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Abstract. We study quasi-random properties of k-uniform hypergraphs. Our
central notion is uniform edge distribution with respect to large vertex sets. We

will find several equivalent characterisations of this property and our work can

be viewed as an extension of the well known Chung-Graham-Wilson theorem
for quasi-random graphs.

Moreover, let Kk be the complete graph on k vertices and M(k) the line
graph of the graph of the k-dimensional hypercube. We will show that the pair

of graphs (Kk,M(k)) has the property that if the number of copies of both

Kk and M(k) in another graph G are as expected in the random graph of
density d, then G is quasi-random (in the sense of the Chung-Graham-Wilson

theorem) with density close to d.

1. Introduction

We study quasi-random properties of k-uniform hypergraphs, k-graphs for short.
The systematic study of quasi-random or pseudo-random graphs was initiated by
Thomason [34, 35]. Roughly speaking, Thomason studied deterministic graphs Gn
of density p that “imitate” the binomial random graph G(n, p), i.e., graphs Gn
that share some important properties with G(n, p). One of the key properties of
G(n, p) is its uniform edge distribution and Thomason chose a quantitative version
of this property, so-called jumbledness, to define pseudo-random graphs. Subse-
quently Chung, Graham and Wilson [8] (building on the work of others) considered
a variation of jumbledness (see property P4 below) and showed that several other
properties of G(n, p) are equivalent to it in a deterministic sense. In particular,
those authors proved the following beautiful result.

Theorem 1 (Chung, Graham, and Wilson). For any sequence (Gn)n∈N of graphs
with |V (Gn)| = n the following properties are equivalent:

P1 : for all graphs F we have N∗F (Gn) = (1/2)(
`
2)n` + o(n`), where ` = |V (F )|

and N∗F (Gn) denotes the number of labeled, induced copies of F in Gn;
P2 : e(Gn) ≥ 1

2

(
n
2

)
−o(n2) and NC4(Gn) ≤ (n/2)4 +o(n4), where C4 is the cycle

on 4 vertices and NC4
(G) denotes the number of labeled (not necessarily

induced) copies of C4 in Gn;
P3 : e(Gn) ≥ 1

2

(
n
2

)
− o(n2), λ1(Gn) = n/2 + o(n), and |λ2(Gn)| = o(n), where

λi(Gn) is the i-th largest eigenvalue of the adjacency matrix of Gn in ab-
solute value;
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P4 : for every subset U ⊆ V (Gn) we have e(U) = 1
2

(|U |
2

)
+ o(n2);

P5 : for every subset U = bn/2c we have e(U) = n2/16 + o(n2);
P6 :

∑
u,v |s(u, v) − n/2| = o(n3), where for vertices u, v ∈ V (Gn) we set

s(u, v) = |{x ∈ V (Gn) : ux ∈ E(Gn)⇔ vx ∈ E(Gn)}|;
P7 :

∑
u,v | codeg(u, v) − n/4| = o(n3), where for vertices u, v ∈ V (Gn) we set

codeg(u, v) = |{x ∈ V (Gn) : ux ∈ E(Gn) and vx ∈ E(Gn)}| . �

Note that, e.g. due to property P4, the density of Gn must tend to 1/2. However,
the properties P1, . . . , P7 can be altered in a straightforward way and the analogue
of Theorem 1 holds for all fixed, positive densities. Moreover, graphs satisfying one
(and hence all) of the properties P1, . . . , P7 are called quasi-random and P1, . . . , P7

are quasi-random properties. The list of quasi-random properties was extended by
several authors (see, e.g., [25, 26, 28, 29, 30, 31, 36]). Another result related to our
work here is the following due to Simonovits and Sós [29].

Theorem 2 (Simonovits and Sós). For every d > 0, every graph F on ` vertices
containing at least one edge, and every ε > 0 there exist δ > 0 and n0 such that
the following is true. If G = (V,E) is a graph with |V | = n ≥ n0 vertices such that
NF (U) = de(F )|U |`±δn` for every subset U ⊆ V , where NF (U) denotes the number

of labeled copies of F in the induced subgraph G[U ], then e(U) = d
(|U |

2

)
± εn2 for

every subset U ⊆ V . �

We consider extensions of Theorem 1 and Theorem 2 to k-graphs. Chung [2, 3],
Chung and Graham [5, 6, 7] and Kohayakawa, Rödl, and Skokan [21] studied ex-
tensions of some of the properties P1, . . . , P7 and showed their equivalences. In
particular, for the following notion of quasi-randomness a generalisation of Theo-
rem 1 was obtained: A k-graph Hn of density d is quasi-random, if the edges in Hn

intersect a d-proportion of the cliques of order k of every (k−1)-graph on the same
vertex set. In fact, this property can be viewed as a generalisation of P4 and as
it turned out, this notion of quasi-randomness implies the natural analogue of P1

for k-graphs. On the other hand, for this notion of quasi-randomness there ex-
ist no appropriate extension of Szemerédi’s regularity lemma [33], i.e., there exists
no lemma, which guarantees a decomposition of any given k-graph into relatively
“few” blocks, such that most of them satisfy this notion of quasi-randomness. How-
ever, a variation of this notion together with a corresponding regularity lemma for
k-graphs was found by Gowers [15, 16] and Rödl et al. [13, 24] (see, e.g., [22] for
more details).

We study a simpler notion of uniform edge distribution, which only enforces
similar densities induced on vertex sets. More precisely, we consider the following
straightforward extension of P4.

DISCd(δ): We say a k-graph Hn on n vertices has DISCd(δ) for d, δ > 0, if

e(U) = d
(|U |
k

)
± δnk for all U ⊆ V (Hn) ,

where by x = y ± z we mean that x lies in the interval [y − z, y + z].

Hypergraphs with property DISCd were studied in [2, 3, 20] and a straightforward
generalisation of Szemerédi’s regularity lemma for this concept was observed to
hold in [4, 12, 32] (see Theorem 23 below).

We will suggest extensions of properties P1, P2, P6, and P7 to k-graphs which
all turn out to be equivalent to DISCd (the analogue of P4 in this context). As a
consequence we obtain a new generalisation of Theorem 1 to k-graphs, which we
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present in the next section, Section 1.1 (see Theorem 3). In Section 1.2 we will
discuss a consequence of this generalisation for graphs. In particular, we will show
that for every integer k ≥ 2 the following is true: if the number of copies of the
complete graph Kk and of the line graph of the k-dimensional hypercube M(k)
are “right” in a given graph G, then G is quasi-random (see Corollary 4). We will
also verify the equivalence of another property for k-graphs, which is inspired by
Theorem 2 and which we discuss in Section 1.3 (see Theorem 5). Finally, we show
the equivalence of several partite variants of DISCd (see Theorem 6 in Section 1.4).

1.1. Generalisation of Theorem 1. We establish a generalisation of Theorem 1
for k-graphs which is based on DISCd. Since DISCd is the straightforward general-
isation of P4, we need to find generalisations of the other properties of Theorem 1,
which are equivalent to DISCd.

1.1.1. Extension of P1. We start with property P1. This property asserts that the
number of induced copies of a fixed graph F in Gn is asymptotically the same as
in the random graph G(n, 1/2). It is well known that DISCd does not imply such
a property for k ≥ 3 as the following example shows: let Hn be the 3-graph whose
edges are formed by the triangles of the random graph G(n, 1/2). Chernoff type
estimates show that Hn satisfies DISC1/8 with high probability. On the other hand,

the number of labeled (not necessarily induced) copies of K
(3)
1,1,2 (the 3-graph with

two edges on four vertices) in Hn is ∼ n4/32, which is twice as much as the “right”

number (1/8)2n4. Moreover, the number of labeled, induced copies of K
(3)
1,1,2 in Hn

is ∼ n4/64, while the “right” number would be 49n4/642.
However, it was shown in [20], that k-graphs having DISCd(δ) for sufficiently

small δ must contain approximately the same number of copies of any fixed linear k-
graph F as a genuine random k-graph of the same density. Here a linear k-graph F
is defined as having no pair of edges which intersect in two or more vertices. In other
words, the property DISCd implies the following counting-lemma-type property,

CLd(F, ε): We say a k-graph Hn on n vertices has CLd(F, ε) for a given linear
k-graph F on ` vertices and d, ε > 0, if

NF (Hn) = de(F )n` ± εn` ,

where NF (H) denotes the number of labeled copies of F in H.

For a property Px1,...,xp(α1, . . . , αr) of k-graphs we say a sequence (Hn)n∈N of k-
graphs with |V (Hn)| = n has or satisfies Px1,...,xp , if for all choices of the parameters
α1, . . . , αr there exists an n0 such that Hn satisfies Px1,...,xp(α1, . . . , αr) for all
n ≥ n0. Note that the parameters x1, . . . , xp are fixed for this definition and
the fixed parameters always appear as subscripts on the name of the property.
Moreover, the parameters x1, . . . , xp and α1, . . . , αr might be of different types,
like k-graphs, integers, or real numbers. For example, in CLd the parameter α1 is
an arbitrary linear k-graph, while x1 and α2 are positive reals. Furthermore, for
two properties Px1,...,xp(α1, . . . , αr) and Qy1,...,yq (β1, . . . , βs) we say Px1,...,xp implies
Qy1,...,yq (Px1,...,xp ⇒ Qy1,...,yq ), if every sequence of k-graphs (Hn)n∈N that satisfies
property Px1,...,xp also satisfies property Qy1,...,yq . Moreover, properties Px1,...,xp

and Qy1,...,yq are called equivalent if Px1,...,xp ⇒ Qy1,...,yq and Qy1,...,yq ⇒ Px1,...,xp .
With this notation, the aforementioned result from [20] states that

DISCd implies CLd. (1)
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The discussion above suggests that the “right” extension of P1 in our context
involves linear k-graphs, which leads to the following definition for the induced-
counting-lemma-type property.

ICLd(F
′, F, ε): We say a k-graph Hn on n vertices has ICLd(F

′, F, ε) for given
linear k-graphs F ′ ⊆ F with V (F ′) = V (F ) = [`] and d, ε > 0, if

N∗F ′,F (Hn) = de(F
′)(1− d)e(F )−e(F ′)n` ± εn` ,

where N∗F ′,F (Hn) denotes the number of labeled, induced copies of F ′ with

respect to F in Hn, i.e., N∗F ′,F (Hn) is the number of injective mappings

ϕ : V (F ) → V (Hn) such that for all edges e of the supergraph F we have
ϕ(e) ∈ E(Hn) if and only if e is an edge of the subgraph F ′.

The notion of induced copies with respect to a linear supergraph F may look a bit
artificial. But it generalises the usual notion of induced graphs in the case of graphs,
as may be seen by setting F = K` to be the complete graph on the same vertex
set. We will show that ICLd is equivalent to DISCd for k-graphs (see Theorem 3
below).

1.1.2. Extension of P2. Next we focus on a generalisation of P2. For that we need
to identify a k-graph which in some sense allows us to reverse the implication
from (1). Note that there are k-graphs O known, which have the following property:
if O appears asymptotically in the “right” frequency in Hn, then Hn must satisfy
DISCd. However, to our knowledge all known k-graphs O with this property are
non-linear and, as shown for example in [20], DISCd(δ) never yields the “right”
frequency for any non-linear k-graph O. Below we will define a linear k-graph M
with the same property, i.e., M plays the role of C4 for k ≥ 3. (In fact, for k = 2
the graph M will be equal to C4.)

For a k-partite k-graph A with vertex classes X1, . . . , Xk and i ∈ [k] we define
the doubling dbi(A) of A around class Xi to be the k-graph obtained from A by
taking two disjoint copies of A and identifying the vertices of Xi. More formally,
dbi(A) is the k-partite k-graph with vertex classes Y1, . . . , Yk, where Yi = Xi and

for j 6= i we have Yj = Xj∪̇X̃j with X̃j = {x̃ |x ∈ Xj}. Thus x̃ denotes the copy
of x. Moreover, the edge set of dbi(A) is given by

E(dbi(A)) = E(A)∪̇{{x̃1, . . . , x̃i−1, xi, x̃i+1, . . . , x̃k} : {x1, x2, . . . , xk} ∈ E(A)}.
For the construction of the k-graph M we will start with a single hyperedge Kk,

which can be seen as a k-partite k-graph with partition classes of size 1, and itera-
tively double this k-graph around the partition classes. More precisely,

M = dbk(dbk−1(. . . db1(Kk) . . .)) .

More generally, set

M0 = Kk and Mj = dbj(Mj−1) for j = 1, . . . , k,

so that M = Mk. We observe that for every j = 0, . . . , k we have

|V (Mj)| = j2j−1 + (k − j)2j and |E(Mj)| = 2j .

Moreover, for the vertex partition X1∪̇ . . . ∪̇Xk of Mj we have

|X1| = . . . = |Xj | = 2j−1 and |Xj+1| = . . . = |Xk| = 2j .

As already mentioned for graphs (k = 2) the corresponding graph M is C4 and for
k ≥ 3 the k-graph M will turn out to be the “right” generalisation for our purposes.
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In fact, it follows from the Cauchy-Schwarz inequality that if Hn contains at least
αn|V (A)| labeled copies of some given k-partite k-graph A, then Hn contains at least
(α2 − o(1))n|V (dbi(A))| labeled copies of dbi(A). Consequently, every k-graph Hn

with at least d
(
n
k

)
+ o(nk) edges contains at least (d2k − o(1))nk2k−1

labeled copies
of M . Hence, the random k-graph of density d contains approximately the minimum
number of copies of M and as we will see k-graphs Hn having NM (Hn) close to
the minimum number will satisfy DISCd. More precisely, we will show that MINd

is another property equivalent to DISCd (see Theorem 3 below), where MINd is
defined as follows.

MINd(ε): We say a k-graph Hn on n vertices has MINd(ε) for d, ε > 0, if

e(Hn) ≥ d
(
n
k

)
− εnk and NM (Hn) ≤ d2knk2k−1

+ εnk2k−1

.

We did not find any interesting generalisation of property P3 from Theorem 1 to
k-graphs for k ≥ 3. Moreover, the extension property P4 in this work is DISCd and
the generalisation of P5 is straightforward (and the implication P5 ⇒ P4 could be
proved along the lines of [36]). Hence, we continue with the discussion of properties
P6 and P7.

1.1.3. Extension of P6. It was already noted in [6] that the property P6 is closely
related to the appearance of subgraphs of C4. More precisely, for a graph Gn let
EVENC4

(Gn) be the sum of the number of labeled induced copies of subgraphs of
C4 with an even number of edges, i.e.,

EVENC4
(Gn) = N∗∅,C4

(Gn) + 4N∗P2,C4
(Gn) + 2N∗2K2,C4

(Gn) +N∗C4,C4
(Gn) ,

where ∅ is the subgraph of C4 without any edges, Pi is the path with i edges,
and 2K2 is a matching consisting of two edges. Note, that there are four different
ways to select a path of length two within a C4 and there two different way to fix
a matching of size two in any given C4, while there is only one way to fix a C4 or
an “empty C4” within a cycle of length four. Similarly, set

ODDC4(Gn) = 4N∗P1,C4
(Gn) + 4N∗P3,C4

(Gn) .

We can rewrite ODDC4
(Gn) and EVENC4

(Gn) in terms of s(u, v) (cf. P6 in Theo-
rem 1) as follows

EVENC4
(Gn) =

∑
u,v∈V

(
s(u, v)2 + (n− s(u, v))2

)
+ o(n4)

and

ODDC4
(Gn) = 2

∑
u,v∈V

(
s(u, v)(n− s(u, v)

)
+ o(n4) .

Hence, property P6 is, due to the Cauchy-Schwarz inequality, equivalent to the
following property.

P ′6 : |EVENC4(Gn)−ODDC4(Gn)| =
∑
u,v∈V (2s(u, v)− n)2 = o(n4).

For the extension of P ′6 to k-graphs, we replace C4 by M from property MINd

and in order to deal with arbitrary densities d > 0 we need a different weight
function for the subgraphs of M . For a k-graph Hn and 1 ≥ d > 0 we define a

weight function w :
(
V (Hn)
k

)
→ [−1, 1] and set for e ∈

(
V (Hn)
k

)
w(e) =

{
1− d if e ∈ E(Hn)

−d if e 6∈ E(Hn) .
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For a labeled copy Ã of a given k-graph A in the complete k-graph on V (Hn) we
set

w(Ã) =
∏

e∈E(Ã)

w(e) .

It is easy to check that for a graph Gn and d = 1/2 we have

|EVENC4
(Gn)−ODDC4

(Gn)| = 16
∣∣∣∑C̃4

w(C̃4)
∣∣∣+ o(n4) ,

where the sum runs over all labeled copies C̃4 of C4 in the complete graph on V (Gn).
With this in mind, we define the generalisation of P6 as follows, which may be

viewed as a weighted form of MINd.

DEVd(ε): We say a k-graph Hn on n vertices has DEVd(ε) for d, ε > 0, if∣∣∣∑M̃ w(M̃)
∣∣∣ ≤ εnk2k−1

where the sum runs over all labeled copies M̃ of M in the complete k-graph
on V (Hn).

Again Theorem 3 will show that DEVd is equivalent to DISCd.

1.1.4. Extension of P7. The last property we consider here is P7. Roughly speak-
ing, P7 asserts that most pairs of vertices of Gn have approximately n/4 neigh-
bours and this implies, on the one hand, that the number of labeled C4’s in Gn
is close to n4/16, while, on the other hand, for most vertices v the number of
labeled C4’s containing v satisfies

∑
w∈V (codeg(v, w))2 ∼ n × (n/4)2 as well as∑

u,u′∈N(v) codeg(u, u′) ∼ (deg(v))2(n/4), which yields deg(v) ∼ n/2. Conse-

quently, P7 implies P2 and the reverse implication follows from the Cauchy-Schwarz
inequality. From this point of view the obvious generalisation of P7 concerns the
number of labeled copies of Mk−1 attached to a fixed, labeled set of 2k−1 vertices.
We now make this precise.

Let Hn be a k-graph on n vertices. Let Xk be the (unique) largest vertex class
of Mk−1 and, for q = 2k−1, let x1, . . . , xq be an arbitrary labeling of the vertices
of Xk. For an ordered set u = (u1, . . . , uq) of q vertices in V (Hn), we denote by
ext(Mk−1, Hn,u) the number of copies of Mk−1 in Hn extending u in a canonical
way, i.e., ext(Mk−1, Hn,u) is the number of injective, edge preserving mappings
ϕ : V (Mk−1) → V (Hn) with ϕ(xi) = ui for i = 1, . . . , q. The generalisation of P7

then reads as follows.

MDEGd(ε): We say a k-graph Hn on n vertices has MDEGd(ε) for d, ε > 0,
if ∑

u

∣∣∣ext(Mk−1, Hn,u)− d2k−1

n(k−1)2k−2
∣∣∣ ≤ εn(k+1)2k−2

where the sum runs over all ordered 2k−1-element subsets u in V (Hn).

After this discussion of the extension of properties P1, P2, P6, and P7 we state our
first result (for the proof see Section 2), which asserts that those generalisations are
equivalent (recall the definition of equivalent properties in the paragraph above (1)).

Theorem 3. For every integer k ≥ 2 and every d > 0 the properties DISCd, CLd,
ICLd, MINd, DEVd, and MDEGd are equivalent.
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Note that, due to MINd, restricting ICLd to all pairs of k-graphs F ′ ⊆ F for
` ≥ k2k−1 fixed is already equivalent to DISCd and, in fact, P1 was stated in [8] in
that form.

In the proof of Theorem 3 we will use (1) which was proved in [20]. We will
include a direct proof of the implication from DEVd to CLd in Section 2.5.

1.2. Forcing pairs for graphs. Theorem 3, although a result about k-graphs,
has an interesting consequence for graphs. Recall property P2 essentially says that
if the density of a graph G is at least d− o(1) and the density of 4-cycles is at most
d4 +o(1), then G is a quasi-random graph with density d. In other words, lower and
upper bounds on the number of K2 and C4 in G imply that G is quasi-random and
the question arises which other pairs of graphs replacing K2 and C4 have the same
effect. Such pairs are called forcing pairs (note that our definition differs from [8],
as we consider non-induced copies). For example, it follows from the work in [8]
and [31] that C4 may be replaced by any even cycle or any complete bipartite graph
Ka,b with a, b ≥ 2. Moreover, it follows from the recent work of Hatami [18] that
C4 can be replaced by Qk, the graph of the k-dimensional hypercube for k ≥ 2 (for
more recent results see [9]).

However, all known forcing pairs consist of bipartite graphs and it would be
interesting to find forcing pairs involving non-bipartite graphs (see, e.g., [26]). Be-
low, we will use Theorem 3 combined with Theorem 2 to verify certain forcing pairs
involving cliques.

For an integer k let M(k) be the graph which we obtain if we replace every
hyperedge of the k-graph Mk by a graph clique of order k. Since the k-graph Mk is
linear, the graph M(k) consists of 2k graph cliques Kk, which intersect in at most

one vertex. Hence, M(k) consists of k2k−1 vertices and 2k
(
k
2

)
edges. (Alternatively,

M(k) is the graph we obtain from the k-dimensional hypercube, by letting V (M(k))
be the edges of the hypercube and letting edges of M(k) connect two edges of the
hypercube if they have a common end-vertex. In other words, M(k) is the line
graph of the graph of the k-dimensional hypercube Qk.) The following corollary of
Theorem 3 shows that for every k ≥ 2 the pair of graphs Kk and M(k) is a forcing
pair.

Corollary 4. For every integer k ≥ 2, every d > 0, and every δ > 0 there exist
ε > 0 and n0 such that the following is true. If G = (V,E) is a graph on |V | = n ≥
n0 vertices that satisfies

NKk(G) ≥ d(k2)nk − εnk and NM(k)(G) ≤ d2k(k2)nk2k−1

+ εnk2k−1

,

then G satisfies DISCd(δ).

Proof. We briefly sketch the proof of Corollary 4. From the given graph G we
construct a k-graph H = H(G), where the hyperedges of H correspond to the
cliques Kk of G. Therefore we have a one-to-one correspondence between the
hyperedges of H and the Kk’s of G, as well as, between the copies of Mk in H
and the copies of M(k) in G. Hence, the assumption on G implies that H satisfies

MINd′ for k-graphs for d′ = d(k2) and from Theorem 3 we infer that H satisfies
DISCd′(ε

′) for k-graphs for some ε′ = ε′(ε) with ε′ → 0 as ε → 0. But DISCd′(ε
′)

for H implies that the assumption of Theorem 2 for the graphs F = Kk and G are
met and, hence, Theorem 2 yields that G satisfies DISCd(δ) for graphs for some
δ = δ(ε′). �
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1.3. Hereditary subgraphs properties. From Theorem 3 we know that k-graphs
containing the “right” number of copies of M are quasi-random. However, note that
for characterising quasi-randomness the linear k-graph M cannot be replaced by
an arbitrary (linear) k-graph. For example, in the case of graphs, the C4 in P2 can-
not be replaced by a triangle, as the following example from [8] shows: partition
the vertex set V (Gn) in four sets X1∪̇X2∪̇X3∪̇X4 = V (Gn) as equal as possible
and add the edges of the complete graph on X1, of the complete graph on X2, of
the complete bipartite graph with vertex classes X3 and X4, and of the random
bipartite graph of density 1/2 with vertex classes X1∪̇X2 and X3∪̇X4. Simple
calculations show, that Gn defined this way has density 1/2 + o(1) and contains
n3/8 + o(n3) labeled triangles. On the other hand, Gn is not quasi-random, as it
obviously violates P4. Moreover, due to Theorem 1, a quasi-random graph must be
hereditarily quasi-random, since if Gn satisfies P4, then induced subgraphs Gn[U ]
for large subsets also satisfy P4 (with a bigger error). Consequently, any property
equivalent to P4 must directly apply to induced subgraphs of linear sized subsets.
(It is not obvious that all the properties in Theorem 1 indeed have this quality,
but e.g. due to Theorem 1 it follows.) Returning to the example of triangles, we
note that the “counterexample” shows that there are graphs which have globally
the “right” number of triangles, but there are large subsets on which the number of
triangles is wrong, e.g. Gn[X1] contains too many (more than (n/4)3/8) triangles.
In order to rule out this phenomenon Simonovits and Sós suggested a notion of
hereditary properties and in [29] they showed that a graph G with density d is
quasi-random if and only if every induced subgraph of G contains the right num-
ber of copies of a fixed graph F (see Theorem 2). This result has been extended
to the case of induced copies of F by Simonovits and Sós [30] and by Shapira
and Yuster [26]. We will continue this line of research and introduce hereditary
properties for k-graphs, which are equivalent to DISCd.

Let Hn be a k-graph on n vertices and let F be a k-graph with vertex set
[`] = {1, . . . , `}. For pairwise disjoint sets U1, . . . , U` ⊆ V (Hn) let NF (U1, . . . , U`)
denote the number of partite-isomorphic, copies of F in Hn, i.e., the number of
`-tuples (h1, . . . , h`) with h1 ∈ U1, . . . , h` ∈ U` such that {hi1 , . . . , hik} is an edge
in Hn if {i1, . . . , ik} is an edge in F . We define the following properties and show
that they are equivalent to DISCd.

HCLd,F,α(ε): We say a k-graph Hn on n vertices has HCLd,F,α(ε) for a lin-
ear k-graph F with V (F ) = [`], a vector α = (α1, . . . , α`) ∈ (0, 1)` with∑`
i=1 αi < 1, and d, ε > 0, if for all choices of pairwise disjoint subsets

U1, . . . , U` ⊂ V (Hn) with |Ui| = bαinc for all i ∈ [`] we have

NF (U1, . . . , U`) = de(F )
∏
i∈[`] |Ui| ± εn` .

HCLd,F (ε): We say a k-graph Hn on n vertices has HCLd,F (ε) for a linear
k-graph F with V (F ) = [`] and d, ε > 0, if Hn satisfies HCLd,F,α(ε) for

every vector α = (α1, . . . , α`) ∈ (0, 1)` with
∑`
i=1 αi < 1.

Theorem 5. For every integer k ≥ 2, every linear k-graph F with at least one edge

and V (F ) = [`], every d > 0, and every vector α ∈ (0, 1)` with
∑`
i=1 αi < 1the

properties DISCd, HCLd,F , and HCLd,F,α are equivalent.

We prove Theorem 5 in Section 3. We also like to mention that the property
HCLd,F can be weakened in the graph case. In fact, Theorem 2 shows that it suffices
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to ensure approximately the right number of copies of the fixed graph F in every
subset U ⊆ V (Gn) of the vertices of Gn to make Gn quasi-random. We, however,
need the assumption for all partitions of U into ` classes. It seems quite plausible
that this stronger looking assumption is not needed and, in fact, for 3-graphs this
was proved recently by Dellamonica and Rödl [11].

1.4. Partite versions of DISC. Property P4 of Theorem 1 has a very natural
bipartite version, stating that the number of edges between two subsets is close to
half of all possible edges between those sets. More precisely, we may consider the
following property.

P ′4: e(U,W ) = |U ||W |/2 + o(n2) for all pairwise disjoint subsets U , W ⊆
V (Gn), where e(U,W ) denotes the number of edges with one vertex in U
and one vertex in W .

It is well known that in fact P4 and P ′4 are equivalent. For example P4 implies P ′4
due to the identity e(U,W ) = e(U ∪W )− e(U)− e(W ), while P4 follows from P ′4
by considering e(U ′,W ′) for a random partition U = U ′∪̇W ′ of a given set U into
classes of size |U |/2.

Below we introduce several partite variants of DISCd for k-graphs, which will
turn out to be equivalent. We start with some definitions. For integers 1 ≤ ` ≤ k we
call τ : [`]→ [k] an (`, k)-function if

∑
i∈[`] τ(i) = k. The set of all (`, k)-functions

will be denoted by T (`, k). For a fixed τ ∈ T (`, k) and ` pairwise disjoint sets

U1, . . . , U` ⊂ V of some vertex set V we say a k-set K ∈
(
V
k

)
has type τ (with

respect to (U1, . . . , U`)), if |K ∩ Ui| = τ(i) for all i ∈ [`]. The family of all k-sets
having type τ is denoted by

Volτ (U1, . . . , U`) =
{
K ∈

(
V
k

)
: K has type τ

}
and let volτ (U1, . . . , U`) = |Volτ (U1, . . . , U`)| =

∏
i∈[`]

(|Ui|
τ(i)

)
.

Alternatively Volτ (U1, . . . , U`) can be considered the complete k-graph with re-
spect to type τ . The actual edges of a k-graph Hn with vertex set V of type τ with
respect to (U1, . . . , U`) will be denoted by

Eτ (U1, . . . , U`) = E(Hn) ∩Volτ (U1, . . . , U`)

and we set eτ (U1, . . . , U`) = |Eτ (U1, . . . , U`)|. Note that for k = 2 and ` = 1, 2 there
exists only one (`, k)-function and edges of the corresponding type are considered
in P4 (` = 1) and in P ′4 (` = 2). For general k ≥ 2 we define the following property.

DISCd,τ (ε): We say a k-graph Hn on n vertices has DISCd,τ (ε) for some (`, k)-
function τ , and d, ε > 0, if

eτ (U1, . . . , U`) = d · volτ (U1, . . . , U`)± εnk

for all pairwise disjoint subsets U1, . . . , U` ⊆ V (Hn).

Next, we define the notion of the `-partite sub-k-graph with respect to the pair-
wise disjoint sets U1, . . . , U` ⊂ V (Hn). The edge set of the complete `-partite
k-graph with respect to the classes U1, . . . , U` is given by

Vol(U1, . . . , U`) =
⋃

τ∈T (`,k)

Volτ (U1, . . . , U`) (2)

and the actual edge set of the `-partite sub-k-graph on U1, . . . , U` is

E(U1, . . . , U`) = E(Hn) ∩Vol(U1, . . . , U`). (3)
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Finally, we consider the following notion of uniform edge distribution.

DISCd,`(ε): We say a k-graph Hn on n vertices has DISCd,`(ε) for some pos-
itive integer ` ≤ k, and d, ε > 0, if

e(U1, . . . , U`) = d · vol(U1, . . . , U`)± εnk

for all pairwise disjoint subsets U1, . . . , U` ⊆ V (Hn).

Note that for arbitrary k the properties DISCd, DISCd,1, and DISCd,(1) are the
same and DISCd,k and DISCd,(1,...,1) are the same. Moreover, for k = 2 these two
properties are equivalent. The following result states that in fact any version of
DISC defined above is equivalent to any other.

Theorem 6. For all integer ` and k with 1 ≤ ` ≤ k, every fixed (`, k)-function τ ,
and every d > 0 the properties DISCd, DISCd,`, and DISCd,τ are equivalent.

2. Proof of Theorem 3

In this section we present the proof of Theorem 3. We have to show that for
every k ≥ 2 and every d > 0 the properties DISCd, CLd, ICLd, MINd, DEVd, and
MDEGd are equivalent. As already noted in (1) it was shown in [20] that DISCd
implies CLd. In Section 2.1 we will show the following obvious implications

CLd
Fact 8 +3

Fact 7

��

ICLd

Fact 9

��
MINd DEVd

(4)

and the proofs of the main implications

MINd
Lemma 10 +3 DISCd and DEVd

Lemma 13 +3 DISCd

will be given in Sections 2.2 and 2.3. Finally, we prove the equivalence of MDEGd

and MINd in Section 2.4 (see Lemma 14), which concludes the proof of Theorem 3.
In addition in Section 2.5 we verify a more direct proof of the implication from

DEVd to CLd.

2.1. Simple facts. In this section we verify the simple implications from (4). The
first implication, CLd ⇒ MINd, follows from the definition that a sequence (Hn)n∈N
satisfies CLd if for every linear k-graph F and every ε > 0 all but finitely many
k-graphs Hn of the sequence satisfy CLd(F, ε).

Fact 7. For every integer k ≥ 2, every d > 0, and every ε > 0 there exists n0

such that the following is true. If H is a k-graph that satisfies CLd(Kk, ε/2) and
CLd(M, ε), then H satisfies MINd(ε).

Proof. Clearly, satisfying CLd(Kk, ε/2) implies e(Hn) ≥ d
(
n
k

)
− εnk for sufficiently

large n and satisfying CLd(M, ε) yields NM (H) ≤ d|E(M)|n|V (M)|+εn|V (M)|, which
gives MINd(ε). �

A standard argument using the principle of inclusion and exclusion yields the
implication from CLd to ICLd.
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Fact 8. For every integer k ≥ 2, every d > 0, all linear k-graphs F ′ ⊆ F with
V (F ′) = V (F ) = [`] for some integer `, and every ε > 0, there exists δ > 0

such that the following is true. If H is a k-graph that satisfies CLd(F̂ , δ) for every

k-graph F̂ with F ′ ⊆ F̂ ⊆ F , then H satisfies ICLd(F
′, F, ε).

Proof. Let δ = ε/2e(F )−e(F ′) and H be a k-graph on n vertices. Note that by the
principle of inclusion and exclusion we have

N∗F ′,F (H) =
∑

F ′⊆F̂⊆F

(−1)e(F̂ )−e(F ′)NF̂ (H) .

Since H satisfies CLd(F̂ , δ) for every k-graph F̂ with F ′ ⊆ F̂ ⊆ F we obtain

N∗F ′,F (H) = de(F
′)(1− d)e(F )−e(F ′)n` ± 2e(F )−e(F ′)δn` ,

which shows that H satisfies ICLd(F
′, F, ε). �

We close this section by observing that ICLd implies DEVd.

Fact 9. For every integer k ≥ 2, every d > 0, and every ε > 0, there exists δ > 0
such that the following is true. If H is a k-graph that satisfies ICLd(M

′,M, δ) for
every k-graph M ′ ⊆M , then H satisfies DEVd(ε).

Proof. Set δ = ε/22k . Let H be a k-graph on n vertices with vertex set V = V (H)
satisfying ICLd(M

′,M, δ) for every M ′ ⊆ M . Recall that the edge weights w of
the complete k-graph KV on V are 1 − d for edges of H and −d for edges of
the complement of H. Moreover, w(Ã) for subgraph Ã ⊆ KV is

∏
e∈E(Ã) w(e).

Summing over all copies M̃ of M in KV we obtain∑
M̃

w(M̃) =
∑

M ′⊆M

(1− d)e(M
′)(−d)2k−e(M ′)N∗M ′,M (H) .

Applying the assumption that H satisfies ICLd(M
′,M, δ) for all k-graphs M ′ ⊆M

we get∑
M̃

w(M̃) =
∑

M ′⊆M

(1− d)e(M
′)(−d)2k−e(M ′)

(
de(M

′)(1− d)2k−e(M ′) ± δ
)
n|V (M)|

=

2k∑
j=0

(
2k

j

)(
d(1− d)

)j(
(−d)(1− d)

)2k−j
n|V (M)| ± 22kδn|V (M)| .

Consequently, the binomial theorem and the choice of δ yields DEVd,∣∣∣∑M̃ w(M̃)
∣∣∣ ≤ εn|V (M)| .

�

2.2. MIN implies DISC. In this section we focus on one of the central implications
of Theorem 3 and prove the following lemma, which asserts that MINd implies
DISCd.

Lemma 10. For every integer k ≥ 2, every d > 0, and every ε > 0, there exists
δ > 0 and n0 such that the following is true. If H is a k-graph on n ≥ n0 vertices
that satisfies MINd(δ), then H satisfies DISCd(ε).
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Before we prove Lemma 10 we introduce a bit of notation, which will be also
useful for the proof of Lemma 13. It will be convenient to consider the number of
homomorphisms from certain k-graphs A to some k-graph H, instead of the number
of labeled copies of A in H. Recall that a homomorphism from A to H is a (not
necessarily injective) mapping from V (A) to V (H) that preserves edges. Note that
the difference of the number of homomorphisms and the number of labeled copies
of A in H is o(|V (H)||V (A)|), which is inessential for the properties considered in
Theorem 3.

Let A be a k-partite k-graph given with its partition classes X1, . . . , Xk and
let U1, . . . , Uk be (not necessarily pairwise disjoint) subsets of V (H) and set U =
(U1, . . . , Uk). We denote by Hom(A,H,U) those homomorphisms ϕ from A to H
that map every Xi into Ui, i.e. ϕ(Xi) ⊆ Ui for all i ∈ [k]. Furthermore, let
hom(A,H,U) = |Hom(A,H,U)|.

Moreover, let Xi = {xi,1, . . . , xi,|Xi|} be a labeling of the vertices of the par-

tition class Xi. Then, for an |Xi|-tuple ui = (u1, . . . , u|Xi|) ∈ U
|Xi|
i denote

by Hom(M,H,U , i,ui) those homomorphisms ϕ from Hom(M,H,U), that map
the j-th vertex in the ordering of Xi to uj , i.e., ϕ(xi,j) = uj . Similarly, let
hom(A,H,U , i,ui) = |Hom(A,H,U , i,ui)|.

The following well known fact (see, e.g. [31]) will be useful for the proof of
Lemma 10.

Fact 11. For every γ > 0 there exists η > 0 such that for all non-negative reals

a1, . . . , aN and a satisfying
∑N
i=1 ai ≥ (1 − η)aN and

∑N
i=1 a

2
i ≤ (1 + η)a2N , we

have |{i ∈ [N ] : |a− ai| < γa}| > (1− γ)N . �

Proof of Lemma 10. We first make a few observations (see Claim 12 below). For
that let H be a k-graph with vertex set V = V (H) and let U1, . . . , Uk be arbitrary,
not necessarily disjoint, subsets of V . Set U = (U1, . . . , Uk). For every j ∈ [k] the
Cauchy-Schwarz inequality yields

∑
uj∈U2j−1

j

(
hom(Mj−1, H,U , j,uj)

)2
≥ 1

|Uj |2j−1

( ∑
uj∈U2j−1

j

hom(Mj−1, H,U , j,uj)
)2

. (5)

Furthermore note, that Mj = dbj(Mj−1), i.e., Mj arises from Mj−1 by “fixing”
the vertices from the j-th partition class of Mj−1, denoted by Xj(Mj−1), and
“doubling” all other vertices of Mj−1 and the corresponding edges. Thus, this
definition yields the following identity for every j ∈ [k].

hom(Mj , H,U) =
∑

uj∈U2j−1
j

hom(Mj , H,U , j,uj)

=
∑

uj∈U2j−1
j

(
hom(Mj−1, H,U , j,uj)

)2
. (6)
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Combining (5) and (6), we get

hom(Mj , H,U)
(6)
=

∑
uj∈U2j−1

j

(
hom(Mj−1, H,U , j,uj)

)2
(5)

≥ 1

|Uj |2j−1

( ∑
uj∈U2j−1

j

hom(Mj−1, H,U , j,uj)
)2

=
1

|Uj |2j−1

(
hom(Mj−1, H,U)

)2
.

Iterating the last estimate j − `+ 1 times for some 1 ≤ ` ≤ j we get the following
line of inequalities for every integer r between ` and j

hom(Mj , H,U) =
∑

uj∈U2j−1
j

(
hom(Mj−1, H,U , j,uj)

)2
(7)

≥
(

1

|Uj |

)2j−1 ( ∑
uj∈U2j−1

j

hom(Mj−1, H,U , j,uj)
)2

. . .

≥

(
j∏

i=r+1

1

|Ui|

)2j−1 ∑
ur∈U2r−1

r

(
hom(Mr−1, H,U , r,ur)

)22j−r

(8)

≥

(
j∏
i=r

1

|Ui|

)2j−1  ∑
ur∈U2r−1

r

hom(Mr−1, H,U , r,ur)

2j−r+1

(9)

. . .

=

(
j∏
i=`

1

|Ui|

)2j−1 (
hom(M`−1, H,U)

)2j−`+1

. (10)

Combining the last line of inequalities with Fact 11 yields the following claim.

Claim 12. For all integers k ≥ j ≥ ` ≥ 1 and every γj,` > 0 there exists ηj,` > 0
such that for all U = (U1, . . . , Uk) with Ui ⊆ V the following is true. If

(a ) hom(M`−1, H,U) ≥ (1− ηj,`)d2`−1 ∏`−1
i=1 |Ui|2

`−2 ∏k
i=` |Ui|2

`−1

and

(b ) hom(Mj , H,U) ≤ (1 + ηj,`)d
2j
∏j
i=1 |Ui|2

j−1 ∏k
i=j+1 |Ui|2

j

hold, then for every r with ` ≤ r ≤ j the following holds. For all but at most

γj,`|Ur|2
r−1

tuples ur = (u1, . . . , u2r−1) from U2r−1

r we have

hom(Mr−1, H,U , r,ur) = (1± γj,`)d2r−1
r−1∏
i=1

|Ui|2
r−2

k∏
i=r+1

|Ui|2
r−1

.

Proof of Claim 12. Note that the assumptions (a ) and (b ) of the claim yield a
lower bound for the right-hand side of (10) and an upper bound for the left-hand
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side in (7). Consequently, for every r between ` and j we obtain from (8) and (9)∑
ur∈U2r−1

r

(
hom(Mr−1, H,U , r,ur)

)2 ≤ (1 + ηj,`)
1/2j−rd2r

r∏
i=1

|Ui|2
r−1

k∏
i=r+1

|Ui|2
r

and ∑
ur∈U2r−1

r

hom(Mr−1, H,U , r,ur) ≥ (1− ηj,`)2r−`d2r−1
r−1∏
i=1

|Ui|2
r−2

k∏
i=r

|Ui|2
r−1

.

Hence, a sufficiently small choice of ηj,` > 0 yields the conclusion of Claim 12 due to

Fact 11 applied with N = |Ur|2
r−1

and a = d2r−1 ∏r−1
i=1 |Ui|2

r−2 ∏k
i=r+1 |Ui|2

r−1

. �

After those preparations we finally prove Lemma 10. Let k, d, and ε be given.
We determine δ > 0 as follows: Set γ1,1 = ε/4 and for j = 2, . . . , k let

γj,1 = 1
2 (dε)2j−1

ηj−1,1 ,

where ηj−1,1 is given by Claim 12 applied for j − 1, ` = 1 with γj−1,1. We then set
δ = ηk,1/2 and let n0 be sufficiently large.

Suppose the k-graph H with vertex set V satisfies MINd(δ). We have to show
that H satisfies DISCd(ε). For that fix an arbitrary set U ⊆ V . We have to show
that

e(U) = d
(|U |
k

)
± εnk . (11)

This claim is trivial for sets U of size at most εn, so we assume |U | ≥ εn.
We are going to apply Claim 12 k times. We start with j = k, ` = 1, and

Uk = (Uk,1, . . . , Uk,k), where all sets Uk,i are equal to V for i = 1, . . . , k. Note
that the property MINd(δ) shows that for sufficiently large n the assumptions (a )
and (b ) of Claim 12 are satisfied by H. Recall, that M0 = Kk consists of one edge
and

hom(M0, H, (V, . . . , V )) = k!e(H)

here. Now the conclusion of Claim 12 for r = k shows that, due to the choice
of γk,1 and |U | ≥ εn, the assumption (b ) of Claim 12 for j = k − 1, ` = 1, and
Uk−1 = (Uk−1,1, . . . , Uk−1,k) with Uk−1,i = V for i = 1, . . . , k − 1 and Uk−1,k = U
is met.

Moreover, noting that in general if U1 = Ui, then hom(M0, H,U , 1, (u)) =
hom(M0, H,U , i, (u)) for every u ∈ U1 = Ui, we see that conclusion of Claim 12 for
r = 1 applied for j = k, ` = 1, and Uk, yields the assumption (a ) of Claim 12 for
j = k − 1, ` = 1, and Uk−1.

In general we apply Claim 12 for j = k, . . . , 1, always with ` = 1, and Uj =
(Uj,1, . . . , Uj,k), where Uj,1 = · · · = Uj,j = V and Uj,j+1 = · · · = Uj,k = U and
observe, as above, that the conclusion of Claim 12 for j yield the assumptions for
j − 1.

This way the conclusion of the last application of Claim 12 for j = ` = 1 and
r = 1 gives a lower and an upper bound for hom(M0, H, (V,U, . . . , U), 1, (u)) for all
but at most γ1,1|V | vertices of u ∈ V . Consequently,

k!e(U) =
∑
u∈U

hom(M0, H, (V,U, . . . , U), 1, (u))

= |U |(1± γ1,1)d|U |k−1 ± γ1,1|V ||U |k−1 = d|U |k ± ε
2n

k ,
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which yields (11) for sufficiently large n. �

2.3. DEV implies DISC. In this section we verify another of the key implications
of Theorem 3, by showing that DEVd implies DISCd.

Lemma 13. For every integer k ≥ 2, every d > 0, and every ε > 0, there exists
δ > 0 and n0 such that the following is true. If H is a k-graph on n ≥ n0 vertices
that satisfies DEVd(δ), then H satisfies DISCd(ε).

Proof. For given k, d and ε we set δ = (ε/4)2k and n0 sufficiently large. Let H be
a k-graph with vertex set V = V (H) and |V | = n ≥ n0, which satisfies DEVd(δ).
We want to verify DISCd(ε) and for that let U ⊆ V be a subset of vertices. Again
we may assume without loss of generality that |U | ≥ εn.

Again, as in Section 2.2, we consider homomorphisms of M (and its subhyper-
graphs) instead of labeled copies. Additionally to the notation from Section 2.2,
we denote by V = (V, . . . , V ) the vector which contains the vertex set V k times.
Moreover, we denote by KV the complete k-graph with vertex set V . Recall that
w : E(KV ) → [−1, 1], where w(e) = 1 − d if e ∈ E(H) and w(e) = −d otherwise.
We introduce f(Mj , H, U), which is a short hand notation for the total weight of
all homomorphisms of Mj into KV with the property that the “last” k − j ver-
tex classes Xj+1(Mj), . . . , Xk(Mj) of Mj are mapped into U . More precisely, for
j = 0, . . . , k we set

f(Mj , H, U) =
∑

ϕ∈Hom(Mj ,KV ,V)

∏
e∈E(Mj)

w(ϕ(e))

k∏
i=j+1

∏
x∈Xi(Mj)

1U (ϕ(x)), (12)

where 1U denotes the indicator function of U . Fixing first the image of Xj+1(Mj)
and summing over all homomorphisms ϕ which extend this choice to a full homo-
morphism of Mj , we can rewrite f(Mj , H, U) as follows

∑
v∈V 2j

2j∏
i=1

1U (vi)
∑

ϕ∈Hom(Mj ,KV ,V,j+1,v)

∏
e∈E(Mj)

w(ϕ(e))

k∏
i=j+2

∏
x∈Xi(Mj)

1U (ϕ(x)) .

Recalling, that Mj+1 = dbj+1(Mj), i.e., Mj+1 arises from Mj by fixing the (j+ 1)-
st vertex class Xj+1(Mj) of Mj and “doubling” all the edges together with the
remaining vertices, and applying the Cauchy-Schwarz inequality to f(Mj , H, U)
(to the form stated above), we obtain(

f(Mj , H, U)
)2 ≤ |U |2jf(Mj+1, H, U)

for every j ∈ {0, . . . , k − 1} and, consequently,(
f(Mj , H, U)

)2k−j ≤ |U |2k−1(
f(Mj+1, H, U)

)2k−j−1

.

Applying the last inequality inductively for j = 0, . . . , k − 1 we obtain∣∣f(M0, H, U)
∣∣2k ≤ |U |k2k−1 ∣∣f(Mk, H, U)

∣∣ . (13)

Since M0 consists of a single edge we have

f(M0, H, U) = k!e(U)− dk!
(|U |
k

)
= k!e(U)− d|U |k ± δnk ,



16 DAVID CONLON, HIÊ. P HÀN, YURY PERSON, AND MATHIAS SCHACHT

since |U | ≥ εn and n is sufficiently large. On the other hand, since Mk = M we
have for sufficiently large n

f(Mk, H, U) =
∑

ϕ∈Hom(M,KV ,V)

∏
e∈E(M)

w(ϕ(e)) =
∑
M̃

∏
e∈E(M̃)

w(ϕ(e))± δn|V (M)|,

where the sum runs over all copies M̃ of M in KV . Since H satisfies DEVd(δ) we
obtain for sufficiently large n

|f(Mk, H, U)| ≤ 2δn|V (M)|

and consequently (13) yields

|k!e(U)− d|U |k| ≤ (δ + (2δ)1/2k)nk

which implies

eH(U) = d
(|U |
k

)
± εnk,

for sufficiently large n by our choice of δ. �

2.4. Equivalence of MIN and MDEG. In this section we verify the equivalence of
MINd and MDEGd. As we will see the implication from MINd to MDEGd is quite
straightforward. Moreover, the reverse implication would be trivial, if MDEGd

would comprise the assumption that e(H) ≥ d
(
n
k

)
− o(nk). In fact, in the main

part of the proof we will deduce that k-graphs having MDEGd must have the right
density.

Lemma 14. For every integer k ≥ 2, every d > 0, and every ε, ε′ > 0, there exists
δ, δ′ > 0 and n0 such that the following is true.

(i ) If H is a k-graph on n ≥ n0 vertices that satisfies MINd(δ), then H satisfies
MDEGd(ε).

(ii ) If H is a k-graph on n ≥ n0 vertices that satisfies MDEGd(δ
′), then H

satisfies MINd(ε
′).

Proof. We start with the proof of (i ). Let k, d and ε be given. We set γk,1 = ε/4
and we let ηk,1 be given by Claim 12 applied with j = k and γk,1. Then set
δ = ηk,1/2 and let n0 be sufficiently large.

Let H be a k-graph on n vertices satisfying MINd(δ), i.e., e(H) ≥ d
(
n
k

)
− δnk

and NM (H) ≤ de(M)n|V (M)| + δn|V (M)| and, consequently, for sufficiently large n
we have

hom(M0, H,V) ≥ dnk − 2δnk

and

hom(Mk, H,V) ≤ de(Mk)n|V (Mk)| + 2δn|V (Mk)| .

Hence, the conclusion of Claim 12 implies that

ext(Mk−1, H,u) = hom(Mk−1, H,V, k,u)± ε
4n

(k−1)2k−2

= (d2k−1

± ε
2 )n(k−1)2k−2

for all but at most γk,1n
2k−1

labeled subsets uk = (u1, . . . , u2k−1) of 2k−1 vertices
in V . Therefore, from our choice of γk,1 ≤ ε/4 we obtain∑

u

∣∣∣ ext(Mk−1, H,u)− d2k−1

n(k−1)2k−2
∣∣∣ ≤ εn(k+1)2k−2

,

where the sum runs over all labeled 2k−1-element subsets u of V . This shows that H
satisfies MDEGd(ε) and concludes the proof of (i ) from the lemma.
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For the second implication of the lemma, we first note that, due to

NM (H) ≤
∑
u

(
ext(Mk−1, H,u)

)2
property MDEGd(δ

′), for sufficiently small choice of δ′, immediately implies

NM (H) ≤ d2knk2k−1

+ ε′nk2k−1

.

Consequently, we have to show that MDEGd(δ
′) also implies e(H) ≥ d

(
n
k

)
− ε′nk.

For that we will verify the following claim.

Claim 15. For all integers k − 1 ≥ j ≥ 1, every d > 0 and every γj > 0, there
exists ηj ≥ 0 such that the following is true. If∑

uj+1∈V 2j

∣∣∣hom(Mj , H,V, j + 1,uj+1)− d2jn|V (Mj)|−2j
∣∣∣ ≤ ηjn|V (Mj)|

for V = (V, . . . , V ), then∑
uj∈V 2j−1

∣∣∣hom(Mj−1, H,V, j,uj)− d2j−1

n|V (Mj−1)|−2j−1
∣∣∣ ≤ γjn|V (Mj−1)| .

Before we verify Claim 15, we deduce part (ii ) of Lemma 14 from the claim. For
given ε′ > 0 let γ1 = ε′/2 and for j = 1, . . . , k−1 let ηj be given by Claim 15 applied
with γj and set γj+1 = ηj . Finally, set δ′ = ηk−1/2 and let n0 be sufficiently large.
From the assumption MDEGd(δ

′) standard calculations show that the assumption
of Claim 15 for j = k − 1 is satisfied and the conclusion yields the assumption for
the claim with j = k − 2. Repeating this argument for j = k − 2, . . . , 1 we infer∑

u∈V

∣∣∣hom(M0, H,V, 1, (v))− dnk−1
∣∣∣ ≤ γ1n

k =
ε′

2
nk ,

which yields e(H) = d
(
n
k

)
± ε′nk for sufficiently large n. �

Proof of Claim 15. For given γj let ηj be sufficiently small, determined later. For

uj ∈ V 2j−1

set

hom(Mj+1, H,V, j + 1,uj) =
∑

u′j∈V 2j−1

hom(Mj+1, H,V, j + 1, (uj ,u
′
j)) ,

i.e., hom(Mj+1, H,V, j + 1,uj) denotes the number of homomorphisms ϕ from
Mj+1 to H, where the “first” 2j−1 vertices of Xj+1(Mj+1) are mapped to uj . Here
we have to clarify what mean by “first” 2j−1 vertices. By that we mean those
vertices in Xj+1(Mj+1) which form Xj+1(Mj−1), i.e., the originals before the j-th
“doubling” step. First we observe

hom(Mj+1, H,V, j + 1,uj) =
∑

u′j∈V 2j−1

(
hom(Mj , H,V, j + 1, (uj ,u

′
j))
)2

(14)

and the assumption of the claim enables us to control the right-hand side of (14).
Indeed, due to the assumption of the claim we know that for all but at most
4
√
ηjn

2j−1

vectors uj ∈ V 2j−1

there exist at most 4
√
ηjn

2j−1

vectors u′j ∈ V 2j−1

such
that ∣∣hom(Mj , H,V, j + 1, (uj ,u

′
j))− d2jn|V (Mj)|−2j

∣∣ ≥ √ηjn|V (Mj)|−2j
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and we call such vectors uj ∈ V 2j−1

deviant. For a non-deviant vector uj ∈ V 2j−1

we infer from (14)

hom(Mj+1, H,V, j + 1,uj)

= n2j−1

d2j+1

n2|V (Mj)|−2j+1

± (3
√
ηj + 4

√
ηj)n

2j−1

n2|V (Mj)|−2j+1

= (d2j+1

± 4 4
√
ηj)n

2|V (Mj)|−2j+1+2j−1

. (15)

On the other hand, for all uj ∈ V 2j−1

, we have

hom(Mj+1, H,V, j + 1,uj) = hom(Mj+1, H,V, j,uj) , (16)

where hom(Mj+1, H,V, j,uj) denotes the number of homomorphisms ϕ from Mj+1

to H, where the “first” 2j−1 vertices of Xj(Mj+1) are mapped to uj . Again, by
“first” 2j−1 vertices we mean those vertices in Xj(Mj+1) which form Xj(Mj−1) =
Xj(Mj), i.e., those vertices which are fixed in the j-th “doubling” step. Now, we
further rewrite hom(Mj+1, H,V, j,uj) and observe that it equals

hom(Mj+1, H,V, j,uj)

=
∑

(ϕ,ϕ′)

hom(Mj , H,V, j + 1, (ϕ(Xj+1(Mj−1)), ϕ′(Xj+1(Mj−1))) , (17)

where the sum is indexed by all pairs of homomorphisms

(ϕ,ϕ′) ∈ (Hom(Mj−1, H,V, j,uj))2 ,

i.e., over all those pairs of homomorphism each of which extends uj to a homo-
morphic image of Mj−1. The identity simply says that we obtain all homomorphic
images of Mj+1 which extend uj as the first 2j−1 vertices in Xj(Mj+1) by taking
two homomorphic extensions of uj to Mj−1 (to obtain a homomorphic image of
Mj) and attaching another homomorphic image of Mj to the image to the thereby
fixed images of Xj+1(Mj). From (15) we obtain another possibility to apply the as-
sumption of the claim and more importantly to connect it with the conclusion. Note

that, given the fixed choice of uj and Xj+1(Mj), there are at most n|V (Mj)|−2j−1−2j

ways to attach such a copy of Mj . Therefore, the assumption combined with (17)
yields

hom(Mj+1, H,V, j,uj) =
(
hom(Mj−1, H,V, j,uj))2 × d2jn|V (Mj)|−2j

± n|V (Mj)|−2j−1−2j × ηjn|V (Mj)|. (18)

Combining (15), (16), and (18), we obtain, for non-deviant vectors uj ∈ V 2j−1

,(
hom(Mj−1, H,V, j,uj)

)2
= (d2j ± (4 4

√
ηj + ηj)/d

2j )n|V (Mj)|−2j−1

and, consequently, for sufficiently small choice of ηj (compared to γj and d) we have∣∣∣hom(Mj−1, H,V, j,uj)− d2j−1

n|V (Mj−1)|−2j−1
∣∣∣ ≤ γj

2
n|V (Mj−1)|−2j−1

for non-deviant uj ∈ V 2j−1

. Summing over all uj ∈ V 2j−1

we get∑
uj∈V 2j−1

∣∣∣hom(Mj−1, H,V, j,uj)− d2j−1

n|V (Mj−1)|−2j−1
∣∣∣

≤ γj
2
n|V (Mj−1)| + 4

√
ηjn
|V (Mj−1)| ≤ γjn|V (Mj−1)|
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as claimed. �

2.5. DEV implies CL. In this section we give a direct proof of DEVd ⇒ CLd. For
that we will introduce another version of DISCd called FDISCd, which is motivated
by the quasi-random functions introduced by Gowers in [15, see Section 3]. It
will turn out that DEVd implies FDISCd (see Lemma 16) and the implication from
FDISCd to CLd will follow by similar arguments to those from [15] (see Lemma 17).

Before we define FDISCd, we will generalise the weight function w defined in
Section 1. For a k-graph H with vertex set V and some d ∈ (0, 1], we define the

weight function w :
(
V
≤k
)

=
⋃k
j=1

(
V
j

)
→ [−1, 1] as follows: for a set X ⊆ V of

cardinality at most k we set

w(X) =

{
1− d if X ∈ E(H),

−d otherwise.

Our weight function is now applicable also to subsets of cardinality smaller than k.
This generalisation will simplify the notation. Moreover, we will again use homo-
morphism instead of copies of k-graphs. In this section we study the following
properties.

FDISCd(ε): We say a k-graph H on n vertices has FDISCd(ε) for d, ε > 0, if∣∣∣∣ ∑
ϕ : [k]→V (H)

w(ϕ([k]))

k∏
i=1

gi(ϕ(i))

∣∣∣∣ ≤ εnk
for all families of functions gi : V (H)→ [−1, 1] with i ∈ [k].

For convenience we will work with the following version of DEVd.

DEV′d(ε): We say a k-graph Hn on n vertices has DEV′d(ε) for d, ε > 0, if∣∣∣∣∣∣
∑

ϕ : V (M)→V

∏
e∈E(M)

w(e)

∣∣∣∣∣∣ ≤ εnk2k−1

.

This definition, though formally different to the definition of DEVd, is equivalent
to it. For DEVd we were summing over all labeled copies of M in KV , and here
we sum over all mappings from V (M) to V (note that we extended w to

(
V
≤k
)

for that). By doing this, we get at most an additional additive error term of

O(nk2k−1−1) = o(nk2k−1

), which is asymptotically negligible.

Lemma 16. For every integer k ≥ 2, every d > 0, and every ε > 0 there exist
δ > 0 and n0 such that the following is true. If H is a k-graph on n ≥ n0 vertices
that satisfies DEV′d(δ), then H satisfies FDISCd(ε).

Proof. The assertion DEVd ⇒ FDISCd is a simple generalisation of the proof of
Lemma 13. We only have to replace 1U (ϕ(x)) for x ∈ Xi(Mj) by gi(ϕ(x)). Thus,
applying each time the Cauchy-Schwarz inequality we will square gi(ϕ(x)), and we
then only have to upper bound (gi(ϕ(x)))2 by 1. We also now have to sum over all
functions ϕ : V (Mj)→ V (instead over all homomorphisms ϕ ∈ Hom(Mj ,KV ,V)).
With those adjustments the proof works verbatim. �

We close this section with the proof of the implication FDISCd ⇒ CLd.
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Lemma 17. For every integer k ≥ 2, every d > 0, every linear k-graph F on `
vertices, and every ε > 0, there exists δ > 0 and n0 such that the following is true.
If H is a k-graph on n ≥ n0 vertices that satisfies FDISCd(δ), then H satisfies
CLd(F, ε).

Proof. We may assume E(F ) 6= ∅ and let us fix an edge f ∈ E(F ). It suffices to
verify an estimate on

hom(F,H) =
∑

ϕ∈Hom(F,KV ,V)

∏
e∈E(F )

1E(H)(ϕ(e)). (19)

the number of homomorphism from F into H. Here, again, we may further enlarge
the sum by going over all functions ϕ : V (F ) → V . However, for every ϕ which is
not a homomorphism, there will be an f ∈ E(F ) with |ϕ(f)| < k, and thus ϕ will
contribute 0 to the total sum. Noting furthermore that 1E(H)(ϕ(e)) = w(ϕ(e)) + d

for every ϕ(e) ∈
(
V
≤k
)

we may rewrite (19) as

hom(F,H) =
∑

ϕ : V (F )→V

∏
e∈E(F )

(w(ϕ(e)) + d)

=
∑

ϕ′:V (F )\{f}→V

∑
ϕ:V (F )→V

ϕ|V (F )\{f}=ϕ
′

∏
e∈E(F )

(w(ϕ(e)) + d).

Now we may concentrate on the inner sum. We first multiply out the product∏
e∈E(F )(w(ϕ(e)) + d), and consider the inner sum. We obtain the leading term

de(F )nk, while each of the other terms from the product can be interpreted as
functions gi (for every vertex i of f since F is linear). Therefore we apply FDISCd(δ)
to each term from the inner sum to obtain an estimate for the sum. Therefore,
setting δ = ε/2e(F )+1, we have shown that the inner sum is de(F )nk ± εnk/2 and,
hence,

hom(F,H) = de(F )n` ± εn` ,
which implies CLd(F, ε) for sufficiently large n. �

3. Proof of Theorem 5

In this section we present the proof of Theorem 5. We have to show that for
every k ≥ 2, every linear k-graph F with at least one edge and V (F ) = [`] for some
integer `, every d > 0, and every vector α ∈ (0, 1]` the properties DISCd, HCLd,F,α
and HCLd,F are equivalent. In Section 3.1 we show the simple implication

HCLd,F,α
Fact 18 +3 HCLd,F .

The main part of this section is devoted to the proof of HCLd,F ⇒ DISCd. For that
we will introduce another property REGd, which will turn out to be equivalent to
DISCd and we then show HCLd,F ⇒ REGd in Section 3.2

HCLd,F
Lemma 25 +3 REGd

ks Fact 24 +3 DISCd .

Finally, in Section 3.3 we verify

DISCd
Fact 27 +3 HCLd,F,α .
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3.1. HCLd,F,α implies HCLd,F . The following observation yields the implication
from HCLd,F,α to HCLd,F .

Fact 18. For every integer k ≥ 2, every d > 0, every linear k-graph F with at
least one edge and V (F ) = [`] for some integer `, all vectors α ∈ (0, 1)` with∑`
i=1 αi < 1, and every ε > 0, there exists δ > 0 and n0 such that the following is

true. If H is a k-graph on n ≥ n0 vertices that satisfies HCLd,F,α(δ), then, for all

β ∈ (0, 1)` with
∑`
i=1 βi < 1, H satisfies HCLd,F,β(ε).

Proof. Note that it suffices to consider the case when α = (α1, . . . , α`) and β =
(β1, . . . , β`) differ in at most one entry, i.e., there is an i ∈ [`] such that αi 6= βi
and for all j 6= i we have αj = βj . Without loss of generality we may assume that
i = `. For given k, d, F , α, and ε > 0 we set δ = εmin{α`, 1 −

∑
i∈[`] αi}/7 and

let n0 be sufficiently large. We then verify the fact for given β ∈ (0, 1)`.
First, we prove the claim for all β = (β1, . . . , β`−1, γ) with γ ≥ α`. Let

U1, . . . , U` ⊆ V (H) be subsets satisfying |Ui| = bβinc for i ∈ [` − 1], |U`| = bγnc
and P = {W ⊂ U` : |W | = bα`nc}. Since H satisfies HCLd,F,α(δ) and βj = αj for
all j ∈ [`− 1] we infer

NF (U1, . . . , U`−1,W ) = de(F )bα`nc
∏

i∈[`−1]

|Ui| ± δn`

for all W ∈ P. Hence, having each copy of F counted
( bγnc−1
bα`nc−1

)
times, we obtain,

for n ≥ 1/α`,

NF (U1, . . . , U`) =

(
bγnc − 1

bα`nc − 1

)−1 ∑
W∈P

NF (U1, . . . , U`−1,W )

=

(
bγnc − 1

bα`nc − 1

)−1( bγnc
bα`nc

)
de(F )

bα`nc∏
i∈[`]

|Ui| ± δn`


= de(F )
∏
i∈[`]

|Ui| ±
2δ

α`
n` ,

which by our choice of δ yields the fact for this case.
Suppose β` < α`. Without loss of generality we may assume that

∑
i∈[`] βi+α` <

1. (Otherwise, first choose β′` = (1−
∑
i∈[`] αi)/2 and then use the proof from above

to finish the claim for β` with appropriately chosen δ.) Let U1, . . . , U` ⊆ V (H) be
pairwise disjoint with |Ui| = bβinc, i ∈ [`]. Considering W ⊆ V \ U` of size
|W | = bα`nc we infer from HCLd,F,α(δ) and the case considered above

NF (U1, . . . , U`−1, U`∪̇W ) = de(F )(bα`nc+ bβ`nc)
∏

i∈[`−1]

|Ui| ±
2δ

α`
n`

and

NF (U1, . . . , U`−1,W ) = de(F )bα`nc
∏

i∈[`−1]

|Ui| ± δn`.
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Hence, we have

NF (U1, . . . , U`) = NF (U1, . . . , U`−1, U`∪̇W )−NF (U1, . . . , U`−1,W )

= de(F )
∏
i∈[`]

|Ui| ±
3δ

α`
n` ,

which concludes the proof of the fact by the choice of δ. �

3.2. HCLd,F implies DISCd. In this section we verify the implication from HCLd,F
to DISCd. The proof is based on ideas of Shapira and Yuster [26], the main tools
being the theorem of Gottlieb [14] on the rank of the inclusion matrices and the
weak regularity lemma for hypergraphs. In the next section, Section 3.2.1, we
introduce the result of Gottlieb and its consequences. In Section 3.2.2 we introduce
the weak regularity lemma for hypergraphs and another quasi-random property
REGd, which is equivalent to DISCd. Finally, in Section 3.2.3 we prove that HCLd,F
implies REGd.

3.2.1. Tools from linear algebra. For positive integers r ≥ ` ≥ k the inclusion matrix

I(r, `, k) is an
(
r
`

)
×
(
r
k

)
matrix defined as follows. For L ∈

(
[r]
`

)
and K ∈

(
[r]
k

)
the

entry of IL,K is given by

IL,K =

{
1 if K ⊂ L
0 otherwise

Note that we implicitly assume fixed orderings on the set of subgraphs
(

[r]
`

)
and on

the edge set
(

[r]
k

)
. This does not effect the rank of I(r, `, k) which is at most

(
r
k

)
and in fact it was shown by Gottlieb [14], that I(r, `, k) has full rank if r ≥ `+ k.

Theorem 19 (Gottlieb). For all positive integers ` ≥ k and r ≥ `+k the inclusion
matrix I(r, `, k) has rank

(
r
k

)
. �

Note that the rows of I(r, `, k) can be interpreted as incidence vectors of the edges
of copies of the complete k-graph K` in Kr. For our purposes, it will be convenient
to consider a similar matrix, where the rows correspond to incidence vectors of the
edges of the given k-graph F . To this end, for a k-graph F on ` vertices, we define
the matrix A(r, F, k) as follows. The rows of A(r, F, k) are indexed by the labelled
copies of F in Kr and the columns are indexed, as above, by the k-element subsets

of [r]. Now for a labeled copy F̃ of F in Kr and a k-set e ∈
(

[r]
k

)
the entry AF̃ ,e is

given by

AF̃ ,e =

{
1 if e ∈ E(F̃ )

0 otherwise.

Thus A(r, F, k) is aNF (Kr)×
(

[r]
k

)
and Theorem 19 determines the rank of A(r, F, k).

Corollary 20. For all positive integers ` ≥ k, r ≥ `+k and all non-empty k-graphs
F on ` vertices the matrix A(r, F, k) has rank

(
r
k

)
.

Proof. The proof of Corollary 20 is identical to the proof of Lemma 3.1 in [25] and
follows from the observation that the rows of A(r, F, k) span the rows of I(r, `, k).

Indeed, summing all rows of A(r, F, k) that correspond to copies F̃ of F with the

same vertex set L ∈
(

[r]
`

)
we obtain a multiple of the row in I(r, `, k) indexed

by L. �
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From Corollary 20 we deduce the key lemma of this section, Lemma 21 below. In
Lemma 21 we consider complete, weighted k-graphs on r vertices. Let w : E(Kr)→
(0, 1] be an arbitrary weight function and F be a fixed k-graph on ` vertices. We

set the weight of a labeled copy F̃ of F in Kr, as before, to the product of the
weights of the edges of F̃ , i.e.,

w(F̃ ) =
∏

e∈E(F̃ )

w(e) .

Lemma 21 states that if w(F̃ ) is “almost” the same for all copies of F , then w must
be almost constant.

Lemma 21. For all integers ` ≥ k ≥ 2 and r ≥ `+ k, every d > 0, every k-graph
F on ` vertices with at least one edge, and every ε > 0, there exists δ > 0 such that
if w : E(Kr)→ (0, 1] satisfies

w(F̃ ) = de(F ) ± δ

for all labeled copies F̃ of F in Kr, then w(e) = d± ε for all e ∈ E(Kr).

Proof. Let `, k, r, d, F , and ε be given. Due to the continuity of the function 2x

we can choose ε′ > 0 such that if |x− log2 d| ≤ ε′ then |2x− d| ≤ ε. Next we fix an

ordering e1, . . . , em, m =
(
r
k

)
of the edges of the Kr and an ordering F̃1, . . . , F̃t for

t = r(r − 1) . . . (r − `+ 1) of all labeled copies of F in Kr. This defines the matrix

A = A(r, F, k) which, by Corollary 20, has rank
(
r
k

)
. Thus A : R(rk) → Rt is an

injective and linear function and consequently there exists a δ′ > 0 such that the
following holds: if Ay = b and Ax = c with ‖b − c‖∞ ≤ δ′ then ‖y − x‖∞ ≤ ε′.
Further, due to the continuity of the function log2 x we can choose δ > 0 such that
if |2b − de(F )| ≤ δ, then |b − e(F ) log2 d| ≤ δ′ and we fix the δ for Lemma 21 this
way.

Now let w : E(Kr)→ (0, 1] satisfy the assumption of the lemma. Therefore, we

have for every copy F̃ of F in Kr∑
e∈E(F̃ )

log2(w(e)) = log2(de(F ) ± δ) . (20)

Let y = ((y(e1), . . . , y(em)) ∈ Rm be given by

y(ei) = log2 w(ei)

for i = 1, . . . ,m. Then (20) is equivalent to Ay = b where b = (b1, . . . , bt) with
bi = log2(de(F ) ± δ) for all i ∈ [t].

On the other hand, by Corollary 20 we know that A has rank
(
r
k

)
and, hence,

the system of linear equations Ax = c for c = (e(F ) log d)1t for the all ones vector
1t = {1}t has at most one solution. Since the everywhere log d vector (log2 d)1m is
a solution to this system of equations, it must be the unique solution x.

From our choice of δ we infer ‖b−c‖∞ ≤ δ′ and, consequently, due to the choice
of δ′ we have ‖y−x‖∞ ≤ ε′. In other words, | log2(w(ei))− log2(d)| ≤ ε′ for every
i = 1, . . . ,m and the choice of ε′ yields |w(e)− d| ≤ ε for all edges e ∈ E(Kr). �

3.2.2. Weak hypergraph regularity lemma. For the proof of HCLd,F ⇒ DISCd we
will use the so-called weak regularity lemma for k-graphs, which is a straightforward
extension of Szemerédi’s regularity lemma for graphs [33]. Roughly speaking, the
property HCLd,F will imply that for the weighted cluster-hypergraph of a regular
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partition the assumption of Lemma 21 hold. Consequently, the densities of all k-
tuples of the regular partition will be close to d and from this we will infer DISCd.
Below we introduce the weak hypergraph regularity lemma and a few related results.

Let H = (V,E) be a k-graph and let U1, . . . , Uk be pairwise disjoint non-empty
subsets of V . Recall that e(U1, . . . , Uk) denotes the number of edges with one vertex
in each Ui, i ∈ [k] and the density of (U1, . . . , Uk) is defined to be

d(U1, . . . , Uk) =
e(U1, . . . , Uk)

|U1| · . . . · |Uk|
.

We say the k-tuple (V1, . . . , Vk) of pairwise disjoint subsets V1, . . . , Vk ⊆ V is ε-
regular if

|d(U1, . . . , Uk)− d(V1, . . . , Vk)| ≤ ε
for all k-tuples of subsets U1 ⊂ V1, . . . , Uk ⊂ Vk satisfying |U1| ≥ ε|U1|, . . . |Uk| ≥
ε|Vk|.

Though the notion of weak regularity is not sufficient to imply a general counting
lemma it was shown in [20] that it is strong enough to imply a counting lemma for
linear k-graphs:

Lemma 22 (Counting lemma for linear hypergraphs). For all integers ` ≥ k ≥ 2
and every γ, there exist ε = ε(`, k, γ) > 0 and m0 = m0(`, k, γ) so that the following
holds.

Let F = ([`], E(F )) be a linear k-graph and let H = (V1∪̇ . . . ∪̇V`, E) be an `-
partite, k-graph where |V1|, . . . , |V`| ≥ m0. Suppose, moreover, that for all edges
f ∈ E(F ), the k-tuple (Vi)i∈f is (ε, df )-regular. Then the following holds:

NF (V1, . . . , V`) =
∏
f∈E(F ) df

∏
i∈[`] |Vi| ± γ

∏
i∈[`] |Vi| .

�

A partition V1∪̇ . . . ∪̇Vt of V (H) will be called a t-equipartition if |V1| ≤ |V2| ≤
· · · ≤ |Vt| ≤ |V1| + 1 and such an equipartition will be called ε-regular if all but
at most ε

(
t
k

)
of the k-tuples (Vi1 , . . . , Vik) are ε-regular. The proof of the following

theorem follows the lines of the original proof of Szemerédi (see, e.g., [4, 12, 32]).

Theorem 23 (Weak hypergraph regularity lemma). For all k, t0 ∈ N and all ε > 0
there is a T0 = T0(t0, ε) and an n0 such that for all n ≥ n0 and all k-graphs H on n
vertices there is an ε-regular, t-equipartition of H with t satisfying t0 ≤ t ≤ T0. �

In case of graphs, it was noted by Simonovits and Sós [28] that there is a close
relationship between quasi-randomness and the Szemerédi regular partition. In-
deed, it is easily shown that a graph G is quasi-random in the sense of Theorem 1
if and only if G permits a partition such that almost all pairs of partition classes
are regular and have roughly the same density. This generalises to k-graphs in a
straightforward manner.

It will be convenient to consider the property REGd defined as follows.

REGd(ε): We say a k-graph H on n vertices has REGd(ε) for d, ε > 0, if
there exists an ε-regular, t-equipartition V (H) = V1∪̇ . . . ∪̇Vt of H with
g(d, ε) ≥ t ≥ 1/ε for some arbitrary function g(d, ε) ≥ 1/ε independent of
H and n such that d(Vi1 , . . . , Vik) = d ± ε for all but at most εtk tuples

{i1, . . . , ik} ∈
(

[t]
k

)
.

It is easy to see that DISCd and REGd are equivalent (see, e.g. [4]) and we omit
the proof here.
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Fact 24. For every integer k ≥ 2 and every d > 0 the properties DISCd and REGd

are equivalent. �

3.2.3. HCLd,F implies REGd. In this section we deduce REGd from HCLd,F by
proving the following lemma.

Lemma 25. For every integer k ≥ 2, every d > 0, every linear k-graph F con-
taining at least one edge, and every ε > 0, there exists δ > 0 and n0 such that the
following is true. If H is a k-graph on n ≥ n0 vertices that satisfies HCLd,F (δ),
then H satisfies REGd(ε).

Besides the results from Sections 3.2.1 and 3.2.2 we will also need the following
consequence of a packing result of Rödl [23].

Lemma 26. For all integers r ≥ k ≥ 2 and every γ > 0 there exists an integer
t0 such that for all t ≥ t0 the following holds. If R is a k-graph on t vertices with
e(R) ≥ (1 − γ)

(
t
k

)
edges, then there exist at least (1 − γrk)

(
t
k

)
edges in R each of

which belong to at least one copy of Kr in R.

Proof. We choose t0 large enough to guarantee that the packing result of Rödl [23] is
applicable for t ≥ t0 and r, k, and γ. Given a k-graph R on t vertices which contains
at least (1 − γ)

(
t
k

)
edges we first consider the complete k-graph Kt on the same

vertex set. From Rödl’s theorem we infer that Kt contains at least (1− γ)
(
t
k

)
/
(
r
k

)
edge disjoint copies of the Kr. Taking the same copies of Kr we see that at most
γ
(
t
k

)
= γ

(
r
k

)(
t
k

)/(
r
k

)
of them fail to be a subgraph of R since R contains at least

(1− γ)
(
t
k

)
edges. This implies that R contains at least (1− γ − γ

(
r
k

)
)
(
t
k

)
/
(
r
k

)
edge

disjoint copies of Kr which implies that all but at most γrk
(
t
k

)
edges of R are

contained in a copy of a Kr in R. �

Proof of Lemma 25. For given k, d, linear k-graph F with at least one edge and
V (F ) = [`], and ε > 0, we first apply Lemma 21 with `, k, and r = `+k, d, F , and ε
and obtain δGL > 0. Then we apply the counting lemma, Lemma 22, with `, k, and
γCL = δGL/2 to obtain εCL and mCL. Further, we apply Lemma 26 with r, k and
γPL = ε/(2rk) to obtain tPL. Applying the weak regularity lemma, Theorem 23,
with

εRL = min{εCL, ε/(2r
k)} and t0 = max{1/εRL, tPL}

we obtain T0. Finally, we choose δ = δGLd
e(F )/(2`+2T `0 ) and n0 ≥ T0mCL suffi-

ciently large to satisfy the equations needed.
Let H be a k-graph on n vertices with n ≥ n0 which satisfies HCLd,F (δ). We

have to show that there exists a partition V1∪̇ . . . ∪̇Vt = V (H) such that

(i ) 1/ε ≤ t ≤ T0 (note that T0 = T0(d, ε, F ) is independent of H and n),
(ii ) ||Vi| − |Vj || ≤ 1 for all i, j ∈ [t]

(iii ) all but at most εtk k-tuples (Vi1 , . . . Vik) are ε-regular and have density
d± ε.

To this end, we first apply Theorem 23 with εRL and t0 to obtain a partition
V (H) = V1∪̇ . . . ∪̇Vt, which already satisfies (i ) and (ii ) and the first part of (iii ),
i.e., all but at most εRL

(
t
k

)
≤ 1

2εt
k k-tuples (Vi1 , . . . Vik) are ε-regular. Thus, it

remains to show that all but at most 1
2εt

k of the k-tuples (Vi1 , . . . Vik) have density
d± ε.
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We consider the reduced (or cluster) k-graph R, i.e., the k-graph on the vertex
set {1, . . . , t} with {i1, . . . , ik} being an edge if and only if (Vi1 , . . . , Vik) is εRL-
regular. Then R is a k-graph on t vertices which contains at least (1 − εRL)

(
t
k

)
edges and we assign to each edge {i1, . . . , ik} the weight

w(i1, . . . , ik) = d(Vi1 , . . . , Vik) .

Applying Lemma 26 to R we know that all but at most γPLr
k
(
t
k

)
< 1

2εt
k edges

belong to a copy of Kr in R. Thus, it is sufficient to show that every edge contained
in a copy of Kr has weight d± ε.

For that fix a copy of Kr in R and without loss of generality we may assume
that V1, . . . , Vr are the vertices of that copy. Recall that H satisfies HCLd,F (δ) and
as a consequence we have for every injective map ϕ : [`]→ [r]

NF (Vϕ(1), . . . , Vϕ(`)) = de(F )
∏
i∈[`]

|Vϕ(i)| ± δn` .

Since each set Vϕ(j) has size at least n/(2T0) and δ = δGL/(2
`+2T `0 ), we obtain

NF (Vϕ(1), . . . , Vϕ(`)) =
(
de(F ) ± δGL/2

) ∏
i∈[`]

|Vϕ(i)| . (21)

On the other hand, applying the counting lemma, Lemma 22, we obtain

NF (Vϕ(1), . . . , Vϕ(`)) =

 ∏
e∈E(F )

w(ϕ(e))± γCL

 ∏
i∈[`]

|Vϕ(i)| . (22)

Combining (21) and (22) with the choice of γCL = δGL/2 we conclude that∏
e∈E(F )

w(ϕ(e)) = deF ± δGL

for all injective mappings ϕ : [`] → [r]. By applying Lemma 21 we derive that all
edges {i1, . . . , ik} have weight d ± ε and, therefore, d(Vi1 , . . . , Vik) = d ± ε which
finishes the proof of Lemma 25. �

3.3. DISCd implies HCLd,F,α. In this section we deduce HCLd,F,α from DISCd
by proving the following lemma.

Fact 27. For every integer k ≥ 2, every d > 0, every linear k-graph F with at least
one edge and V (F ) = [`] for some integer `, and every vector α ∈ (0, 1]`, there
exists δ > 0 and n0 such that the following is true. If H is k-graph on n ≥ n0

vertices that satisfies DISCd(δ), then H satisfies HCLd,F,α(ε).

Proof. The fact is a simple consequence of the counting lemma, Lemma 22. Indeed
for given k, d > 0, F , α ∈ (0, 1]`, and ε > 0, set δ to be sufficiently small, so
that DISCd(δ) implies DISCd,k(δ′) (see Theorem 6) for δ′ = (δCLdmini∈` αi)

k,
where δCL is given by Lemma 22 applied for F and γCL = ε/2 and we may assume
δCL ≤ ε/2. Let n0 be sufficiently large and H be a k-graph on n ≥ n0 vertices
which satisfies DISCd(δ).

Let U1, . . . , U` ⊆ V (H) with |Ui| = bαinc be pairwise disjoint sets. We consider
the induced `-partite k-graph H[U1, . . . , U`]. Since H satisfies DISCd(δ), by Theo-
rem 6 we infer that H satisfies DISCd,k(δ′). Moreover, since (δ′)1/k/mini∈[`] αi ≤
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δCL we have that (Ui1 , . . . , Uik) is δCL-regular with density d± δCL for every choice
1 ≤ ii < · · · < ik ≤ `. Consequently, Lemma 22 implies

NF (U1, . . . , U`) = (de(F ) ± (δCL + γCL))
∏
i∈[`]

|Ui| = de(F )
∏
i∈[`]

|Ui| ± εn` ,

which concludes the proof of the fact. �

4. Proof of Theorem 6

This section concerns the proof of Theorem 6. We have to show that for k ≥
` ≥ 2, every (`, k)-function τ , and every d > 0 the properties DISCd, DISCd,`, and
DISCd,τ are equivalent. The equivalence will follow from the implication

DISCd,`
Fact 28 +3 DISCd,`+1 ,

which holds for every ` = 1, . . . , k − 1 and the equivalence

DISCd,k
Fact 32 +3 DISCd,τ

Fact 30 +3 DISCd,k ,

which holds for every ` = 1, . . . , k and every (`, k)-function τ . Theorem 6 then
follows, since Fact 28 applied for all ` = 1, . . . , k − 1 gives

DISCd = DISCd,1 ⇒ · · · ⇒ DISCd,` ⇒ DISCd,`+1 ⇒ · · · ⇒ DISCd,k

and Fact 32 applied for the unique (1, k)-function τ = (1) gives

DISCd,k ⇒ DISCd,(1) = DISCd .

Finally, due to Fact 30 and Fact 32 we have

DISCd,k ⇔ DISCd,τ

for every ` = 1, . . . , k and every (`, k)-function τ . We prove Fact 28, Fact 30, and
Fact 32 in the next section.

4.1. Equivalence of different versions of DISC. We first deduce DISCd,`+1

from DISCd,` in a straightforward way.

Fact 28. For all integers 1 ≤ ` < k, every d > 0, and every ε > 0 the following
holds. If H is a k-graph that satisfies DISCd,`(ε/3), then H satisfies DISCd,`+1(ε).

Proof. Let U1, . . . , U`+1 ⊂ V (H) be pairwise disjoint sets. Then

vol(U1, . . . , U`−1, U`, U`+1) = vol(U1, . . . , U`−1, U`∪̇U`+1)

− vol(U1, . . . , U`−1, U`)− vol(U1, . . . , U`−1, U`+1).

and

e(U1, . . . , U`−1, U`, U`+1) = e(U1, . . . , U`−1, U`∪̇U`+1)

− e(U1, . . . , U`−1, U`)− e(U1, . . . , U`−1, U`+1).

Since H satisfies DISCd,`(ε/3) we have

e(U1, . . . , U`−1, X) = dvol(U1, . . . , U`−1, X)± εnk/3
for all X ∈ {U`, U`+1, U`∪̇U`+1} and, consequently

e(U1, . . . , U`, U`+1) = dvol(U1, . . . , U`, U`+1)± εnk.
�
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We continue with the following observation, which is a direct consequence of the
principle of inclusion and exclusion.

Fact 29. Let t, `, and k be positive integers with t+ ` ≤ k + 1 and let τ ∈ T (`, k)
be an (`, k)-function with τ(`) = t. Let τ ′ be the (`+ t− 1, k)-function given by

τ ′(i) =

{
τ(i) if i < `

1 if i ≥ `.

Then for every k-graph H and all ` + t − 1 pairwise disjoint sets U1, . . . , U`−1,
U1
` , . . . U

t
` ⊂ V (H) we have

eτ ′(U1, . . . , U`−1, U
1
` , . . . , U

t
` ) =

∑
∅6=J⊆[t](−1)t−|J|eτ

(
U1, . . . , U`−1,

⋃
j∈J U

j
`

)
.

Proof. Let K ⊂
⋃̇
j∈[`−1]Uj∪̇

⋃̇
j∈[t]U

j
` be a set of size k such that K ∩ Ui =

τ(i) for all i < ` and let IK = {i : |K ∩ U i` | > 0}. Note that K appears in
eτ ′(U1, . . . , U`−1, U

1
` , . . . , U

t
` ) if and only if |IK | = t. Moreover, the contribution of

K to the right-hand side is∑
IK⊆J⊆[t]

(−1)t−|J| =

t−|IK |∑
j=0

(
t− |IK |

j

)
(−1)t−(|IK |+j) =

{
1 if |IK | = t

0 otherwise.

�

Fact 30. For all integers 1 ≤ ` ≤ k, every d > 0, every (`, k)-function τ , and every

ε > 0 the following holds. If H is a k-graph that satisfies DISCd,τ (ε/2k
2/2), then

H satisfies DISCd,k(ε).

Proof. Recall first that DISCd,k(ε) = DISCd,σ(ε) if σ is the everywhere 1-function
or equivalently the unique (k, k)-function. For a given τ we call |{i : τ(i) ≥ 2}| the
defect of τ . Since the everywhere 1-function σ is the only (`, k)-function, for any `,
with defect 0, the fact follows from at most bk/2c applications of the following
claim. �

Claim 31. Suppose τ is an (`, k)-function with defect s ≥ 1. Then there is a τ ′ with
defect s− 1 such that if H satisfies DISCd,τ (ε/2k), then H satisfies DISCd,τ ′(ε).

Proof. Claim 31 follows from Fact 29. For a given τ ∈ T (`, k) with defect s ≥ 1 we
may assume without loss of generality that τ(`) = t ≥ 2. We define the (`+t−1, k)-
function τ ′ by

τ ′(i) =

{
τ(i) if i < `

1 if i ≥ `.
(23)

Then τ ′ has defect s− 1 and from Fact 29 we infer

eτ ′(U1, . . . , U`−1, U
1
` , . . . , U

t
` ) =

∑
∅6=J⊆[t](−1)t−|J|eτ

(
U1, . . . , U`−1,

⋃
j∈J U

j
`

)
and

volτ ′(U1, . . . , U`−1, U
1
` , . . . , U

t
` ) =

∑
∅6=J⊆[t](−1)t−|J|volτ

(
U1, . . . , U`−1,

⋃
j∈J U

j
`

)
for any choice of pairwise disjoint sets U1, . . . , U`−1, U1

` , . . . U
t
` ⊂ V (H). Since H

satisfies DISCd,τ (ε/2k) we have

eτ
(
U1, . . . , U`−1,

⋃
j∈J U

j
`

)
= dvolτ

(
U1, . . . , U`−1,

⋃
j∈J U

j
`

)
± εnk/2k
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for all ∅ 6= J ⊆ [t] and, hence,

eτ ′(U1, . . . , U`−1, U
1
` , . . . , U

t
` )

=
∑
∅6=J⊆[t]

(−1)t−|J|(dvolτ

(
U1, . . . , U`−1,

⋃
j∈J

U j`

)
± εnk/2k)

= d
∑
∅6=J⊆[t]

(−1)t−|J|volτ

(
U1, . . . , U`−1,

⋃
j∈J

U j`

)
± 2t−kεnk

= dvolτ ′(U1, . . . , U`−1, U
1
` , . . . , U

t
` )± εnk.

�

The last observation in this section reverses the implication of Fact 30.

Fact 32. For all integers 1 ≤ ` ≤ k, every d > 0, every (`, k)-function τ , and every
ε > 0 there is an n0 such that the following holds. If H is a k-graph on n ≥ n0

vertices that satisfies DISCd,k(ε/3k
2

), then H satisfies DISCd,τ (ε).

Proof. We choose n0 sufficiently large and by induction on ` = k, . . . , 1 we prove
that if H satisfies DISCd,k(ε/3(k−`)k) then H also satisfies DISCd,τ (ε) for an arbi-
trary (`, k)-function τ .

For ` = k there is only one (`, k)-function τ which is the everywhere 1-function.
Then DISCd,τ (ε) = DISCd,k(ε) and the implication is obviously true.

So suppose by induction that for every (`+ 1, k)-function τ ′ every k-graph H on
n vertices with the property DISCd,k(ε/3(k−`)k) also satisfies DISCd,τ ′(ε/3

k).
Let τ be an arbitrary (`, k)-function and let U1, . . . , U` ⊆ V (H) be pairwise

disjoint sets. Without loss of generality we assume that τ(`) = t ≥ 2 and we define
an (`+ 1, k)-function τ ′ by

τ ′(i) =


τ(i) if i < `

τ(i)− 1 if i = `

1 if i = `+ 1.

(24)

Further let P(U`) be the family of all ordered bipartitions of U` into two equitable
sets, i.e. all pairs (W1,W2) with U` = W1∪̇W2 and |W1| = b|U`|/2c = w. Then

volτ ′(U1, . . . , U`−1,W1,W2) =

(
w

t− 1

)
(|U`| − w)

∏
i∈[`−1]

(
|Ui|
τ(i)

)
holds for all bipartitions (W1,W2) ∈ P(U`). Since H satisfies DISCd,τ ′(ε/3

k) we
have

eτ ′(U1, . . . , U`−1,W1,W2) = dvolτ ′(U1, . . . , U`−1,W1,W2)± εnk/3k .
Summing over all bipartitions in P(U`) every edge in Eτ (U1, . . . , U`) is counted

exactly t
( |U`|−t
w−(t−1)

)
times. Thus, we infer

eτ (U1, . . . , U`) =
1

t
( |U`|−t
w−(t−1)

) ∑
(W1,W2)∈P(U`)

eτ ′(U1, . . . , U`−1,W1,W2)

=
|P(U`)|
t
( |U`|−t
w−(t−1)

)
d( w

t− 1

)
(|U`| − w)

∏
i∈[`−1]

(
|Ui|
τ(i)

)
± εnk/3k

 .
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With |P(U`)| =
(|U`|
w

)
and

|P(U`)|
t
( |U`|−t
w−(t−1)

)( w

t− 1

)
(|U`| − w) =

(
|U`|
t

)
and since |P(U`)| ≤ 3kt

( |U`|−t
w−(t−1)

)
we obtain

eτ (U1, . . . , U`) = d
∏
i∈[`]

(
|U(i)|
τ(i)

)
± εnk.

�

5. Concluding remarks

5.1. Extension of P3. For Theorem 3 we extended properties P1, P2, P4, P6, and
P7. While the extension of P5 is straightforward and its equivalence to DISCd
follows along the lines of [36], we did not find an interesting generalisation of P3

for k-graphs and leave this open.

5.2. Uniform edge distribution with respect to i-sets. We studied quasi-
random properties equivalent to uniform edge distribution of k-graphs with respect
to large vertex sets. A natural generalisation concerns the edge distribution with
respect to large subsets of i-tuples.

i-DISCd(ε): We say a k-graph H = (V,E) on n vertices has i-DISCd(ε) for
1 ≤ i ≤ k − 1, d, ε > 0, if

|E(H) ∩ Kk(G(i))| = d|Kk(G(i))| ± εnk ,

for any i-graph G(i) with vertex set V , where Kk(G(i)) denotes the set of

all k-sets K in
(
V
k

)
which span a copy of K

(i)
k (the complete i-graph on k

vertices) in G(i).

Clearly, i-DISCd for i = 1 coincides with DISCd and for i = k−1 this is the central
concept of quasi-randomness studied in [21]. The general notion i-DISCd was first
studied by Frankl and Rödl [12] and Chung [2, 3, 4]. We believe that Theorem 3 can
be extended for general i. As 1-DISCd is characterised by the subgraph frequencies
of linear k-graphs, i-DISCd is closely related to the appearance of partial Steiner
(i+1, k)-systems, i.e., k-graphs for which every two hyperedges intersect in at most i
vertices. In this context the natural generalisation of the “doubling” operation from
Section 1.1 seems to be the following. Let A be a k-partite k-graph with vertex

classes X1, . . . , Xk and let I ∈
(

[k]
i

)
be an i-set, then the doubling dbI(A) of A is

obtained by taking two copies of A and identifying the vertices in the classes Xi

for all i ∈ I. Again starting with a single edge and applying consecutively dbI
for every I ∈

(
[k]
i

)
(in some arbitrary order) we will get a k-partite k-graph, which

seems likely to be of similar importance for i-DISCd as M had in Theorem 3. In

fact, for i = k − 1, this way we obtain the k-graph of the octahedron K
(k)
2,...,2 which

was already studied in connection with (k − 1)-DISCd in [5, 21].
A related line of research concerns the connection to extensions of Szemerédi’s

regularity lemma. While there is a regularity lemma which decomposes any given k-
graph into relatively few “blocks” such that most of them satisfy a k-partite version
1-DISCd (i.e., DISCd,k), for i ≥ 2 the notion of i-DISC seems too strong and likely
no regularity lemma compatible for this notion exists. Instead, one needs to work
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with “relative” versions of i-DISC. For i = k − 1, this notion of quasi-randomness
was introduced in the work on hypergraph regularity by Rödl et al. [13, 24] and
Gowers [15, 16], and for k = 3 the equivalence was studied in [22]. It would be
interesting to further investigate those connections for general i and we intend to
return to this in the near future.

5.3. Extension of Corollary 4. In Corollary 4 we showed that for every k ≥ 2 the
complete graph Kk and the line graph of the k-dimensional hypercube M(k) (which
alternatively can be obtained from the k-graph Mk by replacing every hyperedge of
Mk with a graph clique Kk) is a forcing pair. The construction ofM(k) can be easily
extended from cliques to arbitrary graphs F . For a graph F with vertex set [k] let
M(F ) be the graph obtained from the k-graph Mk with vertex classes X1, . . . , Xk

by replacing every hyperedge by a copy of F such that the vertex representing
vertex i ∈ [k] = V (F ) lies in Xi. In fact, for every nonempty graph F , the pair
(F,M(F )) is a forcing pair (see [17] for details).

While the notion of forcing pairs is closely related to the property MINd, we may
also consider the following version of DEVd for graphs.

DEVd,F (ε): We say a graph G = (V,E) on n vertices has DEVd,F (ε) for a
graph F with vertex set [k] and d, ε > 0, if∣∣∣∣∣∣

∑
M̃

∏
F̃⊆M̃

 ∏
e∈E(F̃ )

1E(e)

− de(F )

∣∣∣∣∣∣ ≤ εnk2k−1

,

where the sum runs over all copies M̃ of M(F ) in the complete graph KV

on vertex set V and the outer product runs over the 2k copies F̃ of F
(corresponding to the hyperedges of Mk).

Following closely the lines of the proof of Lemma 13 it can be shown that for every
d > 0 and every graph F with at least one edge, a graph G satisfying DEVd,F (ε)
also satisfies the assumptions of Theorem 2 and consequently such graphs are quasi-
random with density d. Moreover, it can be shown that quasi-random graphs with
density d satisfy DEVd,F for every fixed graph F (for details see [19]).

5.4. Strengthening of Theorem 5. It would be interesting to strengthen Theo-
rem 5. We believe the partite assumption of HCLd,F is not needed and it suffices
that a given k-graph H contains approximately the “right” number of copies of F
on every subset U ⊆ V (H). Indeed, for graphs Theorem 2 and for k-graphs the
recent work of Dellamonica and Rödl [11] imply such an assertion.

5.5. Algorithmic considerations. Since DEVd, MINd, and MDEGd can be eas-

ily checked in polynomial time, in fact in O(nk2k−1

), we obtain by Theorem 3 an
efficient algorithm which can approximately check whether a given k-graph has
DISCd. More precisely, for any given d and ε > 0 there exists some positive ε′ < ε
such that the algorithm can distinguish in polynomial time, whether a given k-
graph H satisfies DISCd(ε

′) or fails to satisfy DISCd(ε). In some sense we cannot
hope for an efficient algorithm, which decides DISCd(ε) precisely, since it was shown
in [1] that deciding DISCd(ε) for graphs is co-NP complete.

Likely such an approximation algorithm can be used for an algorithmic version
of the weak hypergraph regularity lemma, Theorem 23. Such an algorithm would
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find an ε-regular partition in O(nk2k−1

). However, a more efficient algorithm, with
running time O(n2k−1 log2 n) was found by Czygrinow and Rödl [10].

Moreover, since the proof of the implication DEVd ⇒ DISCd, Lemma 13 extends
to sparse k-graphs, i.e., for the case d = o(1) as long as d � n−(k−1)/2, we obtain
a sufficient, efficiently verifiable condition for checking DISCd for sparse k-graphs.
We believe it would be interesting to investigate this problem further. For example,
we are not aware of a property which is equivalent to DISCd as long as d� n−k+1

and which can be verified in polynomial time.

5.6. Non forcing pairs. In this section we show that there exists no minimal
configuration for 3-graphs with 6 or less vertices. In other words for 3-graphs the
3-graph M from property MINd with 8 edges and 12 vertices can not be replaced by
a 3-graph on at most 6 vertices. Hence, for every linear 3-graph F on six vertices we
have to construct 3-graphs of density d > 0 such that they contain the right number
of copies of F , but fail to be weak quasi-random, i.e., fail to satisfy DISCd. There
are, up to isomorphism, 6 such 3-graphs F : the one with no edge, with a single edge,
with two disjoint edges, with two edges sharing a vertex, the (6, 3)-configuration
(the unique linear 3-graph with 3 edges on six vertices), and the Pasch-configuration
(the unique linear 3-graph with 4 edges on six vertices). It is simple to see that for
F being one of the first four of those configuration the property that H contains
∼ (2/9)e(F )n|V (F )| labeled copies of F does not imply that H has DISC2/9 as for
example the complete, 3-partite 3-graph on vertex classes of size n/3 shows. Hence
we will focus on the (6, 3)- and the Pasch-configuration.

5.6.1. The (6, 3)-configuration. We denote by C the (6, 3)-configuration, which is
the 3-graph with V (C) = [6] and E(C) = {{1, 2, 3}, {3, 4, 5}, {5, 6, 1}}. We consider
the complete 3-partite 3-graph H = H(α) on n vertices with vertex classes V1, V2, V3

such that |V1| = |V2| = (1−α)n/2 and |V3| = αn for some α ∈ (0, 1/3]. The density
of H is 3

2α(1− α)2 − o(1), while simple calculations show that

NC(H) =

(
3

8
α2(1− α)4 + o(1)

)
n6 ,

since any copy of C in H must distribute the copies of the vertices 1, 3, 5 over all
three distinct classes, and after fixing the vertex classes of the copies of 1, 3, and 5
the vertex classes of the other three vertices are fixed. Now we need to chose α > 0
in such a way that

f(α) =

(
3

2
α(1− α)2

)3

− 3

8
α2(1− α)4

is close to 0, as this would yield that H = H(α) contains the “right” number of
copies of C, but clearly H would not satisfy DISC3α(1−α)2/2. Solving f(α) = 0 is

equivalent to solving g(α) = α(1−α)2 equals 1/9. Since g(0) = 0 and g(1/3) = 4/27,
we infer that there exists an α̂ ∈ (0, 1/3] such that f(α̂) = 0 (indeed α̂ ≈ 0.16).
Hence, H(α̂) has the desired properties. Moreover, we obtain other 3-graphs with
the same properties (having the right number of copies of C, but failing to have
DISCd) for other densities d, if we consider random sub-hypergraphs of H(α̂).

5.6.2. The Pasch-configuration. Again we will construct a 3-graph H of density d
which violates DISCd, but has ∼ d4n6 labeled copies of the Pasch-configuration P .
For that we first construct a graph G and then consider its triangles to be the
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hyperedges of H, i.e., H = K3(G). Let G = G(α) be the complete, 5-partite graph
with vertex classes V1∪̇ . . . ∪̇V5 = V (G) and |V1| = |V2| = |V3| = |V4| = (1− α)n/4
and |V5| = αn. The number of labeled triangles of G satisfies

NK3(G) =

(
3

8
(1− α)3 +

9

4
(1− α)2α+ o(1)

)
n3

while for the number of labeled K2,2,2 in G we have

NK2,2,2(G) =

(
(1− α)4

128

(
3(1− α)2 + 126α2 + 54α(1− α)

)
+ o(1)

)
n6.

As above, we are interested in a solution to(
3

8
(1− α)3 +

9

4
(1− α)2α

)4

=
(1− α)4

128

(
3(1− α)2 + 126α2 + 54α(1− α)

)
,

with α ∈ (0, 1/5]. Since for α = 0 the left-hand side is smaller than the right-hand
side, while for α = 1/5 the inequality switches, there must be an α̂ ∈ (0, 1/5] such
that both sides equal.

Let H = H(α̂) = K3(G(α̂)), i.e., H is the 3-graph whose hyperedges correspond
to the triangles of G(α̂). It follows that the number of edges of H equals the number
of triangles in G, i.e., for dα̂ = 3

8 (1− α̂)3 + 9
4 (1− α̂)2α̂

e(H) = (dα̂ + o(1))
(
n
3

)
.

On the other hand, every labeled copy of K2,2,2 in G gives rise to a labeled K
(3)
2,2,2 in

H, which gives rise to exactly one labeled Pasch-configuration (note, that in fact a

copy of K
(3)
2,2,2 contains exactly two Pasch-configurations, however, those correspond

to two different labelings of the same unlabeled copy of K
(3)
2,2,2). Moreover, every

labeled copy of the Pasch-configuration P in H corresponds to a K2,2,2 in G and,
consequently,

NP (H) = NK2,2,2(G) = (d4
α̂ + o(1))n6 ,

due to the choice of α̂. Obviously, H = H(α̂) is 5-partite and does not satisfy
DISCdα̂ , which shows that it has the desired properties.

Moreover, we remark that the graph G = G(α̂) from above has the properties

NK3
(G) = (dα̂ + o(1))n3 and NK2,2,2

(G) = (d4
α̂ + o(1))n6

while it obviously fails to satisfy DISCdα̂ for graphs. This answers a question of
Shapira and Yuster from [27].
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11. D. Dellamonica, Jr. and V. Rödl, Hereditary quasi-random properties of hypergraphs, Combi-

natorica, to appear. 1.3, 5.4
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