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Abstract. A classic result of G. A. Dirac in graph theory asserts that every
n-vertex graph (n ≥ 3) with minimum degree at least n/2 contains a spanning
(so-called Hamilton) cycle. G. Y. Katona and H. A. Kierstead suggested a
possible extension of this result for k-uniform hypergraphs. There a Hamil-
ton cycle of an n-vertex hypergraph corresponds to an ordering of the vertices
such that every k consecutive (modulo n) vertices in the ordering form an
edge. Moreover, the minimum degree is the minimum (k − 1)-degree, i.e. the
minimum number of edges containing a fixed set of k − 1 vertices. V. Rödl,
A. Ruciński, and E. Szemerédi verified (approximately) the conjecture of Ka-
tona and Kierstead and showed that every n-vertex, k-uniform hypergraph
with minimum (k−1)-degree (1/2 +o(1))n contains such a tight Hamilton cy-
cle. We study the similar question for Hamilton `-cycles. A Hamilton `-cycle
in an n-vertex, k-uniform hypergraph (1 ≤ ` < k) is an ordering of the ver-
tices and an ordered subset of the edges such that each such edge corresponds
to k consecutive (modulo n) vertices and two consecutive edges intersect in
precisely ` vertices.

We prove sufficient minimum (k − 1)-degree conditions for Hamilton `-
cycles if ` < k/2. In particular, we show that for every ` < k/2 every n-vertex,
k-uniform hypergraph with minimum (k−1)-degree (1/(2(k−`))+o(1))n con-
tains such a loose Hamilton `-cycle. This degree condition is approximately
tight and was conjectured by D. Kühn and D. Osthus (for ` = 1), who verified
it when k = 3. Our proof is based on the so-called weak regularity lemma for
hypergraphs and follows the approach of V. Rödl, A. Ruciński, and E. Sze-
merédi.

1. Introduction

We consider k-uniform hypergraphs H, that are pairs H = (V,E) with vertex
sets V = V (H) and edge sets E = E(H) ⊆

(
V
k

)
, where

(
V
k

)
denotes the family of

all k-element subsets of the set V . We often identify a hypergraph H with its edge
set, i.e. H ⊆

(
V
k

)
. Given a k-uniform hypergraph H = (V,E) and a set S ∈

(
V
s

)
let

deg(S) denote the number of edges of H containing the set S and let δs(H) be the
minimum s-degree of H, i.e. the minimum of deg(S) over all s-element sets S ⊆ V .

A k-uniform hypergraph is called an `-cycle if there is a cyclic ordering of the
vertices such that every edge consists of k consecutive vertices, every vertex is
contained in an edge and two consecutive edges (where the ordering of the edges is
inherited from the ordering of the vertices) intersect in exactly `-vertices. Naturally,
we say that a k-uniform, n-vertex hypergraph H contains a Hamilton `-cycle if there
is a subhypergraph of H which forms an `-cycle and which covers all vertices of H.
Note that it is necessary that (k − `) divides n which we indicate by n ∈ (k − `)N.
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We study sufficient conditions on δk−1(H) for the existence of Hamilton `-cycles
in k-uniform hypergraphs H. This research was initiated by G. Y. Katona and
H. A. Kierstead [4]. These authors considered the case ` = k − 1 and such `-
cycles are sometimes called tight cycles. Katona and Kierstead proved that the
condition δk−1(H) ≥ (1 − 1

2k )|V (H)| − k + 4 − 5
2k implies the existence of a tight

Hamilton path in a k-uniform hypergraph H. The same authors suggested that,
in fact, δk−1(H) ≥ (n − k + 2)/2 should suffice and they gave a matching lower
bound construction. Recently, Rödl, Ruciński, and Szemerédi [12, 14] answered the
question of Katona and Kierstead approximately and showed the following.

Theorem 1 (Rödl, Ruciński, & Szemerédi). For every k ≥ 3 and γ > 0 there exists
an n0 such that every k-uniform hypergraph H = (V,E) on |V | = n ≥ n0 vertices
with δk−1(H) ≥ (1/2 + γ)n contains a Hamilton (k − 1)-cycle. �

We focus on loose cycles, that is `-cycles for ` < k/2. In this setting an edge
of an `-cycle only intersects its preceding and its following edge in the cycle. Also
note that if n ∈ (k − `)N, i.e. n is a multiple of (k − `), then a Hamilton (k − 1)-
cycle contains a Hamilton `-cycle. Consequently, the minimum degree condition
for `-cycles is bounded by the degree condition for (k − 1)-cycles. The first result
considering (loose) Hamilton 1-cycles for 3-uniform hypergraphs is due to Kühn
and Osthus [9].

Theorem 2 (Kühn & Osthus). For every γ > 0 there exists an n0 such that
every 3-uniform hypergraph H = (V,E) on |V | = n ≥ n0 vertices with n even and
δ2(H) ≥ (1/4 + γ)n contains a Hamilton 1-cycle. �

Kühn and Osthus also showed that this result is best possible up to the error
term γn (see Fact 4 below) and conjectured that δk−1(H) ≥ ( 1

2(k−1) +o(1))n should
force Hamilton 1-cycles in k-uniform hypergraphs. We verify this conjecture and
prove, more generally, the analogous result for `-cycles with ` < k/2.

Theorem 3 (Main result). For all integers k ≥ 3 and 1 ≤ ` < k/2 and every
γ > 0 there exists an n0 such that every k-uniform hypergraph H = (V,E) on
|V | = n ≥ n0 vertices with n ∈ (k − `)N and δk−1(H) ≥ ( 1

2(k−`) + γ)n contains a
Hamilton `-cycle.

For the case ` = 1 this bound was proved independently by Keevash, Kühn,
Mycroft and Osthus [6]. However, their approach uses the Blow-up lemma for
hypergraphs [5] and is subtantially different from ours which is based on the weak
hypergraph regularity lemma, Theorem 14, and the “absorption technique” of Rödl,
Ruciński, and Szemerédi introduced in [12].

The Theorem 3 is approximately best possible as the following straightforward
extension of a construction from [9] shows.

Fact 4. For every 1 ≤ ` < k/2 and n ∈ 2(k − `)N there exists a k-uniform
hypergraph H = (V,E) on |V | = n vertices with δk−1(H) ≥ n

2(k−`) − 1, which
contains no Hamilton `-cycle.

Proof. Consider the following k-uniform hypergraph H = (V,E). Let A∪̇B = V be
a partition of V with |A| = n

2(k−`) − 1 and let E be the set of all k-tuples from V

with at least one vertex in A. Clearly, δk−1(H) = |A| = n
2(k−`) − 1. Now consider

an arbitrary cycle in H. Since ` < k/2 every vertex, in particular every vertex from
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A, is contained in at most 2 edges of this cycle. Moreover, every edge of the cycle
must intersect A. Consequently, the cycle contains at most 2|A| < n/(k − `) edges
and, hence, cannot be a Hamilton cycle. �

We note that the construction from Fact 4 also works in the case ` = k/2 for even
k. However, for that case a better construction is known. More generally, if k − `
divides k and n ∈ kN, then a Hamilton `-cycle contains a perfect matching. Lower
and upper bounds for sufficient conditions on the minimum (k−1)-degree for perfect
matchings were studied in [10, 11, 15, 13]. In particular, a simple construction shows
that δk−1(H) ≥ n/2 − k is necessary for perfect matchings and, hence, the same
condition is required for Hamilton `-cycles, if k − ` divides k. On the other hand,
Theorem 1 shows that this condition is also approximately sufficient, thus, leaving
only the case when k is not a multiple of k − ` and ` > k/2 open.

For this case, a similar construction as given in Fact 4 combined with Theorem 1
shows that for 1 ≤ ` < k arbitrary the sufficient minimum (k− 1)-degree condition
lies between

n

dk/(k − `)e(k − `)
and

(
1
2

+ o(1)
)

n .

Very recently it was shown by Kühn, Mycroft, and Osthus [8] that, indeed, if k is
not a multiple of (k − `), then the lower bound is approximately sufficient.

2. Proof of the main result

The proof of Theorem 3 follows the approach of Rödl, Ruciński, and Szemerédi
from [12] and will be given in Section 2.3. This approach is based on three auxiliary
lemmas, which we introduce in Section 2.2. We start with an outline of the proof.

2.1. Outline of the proof. We will build the Hamilton `-cycles by connecting
`-paths. An `-path (with distinguished ends) is defined similarly to `-cycles. For-
mally, a k-uniform hypergraph P is an `-path if there is an ordering (v0, . . . , vt−1)
of its vertices such that every edge consists of k consecutive vertices and two consec-
utive edges interesect in exactly ` vertices. The ordered `-sets F beg = (v0, . . . , v`−1)
and F end = (vt−`, . . . , vt−1) are called the ends of P.

Note that this require that t − ` is a multiple of k − `. Furthermore, for loose
paths (i.e. ` < k/2) the ordering of the ends of an `-path do not matter and we
may refer to F beg and F end as sets.

The first lemma, the Absorbing Lemma (Lemma 5), asserts that for ` < k/2
every n-vertex, k-uniform hypergraph H = (V,E) with δk−1(H) ≥ εn contains
a special, so-called absorbing, `-path P, which has the following property: For
every set U ⊂ V \ V (P) with |U | ∈ (k − `)N and |U | ≤ αn (for some appropriate
0 < α � ε) there exists an `-path Q with the same ends as P, which covers precisely
the vertices V (P) ∪ U .

The Absorbing Lemma reduces the problem of finding a Hamilton `-cycle to the
simpler problem of finding an almost spanning `-cycle, which contains the absorbing
path P and covers at least (1 − α)n of the vertices. We approach this simpler
problem as follows. Let H′ be the induced subhypergraph H, which we obtain after
removing the vertices of the absorbing path P guaranteed by the Absorbing Lemma.
We remove from H′ a “small” set R of vertices, called reservoir (see Lemma 6),
which has the property, that every (k − 1)-tuple of V has “many” neighbours in
R. Let H′′ be the remaining hypergraph after removing the vertices from R. Note
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that the property of R allows us to connect every pair P1 and P2 of disjoint `-paths
in H′′ to one `-path, by connecting the end F end

1 of P1 with the beginning F beg
2 of

P2 by one edge, where the additional k − 2` vertices come from R.
We will choose P and R small enough, so that δk−1(H′′) ≥ ( 1

2(k−`)+o(1))|V (H′′)|.
The third auxiliary lemma, the Path-cover Lemma (Lemma 7), asserts that all but
o(n) vertices of H′′ can be covered by a family of pairwise disjoint `-paths and,
moreover, the number of those paths will be constant (independent of n). Conse-
quently, we can connect those paths and P to form an `-cycle by using exclusively
vertices from R. This way we obtain an `-cycle in H, which covers all but the o(n)
left-over vertices from H′′ and some left-over vertices from R. However, we will
ensure that the number of those yet uncovered vertices will be smaller than αn
and, hence, we can appeal to the absorption property of P and obtain a Hamilton
`-cycle.

We now state the Absorbing Lemma, the Reservoir Lemma, and the Path-cover
Lemma and give the details of the outline above in Section 2.3.

2.2. Auxiliary lemmas. We start with the Absorbing Lemma. This lemma as-
serts the existence of a relatively “short”, but powerful `-path P which can “absorb”
any small set U ⊆ V \ V (P). The proof will be carried out in Section 3.

Lemma 5 (Absorbing Lemma). For all integers k ≥ 3 and 1 ≤ ` < k/2 and every
ε > 0 there exists an α > 0 and an n0 such that for every k-uniform hypergraph
H = (V,E) on |V | = n ≥ n0 vertices with δk−1(H) ≥ εn the following holds. There
exists an `-path P ⊂ H with |V (P)| ≤ ε5n such that for all subsets U ⊂ V \ V (P)
of size at most |U | ≤ αn and |U | ∈ (k − `)N there exists an `-path Q ⊂ H with
V (Q) = V (P) ∪ U and, moreover, P and Q have exactly the same ends.

The next lemma provides a reservoir R ⊂ V which we will use to connect short
paths to a long one. For a k-uniform hypergraph H = (V,E), a subset of the
vertices R ⊆ V and a (k − 1)-tuple S ∈

(
V
k

)
, we denote the set of neighbours of S

in R by NR(S) = {v ∈ R \ S : S ∪ {v} ∈ E} and define degR(S) = |NR(S)|.

Lemma 6 (Reservoir Lemma). For every integer k ≥ 2 and every reals d, ε > 0
there exists an n0 such that for every k-uniform hypergraph H = (V,E) on |V | =
n ≥ n0 vertices with δk−1(H) ≥ dn the following holds. There is a set R of size at
most εn such that for all (k − 1)-sets S ∈

(
V

k−1

)
we have degR(S) ≥ dεn/2.

Lemma 6 follows directly from the sharp concentration of the hypergeometric
distribution.

Proof. For given k, d, and ε we choose n0 sufficiently large and set q = bεnc.
From

(
V
q

)
, the set of all subsets of V with size q, we choose a set R uniformly

at random. Now let S ∈
(

V
k−1

)
be an arbitrary set of size (k − 1) and let XS =

|NR(S)|. Then XS is hypergeometrically distributed with expectation E [XS ] ≥
qd ≥ 6. Applying Chernoff’s inequality for hypergeometric distribution (see, e.g.,
[3, Theorem 2.10]) we obtain

P [XS ≤ ddq/2e] ≤ exp (−dq/30) = exp(−dεn/30)

Thus, with probability 1−
(

n
k−1

)
exp(−dεn/30) = 1− o(1) every set S ∈

(
V

k−1

)
has

at least dεn/2 neighbours in R. �
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Finally, we state the Path-cover lemma. By an `-path packing of a k-uniform
hypergraph H we mean a family of pairwise vertex disjoint `-paths. Then the Path-
cover Lemma asserts that a k-uniform hypergraph H with δk−1(H) ≥ ( 1

2(k−`) +
o(1))|V (H)| can be almost perfectly covered by “few” `-paths.

Lemma 7 (Path-cover Lemma). For all integers k ≥ 3 and 1 ≤ ` < k/2 and every
γ and ε > 0 there exist integers p and n0 such that for every k-uniform hypergraph
H = (V,E) on |V | = n ≥ n0 vertices with δk−1(H) ≥

(
1

2(k−`) + γ
)

n the following
holds. There is an `-path packing of H consisting of at most p paths, which covers
all but at most εn vertices of H.

The proof of Lemma 7 is based on the weak hypergraph regularity lemma and
is given in Section 4.

2.3. Proof of Theorem 3. In this section we give the proof of the main result,
Theorem 3. The proof is based on the three auxiliary lemmas introduced in Sec-
tion 2.2 and follows the outline given in Section 2.1.

Proof of Theorem 3. Let integers k ≥ 3 and 1 ≤ ` < k/2 and a real γ > 0 be given.
Applying the Absorbing Lemma (Lemma 5) for k, `, and ε5 = γ/4 we obtain α > 0
and n5. Next we apply the Reservoir Lemma (Lemma 6) for k, `, and d = 1/(2k)
and ε6 = min{α/2, γ/4} we obtain n6. Finally, we apply the Path-cover Lemma
(Lemma 7) with γ7 = γ/2 and ε7 = α/2 to obtain p and n7. For n0 we choose
n0 = max{n5, 2n6, 2n7, 16(p + 1)k2/ε6}.

Now let n ≥ n0, n ∈ (k − `)N and let H = (V,E) be a k-uniform hypergraph
on n vertices with

δk−1(H) ≥
(

1
2(k − `)

+ γ

)
n.

Let P0 ⊂ H be the absorbing `-path guaranteed by Lemma 5 (applied with k, `,
and ε5). Let F beg

0 and F end
0 be the ends of P0 which we may refer to as sets. Note

that
|V (P0)| ≤ ε5

5n < γn/4 .

Moreover, the path P0 has the absorption property, i.e. for all U ⊂ V \ V (P0) with
|U | ≤ αn and |U | ∈ (k − `)N

∃ `-path Q ⊂ H s.t. V (Q) = V (P0) ∪ U and Q has the ends F beg
0 and F end

0 . (1)

Let V ′ = (V \ V (P0)) ∪ F beg
0 ∪ F end

0 and let H′ = H[V ′] = (V ′, E(H) ∩
(
V ′

k

)
) be

the induced subhypergraph of H on V ′. Note that δk−1(H′) ≥ ( 1
2(k−`) + 3γ/4)n ≥

|V ′|/(2k) = d|V ′|.
Due to Lemma 6 we can choose a set R ⊂ V ′ \ (F beg

0 ∪ F end
0 ) of size at most

ε6|V ′| ≤ ε6n such that

|degR(S)| ≥ ε6|V ′|/(4k)− |F beg
0 ∪ F end

0 | ≥ ε6n/(8k) for every S ∈
(

V ′

k−1

)
. (2)

Set V ′′ = V \ (V (P0) ∪ R) and let H′′ = H[V ′′] be the induced subhypergraph
of H on V ′′. Clearly,

δk−1(H′′) ≥
(

1
2(k − `)

+ 3γ/4− ε6

)
n ≥

(
1

2(k − `)
+ γ/2

)
|V ′′|.

Consequently, Lemma 7 applied to H′′ (with γ7 and ε7) yields an `-path packing
of H′′ which covers all but at most ε7|V ′′| ≤ ε7n vertices from V ′′ and consists of
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at most p paths. We denote the set of the uncovered vertices in V ′′ by T . Further,
let P1,P2 . . . ,Pq with q ≤ p denote the `-paths of the packing and let F beg

i and
F end

i for i = 1, . . . , q be the ends of the `-path Pi. Recall that the ends of the
absorbing `-path P0 are F beg

0 and F end
0 . Note that for each 0 ≤ i, j ≤ q we have

|F end
i ∪ F beg

j | = 2` < k. Thus, for any set X ⊂ R of size k − 2` − 1 (X might be
empty) we have degR(F end

i ∪ F beg
j ∪X) ≥ ε6n/(8k) > (p + 1)k due to (2) and the

choice of n0.
Consequently, for each i ∈ {0, 1, . . . , q} we can choose a set Yi ⊂ R \ (

⋃
0≤j<i Yj)

such that F end
i ∪ Yi ∪ F beg

(i+1) mod (q+1) is an edge in E(H) \
⋃q

i=0 E(Pi). Hence, we
can connect all paths P1,P2, . . . ,Pq, and P0 to an `-cycle C ⊆ H.

Let U = V \ V (C) be the set of vertices not covered by the `-cycle C. Since
U ⊆ R ∪ T we have |U | ≤ (ε7 + ε6)n ≤ αn. Moreover, since C is an `-cycle and
n ∈ (k − `)N we have |U | ∈ (k − `)N. Thus, using the absorption property of P0

(see (1)) we can replace the subpath P0 in C by a path Q (since P0 and Q have the
same ends) and since V (Q) = V (P0)∪U the resulting `-cycle is a Hamilton `-cycle
of H. �

3. Proof of the Absorbing Lemma

In this section we prove Lemma 5, the Absorbing Lemma. Roughly speaking,
“absorption” stands for a local extension of a given structure, which preserves the
global structure. For `-paths, e.g., we want to insert a set S of vertices to an
existing `-path, i.e. to “absorb” S, in such a way that the new object is again an
`-path which, moreover, has the same ends.

Definition 8. Let k ≥ 3 and 1 ≤ ` < k/2 be integers and H = (V,E) be a k-
uniform hypergraph. We say an `-path with three edges P ⊆ H and ends F beg

and F end is an absorbing path for a (k − `)-set S ∈
(
V \V (P)

k−`

)
, if there exists an

`-path Q with four edges with the same ends F beg and F end and V (Q) = V (P)∪S.
Moreover, if P is an absorbing path for S with ends F beg and F end, then we call

the t-set T = V (P) ∈
(
V \S

t

)
with t = 3(k − `) + ` an absorbing t-tuple for S

with ends F beg and F end.

Given that an absorbing `-path P for S was part of some long `-path, then the
local change of absorbing S does not destroy the long path since the ends of P
and Q are the same. Clearly, for any fixed (k − `)-set S there are at most O(nt)
absorbing t-tuples. The following proposition, however, says that this bound is
achieved up to a constant factor when the minimum (k − 1)-degree of H is linear
in n.

Proposition 9. Let k ≥ 3, 1 ≤ ` < k/2, ε > 0, and let H be a k-uniform
hypergraph on n ≥ 6k/ε vertices with δk−1(H) ≥ εn. Then for every (k − `)-set
S ∈

(
V

k−`

)
there are at least ε5

(
n
t

)
/(25+3kk4) absorbing t-tuples T ∈

(
V \S

t

)
with

t = 3(k − `) + `.

We postpone the proof of Proposition 9 and we first deduce Lemma 5 from it.

Proof of Lemma 5. Let k ≥ 3, 1 ≤ ` < k/2, and ε > 0 be given. We set t =
3(k − `) + ` and fix auxiliary constants

ζ =
ε5(t− 2`)!
26+3kk4t!

and % =
ζ

16t2
<

ε5

8t
.
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Finally we set
α = ζ%/4

and let n0 ≥ 6k/ε be sufficiently large.
Suppose H = (V,E) is a k-uniform hypergraph on n ≥ n0 vertices which satisfies

δk−1(H) ≥ εn. Note that in Proposition 9 the ends of the absorbing t-tuples are
not specified yet. This we do retropectively by taking the ends F beg

T , F end
T ⊂ T of

an arbitrary t-set T ∈
(
V
t

)
uniformly at random, i.e. with probability (t− 2`)!/t! a

given pair of disjoint, ordered `-tuples will become the ends of T . Hence, due to
Proposition 9, the expected number of absorbing t-tuples (now with distinguished
ends) for a fixed (k − `)-set S ∈

(
V

k−`

)
is at least 2ζ

(
n
t

)
. Applying Chernoff’s

inequality we derive that there is a choice of ends for all t-sets which yields at least
ζ
(
n
t

)
absorbing t-tuples with distinguished ends for all (k − `)-sets. We fix such a

choice and for a fixed (k− `)-set S ∈
(

V
k−`

)
let T (S) denote the set of the absorbing

t-tuples T for S with ends F beg
T and F end

T according to this choice. Thus, we have
|T (S)| ≥ ζ

(
n
t

)
for all S ∈

(
V

k−`

)
.

Next we pick a family T ⊆
(
V
t

)
randomly, where each t-tuple T ∈

(
V
t

)
is included

in T independently with probability p = %n/
(
n
t

)
. Hence, we have

E [|T |] = %n and E [|T ∩ T (S)|] ≥ ζ%n S ∈
(

V

k − `

)
.

From Chernoff’s inequality we infer that with probability 1− o(1)

|T | ≤ 2%n (3)

and
|T ∩ T (S)| ≥ ζ%n/2 for all S ∈

(
V

k−`

)
. (4)

Furthermore, let I(T ) denote the number of intersecting t-tuples in T , i.e. the
number of pairs T and T ′ ∈ T such that T ∩ T ′ 6= ∅. Then

E [I(T )] ≤ t

(
n

t

)(
n

t− 1

)
× p2 =

t2%2n2

n− t + 1
≤ 2t2%2n = ζ%n/8

due to the choice of %, and using Markov’s inequality we conclude that with prob-
ability at least 1/2

I(T ) ≤ ζ%n/4. (5)

In particular, the properties (3), (4), and (5) hold simultaneously with positive
probability for the randomly chosen family T . So, let T ′ be a family satisfying
(3), (4), and (5). By deleting all intersecting t-tuples from T ′ and all those t-tuples
which do not absorb any S ∈

(
V

k−`

)
we obtain a family T ′′ ⊂ T ′ of pairwise disjoint

t-tuples of size at most 2%n which, due to (4), (5), and the choice of α, satisfies

|T ′′ ∩ T (S)| ≥ ζ%n/4 = αn (6)

for all S ∈
(

V
k−`

)
.

Lastly, we want to connect the t-tuples in T ′′ to create an `-path. To this end,
let T ′′ = {T1, . . . , Tr} for some r ≤ 2%n and let F beg

i and F end
i be the ends of Ti.

Since every Ti (with its chosen ends F beg
i and F end

i ) absorbs at least one (k−`)-set,
the induced hypergraph H[Ti] must contain an `-path Pi with three edges and ends
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F beg
i and F end

i . For i = 1, . . . , r − 1 observe further that |F end
i ∪ F beg

i+1 | = 2` and,
hence, for any Vi of size at least n− 4%nt and any Y ∈

(
Vi

k−2`−1

)
we know

|NVi(F
end
i ∪ F beg

i+1 ∪ Y )| ≥ εn− 4%nt > 0 .

Thus, we can choose Xi ∈ NVi(F
end
i ∪ F beg

i+1 ) to connect Pi and Pi+1 through the
edge F end

i ∪ Xi ∪ F beg
i+1 . Starting with the set V1 = V (H) \

⋃
T∈T ′′ V (T ) of size

|V1| ≥ n − 2%nt we connect P1 and P2. We continue by induction. So suppose
for some i < r we chose sets X1, . . . , Xi−1 and used them to connect the `-paths
P1, . . . ,Pi to one `-path. With Vi = V1 \ (

⋃i−1
j=1 Xj) which has size at least n −

2%nt− i(k − 2`) > n− 4%nt and by the observation from above we connect Pi and
Pi+1 by choosing Xi ∈ NVi

(F end
i ∪ F beg

i+1 ). Consequently, we can connect all `-paths
P1, . . . ,Pr to one `-path P containing at most 4%nt ≤ ε5n vertices.

Finally, suppose U ⊂ V \ V (P) with |U | ≤ αn and |U | ∈ (k − `)N. Then we
partition U into q ≤ αn/(k− `) pairwise disjoint sets S1, . . . , Sq each of size (k− `).
But since (6) holds, we can absorb each Si, i = 1, . . . , q one by one taking an unused
absorbing t-tuple Ti ∈ T ′′∩TS for each Si. This way we obtain an `-path Q which
covers exactly the vertices in V (P) ∪ U and the lemma follows. �

We complete the proof of Lemma 5 by proving Proposition 9. To this end we
need the notion of a “neighbourhood” of a set S ⊂ V (H) in a set U ⊂ V (H). This
is given by NU (S) = {X ⊂ U \ S : S ∪X ∈ E(H)}.

Proof of Proposition 9. Let S ∈
(

V
k−`

)
be an arbitrary set of size k − ` and set

V0 = V \ S. In the following we will choose pairwise disjoint sets A,B1, B2, C, D1,
and D2 whose union forms an absorbing t-tuple for S.

We start by choosing A ∈
(

V0
k−2`

)
arbitrarily. Then the number of choices for A

is (
n− k + `

k − 2`

)
. (7)

Set V1 = V0 \ A and split S∪̇A = Z1∪̇L∪̇Z2 in an arbitrary way such that |L| = `
and |Z1| = |Z2| = k − 2`. We choose B1 ∈ NV1(Z1 ∪ L) and B2 ∈ NV2(Z2 ∪ L)
where V2 = V1 \ B1. To compute the number of choices for B1 and B2 note that
|V2| = n−2k+3`, |V3| = n−2k+2` and for every set Xi ∈

(
Vi

`−1

)
, i = 1, 2, we know

that degH(Zi∪L∪Xi) ≥ εn thus NVi(Zi ∪ L ∪Xi) has size at least εn−2k ≥ εn/2,
since n ≥ 4k/ε. This way we count each possible Bi in ` ways. Consequently, the
number of choices for B1 and B2, i.e. |NV2(Z1 ∪ L)| × |NV3(Z2 ∪ L)| is at least(εn

2`

)2
(

n− 2k + 3`

`− 1

)(
n− 2k + 2`

`− 1

)
. (8)

Next, set V3 = V2 \ B2 and for i = 1, 2 let B′
i ⊂ Bi of size |B′

i| = |Bi| − 1
(thus, B′

i may be empty if ` = 1). We choose the set C ∈ NV3(A ∪B′
1 ∪B′

2). Since
|V3| = n− 2k + ` by arguing as above for B1 and B2 we conclude that the number
of choices for C is at least

1
2
(n− 2k + `)(εn− 2k) ≥ εn2

8
. (9)

Then we set V4 = V5 \ C and for C = {v1, v2}, we choose D1 ∈ NV4(B1 ∪ {v1})
and with V5 = V4 \D1 we choose D2 ∈ NV5(B2 ∪ {v2}). Note that |V5| = n− 2k +
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`− 2, |V6| = n− 3k− 1 and |Bi ∪ {vi}| = ` + 1. Thus, again, by arguing as for B1,
B2 we derive that the number of choices for D1 and D2 is at least(

εn

2(k − `− 1)

)2 (
n− 2k + `− 2

k − `− 2

)(
n− 3k − 1
k − `− 2

)
. (10)

For given S let
T = A∪̇B1∪̇B2∪̇C∪̇D1∪̇D2

and note that

|T | = |A|+ |B1|+ |B2|+ |C|+ |D1|+ D2| = 3(k − `) + ` = t .

Combining (7), (8), (9), and (10) we obtain that the number of choices for T chosen
as above for a given set S is at least

ε5

27`2k2

(
n− k + `

t

)
≥ ε5

27+t`2k2

(
n

t

)
≥ ε5

25+3kk4

(
n

t

)
.

We now verify that T is indeed an absorbing t-tuple for S. For that we “reorder”
the vertices of T and observe that

T = D1∪̇B1∪̇{v1}∪̇A∪̇{v2}∪̇B2∪̇D2 .

Note that

E1 = D1∪̇B1∪̇{v1} , G = B′
1∪̇{v1}∪̇A∪̇{v2}∪̇B′

2 , and E2 = {v2}∪̇B2∪̇D2

are edges inH and form an `-path P with three edges, since |Ei∩G| = |B′
i∪{vi}| = `,

for i = 1, 2. For the ends of this path we could fix any ordering of any `-set from
Di. Moreover, the sets

G1 = B1∪̇Z1∪̇L and G2 = L∪̇Z2∪̇B2

are also edges of H and E1, G1, G2, E2 forms an `-path Q with V (Q) = S∪̇T , since
|Gi ∩ Ei| = |Bi| = `, for i = 1, 2 and |G1 ∩G2| = |L| = `. The ends of this `-path
can be chosen to coincide with the ends of P, since Di ∩Gi = ∅ for i = 1, 2.

This proves that any set T chosen as above is indeed an absorbing t-tuple for
the set S. �

4. The Path-cover Lemma

In this section we prove the Path-cover Lemma, Lemma 7. The proof combines
the techniques in [14] and [9] and relies on the so called weak hypergraph regularity
lemma, a straightforward generalisation of Szemerédi’s regularity lemma [17] for
graphs (see e.g. [1, 2, 16]).

4.1. Almost perfect Fk,`-packings. First we show that an n-vertex, k-uniform
hypergraphH with minimum degree δk−1(H) ≥ n/(2(k−`)) contains a Fk,`-packing
which covers all but o(n) vertices of H, where Fk,` is defined as follows.

Definition 10. For positive integers k and ` let Fk,` be the k-uniform hyper-
graph on 2(k − `)(k − 1) vertices whose vertex set falls into pairwise disjoint sets
A1, A2, . . . , A2k−2`−1, B each of size k − 1 and whose edge set consists of all sets
Ai ∪ {b} where i ∈ [2k − 2`− 1] and b ∈ B.

Kühn and Osthus [9] considered F3,1-packings, i.e. families of pairwise vertex
disjoint copies of F3,1. The proof of the Fk,`-packing lemma, Lemma 11, follows
their approach.
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Lemma 11 (Fk,`-packing Lemma). For all integers k ≥ 3 and 1 ≤ ` < k and every
ε > 0 there exists an n0 such that for every k-uniform hypergraph H = (V,E) on
|V | = n ≥ n0 vertices the following holds.

If degk−1(S) ≥ n/(2(k − `)) for all but at most εnk−1 sets S ∈
(

V
k−1

)
, then H

contains a Fk,`-packing covering all but at most (5ε)1/(k−1)n vertices.

Proof. For given k, `, and ε we choose n0 large enough. Further set δ = (5ε)1/(k−1).
Suppose A = {F1,F2, . . . ,Fi0} is a largest Fk,`-packing leaving the vertex set
X ⊂ V of size |X| ≥ δn uncovered.

From the condition on the degree for H we first show the following.

Claim 12. There is a family B of size δn/(2kk) consisting of mutually disjoint
(k− 1)-sets S ∈

(
X

k−1

)
such that deg(S) ≥ n/(2(k− `)) and |NX(S)| ≤ δn/(4k) for

all S ∈ B.

Proof. The claim follows from a probabilistic argument. First we split X into two
parts X = X1∪̇X2 by choosing X2 ⊂ X of size |X|/(2k) uniformly at random.
Thereafter, we take a family S consisting of δn/kk pairwise disjoint sets S ∈

(
X1
k−1

)
from X1 such that deg(S) ≥ n/(2(k − `)). Such a family exists indeed, since the
number of (k− 1)-sets with degree falling below n/(2(k− `)) is at most εnk−1 and
due to the choice of δ(

|X1|
k − 1

)
− εnk−1 ≥ (k − 1)

δn

kk

(
|X1|
k − 2

)
.

Next, we claim that at least half, i.e. δn/(2kk), of the chosen (k − 1)-sets Si

must satisfy |NX(Si)| ≤ δn/(4k) since otherwise the Fk,`-packing A was not largest
possible. For a contradiction, let S ′ ⊂ S denote the set of the chosen Si ∈ S such
that |NX(S)| > δn/(4k) and suppose S ′ = {S1, . . . , Sr} has size r ≥ δn/(2kk).

For any (k−1)-sets S ∈
(

X1
k−1

)
with |NX(S)| > |X|/(4k) let YS = |NX2(S)| denote

the size of its neighbourhood in X2. Then YS has hypergeometric distribution with
mean E [YS ] ≥ (|X|/(4k))×(1/(2k)) ≥ δn/(8k2) and applying Chernoff’s inequality
we conclude

p = P
[
|YS | ≤ δn/(16k2)

]
≤ exp{−δn/(100k2)}.

Thus, with a probability at least 1 −
( |X|
k−1

)
p = 1 − o(1) all sets S ∈

(
X

k−1

)
with

|NX(S)| > |X|/(4k) also satisfy |NX2(S)| ≥ n/(16k2). In particular, almost surely
|NX2(S)| ≥ n/(16k2) is satisfied for all S ∈ S ′ and we assume that this indeed
happens for the decomposition X = X1∪̇X2 we have chosen. Now consider the
auxiliary bipartite graph G with vertex classes S ′ and X2 and with {S, v} being an
edge if and only if S ∪ {v} ∈ H. Then every S has at least δn/(16k2) neighbours,
thus, by the well known result of Kövari, Turán, and Sós [7] the graph G contains
a Kk,k−1. However, this Kk,k−1 in G corresponds to a copy of Fk,` in H, which is
a contradiction to A being the largest Fk,`-packing. �

Continuing the proof of Lemma 11, we fix a family B = {S1, . . . , Sq}, q =
δn/(2kk) as stated in the claim above. For a set Si ∈ B we say that an element F
from the Fk,`-packing A is good for Si if F contains at least k neighbours of Si,
i.e. |NV (F)(Si)| ≥ k. With ni denoting the number of good F ∈ A for Si and
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t = 2(k − `)(k − 1) we conclude from the condition on deg(Si) that
n

2(k − `)
≤ deg(Si) ≤ (k − 1)

(1− δ)n
t

+ tni +
δn

4k
(11)

≤ (1− δ/2)n
2(k − `)

+ tni. (12)

From this we infer that ni ≥ δn/(8k3) = n∗. Next, we want to count all those
pairs (S, T ) with T = {F1, . . . ,Fk−1} ∈

( A
k−1

)
such that each F ∈ T is good for

S ∈ B. Such a pair (S, T ) we call a good pair and the number of good pairs is at
least |B|

(
n∗

k−1

)
≥ (δn)k/(8k5)k. Thus by averaging we infer that there must be a T

and at least δkn/(8k5)k sets Si ∈ B such that (Si, T ) are a good pairs.

Hence, it exists a family B′ ⊆ B containing at least (δkn/(8k5)k)/
(
2(k−`)(k−1)

k

)k−1

pairwise disjoint (k − 1)-sets S from B and for every j = 1, . . . k − 1 there exist k

vertices vj
1, . . . , v

j
k in Fj such that

S ∪ {vj
1}, . . . , S ∪ {vj

k} ∈ E(H) for every S ∈ B′ and j = 1, . . . k − 1 .

Since (δkn/(8k5)k)/
(
2(k−`)(k−1)

k

)k−1
≥ (2(k−`)−1)k for sufficiently large n, we can

select k families mutually disjoint families {Si
1, . . . , S

i
2k−2`−1} ⊆ B′ for i = 1, . . . , k.

Now for every i = 1, . . . , k the set

{Si
p ∪ {v

j
i } : p = 1, . . . , 2k − 2`− 1, j = 1, . . . , k − 1}

is the edge set of a copy of Fk,` and we obtain k mutually disjoint copies of Fk,`

this way. Replacing the (k− 1)-copies F1, . . . ,Fk−1 by those k copies enlarges the
Fk,`-packing B, which is a contradiction. �

4.2. Weak hypergraph regularity and path embeddings. In this section we
introduce the so-called weak hypergraph regularity lemma, a straightforward ex-
tension of Szemerédi’s regularity lemma [17] for graphs. Further we will find al-
most perfect path packings in regular k-tuples. Similar results were used by Rödl,
Ruciński and Szemerédi in [14].

4.2.1. The weak regularity lemma for hypergraphs. Let H = (V,E) be a k-uniform
hypergraph and let A1, . . . , Ak be mutually disjoint non-empty subsets of V . We
define eH(A1, . . . , Ak) to be the number of edges with one vertex in each Ai, i ∈ [k]
and the density of H with respect to (A1, . . . , Ak) as

dH(A1, . . . , Ak) =
eH(A1, . . . , Ak)
|A1| · . . . · |Ak|

.

We say the k-tuple (V1, . . . , Vk) of mutually disjoint subsets V1, . . . , Vk ⊆ V is
(ε, d)-regular, for constants ε > 0 and d ≥ 0, if

|dH(A1, . . . , Ak)− d| ≤ ε

for all k-tuples of subsets A1 ⊂ V1, . . . , Ak ⊂ Vk satisfying |A1| ≥ ε|V1|, . . . , |Ak| ≥
ε|Vk|. We say the k-tuple (V1, . . . , Vk) is ε-regular if it is (ε, d)-regular for some
d ≥ 0. The following fact is a direct consequence of the definition above.

Fact 13. For an (ε, d)-regular tuple (V1, . . . , Vk) we have
(i ) (V1, . . . , Vk) is (ε′, d)-regular for all ε′ > ε and
(ii ) if for all i ∈ [k] the set V ′

i ⊂ Vi has size |V ′
i | ≥ c|Vi|, then (V ′

1 , . . . , V ′
k) is

(ε/c, d)-regular. �
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As a straightforward generalisation of the original regularity lemma we obtain
the following regularity lemma for graphs (see, e.g., [1, 2, 16]).

Theorem 14 (Weak regularity lemma for hypergraphs). For all integers k ≥ 2
and t0 ≥ 1, and every ε > 0, there exist T0 = T0(k, t0, ε) and n0 = n0(k, t0, ε) so
that for every k-uniform hypergraph H = (V,E) on n ≥ n0 vertices, there exists a
partition V = V0∪̇V1∪̇ . . . ∪̇Vt such that

(i ) t0 ≤ t ≤ T0,
(ii ) |V1| = |V2| = · · · = |Vt| and |V0| ≤ εn,
(iii ) for all but at most ε

(
t
k

)
sets {i1, . . . , ik} ∈

(
[t]
k

)
, the k-tuple (Vi1 , . . . , Vik

) is
ε-regular. �

A partition as given in Theorem 14 is called an ε-regular partition of H (with
lower bound t0 on the number of vertex classes). Further, we need the notion of
the cluster graph.

Definition 15. For an ε-regular partition of H and d ≥ 0 we refer to the sets
Vi, i ∈ [t] as clusters and define the cluster hypergraph K = K(ε, d) with vertex

set [t] = {1, 2, . . . , t} and {i1, . . . , ik} ∈
(
[t]
k

)
being an edge if and only if (Vi1 , . . . , Vik

)
is ε-regular and d(Vi1 , . . . , Vik

) ≥ d.

The following proposition relates the degree condition of H and its cluster hy-
pergraph K. It shows that K “almost inherits” the minimum degree of H.

Proposition 16. Given a k-uniform hypergraph H = (V,E) with minimum (k−1)-
degree

δk−1(H) ≥
(

1
2(k − `)

+ γ

)
n

and an ε-regular partition V = V0∪̇V1∪̇ . . . ∪̇Vt with 0 < ε < γ2/16 and t0 ≥ 8k/ε ≥
3k/γ. Further, let K = K(ε, γ/6) be the cluster hypergraph of H. Then the number
of (k − 1)-sets S = {i1, . . . , ik} ∈

(
[t]

k−1

)
violating

degK(S) ≥
(

1
2(k − `)

+
γ

4

)
t

is at most
√

εtk−1.

Proof. Note first that the cluster hypergraph K(ε, γ/6) can be written as the inter-
section of two hypergraphs D = D(γ/6) and R = R(ε) both defined on the vertex
set [t] and

• D(γ/6) consists of all sets {i1, . . . , ik} such that d(Vi1 , . . . , Vik
) ≥ γ/6

• R(ε) consists of all sets {i1, . . . , ik} such that (Vi1 , . . . , Vik
) is ε-regular.

Given an arbitrary set S ∈
(

[t]
k−1

)
we first show

degD(S) ≥
(

1
2(k − `)

+
γ

2

)
t. (13)

To this end note that S = {i1, . . . , ik−1} represents the tuple (Vi1 , . . . , Vik−1) with
n/t ≥ m := |Vij | ≥ (1 − ε)n/t for all j ∈ [k − 1]. We consider now the number of
edges in H which intersects each Vij in exactly one vertex. From the condition on
δk−1(H) this is at least

mk−1

((
1

2(k − `)
+ γ

)
n− (k − 1)m

)
≥ mk−1

(
1

2(k − `)
+

2γ

3

)
n (14)
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since t ≥ t0 ≥ 3k/γ.
On the other hand, in case (13) does not hold the same number can be bounded

from above by (
1

2(k − `)
+

γ

2

)
t×mk + t× γ

6
mk

with contradiction to (14).
Next, observe that there are at most ε

(
t
k

)
< εtk/k sets {i1, . . . , ik} ∈

(
[t]
k

)
such

that the corresponding tuples (Vi1 , . . . , Vik
) are not ε-regular, i.e. {i1, . . . , ik} 6∈ R.

Thus, all but at most
√

εtk−1 sets S ∈
(

[t]
k−1

)
satisfy

degR(S) ≥ (1−
√

ε)t. (15)

Since K = D ∩R the proposition follows from (13), (15) and
√

εt ≤ γt/4. �

4.2.2. Almost perfect path-packings in regular k-tuples. In this section we show that
(ε, d)-regular k-tuples (V1, . . . , Vk) can be almost perfectly covered by `-paths.

Definition 17. Suppose H is a k-uniform, k-partite hypergraph with partition
classes V1, V2, . . . , Vk. Then we call an `-path P ⊂ H with t edges (E1, . . . , Et)
canonical with respect to (V1, V2, . . . , Vk) if

Ei ∩ Ei+1 ⊂
⋃

j∈[`]

Vj or Ei ∩ Ei+1 ⊂
⋃

j∈[k]\[k−`]

Vj

for all i = 1, 2, . . . , t− 1.
Further, we say that Vi is in end position if it is one of the first or the last `

elements in the ordering, i.e. i ∈ [`] ∪ {k − ` + 1, . . . , k}, whereas Vi is in middle
position if i ∈ {` + 1, . . . , k − `}.

Remark 18. Let t be a odd number. If P with t edges is a canonical path with
respect to (V1, . . . , Vk) and ni = |V (P) ∩ Vi|, then

ni =

{
(t + 1)/2 if Vi is in end position,
t if Vi is in middle position.

The following proposition was essentially proved in [14].

Proposition 19. Suppose H is a k-partite, k-uniform hypergraph with the partition
classes V1, V2, . . . , Vk, |Vi| = m for all i ∈ [k], and |E(H)| ≥ dmk. Then there exists
a canonical `-path in H with respect to (V1, . . . Vk) with t > dm/(2(k − `)) edges.

Proof. First we consider all possible ends of a canonical `-path P, i.e. all `-sets
L ⊂ V (H) such that

|L ∩ Vi| = 1 either for all i ∈ [`] or for all i ∈ [k] \ [k − `].

For a possible end L such that deg(L) = |{E ∈ H : L ⊂ E}| < dmk−`/2 we delete all
edges from the current hypergraph which contain L. We keep doing this until every
possible end L satisfies deg(L) = 0 or deg(L) ≥ dmk−`/2 in the present hypergraph.
Note that we have deleted less than 2m` × dmk−`/2 = dmk edges, hence, the final
hypergraph H′ is non-empty. We pick a maximal canonical `-path P ⊂ H′ with
respect to (V1, . . . , Vk) which has t ≥ 1 edges and let the `-set L denote one end of
P. Since L is contained in an edge in H′ we know that deg(L) ≥ dmk−`/2. On the
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other hand, every edge in H′ which contains L must intersect V (P) \ L since P is
maximal. Thus, we have

dmk−`

2
≤ deg(L) <

(
(k − 2`)t + `

(t + 1)
2

)
mk−`−1 ≤ (k − `)tmk−`−1.

This yields t > dm/(2(k − `)).
�

We want to use Proposition 19 to cover a ε-regular tuple (V1, . . . , Vk) by `-paths
which intersect V1, . . . , Vk−1 equally and which, moreover, intersect Vk almost as
little as possible.

Lemma 20. For all integers k ≥ 3, 1 ≤ ` < k/2, and all d, β > 0 there exist
ε > 0, integers p and m0 such that for all m > m0 the following holds. Suppose
V = (V1, V2, . . . , Vk) is an (ε, d)-regular k-tuple with |Vi| = (2k − 2` − 1)m for all
i ∈ [k − 1] and |Vk| = (k − 1)m. Then there is a family consisting of at most p
pairwise vertex disjoint `-paths which cover all but at most βm vertices of V.

Proof. Let k, `, d, and β be given. We choose ε = min{d/2, β/(7k2), 1/k!}, p =
2k/ε2, and m0 > 2ε−3 sufficiently large. Suppose V = (V1, . . . , Vk) is an (ε, d)-
regular tuple as stated in the lemma. We choose t to be the largest odd number
satisfying t ≤ bε2km/(k − `)c and we want to cover V by `-paths each having t
edges. To this end, let Sk−1 denote the symmetric group and for each permutation
τ ∈ Sk−1 let

V(τ) = (Vτ(1), Vτ(2), . . . , Vτ(k−1), Vk).
Let p0 denote the maximal integer for which there exists a family of pairwise

disjoint `-paths with exactly t edges each, such that every `-path is canonical with
respect to some V(τ), τ ∈ Sk−1, and for every τ ∈ Sk−1 there are either exactly
p0 or p0 + 1 paths in this family which are canonical with respect to V(τ). Among
those families let Pp0 be one with maximal cardinality and for each τ ∈ Sk−1 for
which there are p0 + 1 canonical `-paths with respect to V(τ) in Pp0 we remove
one of those paths to obtain P ⊂ Pp0 with size |P| = p0(k − 1)!. We will prove
that P is the family of `-paths regquired in the lemma.

For a family P ′ of paths let V (P ′) =
⋃
P∈P′ V (P) and we claim that there

is an r̃ ∈ [k] such that |Vr̃ \ V (Pp0)| < 2kεm. In the opposite case we pick
Wr ⊂ Vr \ V (Pp0) with size |Wr| = 2kεm for all r ∈ [k] and from regularity of
(V1, . . . , Vk) and Wr ⊂ Vr we derive that

e(W1, . . . ,Wk) ≥ (d− ε)(2kεm)k.

Since d ≥ 2ε it follows from Proposition 19 that for any τ ∈ Sk−1 there is a
canonical `-path with respect to (Wτ(1), . . . ,Wτ(k−1),Wk) which consists of more
than ε2km/(k − `) ≥ t edges. (Note that these `-paths are not necessarily disjoint
for different τ .) However, we get a contradiction either to the maximality of p0 or
to the maximality of |Pp0 |.

Thus, with Ur = Vr ∩ V (P) for all r ∈ [k], we derive that there exists an r̃ ∈ [k]
such that

|Ur̃| ≥ |Vr̃| − |Pp0 \P|t− 2kεm ≥ |Vr̃| − 3kεm,

since |Pp0 \P| ≤ (k − 1)!, t ≤ ε2km/(k − `), and ε ≤ 1/k!.
From the above we want to derive that

|Ur| ≥ |Vr| − 7kεm for all r ∈ [k] (16)



DIRAC-TYPE RESULTS FOR LOOSE HAMILTON CYCLES IN HYPERGRAPHS 15

which would imply the lemma, since ε ≤ β/(7k2).
To this end, note first that canonical `-paths with t edges intersect sets in middle

position in exactly t vertices, whereas sets in end positions are intersected in (t+1)/2
vertices (see Remark 18). Hence, for all r ∈ [k − 1] we have

|Ur| = p0

[
(k − 2`)(k − 2)!t + (2`− 1)(k − 2)!(t + 1)/2

]
= p0

[
(2k − 2`− 1)(k − 2)!(t + 1)/2− (k − 2`)(k − 2)!

]
and

|Uk| = p0(k − 1)!(t + 1)/2.

Suppose r̃ 6= k then |Ur| = |Ur̃| ≥ |Vr̃| − 3kεm for all r ∈ [k − 1] and

p0 ≥
2

(t + 1)
|Ur̃|

(2k − 2`− 1)(k − 2)!
.

However, this implies

|Uk| ≥
(k − 1)|Ur̃|
2k − 2`− 1

≥ (k − 1)m− 3kεm = |Vk| − 3kεm.

On the other hand, if r̃ = k then

p0 =
2

(t + 1)
|Uk|

(k − 1)!

from which we derive

|Ur| ≥ (2k − 2`− 1)m− 7kεm = |Vk| − 7kεm

due to m ≥ m0 ≥ 2ε−3. In both cases, we obtain (16).
Lastly, note that p0(k − 1)!(t + 1)/2 ≤ |Vk| = (k − 1)m from which we infer

|P| ≤ 2k/ε2 = p. �

4.3. Proof of the Path-cover Lemma. In this section we prove the Lemma 7.

Proof of Lemma 7. Given k, ` with k > 2` and γ, ε > 0. We apply Lemma 20
with k, `, d = γ/6 and β = ε/3 to obtain ε20, p20 and m20 and subsequently
apply Lemma 11 with k, `, ε11 = (ε/3)(k−1)/5 to obtain n11. Finally, we apply
Theorem 14 with k and

ε14 =
1
2

min
{

γ2

16
,

γ

24k
, ε2

11,
ε20

2k

}
and t14 = max

{
n11,

16k

ε14

}
to obtain T14 and n14. Let p = T14p20 and n0 ≥ max{2k2T14/ε14, n14} sufficiently
large.

For a hypergraph H on n ≥ n0 vertices with δk−1(H) ≥ ( 1
2(k−`) + γ)n we apply

the weak hypergraph regularity lemma (Theorem 14) with k, ε14 and t14. By
possibly moving at most t(2k − 2` − 1)(k − 1) < ε14n vertices to V0 we obtain an
2ε14-regular partition V = V0∪̇V1∪̇V2∪̇ . . . ∪̇Vt of H such that the partition classes
satisfy

|V1| = · · · = |Vt| = (2k − 2`− 1)(k − 1)m

for some positive integer m. Clearly, |V0| ≤ 2ε14n ≤ εn/3 and n/t ≥ |Vi| ≥ n/(2t)
for all i ∈ [t].
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For the k-uniform cluster hypergraph K = K(2ε14, γ/6) of H on the vertex set [t]
we know by Proposition 16 that all but at most

√
2ε14t

k−1 ≤ ε11t
k−1 of the (k−1)-

sets S ∈
(

[t]
k−1

)
satisfy

degK(S) ≥
(

1
2(k − `)

+
γ

4

)
t.

Thus, by Lemma 11 we find a Fk,`-packing in K which covers all but at most
(5ε11)1/(k−1)t ≤ εt/3 vertices of K.

Let F be an arbitrary copy of Fk,` in the cluster hypergraph K with the vertex
set, say, V (F) = {1, 2, . . . , (2k− 2`)(k− 1)} grouped into sets A1, . . . , A2k−2`−1, B,
all of the same size k−1. The edges of F are the sets Ai∪{b} with i ∈ [2k−2`−1]
and b ∈ B. We will show that the corresponding induced hypergraph HF =
H[V1∪̇V2∪̇ . . . ∪̇V(2k−2`)(k−1)] can be covered by a family of at most (2k − 2` −
1)(k − 1)p20 pairwise disjoint `-paths which leave at most

(2k − 2`− 1)(k − 1)βm (17)

vertices of HF uncovered. This would imply that the union of these families for the
Fk,`-packing contains at most tp20 ≤ p pairwise disjoint `-paths and the number of
vertices in H not covered by these `-paths is at most

|V0|+ (εt/3)× n/t + tβm ≤ εn,

as stated in the lemma.
To find a family of `-paths satisfying (17) let i ∈ [2k−2`−1] and by suppressing

the dependence on i let a1, . . . , ak−1 be the elements of Ai. For each i ∈ [2k−2`−1]
and each a ∈ Ai we subdivide Va into (k − 1) pairwise disjoint sets U1

a , . . . , Uk−1
a ,

each having
|Va|
k − 1

= (2k − 2`− 1)m

vertices and, subsequently group them into tuples (Ur
a1

, . . . , Ur
ak−1

) with r ∈ [k−1].
Moreover, for all b ∈ B we subdivide Vb into (2k − 2` − 1) pairwise disjoint sets,
each of size

|Vb|
(2k − 2`− 1)

= (k − 1)m.

Thus, we obtain (2k−2`−1)(k−1) such sets and there is a bijection between those
sets and the (k − 1)-tuples (Ur

a1
, . . . , Ur

ak−1
). We fix such a bijection (arbitrarily)

and denote the preimage of (Ur
a1

, . . . , Ur
ak−1

) by W r
i (recall that we suppressed the

dependence of a1, . . . , ak−1 on i).
For each i ∈ [2k − 2` − 1] and each b ∈ B the set Ai ∪ {b} forms an edge

in K, i.e. the tuple (Va1 , . . . , Vak−1 , Vb) is (2ε14, γ/6)-regular. Due to Fact 13 and
2ε14 ≤ ε20/2k we derive that the k-tuples (Ur

a1
, . . . , Ur

ak−1
,W r

i ) are all (ε20, γ/6)-
regular. Hence, for each i ∈ [2k−2`−1] and each r ∈ [k−1] we can apply Lemma 20
to (Ur

a1
, . . . Ur

ak−1
,W r

i ) to obtain a family of at most p20 pairwise disjoint `-paths
which cover all but at most βm vertices of (Ur

a1
, . . . , Ur

ak−1
,W r

i ). Since there are
exactly (2k− 2`− 1)(k− 1) such k-tuples we obtain at most (2k− 2`− 1)(k− 1)p20

paths in total and the number of vertices in HF not covered by those paths is at
most (2k − 2`− 1)(k − 1)βm, as stated in (17). �
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7. T. Kövari, V. T. Sós, and P. Turán, On a problem of K. Zarankiewicz, Colloquium Math. 3

(1954), 50–57. 4.1
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