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Abstract. We present an algorithm that for 2-colorable 3-uniform hy-
pergraphs, finds a 2-coloring in average running time O(n5 log2 n).

1. Introduction

One of the classical problems in complexity theory is to decide whether a given
k-uniform hypergraph is 2-colorable (or bipartite). Here a hypergraph is said to
be `-colorable, if there is a coloring of its vertices with ` colors, such that no
hyperedge is monochromatic. We call such coloring proper. The chromatic number
of the hypergraph is defined to be the minimal number of colors needed to color a
hypergraph properly.

While for bipartite graphs a 2-coloring can be found in linear time, it was shown
by Lovász [16] that the problem becomes NP -complete for k-uniform hypergraphs
and k ≥ 3. Moreover, Guruswami et al. [9] proved that it is NP -hard to color
bipartite, k-uniform hypergraphs with a constant number of colors for k ≥ 4. It
was also shown by Dinur et al. [3] that this problem remains inapproximable by
a constant for 3-uniform hypergraphs. On the other hand, recently, Krivelevich
et al. [15] found a polynomial time algorithm which colors 3-uniform bipartite hy-
pergraphs using O(n1/5 logc n) colors. Another positive result is due to Chen and
Frieze [1]. Those authors studied colorings of so-called α-dense bipartite 3-uniform
hypergraphs, where a 3-uniform hypergraph is α-dense if the joint degree of any
two vertices is at least αn. A randomized algorithm that can color H in nO(1/α)

time was found [1].
The purpose of this paper is to present an algorithm that colors a hypergraph

chosen uniformly at random from the family of all labelled, 3-uniform, bipartite
hypergraphs on n vertices in O(n5 log2 n) expected time. Indeed, we prove a slightly
more general result for the class of Fano-free hypergraphs, see Theorem 1. Before
we state it precisely we review related results for graphs.

In 1984 Wilf [22] noted, using a simple counting argument, that one can decide in
constant expected time, whether a graph is `-colorable. Few years later Turner [21]
gave an O(|V | + |E| log `) algorithm for optimally coloring almost all `-colorable
graphs. This result was further expanded by Dyer and Frieze [4] who developed
an algorithm which colored every `-colorable graph on n vertices properly (with `
colors) in O(n2) expected time.

Date: December 2, 2010.
A preliminary version of this article appeared in [18].
The first author was supported by GIF grant no. I-889-182.6/2005.

1



2 Y. PERSON AND M. SCHACHT

Another line of research concerns the study of monotone properties of the type
Forb(n,L) for a fixed graph L, i.e., the family of all labeled graphs on n vertices,
which contain no copy of L as a (not necessarily induced) subgraph. Prömel and
Steger [19] gave an algorithm that colors properly (regardless of the value of its
chromatic number χ(G)) a randomly chosen member G from Forb(n,K`+1), i.e.,
the class of all labeled K`+1-free graphs, in O(n2) expected time. This is clearly a
generalization of the result of Dyer and Frieze in the light of the well known result
of Kolaitis et al. [14] that almost all K`+1-free graphs are `-colorable.

In [17] we studied Forb(n, F ), where F is the 3-uniform hypergraph of the Fano
plane, which is the unique triple system with 7 hyperedges on 7 vertices where every
pair of vertices is contained in precisely one hyperedge. It was shown independently
by Füredi and Simonovits [8] and Keevash and Sudakov [11], that for large n the
unique extremal Fano-free hypergraph is the balanced, complete, bipartite hyper-
graph Bn = (U ∪̇W,EBn), where |U | = bn/2c, |W | = dn/2e and EBn consists of all
hyperedges with at least one vertex in U and one vertex in W . The hypergraph of
the Fano plane F is not bipartite, i.e., for every vertex partition X∪̇Y = V (F ) into
two classes there exists an edge of F which is either contained in X or in Y . Con-
sequently, Forb(n, F ) contains any bipartite 3-uniform hypergraph on n vertices.
However, deleting any hyperedge from F results in a bipartite hypergraph.

Let Bn be the class of all labeled bipartite hypergraphs on n vertices. It was
shown in [17] that

|Forb(n, F )| ≤ (1 + 2−Ω(n2))|Bn| . (1)

Our main result here states that one can color a 3-uniform hypergraph chosen
uniformly at random from Forb(n, F ) in polynomial expected time.

Theorem 1. There is an algorithm with average running time O(n5 log2 n) which
colors every member from Forb(n, F ) properly.

Together with (1) we immediately derive in a similar manner to Steger and
Prömel [19] that one can color a 3-uniform hypergraph chosen uniformly at random
from Bn in polynomial expected time.

Corollary 2. There is an algorithm with average running time O(n5 log2 n) which
finds a bipartition of every member from Bn.

2. Algorithmic version of the weak hypergraph regularity lemma

In [17] we used the so-called weak hypergraph regularity lemma in conjuction
with the recently discovered counting lemma for linear hypergraphs from [12]. A
hypergraph is linear if any pair of hyperedges shares at most one vertex. Since the
Fano plane is linear, this counting lemma is applicable.

Throughout this paper we will consider only 3-uniform hypergraphs and by a
hypergraph we will always mean a 3-uniform hypergraph. For the sake of a simpler
notation we set

Fn = Forb(n, F ) ,

where by F we will always denote the hypergraph of the Fano plane. We will refer
to hypergraphs not containing a copy of F , as Fano-free hypergraphs.

For a hypergraph H = (V,E) and a set U ⊆ V we denote by H[U ] the 3-uniform
subhypergraph of H induced on U . We write EH(U) or simply E(U) for the edges

completely contained in U , i.e., EH(U) = E ∩
(
U
3

)
. We let eH(U) (resp. e(U))
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denote the cardinality of EH(U). Similarly, for two disjoint subsets U and W we
write

E(U,W ) = E(U ∪W ) \ (E(U) ∪ E(W ))

= {e ∈ E : e ⊂ U ∪̇W, |e ∩ U ||e ∩W | ≥ 1}

and e(U,W ) = |E(U,W )|. For pairwise disjoint sets V1, V2, and V3 denote by
EH(V1, V2, V3) the set of all hyperedges from H that intersect all three sets, further
set eH(V1, V2, V3) = |EH(V1, V2, V3)|

The weak hypergraph regularity lemma is a straightforward extension of Sze-
merédi’s regularity lemma [20] for graphs. Here we introduce it only for 3-uniform
hypergraphs, but a similar lemma holds for general k. Let H = (V,E) be a hy-
pergraph and let W1,W2,W3 be pairwise disjoint non-empty subsets of V . We
denote by dH(W1,W2,W3) = d(W1,W2,W3) the density of the 3-partite induced
subhypergraph H[W1,W2,W3] of H, defined by

dH(W1,W2,W3) =
eH(W1,W2,W3)

|W1||W2||W3|
.

We say the triple (V1, V2, V3) of pairwise disjoint subsets V1, V2, V3 ⊆ V is (ε, d)-
regular, for ε > 0 and d ≥ 0, if

|dH(W1,W2,W3)− d| ≤ ε
for all triples of subsets W1 ⊆ V1,W2 ⊆ V2,W3 ⊆ V3 satisfying |Wi| ≥ ε|Vi|, i =
1, 2, 3. We say the triple (V1, V2, V3) is ε-regular if it is (ε, d)-regular for some d ≥ 0.
An ε-regular partition of a set V (H) has the following properties:

(i ) V = V1∪̇ . . . ∪̇Vt
(ii ) ||Vi| − |Vj || ≤ 1 for all 1 ≤ i, j ≤ t,

(iii ) for all but at most ε
(
t
3

)
sets {i1, i2, i3} ⊆ [t], the triple (Vi1 , Vi2 , Vi3) is

ε-regular.

We will apply an algorithmic version of the weak hypergraph regularity lemma
which was established by Czygrinow and Rödl [2] and in a slightly adjusted form
for our needs, it will be used here to analyze our coloring algorithm Color(H), that
will be introduced in the next section:

Theorem 3 (Algorithmic weak regularity lemma). For every integer t0 ≥ 1 and
every ε > 0, there exist T0 = T0(t0, ε), n0 = n0(t0, ε) and an algorithm Regularize,
which for every hypergraph H = (V,E) on n ≥ n0 vertices finds in O(n5 log2 n)
time an ε-regular partition V = V1∪̇ . . . ∪̇Vt with t0 ≤ t ≤ T0.

Typically, when studying the regular partition of a hypergraph, one defines a
new hypergraph of bounded size with the vertex set being the partition classes and
the edge set being ε-regular triples with sufficient density. Our algorithm will also
work with such cluster-hypergraphs. The following definition makes this precise.

Definition 4. For a hypergraph H = (V,E) with an ε-regular partition V (H) =
V1∪̇ . . . ∪̇Vt of its vertex set and an η > 0 let H(η) = (V ∗, E∗) be the cluster-
hypergraph with vertex set V ∗ = {1, . . . , t} and edge set E∗, where for 1 ≤ i < j <
k ≤ t it is {i, j, k} ∈ E∗ if and only if the triple (Vi, Vj , Vk) is ε-regular and the
density satisfies dH(Vi, Vj , Vk) ≥ η.

In [12] a counting lemma for linear hypergraphs in the context of the weak
regularity lemma was proved. In [17] we noted that the same proof also holds for
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the lower bound and for a slightly relaxed definition of an ε-regular triple. More
precisely, we say a triple (V1, V2, V3) of pairwise disjoint subsets V1, V2, V3 ⊆ V is
one-sided (ε, d)-regular for ε > 0 and d ≥ 0 if

dH(W1,W2,W3) ≥ d
for all triples of subsets W1 ⊆ V1,W2 ⊆ V2,W3 ⊆ V3 satisfying |Wi| ≥ ε|Vi|, i =
1, 2, 3. Note also, that an (ε, d)-regular triple is one-sided (ε, d− ε)-regular.

Theorem 5 (Key-Lemma (Theorem 3.3 in [17])). For every ` ∈ N and d > 0
there exist ε = ε(`, d) > 0 and a positive integer m0 = m0(`, d) with the following
property.

If H is an `-partite 3-uniform hypergraph with vertex classes V1, . . . , V`, such
that |V1| = . . . = |V`| ≥ m0, and L is a linear hypergraph on ` vertices such that
for every e ∈ E(L) the triple (Vi)i∈e is one-sided (ε, d)-regular. Then H contains a
copy of L. �

The proof of Theorem 5 is given in [17, Theorem 3.3] and, in fact, it follows
along the lines of the proof of the counting lemma for linear hypergraphs in [12].

3. Algorithm for coloring Fano-free hypergraphs

Below we first present the simple algorithm Color(H) which will be based on the
subroutine Partition(H,α).

Algorithm 1: Color (H)

Input: H from Forb(n, F )
Output: Proper coloring of H

1 Choose α > 0 appropriately (see Lemma 12);

2 (X,Y )← Partition (H,α);

3 if e(X) + e(Y ) = 0 then
4 output 2-coloring corresponding to (X,Y );

5 else
6 try all nn = 2n log2 n possible colorings and output the one that minimizes

the number of colors used;

Obviously, Color(H) finds a proper coloring of H. We will show that Step 2 has
a running time of O(n5 log2 n) for all H. Hence for proving Theorem 1 it suffices to
show that there exists an α > 0 such that Step 5 of the algorithm will be executed
for at most 2−n log2 n|Forb(n, F )| 3-uniform hypergraphs from Forb(n, F ), .

The subroutine Partition(H,α) finds a locally minimal partition XH ∪̇YH =
V (H), i.e., a partition for which e(XH) + e(YH) cannot be decreased by mov-
ing a single vertex from one class to another. Moreover, we will show later that for
“most” 3-uniform hypergraphs H from Forb(n, F ) the algorithm Partition(H,α)
outputs a partition with the additional property e(XH) + e(YH) < αn3.

In Step 2 the algorithm Regularize(H, ε, t) will be used as a subroutine. This
algorithm, due to Czygrinow and Rödl [2], finds an ε-regular partition of a 3-uniform
hypergraph H on n vertices and at least t0 many clusters in time O(n5 log2 n).
Step 4 requires only constant time, that depends on ε only. The “while”-loop also
requires at most O(n5) steps, as the update step requires at most O(n2) operations
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Algorithm 2: Partition (H,α)

Input: H ∈ Forb(n, F ), α > 0
Output: Locally minimal vertex partition of H: V = XH ∪̇YH

1 Choose ε := ε(α) and η := η(α) appropriately (see Lemma 8);

2 Apply Regularize(H, ε, d1/εe) and obtain an ε-regular partition V1, . . . , Vt;

3 Define cluster hypergraph H(η) with densities at least η;

4 Find partition A∪̇B of V (H(η)) which minimizes eH(η)(A) + eH(η)(B);

5 Set W1 := ∪a∈AVa and W2 := ∪b∈BVb;
6 while ∃w ∈Wi such that degWi

(w) > degW[2]\{i}
(w) do

7 move w to W[2]\{i};

8 Output (W1,W2);

and the “while”-loop terminates after at most
(
n
3

)
executions. Indeed, in every loop

we increase the cut and there are at most
(
n
3

)
hyperedges in H.

4. Further tools

In the following we will introduce more notations and basic facts before we
start with the analysis of the algorithm Color(H). We recall the result of Füredi
and Simonovits [8] and Keevash and Sudakov [11] on the extremal number for the
hypergraph of the Fano plane F asserts for sufficiently large n:

ex(n, F ) = e(Bn) = |EBn | =
(
n

3

)
−
(
dn/2e

3

)
−
(
bn/2c

3

)
=
n3

8
− n2

4
−O(n) ≤ n3

8
.

The following simple bounds on |Bn| will be used:

2e(Bn) ≤ |Bn| ≤ 2n · 2e(Bn). (2)

Indeed there are at most 2n partitions of [n] in two disjoint sets and there are at
most e(Bn) hyperedges running between those two sets.

The following holds for the Fano-extremal hypergraph Bn:

δ1(Bn) =
(⌈n

2

⌉
− 1
)⌊n

2

⌋
+

(
bn/2c

2

)
≥ 3

8
n2 − n , (3)

where for a hypergraph H = (V,E) we denote by δ1(H) the minimum vertex degree,
i.e.,

δ1(H) = min
u∈V

∣∣{{v, w} : {u, v, w} ∈ E
}∣∣ ,

while setting

∆(H) = max
u∈V

∣∣{{v, w} : {u, v, w} ∈ E
}∣∣

to be the maximum degree of H. Furthermore, we have

e(Bn) = e(Bn−3) + δ1(Bn) + δ1(Bn−1) + δ1(Bn−2).

For a given hypergraph H = (V,E) and a vertex v ∈ V we define its link
LH(v) = (V \{v}, Ev) to be the graph whose edges together with v form hyperedges
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of H, namely

Ev = {{u,w} : {v, u, w} ∈ E} .
We define the degree of v ∈ V to be deg(v) = degH(v) = |E(LH(v))|, and sometimes
we omit H when it is clear from the context. For A ⊆ V (H) and v ∈ V (H) denote
by

LA(v) = LH(v)[A] = (A \ {v}, Ev ∩
(
A
2

)
)

the link of v induced on A.
The following stability result for Fano-free hypergraphs was proved by Keevash

and Sudakov [11] and Füredi and Simonovits [8], in order to determine the extremal
hypergraph for the Fano plane:

Theorem 6 (Stability theorem for Fano-free hypergraphs). For every α > 0 there
exists λ > 0 and n0 such that for every Fano-free hypergraph H on n ≥ n0 vertices
with at least ( 1

8 − λ)n3 hyperedges there exists a partition V (H) = X∪̇Y so that

e(X) + e(Y ) < αn3.

It follows from the work in [8, 11] that λ = λ(α) is indeed a computable function.
By h(x) = −x log x− (1− x) log(1− x) we denote the entropy function, and by

log we always mean log2. Note further, h(x) → 0 as x tends to 0, and h(x) ≥ x
for x ≤ 1

2 . We will use the entropy function h(x) together with the well-known
inequality (

n

xn

)
≤ 2h(x)n,

which holds for 0 < x < 1. Furthermore, we will use that for n > 3k we have∑
j<k

(
n
j

)
<
(
n
k

)
. Often we will omit floors and ceilings, as they will have no effect

on our asymptotic arguments.

5. Proof of main result

5.1. Overview of the proof. So far we have presented our coloring algorithm
Color(H) and it is left to show that there exist appropriate choices for α and for ε
and η inside the subroutine Partition(H,α) which yield the claimed running time.
More precisely, we will show that for sufficiently small α, ε and η the proportion of
hypergraphs H in Forb(n, F ) for which Step 6 in Color(H) is required, is “negligi-
ble”.

In the main part of the proof we show that there are at most 2−Ω(n2)|Forb(n, F )|
such hypergraphs in Forb(n, F ). To prove this, we study structural properties of
a typical H from Forb(n, F ). Our analysis uses ideas from [17]. We will introduce
a chain of subsets of Forb(n, F ) such that all members of them possess certain
“typical” properties. More precisely, we study the following chains of subsets of
Fn:

Fn ⊇ F ′n(α) ⊇ F ′′n(α, β) ⊇ F ′′′n (α, β),

and

Fn ⊇ Bn ⊇ F ′′′n (α, β).

The first subset F ′n(α) consists of those members, that admit at least one locally
minimal partition (XH , YH) with the properties e(XH) + e(YH) < αn3 and |XH | ≈
|YH |. Using the weak hypergraph regularity lemma and Theorem 6, we will show
that for most of the members from F ′n(α) the algorithm Partition(H,α) finds a
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locally minimal partition for given α. Therefore, additionally, we obtain that most
of the hypergraphs from Forb(n, F ) lie in F ′n(α).

The further analysis proceeds as follows. We introduce two more proper sub-
sets of Forb(n, F ): F ′′n(α, β) and F ′′′n (α, β) which describe two further “useful”
properties of almost all Fano-free hypergraphs on n vertices. The family F ′′n(α, β)
contains those members from F ′n(α) which are “dense everywhere” in the sense
that whenever we take three disjoint subsets of vertices, say W1, W2, W3, not all
of them contained in XH or YH (for any locally minimal partition satisfying prop-
erties from F ′n(α)), the number of hyperedges that run between them will be at
least d|W1||W2||W3| for some positive constant d > 0. Moreover, every vertex will
have small degree in its own partition class (i.e. XH or YH). Thus, essentially,
there exists “only one” locally minimal partition. For members of the last class
F ′′′n (α, β) we demand that the joint link of every set of 3 vertices of any of the two
partition classes XH and YH must contain a K4. We then deduce that the last
property implies in fact bipartiteness. As a seemingly surprising fact, we obtain,
that for almost all members from Forb(n, F ) any locally minimal partition for some
appropriate α already satisfies e(XH) + e(YH) = 0.

5.2. Proof of Theorem 1. Below we give proper definitions of the classes de-
scribed above and we state the lemmas that relate the sizes of these hypergraph
classes. The proofs of the corresponding statements are given in the next section,
Section 6. First we recall the definition of a locally minimal partition. A vertex
partition XH ∪̇YH of V (H) is locally minimal if e(X ′, Y ′) ≥ e(XH , YH) for all par-
titions X ′∪̇Y ′ of V (H) with |X ′∆XH | ≤ 1. Furthermore, we say a partition is

α-good, if e(XH)+e(YH) < αn3 and |XH |, |YH | < n/2+2
√
h(6α)n. The first class

F ′n(α) of Fano-free hypergraphs is defined as follows.

Definition 7. Let α > 0 and n ∈ N. We set

F ′n(α) =
{
H ∈ Fn : ∃ a locally minimal α-good partitionV = XH ∪̇YH

}
.

Lemma 8. For every α ∈ (0, 1
12 ) there exist (computable) constants c′, ε, η > 0 and

an integer n′0 such that for all n ≥ n′0 the algorithm Partition(H,α) finds for all

but at most 2e(Bn)−c′n3

hypergraphs H ∈ Fn a locally minimal partition XH ∪̇YH of
its vertex set with the following two properties:

• e(XH) + e(YH) < αn3,

• |XH |, |YH | < n/2 + 2
√
h(6α)n.

In particular, we have:

|Fn \ F ′n(α)| < 2e(Bn)−c′n3

.

Next we define the subfamily of “everywhere dense” hypergraphs from F ′n(α).

Definition 9. For α, β > 0 and n ∈ N let F ′′n(α, β) denote the family of those hy-
pergraphs H ∈ F ′n(α), such that for any locally minimal α-good partition XH ∪̇YH
of V (H) the following condition holds.

For any pairwise disjoint sets W1 ⊂ XH , W2 ⊂ YH and W3 ⊂ ZH , where
ZH ∈ {XH , YH}, with |Wi| ≥ βn for i = 1, 2, 3 we have

eH(W1,W2,W3) ≥ 1

4
|W1||W2||W3|.

The proof of the following lemma is similar to the proofs of Lemmas 4.2 and 4.3
in [17], for completeness we include the proof of Lemma 10 in Section 6.
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Lemma 10. For every γ > 0 there exist (computable) constants α, β, c′′ > 0 and
an integer n0 such that for every n ≥ n0 and H ∈ F ′′n(α, β), we have:

(1) |F ′n(α) \ F ′′n(α, β)| < 2e(Bn)−c′′n3

.
(2) max{∆(H[XH ]),∆(H[YH ])} < γn2 for any locally minimal α-good parti-

tion XH ∪̇YH ,

We finally define the last subclass of Fano-free hypergraphs.

Definition 11. For α, β > 0 and n ∈ N, let F ′′′n (α, β) denote the family of those
hypergraphs H ∈ F ′′n(α, β), such that for any locally minimal α-good partition
XH ∪̇YH of V (H) the following holds.

For all triples z1, z2, z3 ∈ Z of vertices with Z ∈ {XH , YH} we have LQ(z1) ∩
LQ(z2)∩LQ(z3) ⊇ K4, where {Q,Z} = {XH , YH}. In other words, we require that
the common link of any triple from XH or YH contains a copy of K4 in the other
vertex class.

It follows directly from the definition, that every H ∈ F ′′′n (α, β) is bipartite, i.e.,
F ′′′n (α, β) ⊆ Bn. Otherwise, any hyperedge e, say in XH , together with the K4 in
YH , which lies in the common link of the vertices of e would span a copy of the
hypergraph of the Fano plane.

To obtain a bound on |F ′′n(α, β) \ F ′′′n (α, β)| we estimate in at most how many
ways one can construct a Fano-free hypergraph from F ′′n(α, β) \ F ′′′n (α, β), i.e. a
Fano-free hypergraph with a locally minimal partition and a hyperedge inside it.

Lemma 12. There exist (computable) constants α, β, c > 0 and an integer n0, such
that for every n ≥ n0 we have

|F ′n(α) \ F ′′′n (α, β)| ≤ 2e(Bn)−cn2

.

We remark that the bound in Lemma 12 is considerably weaker than those in
Lemma 10 and Lemma 8 having only −cn2 in the exponent instead of −cn3. The
reason for that is that the number of Fano-free hypergraphs which are not bipartite

is 2e(Bn)−Θ(n2). The corresponding argument can be found in Section 7.

Proof of Theorem 1. We first apply Lemma 12 and obtain constants α, β and c.
Then Lemma 8 applied with α returns ε, η and c′. Below we show that these
constants α, ε and η are suitable choices in the algorithms Color and Partition.

Indeed for these choices of α, ε and η, Lemma 8 asserts that the partition XH ∪̇YH
provided by Partition(H,α) is locally minimal and α-good for all but 2e(Bn)−c′n3

hypergraphs H ∈ Fn. Moreover, due to Lemma 12 this partition satisfies e(XH) +
e(YH) = 0 for all H ∈ F ′′′n (α, β), i.e. this partition is a correct 2-coloring of H.
Finally, it follows from Lemma 8 and Lemma 12 that Step 6 of the algorithm Color
is only considered for at most

2e(Bn)−c′n3

+ 2e(Bn)−cn2

Fano-free hypergraphs. �

6. Proofs of Lemmas

Proof of Lemma 8. The proof of Lemma 8 combines the weak hypergraph regu-
larity lemma with the stability theorem for Fano-free hypergraphs applied to the
cluster-hypergraph.
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Let λ = λ(α/2) and n0(α/2) be given by the stability theorem, Theorem 6. We
may assume λ < 16h(6α). We set

c′ =
λ

17
,

and we choose η such that λ > (16/3)h(6η) and η ≤ α/2.
Later we will apply the Key-lemma, Theorem 5, with ` = 7 and L being the

hypergraph of the Fano plane to the cluster-hypergraph of an ε-regular partition.
For that we set ε = min{ε(7, η/2), η/2}, where ε(7, η/2) is as asserted by Theorem 5.

We also choose a lower bound on the number of clusters in an ε-regular partition
to be t0 = max{1/ε, n0(α/2)}, where n0(α/2) is the bound given by Theorem 6, so
that we can later apply Theorem 6 (stability theorem) to the cluster-hypergraph.
Finally set n be sufficiently large, in particular, set n′0 � max{T0, n0}, where T0

and n0 are given by the weak regularity lemma, Theorem 3, which in turn will
deliver an ε-regular partition later.

For the main steps of the proof it is sufficient to keep in mind that

0 < 1/t0 ≤ ε ≤ η � λ� α.

We may assume in the following that t divides n, and thus |Vi| = n/t for all
i = 1, . . . , t.

We will upper bound the number of hypergraphs for which Partition(H,α) fails
to produce a locally minimal α-good partition in two steps. More formally, we
consider the subset F̃ ′n(α) which consists of those hypergraphs H from Fn, for
which Partition(H,α) returns a locally minimal α-good partition. Thus, our aim

is to show that |Fn \ F̃ ′n(α)| is at most 2e(Bn)−c′n3

. Our proof has two steps.
In the first step we bound the number of hypergraphs H that have e(XH) +

e(YH) ≥ αn3 for every locally minimal partition (XH , YH). In the second step we
show that most of the hypergraphs H every locally minimal partition XH ∪̇YH with
e(XH) + e(YH) < αn3 will also satisfy:

max{|XH |, |YH |} <
n

2
+ 2
√
h(6α)n .

Here and in the following (XH , YH) will stand for a locally minimal partition,
and unless it is specified otherwise, it will stand for an arbitrary locally minimal
partition.

Step 1. Consider a hypergraph H ∈ Fn satisfying

e(XH) + e(YH) ≥ αn3 (4)

for every locally minimal partition XH ∪̇YH . We apply the weak regularity lemma,
Theorem 3, with parameters ε and t0. Firstly, we estimate the number of hyper-
edges, which are contained in the “uncontrolled” part of the regular partition:

• the number of hyperedges intersecting at most two of the clusters is at most

t

(
n/t

2

)
n <

1

2t
n3,

• the number of hyperedges contained in irregular triples is at most

ε

(
t

3

)(n
t

)3

<
ε

6
n3,
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• the number of hyperedges that are contained in ε-regular triples of density
less than η is at most

η
(n
t

)3
(
t

3

)
<
η

6
n3.

Thus, the number of discarded edges is less than ηn3.
Secondly, consider the resulting cluster-hypergraph H(η). It must be Fano-free

as otherwise Theorem 5 would imply that H also contains a copy of the hypergraph
of the Fano plane.

Recall that by assumption (4) we have for every locally minimal partition e(XH)+
e(YH) ≥ αn3. Below we will show that this assumption implies that e(H(η)) ≤
(1 − λ)t3/8. In fact, assuming the contrary, Theorem 6 applied to H(η) would
yield the existence of a bipartition of {1, . . . , t} into disjoint sets A and B with
eH(η)(A) + eH(η)(B) < αt3/2. We define the following bipartition of V (H)

X =
⋃
i∈A

Vi and Y =
⋃
j∈B

Vj .

Clearly, we then have

eH(X) + eH(Y ) < ηn3 +
α

2
t3
(n
t

)3

< αn3 .

Note that if shifting vertices between X and Y until a locally minimal partition is
reached, only decreases the number of edges within classes. Thus, we would arrive
at a locally minimal bipartition (X ′, Y ′) with eH(X ′)+eH(Y ′) < αn3, which yields
a contradiction to (4).

Now we are able to bound the number of hypergraphs H ∈ Fn with e(XH) +
e(YH) ≥ αn3 for every locally minimal partition XH ∪̇YH from above by calculating
the total possible number of ε-regular partitions together with all possible cluster-
hypergraphs associated with them and all possible hypergraphs that could give rise
to such a particular cluster-hypergraph. This way we get, for sufficiently large n,
due to the choice of η, at most

T0∑
t=t0

tn · 2(t
3) · 2(1−λ) t3

8 ( n
t )3 ·

ηn3−1∑
j=0

((n
3

)
j

) ≤ Tn+1
0 · 2(T0

3 ) · 2(1−λ)n3/8 ·
((n

3

)
ηn3

)
≤ 2(n+1) log T0+(T0

3 )+n3/8−λn3/8+h(6η)n3/6 < 2n
3/8−λn3/16 ,

hypergraphs whose every locally minimal partition (XH , YH) satisfies (4).
Step 2. We now estimate the number of those hypergraphs H which have a

locally minimal partition (XH , YH) with e(XH) + e(YH) < αn3, but

max{|XH |, |YH |} ≥ n/2 + 2
√
h(6α)n. (5)

First we upper bound e(XH , YH) for such a hypergraph H by

e(XH , YH) ≤ |XH |
(
|YH |

2

)
+ |YH |

(
|XH |

2

)
<
n

2
|XH ||YH | <

n3

8
− 2h(6α)n3.
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Note that there are at most 2n possible partitions of V (H), and since less than
αn3 hyperedges are completely contained in XH and YH , those hyperedges can be
chosen in at most

αn3−1∑
i=0

((n
3

)
i

)
≤
((n

3

)
αn3

)
ways. Finally, as we assumed that the partitions satisfy (5), we estimate the number

of possible choices of hyperedges between XH and YH by 2n
3/8−2h(6α)n3

. Altogether
we get, that there are at most

2n ·
((n

3

)
αn3

)
· 2n

3/8−2h(6α)n3

≤ 2n+h(6α)n3/6+n3/8−2h(6α)n3

≤ 2n
3/8−h(6α)n3

hypergraphs H with e(XH) + e(YH) < αn3 and

max{|XH |, |YH |} ≥
n

2
+ 2
√
h(6α)n.

Combining Steps 1 and 2 we obtain:

|Fn \ F ′n(α)| ≤ |Fn \ F̃ ′n(α)| ≤ 2n
3/8−λn3/16 + 2n

3/8−h(6α)n3

< 2n
3/8−λn3/16+1,

since h(6α) > λ/16. Due to n3/8−e(Bn) ≤ n2/4+O(n) and the choice of c′ = λ/17,
the lemma follows for sufficiently large n. �

To prove Lemma 10, we will use a special form of the regularity lemma for graphs.
Before we state it, we briefly introduce the concept of ε-regularity for graphs.

For a bipartite graph G = (V1, V2, E) we define the density of G as d(V1, V2) :=
|E|
|V1||V2| . The density of a subpair (U1, U2), where Ui ⊆ Vi for i = 1, 2 is defined

as d(U1, U2) := e(U1,U2)
|U1||U2| . Here, as in the hypergraph case, e(U1, U2) denotes the

number of edges with one end in U1 and the other in U2. We say, G, or simply
(V1, V2), is ε-regular if for all Ui ⊆ Vi, |Ui| ≥ |Vi|, i = 1, 2 the following holds:

|d(V1, V2)− d(U1, U2)| < ε.

Now we can state the theorem, which is a straightforward consequence of Sze-
merédi’s regularity lemma [20]:

Theorem 13. Let η > 0, then for every ε ∈ (0, η/3) there exist T0, N0 such
that the following holds. For all vertex disjoint graphs GX and GY on n ≥ N0

vertices with e(GX), e(GY ) ≥ ηn2 there exist t ≤ T0 and pairwise disjoint sets
X1, X2, Y1, Y2, Y3, Y4, each of size n/t, and X1, X2 ⊂ V (GX) and Yi ⊂ V (GY ), i ∈
[4], so that GX [X1, X2], GY [Y1, Y2] and GY [Y3, Y4] are ε-regular with density at
least η/3. �

Proof of Lemma 10. For the second part of the proof, we let ε = min{ 1
2ε(γ/6), γ/6},

where ε(γ/6) is as asserted by Theorem 5. We choose β = ε/T0, where T0 is as
asserted by Theorem 13 when applied with η = γ and ε. Furthermore we choose
n0 to be sufficiently large, in particular larger than N0.

For the first part, we choose α > 0 such that

β3

(
1− h

(
1

4

))
≥ h(6α)

3

and set c′′ = h(6α)/12.
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It is sufficient to keep in mind:

0� α� β � ε� γ.

(1) We estimate |F ′n(α) \ F ′′n(α, β)| as follows. There are at most 2n partitions
XH ∪̇YH = [n] of the vertex set and we can choose the edges lying completely within
XH and YH in at most

αn3−1∑
j=0

((n
3

)
j

)
≤
((n

3

)
αn3

)
possible ways. Moreover, there are at most

2

(n
2 + 2

√
h(6α)n

βn

)3

·
1
4β

3n3−1∑
i=0

(
β3n3

i

)
< 23n+1

(
β3n3

1
4β

3n3

)
ways to select W1,W2,W3 and the hyperedges in eH(W1,W2,W3). Finally, there
are at most

2e(Bn)−β3n3

ways for choosing the remaining edges. Multiplying everything together, we obtain

|F ′n(α) \ F ′′n(α, β)| ≤ 24n+1

((n
3

)
αn3

)(
β3n3

1
4β

3n3

)
2e(Bn)−β3n3

≤ 24n+1+h(6α) n3

6 +h(1/4)β3n3+e(Bn)−β3n3

≤ 2e(Bn)−2c′′n3

,

for sufficiently large n.
(2) We prove the second part by contradiction. More precisely, we will assume

that there exists H ∈ F ′′n(α, β) with max{∆(H[XH ]),∆(H[YH ])} ≥ γn2, and we
will show that H contains a Fano plane.

Without loss of generality assume that there exists H ∈ F ′′n(α, β) and a vertex
x ∈ XH with degH[X](x) ≥ γn2. Thus, |LY (x)| ≥ |LX(x)| ≥ γn2, as otherwise

this violates the minimality condition of the partition XH ∪̇YH = V (H). Define
graphs GX = (XH \ {x}, LX(x)) and GY = (YH , LY (x)). We apply Theorem 13
to GX ∪̇GY and obtain ε-regular pairs (X1, X2) ⊂ GX and (Y1, Y2), (Y3, Y4) ⊂ GY ,
with |Xi| = |Yj | ≥ (n− 1)/T0 and i ∈ [2], j ∈ [4], each of density at least γ/3.

Consider the following 7-partite subhypergraph L with vertex classes {x}, X1,
X2, Y1, Y2, Y3 and Y4. Denote Lx to be the hypergraph obtained from L by blowing
up its first vertex class {x} to the size of X1 (all other partition classes are equal),

and denote this blown-up class by X̃. More precisely, Lx = (W x, Ex), where

W x = X̃∪̇X1∪̇X2∪̇Y1∪̇Y2∪̇Y3∪̇Y4

and

{a, b, c} ∈ Ex ⇔

{
{a, b, c} ∈ E(L) , if {a, b, c} ∩ X̃ = ∅ ,
{x, b, c} ∈ E(L) , if a ∈ X̃ and b, c 6∈ X̃ .

Note, that L contains a Fano plane if, and only if Lx contains one. Now we apply
Theorem 5 to Lx, as Lx contains now 7 one-sided (ε, γ/6)-regular triples and these

triples form a Fano plane. This is true since the triples (X̃,X1, X2), (X̃, Y1, Y2) and

(X̃, Y3, Y4) inherit the ε-regularity from the ε-regular pairs of (X1, X2), (Y1, Y2), and
(Y3, Y4), while the other triples are one-sided (ε, γ/6)-regular due to the choice of β
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and the properties shown in (1). This yields a contradiction and, hence, Lemma 10
follows. �

For the proof of Lemma 12 we will use the following lemma shown in [17], which
is a straightforward consequence of Janson’s inequality [10].

Lemma 14. The probability that the binomial random graph G(m, 1
8 ) with m ≥ 253

vertices and edge probability 1/8 does not contain a copy of K4 is bounded from
above by exp(−2−11m2). �

Proof of Lemma 12. We set

ϑ = 2−17 and c =
ϑ

4
(6)

and choose γ > 0 such that
3h(2γ) < ϑ . (7)

Let α, β and c′′ be given by Lemma 10. We may also assume that

3
√
h(6α) + 6h(6α) < ϑ/2 , (8)

as choosing α smaller we will only have to eventually increase n0. Again, it is
sufficient to keep in mind that

0 < α, β � γ � ϑ = 2−17 .

Due to Lemma 10 we have

|F ′n(α) \ F ′′n(α, β)| ≤ 2e(Bn)−c′′n3

, (9)

and we estimate |F ′′n(α, β) \ F ′′′n (α, β)| as follows.
Let H ∈ F ′′n(α, β) \ F ′′′n (α, β) and XH ∪̇YH be an arbitrary locally minimal α-

good partition. Consider a subset S ∈
(
XH

3

)
∪̇
(
YH

3

)
. Deleting S from V (H), we

obtain a Fano-free hypergraph H ′ on n − 3 vertices, where V (H ′) = [n] \ S. Note
that for every H ∈ F ′′n(α, β) \ F ′′′n (α, β) there exists a hypergraph H ′ ∈ Fn−3 such
that H can be obtained from H ′ in the following way. For H ′ ∈ Fn−3 we choose a
set S of 3 vertices, which we connect in an appropriate manner, so that the resulting
hypergraph is in F ′′n(α, β) \ F ′′′n (α, β).

We can choose the set S, the partition of H ′ and the set which contains S in at
most (

n

3

)
2n−3

ways. Note that the implicit partition of H ′ chosen that way is not necessarily
locally minimal. Only after we add S back, we obtain a locally minimal α-good
partition (XH , YH). Since H ∈ F ′′n(α, β) we infer from Lemma 10 that every vertex
in S has at most γn2 neighbors in its own partition class. This again bounds the
number of ways for choosing these hyperedges byγn2−1∑

j=0

((n
2

)
j

)3

≤
((n

2

)
γn2

)3

.

For every vertex in S we have at most 2n
2/4 possibilities for choosing edges with

one more end in the same partition as S and the other end in the other partition
class, this gives us at most

23n2/4
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ways to choose that type of hyperedges. The last estimate concerns the number
of ways we can connect our triple S to the other partition class, say Y , without
creating any single copy of K4, which is contained in the joint link of the vertices
from S. Here we use Lemma 14. For every vertex v in S we can choose its link

graph LY (v) in at most 2(|Y |2 ) ways. However, since the joint link of three vertices
in S contains no K4, we infer from Lemma 14, that there are at most

23(|Y |2 ) exp(−2−11|Y |2) < 23(|Y |2 )−|Y |2/211

ways.
Combining the above estimates and

n/4 ≤ |Y | ≤ n/2 + 2
√
h(6α)n ,

we obtain

|F ′′n(α, β) \ F ′′′n (α, β)| ≤
(
n

3

)
2n−3 ·

((n
2

)
γn2

)3

23n2/423(|Y |2 )−|Y |2/211

|Fn−3|

(8)

≤ 23 logn+n+3h(2γ)n2/2+9n2/8+ϑn2/2−n2/215

|Fn−3|
(7)

≤ 2δ1(Bn−2)+δ1(Bn−1)+δ1(Bn)+ϑn2−n2/216

|Fn−3|
(6)
= 2δ1(Bn−2)+δ1(Bn−1)+δ1(Bn)−ϑn2

|Fn−3|
(1)

≤ 2−ϑn
2

· 2n−2 · |Bn|.

Since

|Fn|
(1)

≤ 2|Bn| ≤ 2e(Bn)+n+1,

it follows from (9), that

|F ′n(α) \ F ′′′n (α, β)| ≤ 2e(Bn)−cn2

due to the choice of c. �

7. A construction

Note that the error terms obtained in Lemmas 8 and 10 are of the order 2−Ω(n3),

while Lemma 12 only yields 2−Ω(n2). The construction below indicates that Lem-
ma 12 cannot be improved to obtain a similar bound. More precisely, we show that
the number of the nonbipartite Fano-free hypergraphs is

|Forb(n, F )| − |Bn| = 2−Θ(n2)|Bn|. (10)

Thus, for that many hypergraphs the algorithm Color(H) will perform the brute
force search for an optimal coloring of the vertices. Indeed, (1) implies

|Forb(n, F )| − |Bn|
|Bn|

≤ 2−Ω(n2),

while the construction below shows |Forb(n, F )| − |Bn| ≥ |Bn|2−O(n2).
The rough idea is to take a random balanced bipartite hypergraph on n − 9

vertices, and then add some additional hyperedges incident to some of the remaining
9 vertices, such that almost surely the resulting hypergraph is not bipartite. A
routine application of Chernoff’s inequality gives then (10).
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Let H ′ be a random balanced bipartite 3-uniform hypergraph with classes A,B
such that |A| + |B| = n − 9. Let v1, . . . , v9 be new vertices, let G1, . . . , G6 ∈
G(A, 1/2), i.e. Gi’s are random graphs on the vertex set A. We define the hyper-
graph H to have

A∪̇B∪̇{v1, . . . , v9}
as a vertex set, and we define the hyperedge set of H to be:

E(H) := E(H ′)∪̇{e ∪ {vi} : e ∈ E(Gi), i ∈ [6]}∪̇
{{v1, v2, v7}, {v3, v4, v8}, {v5, v6, v9}, {v7, v8, v9}}.

Note that H−v7v8v9 is bipartite, and moreover, since the hyperedges incident with
v7, v8 and v9 are disjoint, H must be Fano-free. It is easy to show that with high
probability, H is not bipartite. In fact, w.h.p. a proper coloring of H − v7v8v9 is
unique (up to permutation of the two colors).

8. Concluding Remarks

We presented a deterministic algorithm that colors in O(n5 log2 n) average run-
ning time every Fano-free hypergraph properly, which together with (1) implies also
the class of bipartite 3-uniform hypergraphs.

Instead of asking for a deterministic algorithm, we could use results of Frieze
and Kannan [6, 7], or a more recent one by Fischer, Matsliah and Shapira [5]
to design randomized algorithms with better running time that color the same
classes of hypergraphs properly with high probability. Note that the bottleneck
in our algorithm was Step 2 of the algorithm Partition(H,α), which employed an
application of the algorithmic version of the weak hypergraph regularity lemma due
to Czygrinow and Rödl [2], that required O(n5 log2 n) time. However, note that
the while-loop of the same algorithm Partition(H,α) has (naively implemented) a
running time of O(n5).

It would be interesting to find faster randomized and deterministic algorithms
for Corollary 2. Another interesting question, which might improve the running
time is to find better deterministic algorithms for the weak hypergraph regularity
lemma. In fact, in the case of graph regularity lemma an optimal algorithm was
found in [13].

Acknowledgment. We would like to thank Asaf Shapira, Anusch Taraz and
anonymous referees for useful suggestions.
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8. Z. Füredi and M. Simonovits, Triple systems not containing a Fano configuration, Combin.
Probab. Comput. 14 (2005), no. 4, 467–484. 1, 4, 4, 4

9. V. Guruswami, J. H̊astad, and M. Sudan, Hardness of approximate hypergraph coloring, SIAM

J. Comput. 31 (2002), no. 6, 1663–1686 (electronic). 1
10. S. Janson, Poisson approximation for large deviations, Random Structures Algorithms 1

(1990), no. 2, 221–229. 6

11. P. Keevash and B. Sudakov, The Turán number of the Fano plane, Combinatorica 25 (2005),
no. 5, 561–574. 1, 4, 4, 4
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