ă
2

128δn|A|,
ˇ

ˇ

ˇ

ˇ

epY rXq ´
1

128n|A|
ˇ

ˇ

ˇ

ˇ

ă
2

128δn|A|,

and
ˇ

ˇ

ˇ

ˇ

epX X Y q ´
9

128n|A|
ˇ

ˇ

ˇ

ˇ

ă
10
128δn|A|,

ˇ

ˇ

ˇ

ˇ

epY YXq ´
25
128n|A|

ˇ

ˇ

ˇ

ˇ

ă
26
128δn|A|.

Since

epX, Y q “ epX Y Y q ´ epX r Y q ´ epY rXq ` epX Y Y q, (18)

we infer that
ˇ

ˇ

ˇ

ˇ

epX, Y q ´
32
128n|A|

ˇ

ˇ

ˇ

ˇ

ă
40
128δn|A|,

which contradicts (17) if δ ď ε{5. The proof for the case m ą 2 is finished.
The case m “ 2 is similar. Putting together (8), (9), (11), (12), and (16) we see that

there are sets X and Y Ă Γ for which we have

|X| “

ˆ

1
2 ` op1q

˙

n, |Y | “

ˆ

1
2 ` op1q

˙

n,

|X X Y | “

ˆ

1
2 ` op1q

˙

n, |X Y Y | “

ˆ

1
2 ` op1q

˙

n,

and, moreover, with X and Y satisfying (17). Fix such sets X and Y . Note that, then,

epX r Y q “ opn|A|q and epY rXq “ opn|A|q.

Suppose that neither X Y Y nor X X Y violates DISCpδq. Then for sufficiently large n we
have

ˇ

ˇ

ˇ

ˇ

epX X Y q ´
1
8n|A|

ˇ

ˇ

ˇ

ˇ

ă
2
8δn|A| and

ˇ

ˇ

ˇ

ˇ

epY YXq ´
1
8n|A|

ˇ

ˇ

ˇ

ˇ

ă
2
8δn|A|.

Using (18) again, we infer that
ˇ

ˇ

ˇ

ˇ

epX, Y q ´
1
4n|A|

ˇ

ˇ

ˇ

ˇ

ă
5
8δn|A|,

which contradicts (17) if δ ď ε{10, completing the proof in the case m “ 2.
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2.3. Proof of Lemma 2.3. We start with the following fact (Fact 2.4 (i ) below is simply
Lemma 2.3 (i )).

Fact 2.4. We have

(i )

ÿ

γPΓ
c2
pγq “

$

&

%

n if m “ 2

n{2 if m ą 2;
(19)

(ii )
ÿ

γPΓ
spγqcpγq “ 0; (20)

(iii ) for any a P Γ

pc ˚ cqpaq “

$

&

%

ncpaq if m “ 2

pn{2qcpaq if m ą 2.
(21)

Proof. (i ) We start by observing that

ÿ

0ď`ăm

cos 4π`
m

“

$

&

%

2 if m “ 2

0 if m ą 2.
(22)

Indeed, if m ą 2, then the sum in (22) is

Re
ÿ

0ď`ăm

e4π`i {m
“ Re 1´ e4πi

1´ e4πi {m
“ 0.

If m “ 2, then the sum in (22) is easily seen to be 2. We now observe that

ÿ

γPΓ
c2
pγq “

n

m

ÿ

0ď`ăm

cos2
ˆ

2π`
m

˙

“
n

2m
ÿ

0ď`ăm

ˆ

1` cos 4π`
m

˙

.

It now suffices to recall (22) to deduce (19); assertion (i ) is therefore proved.
Now we prove (ii ). Note that

ÿ

0ď`ăm

sin 4π`
m

“ 0.

Therefore,
ÿ

γPΓ
spγqcpγq “

n

m

ÿ

0ď`ăm

sin
ˆ

2π`
m

˙

cos
ˆ

2π`
m

˙

“
n

2m
ÿ

0ď`ăm

sin 4π`
m

“ 0,

as required.
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For the proof of (iii ), we start by noticing that

cpa´ γq “ cospχargpa´ γqq “ cos pχargpaq ´ χargpγqq

“ cosχargpaq cosχargpγq ` sinχargpaq sinχargpγq “ cpaqcpγq ` spaqspγq.

Therefore,

pc ˚ cqpaq “
ÿ

γPΓ
cpa´ γqcpγq “

ÿ

γPΓ
pcpaqcpγq ` spaqspγqq cpγq

“
ÿ

γPΓ

`

cpaqc2
pγq ` spaqspγqcpγq

˘

“ cpaq
ÿ

γPΓ
c2
pγq ` spaq

ÿ

γPΓ
spγqcpγq.

Eq. (21) follows from (19) and (20) and (iii ) is proved. �

Proof of Lemma 2.3. Lemma 2.3 (i ) has already been proved. We now turn to (ii ). The
left-hand side of (6) is

1
4
ÿ

aPA

ÿ

γPΓ
pp1` cqpa´ γqq pp1` cqpγqq

“
1
4
ÿ

aPA

ÿ

γPΓ
p1` cpa´ γqq p1` cpγqq

“
1
4n|A| `

1
4
ÿ

aPA

ÿ

γPΓ
pcpa´ γq ` cpγqq `

1
4
ÿ

aPA

ÿ

γPΓ
cpa´ γqcpγq

“
1
4n|A| `

1
4
ÿ

aPA

ÿ

γPΓ
cpa´ γqcpγq

“
1
4n|A| `

1
4 xA, c ˚ cy , (23)

which verifies (6). Clearly, Fact 2.4 (iii ) and (23) imply (7). �

References

[1] N. Alon, Eigenvalues and expanders, Combinatorica 6 (1986), no. 2, 83–96, DOI 10.1007/BF02579166.
Theory of computing (Singer Island, Fla., 1984). MR875835 Ò1

[2] N. Alon and F. R. K. Chung, Explicit construction of linear sized tolerant networks, Discrete Math.
72 (1988), no. 1-3, 15–19, DOI 10.1016/0012-365X(88)90189-6. MR975519 Ò1

[3] N. Alon and V. D. Milman, λ1, isoperimetric inequalities for graphs, and superconcentrators, J.
Combin. Theory Ser. B 38 (1985), no. 1, 73–88, DOI 10.1016/0095-8956(85)90092-9. MR782626 Ò1

[4] N. Alon, A. Coja-Oghlan, H. Hàn, M. Kang, V. Rödl, and M. Schacht, Quasi-randomness and
algorithmic regularity for graphs with general degree distributions, SIAM J. Comput. 39 (2010), no. 6,
2336–2362, DOI 10.1137/070709529. MR2644348 Ò1

[5] N. Alon and J. H. Spencer, The probabilistic method, 3rd ed., Wiley-Interscience Series in Discrete
Mathematics and Optimization, John Wiley & Sons, Inc., Hoboken, NJ, 2008. With an appendix on
the life and work of Paul Erdős. MR2437651 Ò2.2

http://dx.doi.org/10.1007/BF02579166
http://www.ams.org/mathscinet-getitem?mr=875835
http://dx.doi.org/10.1016/0012-365X(88)90189-6
http://www.ams.org/mathscinet-getitem?mr=975519
http://dx.doi.org/10.1016/0095-8956(85)90092-9
http://www.ams.org/mathscinet-getitem?mr=782626
http://dx.doi.org/10.1137/070709529
http://www.ams.org/mathscinet-getitem?mr=2644348
http://www.ams.org/mathscinet-getitem?mr=2437651


DISCREPANCY AND EIGENVALUES 13

[6] L. Babai, Spectra of Cayley graphs, J. Combin. Theory Ser. B 27 (1979), no. 2, 180–189,
DOI 10.1016/0095-8956(79)90079-0. MR546860 Ò2.1

[7] Y. Bilu and N. Linial, Lifts, discrepancy and nearly optimal spectral gap, Combinatorica 26 (2006),
no. 5, 495–519, DOI 10.1007/s00493-006-0029-7. MR2279667 Ò1

[8] F. Chung and R. Graham, Sparse quasi-random graphs, Combinatorica 22 (2002), no. 2, 217–244,
DOI 10.1007/s004930200010. Special issue: Paul Erdős and his mathematics. MR1909084 Ò1, 1, 1

[9] F. R. K. Chung, R. L. Graham, and R. M. Wilson, Quasi-random graphs, Combinatorica 9 (1989),
no. 4, 345–362, DOI 10.1007/BF02125347. MR1054011 Ò1

[10] D. Conlon, J. Fox, and Y. Zhao, Extremal results in sparse pseudorandom graphs, Adv. Math. 256
(2014), 206–290, DOI 10.1016/j.aim.2013.12.004. MR3177293 Ò1

[11] D. Conlon and Y. Zhao, Quasirandom Cayley graphs, available at arXiv:1603.03025. Submitted. Ò1
[12] W. E. Donath and A. J. Hoffman, Algorithms for partitioning of graphs and computer logic based on

eigenvectors of connection matrices, IBM Techn. Disclosure Bull. 15 (1972), 938–944. Ò1
[13] W. E. Donath and A. J. Hoffman, Lower bounds for the partitioning of graphs, IBM J. Res. Develop.

17 (1973), 420–425. MR0329965 Ò1
[14] M. Fiedler, Algebraic connectivity of graphs, Czechoslovak Math. J. 23(98) (1973), 298–305.

MR0318007 Ò1
[15] , A property of eigenvectors of nonnegative symmetric matrices and its application to graph

theory, Czechoslovak Math. J. 25(100) (1975), no. 4, 619–633. MR0387321 Ò1
[16] P. Frankl, V. Rödl, and R. M. Wilson, The number of submatrices of a given type in a Hadamard

matrix and related results, J. Combin. Theory Ser. B 44 (1988), no. 3, 317–328, DOI 10.1016/0095-
8956(88)90040-8. MR941440 Ò1

[17] W. T. Gowers, personal communication. Ò1
[18] K. M. Hall, R-Dimensional quadratic placement algorithm, Management Science Series A (Theory) 17

(1970), no. 3, 219–229 (English). Ò1
[19] Y. Kohayakawa and V. Rödl, Regular pairs in sparse random graphs. I, Random Structures Algorithms

22 (2003), no. 4, 359–434, DOI 10.1002/rsa.10081. MR1980964 Ò1
[20] Y. Kohayakawa, V. Rödl, and P. Sissokho, Embedding graphs with bounded degree in sparse pseudo-

random graphs, Israel J. Math. 139 (2004), 93–137, DOI 10.1007/BF02787543. MR2041225 Ò1
[21] M. Krivelevich and B. Sudakov, Pseudo-random graphs, More sets, graphs and numbers, Bolyai

Soc. Math. Stud., vol. 15, Springer, Berlin, 2006, pp. 199–262, DOI 10.1007/978-3-540-32439-3_10.
MR2223394 Ò1, 1

[22] L. Lovász, Spectra of graphs with transitive groups, Period. Math. Hungar. 6 (1975), no. 2, 191–195.
MR0398886 Ò2.1

[23] L. Lovász, Combinatorial problems and exercises, 2nd ed., AMS Chelsea Publishing, Providence, RI,
2007. MR2321240 Ò2.1

[24] V. Rödl, On universality of graphs with uniformly distributed edges, Discrete Math. 59 (1986), no. 1-2,
125–134, DOI 10.1016/0012-365X(86)90076-2. MR837962 Ò1

[25] J.-P. Serre, Linear representations of finite groups, Springer-Verlag, New York-Heidelberg, 1977.
Translated from the second French edition by Leonard L. Scott; Graduate Texts in Mathematics, Vol.
42. MR0450380 Ò2.1

http://dx.doi.org/10.1016/0095-8956(79)90079-0
http://www.ams.org/mathscinet-getitem?mr=546860
http://dx.doi.org/10.1007/s00493-006-0029-7
http://www.ams.org/mathscinet-getitem?mr=2279667
http://dx.doi.org/10.1007/s004930200010
http://www.ams.org/mathscinet-getitem?mr=1909084
http://dx.doi.org/10.1007/BF02125347
http://www.ams.org/mathscinet-getitem?mr=1054011
http://dx.doi.org/10.1016/j.aim.2013.12.004
http://www.ams.org/mathscinet-getitem?mr=3177293
http://arxiv.org/abs/1603.03025
http://www.ams.org/mathscinet-getitem?mr=0329965
http://www.ams.org/mathscinet-getitem?mr=0318007
http://www.ams.org/mathscinet-getitem?mr=0387321
http://dx.doi.org/10.1016/0095-8956(88)90040-8
http://dx.doi.org/10.1016/0095-8956(88)90040-8
http://www.ams.org/mathscinet-getitem?mr=941440
http://dx.doi.org/10.1002/rsa.10081
http://www.ams.org/mathscinet-getitem?mr=1980964
http://dx.doi.org/10.1007/BF02787543
http://www.ams.org/mathscinet-getitem?mr=2041225
http://dx.doi.org/10.1007/978-3-540-32439-3_10
http://www.ams.org/mathscinet-getitem?mr=2223394
http://www.ams.org/mathscinet-getitem?mr=0398886
http://www.ams.org/mathscinet-getitem?mr=2321240
http://dx.doi.org/10.1016/0012-365X(86)90076-2
http://www.ams.org/mathscinet-getitem?mr=837962
http://www.ams.org/mathscinet-getitem?mr=0450380


14 YOSHIHARU KOHAYAKAWA, VOJTĚCH RÖDL, AND MATHIAS SCHACHT

[26] A. Sinclair and M. Jerrum, Approximate counting, uniform generation and rapidly mixing Markov
chains, Inform. and Comput. 82 (1989), no. 1, 93–133, DOI 10.1016/0890-5401(89)90067-9. MR1003059
Ò1

[27] D. Spielman, Spectral graph theory, Combinatorial scientific computing, Chapman & Hall/CRC Comput.
Sci. Ser., CRC Press, Boca Raton, FL, 2012, pp. 495–524, DOI 10.1201/b11644-19. MR2952760 Ò1

[28] D. A. Spielman and S.-H. Teng, Spectral partitioning works: planar graphs and finite element meshes,
Linear Algebra Appl. 421 (2007), no. 2-3, 284–305, DOI 10.1016/j.laa.2006.07.020. MR2294342 Ò1

[29] R. M. Tanner, Explicit concentrators from generalized N -gons, SIAM J. Algebraic Discrete Methods 5
(1984), no. 3, 287–293, DOI 10.1137/0605030. MR752035 Ò1

[30] A. Thomason, Pseudorandom graphs, Random graphs ’85 (Poznań, 1985), North-Holland Math. Stud.,
vol. 144, North-Holland, Amsterdam, 1987, pp. 307–331. MR930498 Ò1

[31] , Random graphs, strongly regular graphs and pseudorandom graphs, Surveys in combinatorics
1987 (New Cross, 1987), London Math. Soc. Lecture Note Ser., vol. 123, Cambridge Univ. Press,
Cambridge, 1987, pp. 173–195. MR905280 Ò1

Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, Brazil
E-mail address: yoshi@ime.usp.br

Department of Mathematics and Computer Science, Emory University, Atlanta, USA
E-mail address: rodl@mathcs.emory.edu

Fachbereich Mathematik, Universität Hamburg, Hamburg, Germany
E-mail address: schacht@math.uni-hamburg.de

http://dx.doi.org/10.1016/0890-5401(89)90067-9
http://www.ams.org/mathscinet-getitem?mr=1003059
http://dx.doi.org/10.1201/b11644-19
http://www.ams.org/mathscinet-getitem?mr=2952760
http://dx.doi.org/10.1016/j.laa.2006.07.020
http://www.ams.org/mathscinet-getitem?mr=2294342
http://dx.doi.org/10.1137/0605030
http://www.ams.org/mathscinet-getitem?mr=752035
http://www.ams.org/mathscinet-getitem?mr=930498
http://www.ams.org/mathscinet-getitem?mr=905280

	1. Introduction
	Acknowledgements

	2. Proof of the main result
	2.1. Eigenvalues of Cayley graphs of abelian groups
	2.2. The proof
	2.3. Proof of Lemma 2.3

	References

