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Abstract. A subgraph of a hypergraph H is even if all its degrees
are positive even integers, and b-bounded if it has maximum degree at
most b. Let fb(n) denote the maximum number of edges in a linear n-
vertex 3-uniform hypergraph which does not contain a b-bounded even
subgraph. In this paper, we show that if b ≥ 12, then

n logn

3b log logn
≤ fb(n) ≤ Bn(logn)2

for some absolute constant B, thus establishing fb(n) up to polyloga-
rithmic factors. This leaves open the interesting case b = 2, which is
the case of 2-regular subgraphs. We are able to show for some constants
c, C > 0 that

cn logn ≤ f2(n) ≤ Cn3/2(logn)5.

We conjecture that f2(n) = n1+o(1) as n→∞.

1. Introduction

A k-uniform hypergraph or simply k-graph is a pair (V,E) where V is a
set of vertices and E is a set of k-subsets of V (the edges of the hypergraph).
We identify a hypergraph H with its edge set and denote by |H| its number
of edges. The degree degH(v) of a vertex v in a hypergraph is the number
of edges of the hypergraph containing v. A hypergraph is even if all of its
vertices have positive even degree. A hypergraph is b-bounded if it has max-
imum degree at most b and r-regular if all of its vertices have degree r. A
hypergraph is linear if every pair of its edges meet in at most one vertex.
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In this paper, we are interested in the following extremal question: deter-
mine the maximum number of edges fb(n) in a linear n-vertex 3-uniform
hypergraph that does not contain a b-bounded even subgraph. Note that
fb(n) ≤ fb−1(n) for all b.

1.1. Bounded degree even subgraphs. An elementary result in graph
theory states that the extremal graphs with no even subgraphs are trees.
Given a hypergraph with more edges than vertices, the characteristic vectors
of the edges form a linear dependency over F2, which implies that the edges
corresponding to those characteristic vectors form an even subgraph. The
extremal problem for b-bounded subgraphs can therefore also be viewed as
an extremal problem involving linear dependencies. We obtain bounds on
fb(n) which are tight up to polylogarithmic factors provided b ≥ 12.

Theorem 1. Let b ≥ 12. Then there exists an absolute constant B such
that

n log n

3b log logn
≤ fb(n) ≤ Bn(log n)2.

We give the proof of Theorem 1 in Section 5. The problem of deter-
mining fb(n) can be viewed as an extremal problem for a “sparse linear
dependency”. This problem is motivated by the work of Feige [2] on certain
randomized algorithms for the SAT refutation problem, in which one of the
key ingredients is determining the extremal function in hypergraphs for an
even subgraph with few edges.

1.2. Small even subgraphs. Feige [2] conjectured that for some c > 0,

any 3-uniform hypergraph on n vertices with more than (log n)cm−1/2n3/2

edges has an even subgraph of size at most m. In the language of linear de-
pendencies, we are asking for the maximum size of an m-wise independent
set of vectors – no set of at most m of the vectors is linearly dependent –
of Hamming weight three in an n-dimensional vector space over F2. This
question comes up naturally in coding theory in the context of parity check
matrices and the minimum distance of a code in Fn

2 . In [7], it was shown
that the largest size of an m-wise independent set of vectors in a vector
space of dimension n over a finite field is n3/2+Θ(1/m) as m → ∞ by seek-
ing a certain type of even subgraph with at most m edges which produces
field-independent linear dependencies. One may ask for an analog of The-
orem 1 for small b-bounded even subgraphs under the additional condition
of linearity. Let fb(n;m) denote the maximum number of edges in a linear
3-uniform hypergraph not containing a b-bounded even subgraph with at
most m edges. In Section 4 we prove the following.

Theorem 2. For any b ≥ 4,

fb(n;m) = n3/2+Θ(1/m) as m→∞.
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The lower bound in this theorem is the standard probabilistic argument,
given in [7, Theorem 1.2], whereas the upper bound is a counting argument.
This theorem would also be implied by the truth of the following conjecture
for 2-regular subgraphs:

Conjecture 3. For any m ∈ N, there is a constant c > 0 such that
f2(n;m) = O(n3/2+c/m).

This conjecture is tight by the same probabilistic construction which gives
the lower bound in Theorem 2. We turn next to the case of estimating f2(n).

1.3. 2-regular subgraphs. The case of 2-regular subgraphs (namely the
case b = 2 in the last section) appears to be substantially more difficult. We
are able to prove the following theorem regarding f2(n) in linear 3-uniform
hypergraphs.

Theorem 4. There exist constants c, C > 0 such that

cn log n ≤ f2(n) ≤ Cn3/2(log n)5.

We prove Theorem 4 in Section 3, using a “regularization lemma” for
hypergraphs. We remark that if we relax the condition of linearity, then it
was shown in [6] that any n-vertex 3-uniform hypergraph with no 2-regular

subgraphs has at most
(
n−1

2

)
+O(n) edges as n→∞, and if k is even, it was

shown that if n is large enough, then any k-uniform n-vertex hypergraph
without 2-regular subgraphs has at most

(
n−1
k−1

)
edges, with equality only for

the hypergraph consisting of all edges containing a vertex. Despite the large
gap between the upper and lower bounds for f2(n) in Theorem 4, we make
the following conjecture which is supported by Theorem 1:

Conjecture 5.

f2(n) = n1+o(1) as n→∞.

1.4. Organization. We begin with the proof of Theorem 4 in Section 3.
Thereafter, we prove Theorem 2 in Section 4, and finally we prove Theo-
rem 1 in Section 5. We end with some concluding remarks on a few related
results for the extremal problem of subgraphs in which all degrees are small
multiples of a prime p.

1.5. Notation. We use standard graph theory notation, in particular, for a
graph G = (V,E) we denote by δ(G) the minimum degree of G and by ∆(G)
the maximum degree of G.

Throughout this paper, a hypergraph refers to a linear 3-uniform hyper-
graph, unless otherwise specified. If H is a hypergraph, then V (H) denotes
its vertex set. We write degH(x) for the degree of x in H, which is the
number of edges that contain x. The minimum degree of H, denoted by
δ(H) is minimum taken over all degH(x) with x ∈ V (H). A hypergraph H
is 3-partite if we may write V (H) = X∪̇Y ∪̇Z and all edges of H are of the
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form {x, y, z} with x ∈ X, y ∈ Y and z ∈ Z. We refer to X, Y , and Z as the
parts of H. We denote by H[X,Y, Z] a 3-partite hypergraph H with parts
X, Y , and Z. It will be convenient to identify (hyper)graphs with their edge
sets, i.e., |H| stands for the number of edges in the hypergraph H.

2. A regularization lemma

A 3-partite hypergraph G[X,Y, Z] is defined to be t-balanced if for W ∈
{X,Y, Z},

max
w∈W

degG(w) ≤ t · |G|
|W |

.

The following lemma will be used to prove the upper bound in Theorem 4.

Lemma 6. Let H = H[X,Y, Z] be a (not necessarily linear) 3-partite hy-
pergraph of maximum degree ∆ ≥ 2, and let t = dlog2 ∆e. Then H has a
2t2-balanced subgraph with at least |H|/t3 edges.

Proof. We may assume H has no isolated vertices. For sets A ⊆ X,B ⊆
Y,C ⊆ Z, letHABC denote the subgraph induced by A∪B∪C. By averaging,
for some a ∈ [t], the set

A = {x ∈ X : 2a−1 ≤ degH(x) < 2a}

has the property that |HAY Z | ≥ |H|/t. We repeat the same procedure for
Y and HAY Z . For some b ∈ [t], the set

B = {y ∈ Y : 2b−1 ≤ degHAY Z
(y) < 2b}

has the property that |HABZ | ≥ |HAY Z |/t ≥ |H|/t2. For some c ∈ [t], the
set

C = {z ∈ Z : 2c−1 ≤ degHABZ
(z) < 2c}

has the property that |HABC | ≥ |HABZ |/t ≥ |HAY Z |/t2 ≥ |H|/t3. We
prove that G = HABC is 2t2-balanced. By definition, |G| ≥ 2c−1|C|, |G| ≥
2b−1|B|/t, and |G| ≥ 2a−1|A|/t2. Since the maximum degrees of vertices in
A,B,C are at most 2a, 2b and 2c in G, we have for W ∈ {A,B,C},

max
w∈W

degG(w) ≤ 2t2 · |G|
|W |

.

Therefore G is 2t2-balanced. Since |G| ≥ |H|/t3, this completes the proof.
�

3. Proof of Theorem 4

For the upper bound in Theorem 4, we use a key observation of Lovász [5]
that the symmetric difference of two matchings in a hypergraph with the
same vertex set gives a 2-regular subgraph, together with Lemma 6 from
the last section.
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3.1. Proof of f2(n) ≤ Cn3/2(log n)5. Let H be a linear hypergraph on n

vertices containing no 2-regular subgraphs. We shall show |H| < 150n3/2dlog2 ne5.
It is well known that H contains a 3-partite subgraph F with at least 2

9 |H|
edges – for instance, the expected number of edges in a random 3-partition
is 2

9 |H|. Suppose F has maximum degree ∆ and let t = dlog2 ∆e. By

Lemma 6, F has a 2t2-balanced subgraph G and

|G| ≥ |F |
t3
≥ 2|H|

9t3
. (1)

Let X, Y , and Z be the parts of G. Set

n′ = min{|X|, |Y |, |Z|} and m =
n′

12t2
. (2)

For future reference, let us note that since G is linear, ∆ ≤ (n − 1)/2, and
hence,

n′ ≥ |G|
∆

>
2

n
|G|

(1)

≥ 4|H|
9nt3

. (3)

An m-matching in G is a set of m pairwise vertex-disjoint edges of G.

Claim 7. LetM denote the set of m-matchings in G. Then

|M| ≤
(
n′

m

)(
n

m

)2

. (4)

This claim is proved as follows. Suppose that |M| is larger than the
bound in the claim. Every m-matching of G intersects each part X,Y and
Z in precisely m elements. Hence the number of sets supporting some m-

matching in G is at most
(
n′

m

)(
n
m

)2
. Thus, if the inequality (4) does not hold

then there exist m-matchings M1 6= M2 ∈ M for which V (M1) = V (M2).
Consider the symmetric difference M = M1 4M2 (of edges), which is non-
empty as M1 6= M2. Since every v ∈ V (M) is contained in either 0 or 2
edges of M , the hypergraph M is 2-regular. This contradicts that H has no
such subgraph, and proves the claim.

It remains to find a lower bound for |M|. The following greedy procedure
renders an m-matching in G: pick an arbitrary e0 ∈ G, and after choosing
e0, e1, . . . , ej ∈ G, pick ej+1 ∈ G which is disjoint from each ei, 0 ≤ i ≤ j.
Let ∆X ,∆Y and ∆Z be the maximum degrees in X, Y , and Z. We claim
that, provided j < m, there are at least |G|/2 choices for ej+1. Indeed, since
G is 2t2-balanced, the number of edges intersecting

⋃
1≤i≤j ei is at most

j ·
(
∆X + ∆Y + ∆Z

)
< m · 2t2

(
|G|
|X|

+
|G|
|Y |

+
|G|
|Z|

)
≤ m · 2t2 · 3|G|

n′

(2)

≤ |G|
2
.

Consequently, using (1),

|M| ≥ 1

m!

(
|G|
2

)m

≥ 1

m!

(
|H|
9t3

)m

. (5)
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By (5) and (4),

|H| ≤ 9t3n′
(
en

m

)2

. (6)

By the definition of m, and (3), we have

n′
(
en

m

)2

= n′
(

12t2en

n′

)2

=
(12t2ne)2

n′

≤ (12t2ne)2

4|H|/9nt3
=

(18e)2n3t7

|H|
.

(7)

It follows together with (6) that |H| ≤ (54e)n3/2t5 < 150n3/2dlog2 ne5, as
required.

3.2. Proof of f2(n) ≥ c log n. We give a recursive construction of linear 3-
partite 3-uniform hypergraphs Hi = (Vi, Ei), where |Vi| = ni and |Ei| = mi,
with vertex partition Vi = Ai∪̇Bi∪̇Ci, i ≥ 0, satisfying

(i ) |Ei| = Ω
(
ni log ni), and

(ii ) Hi contains no 2-regular subgraph.

To begin, let H0 consist of three vertices and one edge. For i ≥ 1, we
construct Hi from Hi−1 as follows. Let H ′i−1 be a (vertex disjoint) copy of
Hi−1 with 3-partition V ′i−1 = A′i−1∪̇B′i−1∪̇C ′i−1. The 3-uniform hypergraph
Hi will contain Hi−1 ∪ H ′i−1, together with the following additional edges.
Fix Zi−1 ∈ {Ai−1, Bi−1, Ci−1} achieving |Zi−1| ≥ ni−1/3, and let Z ′i−1 de-
note its copy. Add a new vertex xi and all triples of the form {xi, z, z′},
where z′ ∈ Z ′i−1 is the copy of z ∈ Zi−1.

Clearly, Hi is linear. Observe that it is also 3-partite. Indeed, if (without
loss of generality) we assume Zi−1 = Ai−1, then a 3-partition of Hi is given
by Ai = Ai−1∪C ′i−1, Bi = Bi−1∪B′i−1∪{xi}, and Ci = A′i−1∪Ci−1. More-
over, it is easy to see that Hi satisfies property (i ). Indeed, the construction
of Hi implies the following recursive formulas for i ≥ 1:

ni = 2ni−1 + 1 and mi ≥ 2mi−1 + ni−1

3 .

A simple induction gives ni = 2i+2− 1, and similarly mi ≥ (i+ 1)2i−1, since

mi ≥ 2mi−1 + 1
3ni−1 ≥ 2(i2i−2) + 1

3(2i+1 − 1) ≥ i2i−1 + 2i−1 .

It follows as required that mi = Ω
(
ni log ni).

Now we need to verify the property (ii ). We proceed by induction and
show, in fact, the following stronger statement for every i ≥ 0:

(Si) Every non-empty subgraph G ⊂ Hi with maximum degree ∆(G) ≤ 2
is either a single edge, or contains at least four vertices of degree one.

Clearly, (Si) holds for i = 0, so let i ≥ 1. Let G be a non-empty subgraph
of Hi with ∆(G) ≤ 2, and for sake of the argument, assume that G is not
just a single edge.

Let G1 ⊆ Hi−1 and G2 ⊆ H ′i−1 denote the (possibly empty) induced sub-
graphs of G contained in Hi−1 and H ′i−1, resp. Let `(G) denote the number
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of vertices of degree one in G, and let `r = `(Gr), r = 1, 2, denote the
number of vertices of degree one in Gr. The statement (Si) follows from a
simple case analysis according to degG(xi) of xi in G.

Case 1. degG(xi) = 0.
At least one of G1, G2 6= ∅. If w.l.o.g., G2 = ∅, then `(G) = `1 ≥ 4 (since

|G1| = |G| > 1). Otherwise, `(G) = `1 + `2 ≥ 6.

Case 2. degG(xi) = 1.
At least one of G1, G2 6= ∅. If w.l.o.g., G2 = ∅, then `(G) ≥ (`1−1)+2 ≥ 4

(the edge of G incident to xi has two vertices of degree 1; its third vertex
may be counted by `1 = `(G1)). Otherwise, `(G) ≥ (`1−1)+(`2−1)+1 ≥ 5.

Case 3. degG(xi) = 2.
We show that in this case G has at least two vertices of degree one in each

of Hi−1 and H ′i−1. Indeed, let f1, f2 be the two edges of G containing xi.
Note that by linearity f1 ∩ f2 = {xi}. If, say, G1 = ∅, then the two ends of
f1 and f2 in Hi−1 are the two vertices of G of degree one. If G1 = e, then e
has only one vertex in the set of the tripartition of Hi−1 which is intersected
by f1 and f2. Consequently, in Hi−1 there are |e \ (f1 ∪ f2)| ≥ 2 vertices of
G of degree one. Finally, if |G1| ≥ 2, then Hi−1 contains at least `1 − 2 ≥ 2
vertices of G of degree one.

This concludes the proof of the induction step and, therefore, (ii ) and
Theorem 4 follow. �

4. Small even subgraphs

In this section, we prove Theorem 2. Recall that fb(n;m) is the largest
number of edges in a linear hypergraph on n vertices containing no b-
bounded even subgraphs with at most m edges. The lower bound in The-
orem 2 is proved by taking a random hypergraph on [n] whose edges are
chosen from all 3-element sets in [n] independently and with probability

n−3/2+c/m for an appropriate constant c > 0. The details are given in [7].

We turn now to the proof that fb(n;m) = n(3/2)+O(1/m) for b ≥ 4. It is
enough to prove this for b = 4. We begin with a sketch of the proof. For
ε > 0, let H be a linear 3-graph with n ≥ n0 vertices and at least n(3/2)+ε

edges. Showing that H contains a (small) even 4-bounded subgraph will

depend on two observations. The first is that |H| ≥ n(3/2)+ε will imply that
H contains ‘many’ cherries, i.e., pairs of edges meeting in a single vertex, or
equivalently, a subgraph consisting of one ‘degree 2’ vertex and four ‘degree
1’ vertices. More strongly, H will contain many ‘short’ (of length less than
1/ε) paths of cherries, where two adjoined cherries on such a path connect
along two ‘degree 1’ vertices. The second observation is that there will be
so many of these paths that there must be a pair of distinct paths sharing
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identical ends. The symmetric difference (of edges) of these two paths will
result in a 4-bounded even subgraph of H. We now give the precise details.

For a given ε > 0, define

m = d4/εe and n0 = d(5/ε)1/(2ε)e . (8)

Let H be a linear 3-uniform hypergraph with n ≥ n0 vertices and at least
n(3/2)+ε edges, where we set V to be the vertex set of H. Regarding the
first observation in the sketch, the linearity of H implies it has precisely∑

v∈V
(

degH(v)
2

)
many cherries, which equals

1

2

(∑
v∈V

deg2
H(v)−

∑
v∈V

degH(v)

)
=

1

2

(∑
v∈V

deg2
H(v)− 3 |H|

)
.

Using the Cauchy–Schwarz inequality, the number of cherries of H is at least

1

2

(
1

n

(∑
v∈V

degH(v)
)2
− 3 |H|

)
=

1

2

(
9 |H|2

n
− 3 |H|

)
> 4n2+2ε,

where the last inequality follows from the hypothesis that |H| ≥ n(3/2)+ε.
We now prepare for the second observation from the sketch (which cor-

responds to Claim 8 below). Define the following auxiliary graph G to have
vertex set V (G) = {uv ∈ V × V : u 6= v}, consisting of all ordered pairs of
distinct vertices of H, and edge set

E(G) =
{
{uv, xy} : ∃z ∈ V such that {u, z, y} 6= {v, z, x} ∈ H

}
.

Note that each edge in G corresponds to a unique cherry in H (since vertices
of G are ordered pairs and H is linear). In other words, there is an injective
map from the set of cherries of H to the edge-set of G. Consequently, G
contains at least 4n2+2ε edges (on n2 − n vertices). Now, delete vertices
from G that have degree less than 3n2ε to form a subgraph G′ with δ(G′) ≥
3n2ε and |E(G′)| ≥ n2+2ε. As in the sketch, we consider a (hyper)path
(of cherries) in H: suppose u1v1, u2v2, . . . , ukvk is the vertex sequence of a
(graph) path in G′, where z1, z2, . . . , zk−1 satisfy that zi is the intersection
point of the cherry corresponding to the edge {uivi, ui+1vi+1} of G′. We say
such a path is faithful (in G′) if

|{u1, v1, z1, . . . , uk−1, vk−1, zk−1, uk, vk}| = 3k − 1,

in other words, all these vertices are distinct (see Figure 1).

Claim 8. For every uv ∈ V (G′), there exists wz ∈ V (G′), {u, v}∩{w, z} =
∅, and faithful paths Q1, Q2, Q1 6= Q2, of length < 1/ε, connecting uv to wz.

Before we verify Claim 8, we use it to finish the proof of Theorem 2.
Fix an arbitrary uv ∈ V (G′), and let wz,Q1, Q2 be given by Claim 8.

Let P1,P2 ⊂ H be the subgraphs of H corresponding to Q1, Q2, resp., i.e.,
Pi is the union of the cherries corresponding to the edges of Qi, i = 1, 2.
Note that every vertex of Pi has degree 2, except for u, v, z, w, which have
degree 1. Then C = P14P2 6= ∅ is a 4-bounded even hypergraph on at
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Figure 1. A faithful path (u1v1, u2v2, u3v3, u4v4) of length 3
in the auxiliary graph G′ corresponds to the above subgraph
of H.

most 4/ε ≤ m edges, and so deleting the isolated vertices from C renders
the subgraph of H promised by Theorem 2.

Proof of Claim 8. Fix uv ∈ V (G′), and let S(uv, k) be the set of vertices
in V (G′) that are reachable in G′ by a faithful path of length exactly k
(where S(uv, 0) = {uv}). Note that if a path is faithful, then every subpath
is also faithful. In particular, if wz ∈ S(uv, k), k ≥ 1, then there exists
xy ∈ S(uv, k − 1) such that a faithful path from uv to xy can be extended
to a faithful path from uv to wz by adding the edge {xy,wz} ∈ E(G′).
Conversely, fix xy ∈ S(uv, k − 1) and fix a faithful path from uv to xy. We
assert that all but 9(k − 1) many wz ∈ NG′(xy) satisfy that the fixed path
from uv to xy can be extended to a faithful path from uv to wz by adding
the edge {xy,wz} ∈ E(G′).

Indeed, let uv = u1v1, u2v2, . . . , ukvk = xy be the vertices of a faithful
path from uv to xy of length k−1 in G′. For each i = 1, . . . , k−1, let zi be the
intersection vertex of the cherry corresponding to the edge {uivi, ui+1vi+1}
of G′, and set B = {u1, v1, z1, . . . , uk−1, vk−1, zk−1}. Note that any wz ∈
NG′(xy) belongs to S(uv, k) if {w, z}∩B = ∅ and if the intersection point z′

of the cherry corresponding to {xy,wz} satisfies z′ /∈ B. Our assertion is that
at most 3|B| = 9(k−1) vertices wz ∈ NG′(xy) violate this condition. Indeed,
at most |B| many wz ∈ NG′(xy) will not belong to S(uv, k) because their
intersection point z′ belongs to B since, by the linearity of H, xy together
with z′ uniquely determine wz ∈ NG′(xy). On the other hand, if w ∈ B,
then z′ is determined ({y, z′, w} ∈ H) and z is determined ({x, z′, z} ∈ H).
A similar conclusion holds in case z ∈ B. Consequently, at most 3|B|
vertices wz ∈ NG′(xy) will not belong to S(uv, k), as asserted.

To conclude the proof of Claim 8, consider the directed bipartite graph Dk

with vertex bipartition S(uv, k − 1) ∪ S(uv, k), and arcs (xy,wz), xy ∈
S(uv, k − 1), wz ∈ S(uv, k), whenever there is a faithful path of length k
from uv to wz which uses the edge {xy,wz} ∈ G′. From the assertion
above (and the minimum degree of G′), |E(Dk)| ≥ |S(uv, k−1)|(3n2ε−9k).
Consequently, a simple induction yields that for every k ≥ 1, either
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(i ) ∃ j ≤ k and wz ∈ S(uv, j) with in-degree i.d.Dj (wz) ≥ 2, or

(ii ) |S(uv, k)| ≥ (3n2ε − (9/ε))k ≥ n2kε.

Case (i ) would yield the conclusion of the claim, and Case (ii ) is impossible
when k ≥ 1/ε since |S(uv, k)| ≤ |V (G)| < n2. �

5. Proof of Theorem 1

In this section, we give the proof of Theorem 1, starting with 3-graphs
establishing the lower bound of Theorem 1.

5.1. Proof of fb(n) ≥ n log n/(3b log log n). To construct the hypergraphs
establishing the lower bound we will use an explicit family of graphs con-
structed by Lazebnik and Ustimenko [4]. For every prime power q and
k ≥ 3, [4] provides a q-regular bipartite graph Gq,k on 2qk vertices with
girth g ≥ k + 5. Let X and Y be the classes of Gq,k. Since Gq,k is q-regular
and bipartite, it is possible to decompose its edge set into q disjoint perfect
matchings Gq,k = M1 ∪ · · · ∪Mq.

Let q be a (large) prime power and k = bq−1. Set n = 2qk+q and consider
a 3-partite 3-graph Hn with classes X, Y , and Z = [q] constructed as follows.
For each e = {u, v} ∈Mj , j ∈ Z, let e∪{j} = {u, v, j} ∈ Hn. Notice that Hn

is linear since the matchings Mj are disjoint. Suppose that Hn contains a
b-bounded even subgraph F with vertex set X ′ ∪ Y ′ ∪ Z ′. Notice that

|F | ≤ b |Z ′| ≤ bq. (9)

Let F ′ ⊂ Gq,k be the shadow of F , that is, F ′ = {e \ Z ′ : e ∈ F}. Because
δ(F ′) ≥ δ(F ) ≥ 2, the graph F ′ contains a cycle of length at most |F ′| = |F |.
The girth of Gq,k then implies that |F | ≥ k + 5. By our choice of k, this is
a contradiction with (9) and hence Hn does not contain an even b-bounded
subgraph. In fact, it does not contain a subgraph with all degrees in [2, b].

Notice that |Hn| = qk+1 = q(n − q)/2 > qn/3. Moreover, q > logn
b log logn ,

since otherwise n < qk+1 < (log n)bq = n. Therefore Hn establishes the
lower bound. �

5.2. Proof of fb(n) ≤ Bn(log n)2. In the rest of this section, for conve-
nience we use log to denote log2. For a sufficiently large integer n0, let H
be a linear hypergraph on n ≥ n0 vertices with at least 1000n(log n)2 edges.
We show that H contains a 12-bounded even subgraph, and begin by intro-
ducing some notation. Let V be the vertex set of H. Set

ψn(x) =
log x

log n
.

For a set S ⊆ V , define

∂H(S) = {e ∈ H : e ∩ S 6= ∅} .
Let I = I(H) ⊂ [n] be the set of all numbers s > 1 such that there exists a
set S ⊆ V with |S| = s satisfying

|∂H(S)| ≥ ψn(s) · |H|.
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Clearly, I 6= ∅ since n ∈ I. Denote by r the smallest element from I. Let
R ⊆ V correspond to r, that is, |R| = r and |∂H(R)| ≥ ψn(r) · |H|. It is not
difficult to see that r ≥ 2000 log n. Indeed, since H is linear, its maximum
degree is at most (n− 1)/2, and so

|∂H(R)| ≤
∑
v∈R

degH(v) ≤ rn

2
.

On the other hand, by definition, |∂H(R)| ≥ |H| log r/ log n, and so

r

log r
≥ 2 |H|
n log n

≥ 2000 log n .

Now, let G0 = (V0, E0) be a graph with V0 ⊆ V obtained from the
edges in ∂H(R) by removing from each hyperedge f an arbitrary vertex
contained in f ∩ R. The edges of G0 are then naturally R-colored by the
mapping χ : E0 → R, where {u, v, χ(uv)} ∈ ∂H(R) for all uv ∈ E0. Since H
is linear, |E0| = |∂H(R)| and χ is a proper edge-coloring of G0. The proof of
Theorem 1 will rest on upcoming Claim 10, for which we need the following
definition.

Definition 9. We say a subgraph F ⊂ G0 is 2-nice, if F is 4-bounded and
even, and if no color of χ : E0 → R appears on more than two edges of F .

We may now state Claim 10.

Claim 10. For some ` ≥ r/15, the graph G0 contains at least (|H|/n)`/6

2-nice subgraphs on ` edges.

Our proof of Claim 10 is unfortunately quite technical, so we postpone it
for a minute in favor of concluding the proof of Theorem 1.

Indeed, Claim 10 ensures there are at least (|H|/n)`/6 2-nice subgraphs F ⊂
G0 of size ` ≥ r/15. For each such F , let χF denote the multi-set of colors
on the edges of F , where recall a color may appear at most twice in χF . The
number of multi-sets from R of size `, where each element has multiplicity
at most 2, is at most

(
2r
`

)
. Since(

2r

`

)
≤
(2er

`

)`
≤ (30e)` �

(
|H|
n

)`/6

,

there exist 2-nice subgraphs F ′ 6= F ′′ ⊂ G0 with χF ′ = χF ′′ . Consider
F ∗ = F ′4F ′′ 6= ∅. Since F ′, F ′′ are 4-bounded and even, F ∗ is 8-bounded
and even, and the colors on the edges of F ∗ appear either 2 or 4 times.
Hence, the corresponding 3-uniform hypergraph H∗ = {{u, v, χ(uv)} ∈ H :
uv ∈ E(F ∗)} is 12-bounded and even. Indeed, a vertex v ∈ V (H∗) \ R
has degH∗(v) = degF ∗(v), while a vertex v ∈ V (H∗) ∩ R has degH∗(v) =
degF ∗(v) + |{e ∈ H : χ(e) = v}| ∈ {0, 2, 4, 6, 8, 10, 12}. Removing the
isolated vertices from H∗ gives the 12-bounded even subgraph of H promised
by Theorem 1.
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5.3. Proof of Claim 10. Our proof of Claim 10 consists largely of itera-
tively applying the following further claim.

Claim 11. Suppose G ⊂ G0 and z ∈ N satisfy δ(G) ≥ z ≥ 1000 log n. Then
for some ` ∈

[
z
25 ,

z
25 + 2 log n+ 2

]
, the graph G contains at least z0.9` 2-nice

connected subgraphs F ⊆ G with |E(F )| = `.

We prove Claim 11 after we use it to complete the proof of Claim 10. We
will also need the following fact (which will allow us to apply Claim 11 in
the context of proving Claim 10).

Fact 12. Suppose S ⊂ V0 and X ⊂ R satisfy s′ = |S ∪ X| < r. Then the
graph G1 = (V1, E1) with V1 = V0 \ (S ∪ X) and E1 = {e ∈ E0 : e ⊆
V1 and χ(e) /∈ X} contains at least ψn(r/s′) |H| edges.

Proof of Fact 12. Every e ∈ E0 \ E1 satisfies f = e ∪ {χ(e)} ∈ H and f ∩
(S∪X) 6= ∅, which means f ∈ ∂H(S∪X). Since |S∪X| < r, the minimality
assumption on R yields |∂H(S ∪X)| < ψn(s′) |H|. In particular, |E0 \E1| ≤
|∂H(S ∪ X)| < ψn(s′)|H|. By the choice of R and by the definition of
G0, |E0| = |∂H(R)| ≥ ψn(r)|H|. Thus, |E1| ≥

(
ψn(r) − ψn(s′)

)
|H| =

ψn(r/s′) |H|. �

Now, to prove Claim 10, set

z =
|H|

n log n
≥ 1000 log n and t =

⌈
2r

z

⌉
. (10)

We assert that, by repeated applications of Claim 11, we can obtain at least
zzt/30 sequences of vertex disjoint connected 2-nice subgraphs F1, . . . , Ft sat-
isfying |E(F1)|, . . . , |E(Ft)| ∈ [ z

25 ,
z
25 +2 log n+2] and χ(E(Fi))∩χ(E(Fj)) =

∅ for all 1 ≤ i < j ≤ t. Indeed, since every graph contains a subgraph
whose minimum degree is at least half of the average, we start with a sub-
graph G0

∗ ⊂ G0 with

δ(G0
∗) ≥

|E0|
|V0|

≥ ∂H(R)

n
≥ |H| log r

n log n
≥ |H|
n log n

= z ≥ 1000 log n

and apply Claim 11 that yields a 2-nice connected graph F1. Suppose now,
that Fi has been obtained for every i < j, with j ≥ 2. Let Sj =

⋃
i<j V (Fi)

and Xj =
⋃

i<j χ(E(Fi)). Define Gj = (V j , Ej) with V j = V0 \ (Sj ∪Xj)

and Ej = {e ∈ E0 : e ⊆ V j and χ(e) /∈ Xj}. Since for all 1 ≤ i < j ≤ t,

|V (Fi)|, |χ(E(Fi))| ≤ |E(Fi)| ≤
z

25
+ 2 log n+ 2 <

z

20
,

it follows by our choice of t (see (10)) that

|Sj |, |Xj | ≤ (j − 1)
z

20
≤ (t− 1)

z

20
<

r

10
.

From Fact 12, we conclude that for every j,

|Ej | ≥ log(r/|Sj ∪Xj |)
log n

|H| ≥ log 5

log n
|H| ≥ 2|H|

log n
= 2zn,
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and therefore, there exists a subgraph Gj
∗ ⊂ Gj with δ(Gj

∗) ≥ z ≥ 1000 log n.

We apply Claim 11 to Gj
∗ to obtain at least z0.9`j graphs Fj ⊂ Gj

∗ ⊂ Gj ,
for some `j ∈

[
z
25 ,

z
25 + 2 log n + 2

]
. In particular, we always obtain at

least zz/30 possible graphs Fj , and it follows from the construction that all
those Fj ’s are vertex disjoint from (the earlier fixed) F1, . . . , Fj−1, and also
that χ(E(Fi)) ∩ χ(E(Fj)) = ∅ for all i < j. Thus, the number of distinct

(ordered) sequences F1, . . . , Ft obtained by this process is at least zzt/30.
To complete the proof of Claim 10, consider the set of all unions F =

F1 ∪ F2 ∪ · · · ∪ Ft obtained from the sequences above. Note that any such
union

⋃t
j=1 Fj is a 2-nice, but disconnected graph. We now estimate the

number of unions F . Since each Fj is connected and vertex disjoint from
the other Fi’s, a graph F may be represented by at most t! such sequences.
Thus, the number of such F is at least

zzt/30/t! ≥ (zz/30/t)t > (zz/30/n)t > zzt/50 .

Every graph F obtained satisfies

r

15

(10)

≤ tz

25
≤ |E(F )| ≤ t

( z
25

+ 2 log n+ 2
)
< t

z

20
.

Therefore, there exists some ` with r/15 ≤ ` ≤ tz/20 such that there are at
least

zzt/50

tz/20
≥ zzt/60 ≥ z`/3 (10)

=

(
|H|

n log n

)`/3

≥
(
|H|
n

)`/6

2-nice graphs of size ` in G0. All that remains is to prove Claim 11.

Proof of Claim 11. Let v ∈ V (G) be arbitrary. Our first goal is to induc-
tively construct a tree T rooted in v with the property that every vertex of
the tree is connected to the root by a rainbow path (that is, by a path whose
edges are colored with distinct colors). To that end, set T0 = ({v}, ∅). For
i ≥ 0, and from an inductively constructed Ti, we construct Ti+1 as follows.
Let Li denote the set of leaves of Ti at depth i, where we set L0 = {v}.
For every u ∈ Li, let Nu denote the set of w ∈ V (G) \ V (Ti) for which
the (rainbow) path in Ti connecting v to u can be extended to a rainbow
path connecting v to w by adding the edge uw ∈ E(G). We define Ti+1 by
adding, for each w ∈

⋃
u∈Li

Nu, some edge uw, where w ∈ Nu and u ∈ Li.
(If there is more than one u for which w ∈ Nu, choose arbitrarily.) Note
that Ti+1 satisfies that Li+1 =

⋃
u∈Li

Nu. To define the promised tree T , it
remains to define the last iteration i we perform in the process above.

Observe that every u ∈ Li has the property that all but (at most) i of
its neighbors in G are contained in V (Ti+1) = V (Ti) ∪ Li+1. Indeed, a
neighbor w of u ∈ Li which fails to be in V (Ti+1) must be such that the
edge uw has the same color as an edge of the rainbow path (of length i)
connecting v to u in Ti. Since χ is a proper edge-coloring, at most i such
edges are incident to u. (Note that all the other neighbors are either already



14 DELLAMONICA ET AL.

in the tree Ti or will be included in the tree Ti+1.) Let k be the smallest
index for which |Lk+1| < 2 |Lk|. Finally, set T = Tk+1.

The discussion above implies that the number M of edges of G[V (T )]
incident to Lk is

M = eG(Lk, V (Tk) \ Lk) + eG(Lk) + eG(Lk, Lk+1)

≥ δ(G)

2
|Lk| − k|Lk| ≥

[z
2
− k
]
|Lk|.

(11)

Observe that |E(G[V (T )])| ≥M , and that |V (T )| equals

|L0|+ · · ·+ |Lk|+ |Lk+1| < (2−k + 2−k+1 + · · ·+ 1)|Lk|+ 2 |Lk| < 4 |Lk|.

Hence, the average degree in G[V (T )] is at least 2M/(4 |Lk|) ≥ z/4 − k/2,
and the average degree of G[V (T )]\E(T ) is therefore at least z/4−k/2−2.
Since |Li| ≥ 2i for every i = 0, 1, . . . , k, we have k ≤ log n, and so z ≥
1000 log n ≥ 1000k. Consequently, z/4− k/2− 2 ≥ z/5 (with n sufficiently
large). Thus, there exists a subgraph G′ = (V ′, E′) of G[V (T )] \E(T ) with
minimum degree δ(G′) ≥ z/10.

We need the following consideration to conclude the proof of Claim 11.
Let x 6= v ∈ V (G′) be fixed, and let P0 denote the rainbow T -path con-
necting v to x. Let P1 be a G′-path (importantly, not T -path) from x to
some vertex y such that P0 ∪ P1 is a rainbow path from v to y. (Below, we
estimate how many such paths P1 will exist.) Let w be the first common
ancestor of both x and y in T . Let P2 ⊂ P0 be the T -path from w to x,
and let P3 be the T -path from w to y (see Figure 2). By construction, both
paths P2 ∪ P1 and P3 are edge-disjoint rainbow paths with the same end
vertices w and y. Hence, the union F = P1 ∪ P2 ∪ P3 is a connected 2-nice
graph. We bound the number of graphs F which can be thus created.

The number N of rainbow paths extending P0 from x by a path P1 ⊂ G′
of length z/25 is at least

z/25∏
j=1

(
δ(G′)− 2(k + j)

)
≥
(
z/10− 2(k + z/25)

)z/25 ≥ (z/50)z/25.

Every such P1 yields a distinct graph F = P1 ∪ P2 ∪ P3 with

z/25 + 1 ≤ |E(F )| ≤ z/25 + 2(k + 1)

(these graphs F are distinct since P1 ⊂ G′ ⊂ G\E(T ) and P2∪P3 ⊂ E(T )).
By averaging, there exists some `, z/25 + 1 ≤ ` ≤ z/25 + 2(k+ 1), such that
the number of graphs F of size ` is at least

N

2(k + 1)
≥ (z/50)z/25

2 log n+ 2
≥ z0.9`

for n sufficiently large. This concludes the proof of Claim 11. �
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Figure 2. The dashed path corresponds to P2 ∪P3 ⊂ E(T )
and the continuous path corresponds to P1 ⊂ E

(
G[V (T )]

)
\

E(T ).

6. Concluding Remarks

6.1. Even subgraphs of r-graphs. We mainly studied extremal problems
for subgraphs with small even degrees in linear 3-uniform hypergraphs. It is
possible to ask similar questions for r-uniform hypergraphs with r > 3. Let
f rb (n) denote the maximum number of edges in a linear n-vertex r-graph
with no b-bounded even subgraphs. Theorem 4 can be extended to r-graphs
by repeating the matching counting proof given here. One can show that
f r2 (n) = O(n2−1/(r−1) (log n)O(r)) using that proof. It is likely to be very
difficult to determine the correct order of magnitude of f r2 (n) for any r > 2,

and in particular we conjectured f3
2 (n) = f2(n) = n1+o(1). The problem of

finding small even subgraphs of r-graphs was studied in [7].

6.2. Degrees in residue classes. More generally, one can consider sub-
graphs in which the degrees are multiples of an integer p. If p is prime, then
Alon, Friedland and Kalai [1] showed that any graph of average degree more
than 2p − 2 contains a non-empty subgraph in which the degrees are zero
modulo p. Using this result, Pyber, Rödl and Szemerédi [8] showed that the
maximum number of edges in an n-vertex graph with no p-regular subgraph
is O(n log n). The proof of the result of Alon, Friedland and Kalai uses
the Chevalley-Warning Theorem, and extends to r-graphs easily: in an r-
graph of average degree more than r(p− 1), there is a non-empty subgraph
in which all the degrees are zero modulo p. The question of determining
fp(n), the maximum number of edges in a linear n-vertex 3-graph with no
p-regular subgraph appears to be very difficult. In fact, it appears difficult to
show that every sufficiently large Steiner triple system contains a 3-regular
subgraph, so we leave it as an open problem to show f3(n) = o(n2).
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