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Abstract. We study thresholds for Ramsey properties of random discrete

structures. In particular, we determine the threshold for Rado’s theorem for

solutions of partition regular systems of equations in random subsets of the
integers and we prove the 1-statement of the conjectured threshold for Ram-

sey’s theorem for random hypergraphs. Those results were conjectured by

Rödl and Ruciński and similar results were obtained independently by Conlon
and Gowers.

1. Introduction

Ramsey theory is an important branch of combinatorics. Roughly speaking, a
Ramsey type result asserts that for some given configuration F and some integer r
the existence of a configuration G such that any partition (or coloring) of G into r
classes has the property that a copy of F is completely contained in one of the r
partition classes. For example, one of the first results of this type can be found in the
work of Hilbert [15], where it was shown that for every ` and for every finite partition
of the natural numbers N = {1, 2, 3, . . . } there exists a partition class which contains

an affine cube of dimension `, i.e., a set of the form {x0+
∑`
i=1 εixi : εi ∈ {0, 1}} for

some x0, x1, . . . , x` ∈ N. Classical results of that type include the work of Schur [34],
van der Waerden [37], Rado [25], Ramsey [26], Erdős and Szekeres [4], Hales and
Jewett [14], Graham, Leeb, and Rothschild [12], and others (see, e.g., [13] for more
details).

Applications of probabilistic arguments to obtain bounds in Ramsey theory have
a long tradition. On the other hand, the study of Ramsey type properties of random
structures was initiated only more recently by  Luczak, Ruciński, and Voigt [20] and
further studied by Rödl and Ruciński with their collaborators [8, 10, 11, 27, 28, 29,
30, 31, 32] (for more related results by others see [9, 18, 19, 21, 22, 23, 24]). The aim
of this paper is to establish a general result which yields Ramsey type results for
random discrete structures (see Theorem 2.5). As a consequence, combined with
the work from [30] we establish the threshold for Rado’s theorem for random subsets
of the integers (see Theorem 1.1) and we obtain the 1-statement for the conjectured
threshold of Ramsey’s theorem for random hypergraphs (see Theorem 1.2). Similar
results were obtained independently by Conlon and Gowers [2].
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1.1. Random subsets of the integers. Ramsey type results for the integers
embody the following pattern. For every finite coloring of N there exist integers
x1, . . . , xk all of the same color, which satisfy some prescribed condition. For the
condition x1 + x2 = x3 such a result was proved by Schur [34] and for x1, . . . , xk
forming a non-trivial arithmetic progression of length k this is the result of van der
Waerden [37]. In 1933 Rado [26] published a far-reaching generalization of these
results. For an ` × k matrix A = (aij) of integers consider the system L(A) of
homogeneous linear equations

k∑
j=1

aijxj = 0 for 1 ≤ i ≤ ` .

We say that a matrix A is partition regular if for any finite coloring of N there
is always a solution (x1, . . . , xk) of L(A) with all xi having the same color. Rado
characterized partition regular matrices and it follows directly from that character-
ization that k ≥ rank(A)+2 is a necessary condition (see, e.g., [13] for details). We
note that the single equation x1 + x2 − x3 = 0 is partition regular due to Schur’s
theorem while the same follows for x1 +x2−2x3 = 0 by van der Waerden’s theorem.
On the other hand, the equation x1 + x2 − 3x3 = 0 fails to have that property.

We say a partition regular matrix A is irredundant if there exists a solution
(x1, . . . , xk) of L(A) such that xi 6= xj for all 1 ≤ i < j ≤ k and otherwise we
say A is redundant. It is easy to show that for every redundant ` × k matrix A
there exists an irredundant `′ × k′ matrix A′ for some `′ < ` and k′ < k with the
same family of solutions (viewed as sets). More precisely, (y1, . . . , yk′) is a solution
of L(A′) if and only if there exists a solution (x1, . . . , xk) for L(A) with

{x1, . . . , xk} = {y1, . . . , yk′}

(see, e.g., [30, Section 1] for details). Due to this consideration it is natural to
restrict to irredundant, partition regular matrices A.

We denote by [n] = {1, . . . , n} the first n positive integers and for a subset
Z ⊆ [n], a positive integer r ∈ N, and an irredundant, ` × k integer matrix A we
write

Z → (A)r

if for every coloring of Z with r colors, there exists a solution (x1, . . . , xk) of L(A)
such that all xi are distinct and contained in Z and have the same color. A standard
compactness argument combined with Rado’s theorem yields that for any r ∈ N
and every partition regular matrix A we have [n] → (A)r for every sufficiently
large n. Our first main result determines the density required by random subsets
of [n] to satisfy the same property.

For p ∈ (0, 1] let [n]p denote the binomial random subset of [n] with integers
from [n] included independently, each with probability p. In other words, we con-
sider the finite probability space on all subsets of [n], where

P ([n]p = Z) = p|Z|(1− p)n−|Z|

holds for all Z ⊆ [n]. In [11, 29, 30] the question when [n]p → (A)r holds with prob-
ability close to 1 was investigated. To characterize the sequences of probabilities
p = (pn)n∈N with that property we consider the following parameter introduced
in [30].
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Let A be an ` × k integer matrix and let the columns be indexed by [k]. For a
partition W ∪̇W = [k] of the columns of A, we denote by AW the matrix obtained

from A by restricting to the columns indexed by W . Let rank(AW ) be the rank

of AW , where rank(AW ) = 0 for W = ∅. We set

mA = max
W ∪̇W=[k]
|W |≥2

|W | − 1

|W | − 1 + rank(AW )− rank(A)
. (1)

It can be shown by elementary linear algebra that mA = mA′ , whenever L(A)
and L(A′) have the same set of solutions. Moreover, in [30, Proposition 2.2 (ii )]
it was proved that for irredundant, partition regular matrices A the denominator
of (1) is always at least 1.

For example, if A consists of the single equation x1 + x2 − x3 = 0 considered
by Schur, then mA = 2 and if A corresponds to an irredundant, partition regular
matrix with the property that the solutions of L(A) form an arithmetic progression
of length k, then mA = k − 1. Note that in both of these examples for p =
Ω(n−1/mA) the expected number of solutions of L(A) in [n]p is of the same order of

magnitude as the expected size of [n]p, while this fails to be true for p = o(n−1/mA).
The definition of mA generalizes this property (in an hereditary way) for arbi-

trary irredundant, partition regular matrices A. In fact, one of the main results
in [30] asserts that for every irredundant, partition regular matrix A there exists
some c > 0 such that if p = (pn) satisfies pn ≤ cn−1/mA , then

lim
n→∞

P ([n]pn → (A)2) = 0 . (2)

Note that by definition P ([n]pn → (A)r) ≤ P ([n]pn → (A)2) for every r ≥ 2. More-

over, extending a result from [29] in [30] the complementing result for p ≥ Cn−1/mA

for some sufficiently large C > c was obtained for a special subclass of partition
regular matrices, which we consider below.

We say an irredundant, partition regular `× k matrix A is density regular if any
subset Z ⊆ N with positive upper density, i.e.,

lim sup
n→∞

|Z ∩ [n]|
n

> 0 ,

contains a solution (x1, . . . , xk) of L(A) with all xi distinct. For example, Sze-
merédi’s famous theorem on arithmetic progressions [35] shows that if the solutions
of L(A) form an arithmetic progression, then A is density regular. More generally,
it was shown in [5] that an irredundant, partition regular matrix is density regular
if and only if (1, . . . , 1) is a solution of L(A).

Complementing (2), Rödl and Ruciński showed in [30] that for every irredundant,
density regular matrix A and every integer r ≥ 2 there exists C > 0 such that if
p = (pn) satisfies pn ≥ Cn−1/mA , then

lim
n→∞

P ([n]pn → (A)r) = 1 (3)

(see also [33] for a new proof). For the special case when solutions of L(A) form
an arithmetic progression the same result appeared already in [29].

In other words, combining (2) and (3) it follows that pn = n−1/mA is the threshold
for the property [n]pn → (A)r for irredundant, density regular matrices A. It was
conjectured in [30] that this extends to all irredundant, partition regular matrices
A. For the special case when A consists only of the equation x1 + x2 − x3 = 0
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(considered by Schur) and r = 2 this was verified in [11]. Our first main result
addresses the general case.

Theorem 1.1. Let A be an irredundant, partition regular integer matrix and let
r ∈ N. There exist constants 0 < c < C such that for any sequence of probabilities
p = (pn)n∈N we have

lim
n→∞

P ([n]pn → (A)r) =

{
1, if pn ≥ Cn−1/mA

0, if pn ≤ cn−1/mA .

Due to (2) it suffices to show the 1-statement in the theorem above. This state-
ment will follow from a more general result, Theorem 2.5, and we deduce the
1-statement of Theorem 1.1 in Section 3.

1.2. Ramsey properties for random hypergraphs. The second main result
concerns partition properties of random hypergraphs. An `-uniform hypergraph H
is a pair (V,E), where the vertex set V is some finite set and the edge set E ⊆ [V ]` is
a subfamily of the `-element subsets of V . As usual we call 2-uniform hypergraphs
simply graphs. For some hypergraph H we denote by V (H) and E(H) its vertex
set and its edge set and we denote by v(H) and e(H) the cardinalities of those

sets. For an integer n we denote by K
(`)
n the complete `-uniform hypergraph on n

vertices, i.e., v(K
(`)
n ) = n and e(K

(`)
n ) =

(
n
`

)
. For a subset U ⊆ V (H) we denote

by E(U) the edges of H contained in U and we set e(U) = |E(U)|. Moreover, we
write H[U ] for the subhypergraph induced on U , i.e., H[U ] = (U,E(U)).

Ramsey’s theorem [26] asserts that for every `-uniform hypergraph F and every
r ∈ N we have

K(`)
n → (F )r

for sufficiently large n, i.e., every r-coloring of the edges of K
(`)
n yields a monochro-

matic copy of F . More generally, for `-uniform hypergraphs F and G and r ∈ N
we write G → (F )r if for every partition E1∪̇ . . . ∪̇Er = E(G) there exists some
s ∈ [r] and an injective mapping ϕ : V (F ) → V (G) such that ϕ(e) ∈ Es for every
e ∈ E(F ), i.e., there exists a monochromatic copy of F .

Similarly as in the context of Rado’s theorem we are interested in random ver-
sions of Ramsey’s theorem. Here we study the binomial model G(`)(n, p) of `-

uniform hypergraphs, where edges of the complete hypergraph K
(`)
n are included

independently with probability p. More formally, we consider the finite probability

space with ground set E(K
(`)
n ) where for any `-uniform hypergraph H with vertex

set V (K
(`)
n ) we have

P
(
G(`)(n, p) = H

)
= pe(H)(1− p)(

n
`)−e(H) .

For a fixed `-uniform hypergraph F and r ∈ N we are interested in the asymptotic
growth of the smallest sequence of probabilities p = (pn)n∈N such thatG(`)(n, pn)→
(F )r holds asymptotically almost surely (a.a.s.), i.e.,

lim
n→∞

P
(
G(`)(n, pn)→ (F )r

)
= 1 . (4)

This question was first studied in [20] and there it was shown that (4) holds for
F = K3 being a graph triangle, r = 2, and p = pn ≥ C/

√
n for some sufficiently

large C (as noted in [20] this also follows implicitly from an earlier result in [6]).
The result from [20] was generalized for the same condition on p to an arbitrary
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number of colors by Rödl and Ruciński in [28]. Finally in [29] the same authors
solved the problem for arbitrary graphs F and any number of colors r ∈ N by
showing that (4) is valid as long as p ≥ Cn−1/mF for some C = C(F, r), where (in
general for an `-uniform hypergraph F with e(F ) ≥ 1) we set

mF = max
F ′⊆F
e(F ′)≥1

d(F ′) with d(F ′) =

{
e(F ′)−1
v(F ′)−` , if v(F ′) > `

1/` , if v(F ′) = ` .
(5)

If follows from the definition of mF that if p = Ω(n−1/m(F )) then a.a.s. the number
of copies of every subhypergraph F ′ ⊆ F in the random hypergraph G(`)(n, p) has
at least the same order of magnitude as the number of edges. This property seems
to be a necessary condition for (4) to hold. This belief was indeed verified for graphs
in [27], where it was shown that for “most” graphs F there exists some c > 0 such
that for any p = (pn)n∈N with pn ≤ cn−1/mF we have

lim
n→∞

P
(
G(2)(n, pn)→ (F )2

)
= 0

Here “most” means all graphs F with the exception of forests consisting of stars and
paths of length three, which show a slightly different behavior (see [17, Chapter 8]
for details).

Our second main result, Theorem 1.2, establishes the 1-statement for the conjec-
tured threshold of Ramsey’s theorem in random `-uniform hypergraphs. We believe
that the matching 0-statement also holds for “most” hypergraphs F , but we will
not study this here.

Theorem 1.2. Let F be an `-uniform hypergraph with maximum degree at least 2
and let r ∈ N. There exists a constant C > 0 such that for any sequence of
probabilities p = (pn)n∈N satisfying pn ≥ Cn−1/mF we have

lim
n→∞

P
(
G(`)(n, pn)→ (F )r

)
= 1 .

Theorem 1.2 was conjectured by Rödl and Ruciński [31, Conjecture 1.23]. In [31]

and in [32] such a result was already established for the special cases when F = K
(3)
4

and for `-partite, `-uniform hypergraphs F . Theorem 1.2 follows from the more
general result presented in Section 2 and we present the reduction in Section 3.

Acknowledgment. The authors thank the referees for their detailed work and
constructive remarks. The second author would like to thank Andrzej Ruciński
for many fruitful discussions on the topic. In fact some of the ideas from that
collaboration laid the ground for the current research.

2. Main technical result

In this section we introduce a general environment allowing us to prove Theo-
rem 1.1 and Theorem 1.2 along the same lines. We note that the earlier results of
Rödl and Ruciński in [29, 31] were based on applications of the regularity lemma for
graphs and 3-uniform hypergraphs [7, 36]. Due to the somewhat technical nature
of the regularity lemma for hypergraphs, proving even special cases of Theorem 1.2
for ` ≥ 3 presented several technical difficulties. Although the approach taken here
uses some ideas from [29], we will, similarly as in [32], avoid the use of the regularity
lemma. The approach here can be viewed as a refinement of the work in [33], where
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related extremal and Turán-type problems for random subsets of the integers and
random hypergraphs were studied.

2.1. Statement of main result. It will be convenient to consider sequences of
k-uniform hypergraphs H = (Hn)n∈N. In the context of Theorem 1.1 for a given
irredundant, partition regular `× k matrix, one may think of the vertex set V (Hn)
to be [n] and the edges being the solutions (x1, . . . , xk) of L(A) with xi 6= xj for
1 ≤ i < j ≤ k. In view of Theorem 1.2, for a given `-uniform hypergraph F with k

edges we may think of V (Hn) being the edge set of K
(`)
n and every edge of E(Hn)

corresponds to the edge set of a copy of F in K
(`)
n .

The two main assumptions allowing us to apply the main result, Theorem 2.5, are
(r, ζ)-Ramseyness (cf. Definition 2.1) and (K,p)-boundedness (cf. Definition 2.4).
Roughly speaking, H will be (r, ζ)-Ramsey if a “quantitative Ramsey-type result”
for the original structure holds, which guarantees not just one, but many monochro-
matic copies. For Rado’s theorem such a strengthening was deduced from Deuber’s
theorem in [5] and for Ramsey’s theorem it follows directly from Ramsey’s orig-
inal argument and was first observed by Erdős [3]. The (K,p)-boundedness will
impose a lower bound on p and we will verify this condition for Theorem 1.1 and
Theorem 1.2 in Section 3.

2.1.1. The Ramsey property. We consider the following abstract version of the
Ramsey property and its quantitative strengthening, which requires not only one
monochromatic copy in every coloring, but a fraction of all copies to be monochro-
matic.

Definition 2.1. Let H = (V,E) be a k-uniform hypergraph and r ∈ N. We say
H is r-Ramsey if for every partition V 1∪̇ . . . ∪̇V r of V there exists an s ∈ [r] such
that e(V s) 6= 0.

For a subset U ⊆ V and ζ > 0, we say the induced subhypergraph H[U ] is
(r, ζ)-Ramsey if for every partition U1∪̇ . . . ∪̇Ur of U there exists an s ∈ [r] such
that e(Us) ≥ ζ|E|. For the special case V = U we simply say the hypergraph H is
(r, ζ)-Ramsey.

For a sequence H = (Hn)n∈N of k-uniform hypergraphs, we say H is (r, ζ)-
Ramsey if for all but finitely many n the hypergraph Hn is (r, ζ)-Ramsey.

We note that in the definition of (r, ζ)-Ramseyness the number of required
monochromatic edges is given in terms of the global number e(H) of the edges
of H and not in terms of e(U). The next observation follows directly from Defini-
tion 2.1.

Fact 2.2. Let r1 . . . , r` be positive integers, let ζ > 0, let H = (V,E) be a k-uniform

hypergraph, and let U1∪̇ . . . ∪̇U ` be a partition of U ⊆ V . If H[U ] is (
∑`
j=1 rj , ζ)-

Ramsey, then there exists a j ∈ [`] such that H[U j ] is (rj , ζ)-Ramsey. �

Roughly speaking, our proof is based on an inductive argument on the number
i ∈ [k] of monochromatic vertices in every edge and on the number of colors of the
Ramsey property r. In the induction step we will consider induced subhypergraphs,
with “weaker” Ramsey properties. For the quantification of this process we will use
the following recursive function.

Definition 2.3. We define the function R : N× N→ N recursively by setting

R(1, r) = 1 , R(i, 1) = 1 ,
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and

R(i+ 1, r + 1) = R(i, r + 1) + (r + 1)R(i+ 1, r)

for every i, r ∈ N.

2.1.2. The boundedness property. For the induction based on the number i ∈ [k] of
monochromatic vertices in every edge we need the following notion. For a k-uniform
hypergraph H = (V,E), i ∈ [k− 1], v ∈ V , and U ⊆ V we denote by degi(v, U) the
number of edges of H containing v and having at least i vertices in U \ {v}, i.e.,

degi(v, U) = |{e ∈ E : v ∈ e and |(e \ {v}) ∩ U | ≥ i}| . (6)

In the proof it will be important that not “too” many partial monochromatic copies
are attached to only a few vertices. For that we need some control on the expected
number of

∑
v∈V degi(v, U) where U = Vq is a binomial random subset of V . More

formally, for q = [0, 1] we consider

µi(H, q) = E

[∑
v∈V

deg2
i (v, Vq)

]
. (7)

The boundedness property ensures that µi(Hn, q) is dominated (up to a constant
factor) by the contribution of those pairs of edges (e, e′), which share one vertex v
and each edge intersects Uq \ {v} separately in at least i vertices.

Definition 2.4. Let H = (Hn)n∈N be a sequence of k-uniform hypergraphs, let
p = (pn)n∈N be a sequence of probabilities, and let K ≥ 1. We say H is (K,p)-
bounded if the following is true.

For every i ∈ [k − 1], there exists n0 such that for every n ≥ n0 and q ≥ pn we
have

µi(Hn, q) ≤ Kq2i |E(Hn)|2

|V (Hn)|
. (8)

Note that in fact for small functions p the inequality (8) may fail. Consider the
case whenH corresponds to sequence of hypergraphs for the Ramsey property when
monochromatic triangles are guaranteed. In this case Vn =

(
n
2

)
and En consists of

the edges set of all triangles in the complete graph Kn. In this case, k = 3 and the
asymptotic growth of µ2(Hn, p) coincides with the maximum of the following two
quantities

(a ) the expected number of triangles in Kn with at least two edges present in
G(n, p), i.e., the expected number of path with two edges in G(n, p)

(b ) the expected number of cycles of length four in G(n, p).

Note that if p � n−1/2, then the quantity in (b ) dominates the one in (a ), while
the reverse is true if p � n−1/2. For (8) to be true we require that the quantity
from (b ) dominates µ2(Hn, p) and in this example this happens if

p = Ω(n−1/2) = Ω(n−1/mK3 )

(see (5)). In fact, we will see in the proof of Theorem 1.2 (see Section 3) that in
this context the sequence H is (K,p)-bounded for some K ≥ 1 if pn = Ω(n−1/mF ).
Similarly, in the context of Theorem 1.1 it will turn out that H is (K,p)-bounded
for some K ≥ 1 if pn = Ω(n−1/mA) (see (1)).
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2.1.3. Main technical result. The results stated in the introduction are consequences
of the following theorem.

Theorem 2.5. Let H = (Hn)n∈N be a sequence of k-uniform hypergraphs, let
p = (pn)n∈N be a sequence of probabilities satisfying pkn|E(Hn)| → ∞ as n → ∞,
and let ζ > 0, K ≥ 1, and r ∈ N.

If H is (R(k, r), ζ)-Ramsey and (K,p)-bounded, then there exists a C ≥ 1 such
that for qn ≥ Cpn a.a.s. the binomial random subset Vn,qn of V (Hn) induces an
r-Ramsey hypergraph.

We remark that typically satisfying the (K,p)-boundedness will be the more
restrictive assumption on p compared to pkn|E(Hn)| → ∞. For example, if H is
given by the Ramsey property when monochromatic graph triangles are guaranteed,
then pkn|E(Hn)| → ∞ if p� n−1, while (as discussed above) H is (K,p)-bounded
only if pn = Ω(n−1/2). The proof of Theorem 2.5 is based on induction and for the
induction we will strengthen the statement (see Lemma 2.7 below).

For a k-uniform hypergraph H = (V,E), subsets W ⊆ U ⊆ V , and any integer
i ∈ {0, . . . , k} we consider those edges of H[U ] which have at least i vertices in W
and we denote this family by

EiU (W ) = {e ∈ E(U) : |e ∩W | ≥ i} .

Note that

E0
U (W ) = E(U) and EkU (W ) = E(W )

for every W ⊆ U .
The next technical definition is crucial to our induction scheme.

Definition 2.6. Let H = (V,E) be a k-uniform hypergraph and W ⊆ U ⊆ V . Let
i ∈ [k], r ∈ N, ξ > 0 and q ∈ (0, 1]. We say H[W ] is (i, r, ξ, q, U)-Ramsey if for
every partition W 1∪̇ . . . ∪̇W r of W there exists an s ∈ [r] such that∣∣EiU (W s)

∣∣ ≥ ξqi|E| .
The next lemma states that under some fairly general assumptions (R(i, r), ζ)-

Ramseyness of H[U ] implies (with probability close to 1) that H[Uq] is (i, r, ξ, q, U)-
Ramsey.

Lemma 2.7. Let H = (Hn = (Vn, En))n∈N be a sequence of k-uniform hyper-
graphs, let p = (pn)n∈N be a sequence of probabilities satisfying pn → 0 and
pkn|En| → ∞ as n→∞, and let K ≥ 1. Suppose H is (K,p)-bounded.

For every i ∈ [k], r ∈ N, and ζ > 0 there exist ξ > 0, b > 0, C ≥ 1, and n0 such
that for every n ≥ n0, and every q ≥ Cpn the following holds.

If U ⊆ Vn and Hn[U ] is (R(i, r), ζ)-Ramsey, then the binomial random subset Uq
satisfies

P (H[Uq] is (i, r, ξ, q, U)-Ramsey) ≥ 1− 2−bq|Vn| .

Theorem 2.5 follows from Lemma 2.7 applied with i = k and U = Vn. Note
that the property of being r-Ramsey is monotone and, hence, it suffices to verify
Theorem 2.5 for pn = o(1).

2.2. Probabilistic tools. We will use Chernoff’s inequality [1] in the following
form.
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Theorem 2.8 (Chernoff’s inequality (see, e.g., [17, Corollary 2.3])). Let X ⊆ Y
be finite sets and p ∈ (0, 1]. For every 0 < % ≤ 3/2 we have

P
(∣∣|X ∩ Yp| − p|X|∣∣ ≥ %p|X|) ≤ 2 exp(−%2p|X|/3) . �

We will also use Janson’s inequality [16].

Theorem 2.9 (Janson’s inequality (see, e.g. [17, Theorem 2.14])). Let H = (V,E)
be a k-uniform hypergraph, U ⊆ V , i ∈ {2, . . . , k}, and q ∈ (0, 1]. For every edge
e ∈ E(U) fix some i-element subset I(e) ⊆ e (in an arbitrary way) and set

1(e) =

{
1 , if I(e) ⊆ Uq
0 , otherwise.

For every % > 0 the binomial random subset Uq satisfies

P
(
|EiU (Uq)| ≤ (1− %)qi|E(U)|

)
≤ P

 ∑
e∈E(U)

1(e) ≤ (1− %)qi|E(U)|


≤ exp

(
−%

2q2i|E(U)|2

2∆i

)
,

where ∆i = E [
∑∑

{1(e) · 1(e′) : e, e′ ∈ E(U) and I(e) ∩ I(e′) 6= ∅}]. �

We note that ∆i can be bounded from above by qµi−1(H, q). In fact, it follows
from the linearity of the expectation that

∆i = E
[∑∑

{1(e) · 1(e′) : e, e′ ∈ E(U) and I(e) ∩ I(e′) 6= ∅}
]
,

≤ E

∑
u∈Uq

∣∣∣{(e, e′) : u ∈ I(e) ∩ I(e′) , I(e) ⊆ Uq , and I(e′) ⊆ Uq
}∣∣∣


=
∑
u∈U

qE
[∣∣∣{(e, e′) : u ∈ I(e) ∩ I(e′) , (I(e) \ {u}) ⊆ Uq ,

and (I(e′) \ {u}) ⊆ Uq
}∣∣∣]

≤ q
∑
v∈V

E
[
deg2

i−1(v, Vq)
]

= qµi−1(H, q) . (9)

We also use an approximate concentration result for (K,p)-bounded hyper-
graphs. The boundedness of H only bounds the expected value of the quantity∑
v deg2

i (v, Vp). In the proof of Lemma 2.7 we need an exponential upper tail

bound for the deviation of
∑
v deg2

i (v, Vp). Unfortunately, it is known that such
a bound does not hold in general. However, it was shown by Rödl and Ruciński
in [29] that at the price of deleting a few elements such a bound can be obtained
and we will need the following variant of that observation.

Proposition 2.10 (Upper tail [29, Lemma 4]). Let H = (Hn = (Vn, En))n∈N be a
sequence of k-uniform hypergraphs, let p = (pn)n∈N be a sequence of probabilities,
and let K ≥ 1. Suppose H is (K,p)-bounded.

For every i ∈ [k−1] and every η > 0 there exist b > 0 and n0 such that for every
n ≥ n0 and every q ≥ pn the binomial random subset Vn,q has the following property
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with probability at least 1 − 2−bq|Vn|+2+2 log2(k). There exists a set |X| ⊆ Vn,q with
X ≤ ηq|Vn| such that ∑

v∈Vn

deg2
i (v, Vn,q \X) ≤ 16kKq2i |En|2

|Vn|
.

The proof follows the lines of [29, Lemma 4] (see also [33]).

Proof. Suppose H is (K,p)-bounded and i ∈ [k − 1] and η > 0 are given. We set

b =
η

4(k − 1)2
(10)

and let n0 be sufficiently large, so that (8) holds for every n ≥ n0 and q ≥ pn.
For every j = i, . . . , 2(k − 1) we consider the family Sj defined as follows

Sj =
{

(S, v, e, e′) : S ⊆ Vn, v ∈ Vn, e, e′ ∈ En such that |S| = j,

v ∈ e ∩ e′, S ⊆ (e ∪ e′) \ {v}, |e ∩ S| ≥ i and |e′ ∩ S| ≥ i
}
.

Let Sj be the random variable denoting the number of elements (S, v, e, e′) from

Sj with S ∈
(
Vn,q

j

)
. By definition we have

2k−2∑
j=i

E [Sj ] ≤ 22(k−1)µi(Hn, q) = 4k−1µi(Hn, q)

and due to the (K,p)-boundedness of H we have

max
j=i,...,2(k−1)

E [Sj ] ≤
2k−2∑
j=i

E [Sj ] ≤ 4k−1µi(Hn, q) ≤ 4k−1Kq2i |En|2

|Vn|
.

Let Zj be the random variable denoting the number of sequences

((Sr, vr, er, e
′
r))r∈[z] ∈ S z

j

of length

z =

⌊
ηq|Vn|

4(k − 1)2

⌋
(11)

which satisfy

(i ) the sets Sr are contained in Vn,q and
(ii ) the sets Sr are mutually disjoint, i.e., Sr1 ∩Sr2 = ∅ for all 1 ≤ r1 < r2 ≤ z.

Clearly, we have

E [Zj ] ≤ |Sj |zqjz = (E [Sj ])z ≤
(

4k−1Kq2i |En|2

|Vn|

)z
. (12)

On the other hand, we will show that if∑
v∈Vn

deg2
i (v, Vn,q \X) ≥ 16kKq2i |En|2

|Vn|
(13)

for every subset X ⊆ Vn,q with |X| ≤ 4(k− 1)2z ≤ ηq|Vn|, then there exist at least(
16kKq2i |En|2

|Vn|

)2(k−1)z

(14)
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sequences ((Sr, vr, er, e
′
r))r∈[z] ∈ (Si∪· · ·∪S2k−2)2(k−1)z of length 2(k−1)z satisfy-

ing (i ) and (ii ) from above. Indeed, for any such sequence of length y < 2(k−1)z we
set X = S1∪̇ . . . ∪̇Sy. It follows from (13) that there are at least 16kKq2i|En|2/|Vn|
ways to extend this sequence and hence (14) follows. For convenience we will fix
exactly 16kKq2i|En|2/|Vn| choices for any element in the sequence.

Moreover, for each such sequence there exists some index j ∈ {i, . . . , 2(k − 1)}
and a subsequence of length z with members only from Sj . Since we fixed exactly
16kKq2i|En|2/|Vn| choices for every element in the sequence, and since any given
sequence of length z can appear in at most(

2(k − 1)z

z

)
≤ 4kz

different places of the long sequence, it follows that every such subsequence was
contained in at most

4kz
(

16kKq2i |En|2

|Vn|

)2(k−1)z−z

of the original sequences. Consequently, there are at least

1

4kz

(
16kKq2i |En|2

|Vn|

)z
=

(
4kKq2i |En|2

|Vn|

)z
subsequences ((Sr, vr, er, e

′
r))r∈[z] ∈ (Si∪· · ·∪S2k−2)z of length z which satisfy (i )

and (ii ) from above and in addition for every such sequence there exists some index
j ∈ {i, . . . , 2(k − 1)} such that all members of the sequence are from Sj only.

However, the index j may differ for different of those subsequences. Let j0 ∈
{i, . . . , 2(k − 1)} be the index, which corresponds to most subsequences. It follows
that there are at least(

4kKq2i|En|2/|Vn|
)z

2(k − 1)− i+ 1
≥ 1

k

(
2 · 4k−1Kq2i |En|2

|Vn|

)z
sequences ((Sr, vr, er, e

′
r))r∈[z] ∈ S z

j0
of length z satisfying (i ) and (ii ) and all its

members being from Sj0 .
Summarizing the above, from assumption (13) we deduced that there exists some

index j0 ∈ {i, . . . , 2(k − 1)} such that

Zj0 ≥
1

k

(
2 · 4k−1Kq2i |En|2

|Vn|

)z
.

In view of (12), Markov’s inequality bounds the probability of this event by

P
(
∃j0 ∈ {i, . . . , 2k − 2} : Zj0 ≥

2z

k

(
4k−1Kq2i |En|2

|Vn|

)z)
≤

2k−2∑
j=i

P
(
Zj ≥

2z

k

(
4k−1Kq2i |En|2

|Vn|

)z) (12)

≤
2k−2∑
j=i

P
(
Zj ≥ 2z

k E [Zj ]
)

≤ 2k2 · 2−z
(10),(11)

≤ 2−(bq|Vn|−1)+1+2 log2 k ,

which concludes the proof of Proposition 2.10. �

The next lemma, also due to Rödl and Ruciński from [29], states that if a bino-
mial random subset enjoys a monotone property with very high probability, then
a slightly larger random subset will have a “robust” variant of this property with
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similar probability. Here we say an event holds with very high probability if the
probability of failing is exponentially small in the expected size of Vq.

Proposition 2.11 ([29, Lemma 3]). Let U be a set and let P be a family of subsets
of U closed under supersets. For all δ ∈ (0, 1) and b > 0 satisfying δ(3− log2 δ) ≤ b
and q ∈ (0, 1] the following holds. If

P
(
U(1−δ)q ∈ P

)
≥ 1− 2−bq|U |

then

P (∀X ⊆ Uq with |X| ≤ δq|U |/2 we have (Uq \X) ∈ P) ≥ 1− 2−δ
2q|U |/20 . �

2.3. Proof of main result. We start with a simple observation.

Fact 2.12. Let H = (V,E) be a k-uniform hypergraph, let U ⊆ V , and let ζ > 0
and K ≥ 1. If

∑
v∈V deg2

k−1(v, V ) ≤ K|E|2/|V | and e(U) ≥ ζ|E|, then the set

Y =

{
u ∈ U : degk−1(u, U) ≥ ζ

2

|E|
|V |

}
satisfies

|Y | ≥ ζ2

4K
|V | .

Proof. Due to the definition of Y we have∑
y∈Y

degk−1(y, U) ≥ e(U)− ζ

2

|E|
|V |
|U | ≥ ζ

2
|E| .

Hence, it follows from the Cauchy-Schwarz inequality

ζ2

4
|E|2 ≤

∑
y∈Y

degk−1(y, U)

2

≤ |Y |
∑
y∈Y

deg2
k−1(y, U)

≤ |Y |
∑
v∈V

deg2
k−1(v, V ) ≤ |Y | ·K |E|

2

|V |
,

which yields the claim. �

Proof of Lemma 2.7. Let H = (Hn = (Vn, En))n∈N be a sequence of k-uniform
hypergraphs, let p = (pn)n∈N be a sequence of probabilities such that pn → 0 and
pkn|En| → ∞ and H is (K,p)-bounded for some K ≥ 1. We prove Lemma 2.7 by
induction on i+ r.

Induction start for i = 1 and r ∈ N. In this case we need to show that for given
r, and ζ there exist ξ, b, C, and n0 so that for n ≥ n0 the (R(1, r), ζ)-Ramseyness of
Hn[U ] implies (1, r, ξ, q, U)-Ramseyness of H[Uq] with very high probability. This
will follow from Chernoff’s inequality and Fact 2.12. In fact, let ζ > 0. We set

ξ =
ζ3

16krK
, b =

ζ2

49K
, C = 1 ,

and let n be sufficiently large. Note that for sufficiently large n, the (K,p)-
boundedness of H (applied for q = 1) yields

µk−1(Hn, 1) =
∑
v∈V

deg2
k−1(v, V ) ≤ K |En|

2

|Vn|
.
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For every U ⊆ Vn satisfying Hn[U ] is (R(1, r), ζ)-Ramsey we have e(U) ≥ ζ|En|.
Consequently, we infer from Fact 2.12 that

|Y | ≥ ζ2

4K
|Vn| . (15)

Furthermore, due to the definition of Y we have for every q ∈ (0, 1]

|E1
U (Uq)| ≥

1

k
|Y ∩ Uq| ·

ζ

2

|En|
|Vn|

and for every partition U1
q ∪̇ . . . ∪̇Urq of Uq there exists an s ∈ [r] such that

|E1
U (Usq )| ≥ ζ

2kr
|Y ∩ Uq|

|En|
|Vn|

.

Finally, it follows from Chernoff’s inequality that |Y ∩Uq| ≥ q|Y |/2 with probability
at least 1− 2 exp(−q|Y |/12). Hence, the choice of ξ and b and (15) yields

P (Hn[Uq] is (1, r, ξ, q, U)-Ramsey) ≥ 1− 2 exp(−q|Y |/12) ≥ 1− 2−bq|Vn|

for sufficiently large n and q ≥ pn, since q|Vn| ≥ pn|Vn| ≥ pn|En|1/k →∞.

Induction start for i ≥ 2 and r = 1. This case follows from Janson’s inequality.
For ζ > 0 we set

ξ =
ζ

2
, b =

ζ2

8K
, C = 1 .

Let n be sufficiently large and q ≥ pn so that

µi−1(Hn, q) ≤ Kq2i−2|En|2/|Vn| .
For every U ⊆ Vn for which Hn[U ] is (R(i, 1), ζ)-Ramsey we have e(U) ≥ ζ|En|.
Consequently, (9) combined with Janson’s inequality applied with % = 1/2 yields

P
(
|EiU (Uq)| ≤

ζ

2
qi|En|

)
≤ exp

(
− ζ

2q2i−1|En|2

8µi−1(Hn, q)

)
≤ 2−bq|Vn| ,

which yields the lemma for r = 1.

Induction step. We will verify the lemma for i+1 ≥ 2 and r+1 ≥ 2 and suppose
the lemma holds for i and r + 1 and for i+ 1 and r. Let ζ > 0 be given.

Outline. We will expose the random set Uq in L rounds, where L = L(i, r+ 1, ζ)
is some carefully chosen constant. Suppose Uq1 is the outcome of the first round
and let U1

q1∪̇ . . . ∪̇U
r+1
q1 be an arbitrary partition of Uq1 . Due to the induction

assumption applied for i and r + 1 we will infer that there must be some color
s1 ∈ [r + 1] such that |EiU (Us1q1 )| = Ω(qi1|E|).

We consider the set W1 ⊆ U of vertices such that every vertex w ∈ W1 is
contained in at least Ω(qi1|E|/|V |) edges from EiU (Us1q1 ). Note that if for some later
round, say in the `-th round for ` > 1, some w ∈ W1 appears in Uq` and w will
be also colored with the same color s1, i.e., w ∈ Us1q` , then this will create edges

in Ei+1
U (Us1q1 ∪ U

s1
q`

) ⊆ Ei+1
U (Us1q ). We will infer from the (K,p)-boundedness of H

that W1 is of linear order, i.e., |W1| = Ω(|V |).
In the second round we would like to repeat the same argument and obtain some

s2 ∈ [r + 1] and a set W2. However, in order to obtain new vertices w with a
similar property as in the first round in the second round we will have to ensure
that W2 \W1 is large. For that we will apply the induction assumption to U \W1.
In fact, this is the reason for allowing an arbitrary subset U ⊆ V in Lemma 2.7. As
a result we will ensure that |W2 \W1| ≥ λ|V | for some fixed λ > 0 (only depending
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on K, i+1, r+1, and ζ). In general we want to repeat this argument to obtain sets

W1, . . . ,W`−1 such that |Wj \
⋃j−1
i=1 Wi| ≥ λ|V | for every j ∈ [` − 1] and integers

s1, . . . , s`−1 ∈ [r + 1] such that |EiU (U
sj
qj )| = Ω(qij |E|) for every j ∈ [`− 1].

However, recall that we can only apply the induction assumption in the `-th
round as stated above for i and r + 1 to Û = U \ (W1 ∪ · · · ∪W`−1) if H[Û ] is still
(R(i, r+1), ζ)-Ramsey. Hence, we have to stop the procedure described above when

H[Û ] fails to be (R(i, r + 1), ζ)-Ramsey. Clearly, after at most 1/λ < L rounds we

arrive at the situation that H[Û ] is not (R(i, r + 1), ζ)-Ramsey and then we will
argue as follows.

Since H[U ] was (R(i + 1, r + 1), ζ)-Ramsey, by Fact 2.2 and the definition of
R(·, ·) we then have that H[W1 ∪ · · · ∪Wl] must be ((r+ 1) ·R(i+ 1, r), ζ)-Ramsey.
Consequently, there must be some t ∈ [r + 1] such that for

W t =
⋃

j:sj=t

Wj

we have that H[W t] is (R(i + 1, r), ζ)-Ramsey. In other words, we are ready to
apply the induction assumption with i+ 1 and r to W t. By definition of W t every

vertex of W t is contained in Ω(qi|E|/|V |) edges from EiU (
⋃`−1
j=1 U

t
qj ) and, therefore,

if a substantial fraction of the vertices Uq` ∩W t will be assigned the color t, then

we have |Ei+1
U (

⋃`
j=1 U

t
qj )| = Ω(qi+1|E|), which is what we have to show. If, on the

other hand, the number of vertices of color t in Uq` ∩W t is negligible, then the

induction assumption applied for i + 1 and r to W t will yield that Ei+1
U (Usq`) is

large for some s ∈ [r + 1] \ {t}.
In the proof we have to ensure that the error probabilities in the later rounds will

counter the number of (r+ 1)-colorings of the earlier rounds. This will require that
all statements in the proof have to hold with very high probability. For that we

will choose q` in such a way that q` is sufficiently larger than
∑`−1
j=1 qj , but on the

other hand, for every ` ∈ [L] we require that q` is of the same order of magnitude
as q. We now give the details of this proof and first define all constants involved in
the proof.

Constants. The number of rounds L will depend on the constant ξ(i, r + 1, ζ),
which is given by the induction assumption. More precisely, let

ξ′ = ξ(i, r + 1, ζ) , b′ = b(i, r + 1, ζ) , (16)

C ′ = C(i, r + 1, ζ) , and n′ = n0(i, r + 1, ζ) (17)

be given by the induction assumption applied for i, r + 1, and ζ. We set

L =

⌈
42k+i+1K

(ξ′)2
+ 1

⌉
. (18)

Moreover, we will appeal to the induction assumption for i+ 1, r, and ζ and let

ξ∗ = ξ(i+ 1, r, ζ) , b∗ = b(i+ 1, r, ζ) , (19)

C∗ = C(i+ 1, r, ζ) , and n∗ = n0(i+ 1, r, ζ) (20)

be the corresponding constants. Let 1/2 ≥ δ > 0 be sufficiently small so that

δ(3− log2 δ) ≤ min

{
b′

2
,
b∗

2

}
(21)
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and set

b̂ =
δ2ζ2

80K
. (22)

Furthermore, we appeal to Proposition 2.10 with K, i, and

η =
δζ2

8K
(23)

and obtain

b = b(K, i, η) and n = n0(K, i, η) . (24)

Next we set

bmin = min

{
ζ2

25K
,
b̂

2
,
b

4

}
and B = max

{
4 log2(r + 1)

bmin
,

32K

δζ2

}
+ 1 (25)

and finally let

ξ = min

{
δζ2ξ′(1− δ)i

32kK
, ξ∗(1− δ)i+1

}
·
(
B − 1

BL − 1

)i+1

, (26)

b =
bmin

3

B − 1

BL − 1
, (27)

C =
max {C ′ , C∗}

1− δ
· B

L − 1

B − 1
, (28)

and let n0 ≥ max{n′, n∗, n} be sufficiently large such that the (K,p)-boundedness
of H yields (8) for Hn for every n ≥ n0. Moreover, let n0 be large enough so that

Cpn ≤ 1 and 2 + 2 log2(k) <
1

2
bpn|Vn| . (29)

for all n ≥ n0. Note that such a choice of n0 indeed exists since

pn → 0 and pn|Vn| ≥ (pkn|En|k)1/k →∞

by assumption of Lemma 2.7. Let n ≥ n0 and let q ∈ (0, 1] be such that

Cpn ≤ q .

Finally, appealing to the assumptions of Lemma 2.7, let U ⊆ Vn be such that

Hn[U ] is (R(i+ 1, r + 1), ζ)-Ramsey . (30)

From now on we drop the subscript n for a simpler notation. We have to show that
H[Uq] is (i+ 1, r + 1, ξ, q, U)-Ramsey with very high probability.

As mentioned above we will expose Uq in L rounds, where the elements in the
`-th round will be included with probability q`. For that let q1 be the solution of
the equation

1− q =

L∏
`=1

(
1−B`−1q1

)
and set

q` = B`−1q1

for every ` = 2, . . . , L. We have

q1 ≥
q∑L

`=1B
`−1

= q
B − 1

BL − 1
, (31)
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Due to the choice of C in (28) and q ≥ Cpn we have

qL > · · · > q1 ≥
max {C ′ , C∗}

1− δ
· pn . (32)

The choice of B in (25) yields for every ` = 2, . . . , L

`−1∑
j=1

qj = q1

`−2∑
j=0

Bj = q1
B`−1 − 1

B − 1

(25)

≤ min

{
bmin

4 log2(r + 1)
,
δζ2

32K

}
B`−1q1 ≤

δζ2

32K
q` . (33)

For later reference we note that due to the choice of constants in (16), (17), (19),
(20), and (32) the following statements hold by induction assumption. For every
subset S ⊆ U and ` ∈ [L] we have

H[S] is ((R(i, r + 1), ζ)-Ramsey

⇒ P
(
H[S(1−δ)q` ] is (i, r + 1, ξ′, (1− δ)q`, S)-Ramsey

)
≥ 1− 2−b

′(1−δ)q`|S| (34)

and

H[S] is ((R(i+ 1, r), ζ)-Ramsey

⇒ P
(
H[S(1−δ)q` ] is (i+ 1, r, ξ∗, (1− δ)q`, S)-Ramsey

)
≥ 1− 2−b

∗(1−δ)q`|S|. (35)

Details of the induction step. For our analysis we require some notation.
Recall that the random subsets of the L rounds are denoted by Uq1 , . . . , UqL . Let
Uq =

⋃
`∈[L] Uq` . Moreover, we let χ` : Uq` → [r + 1] be a partition of Uq` and we

denote the partition classes by U1
q`
∪̇ . . . ∪̇Ur+1

q`
, i.e., for every s ∈ [r+ 1] and ` ∈ [L]

Usq` = χ−1
` (s) .

Since the sets Uqj and Uqj′ may not be disjoint we will require that the partitions
χj and χj′ are consistent, i.e., those functions agree on Uqj ∩ Uqj′ .

In the proof those vertices of U which are contained in many edges in EiU (Usq`)
play a crucial role (recall the vertices of W1,W2, . . . from the outline of the proof).
For that we define for every ` ∈ [L] and s ∈ [r + 1] the set

W s
` =

{
u ∈ U : degi,U (u, Usq`) ≥

ξ′(1− δ)i

2
qi`
|E|
|V |

}
, (36)

where

degi,U (u, Usq`) =
∣∣{e ∈ E(U) : u ∈ e and |(e \ {u}) ∩ Usq` | ≥ i

}∣∣ (37)

is the degree of the vertex u in the edge set EiU (Usq`). It follows directly from the
definitions in (6) and (37) that

degi,U (u, Usq`) ≤ degi,V (u, Usq`) ≤ degi,V (u, Uq`) = degi(u, Uq`) . (38)

Finally, for ` ∈ [L] we denote by W` the set of vertices with large degree in some
partition class, i.e.,

W` =
⋃

s∈[r+1]

W s
` .

The following claim, roughly speaking, says that given subsets Uq1 , . . . , Uq`−1
of U

and consistent partitions χj : Uq` → [r + 1] for j ∈ [` − 1] the random set Uq`
satisfies the following with very high probability:
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For any (r+ 1)-partition of Uq` either W` contains Ω(|V |) new elements disjoint
from W1, . . . ,W`−1 (see (ii.a ) below) or there exists some s ∈ [r + 1] such that

Ei+1
U (

⋃`
j=1 U

s
qj ) will be large (see (ii.b ) below).

Claim 1. Let ` ∈ [L], let subsets Uq1 , . . . , Uq`−1
of U satisfy∣∣∣⋃`−1

j=1 Uqj

∣∣∣ ≤ 2
∑`−1
j=1 qj |U | (39)

and let consistent (r + 1)-partitions χj : Uqj → [r + 1] for j ∈ [`− 1] be given.
With probability at least

1− 2−bminq`|V |

the random set Uq` satisfies the following:

(i ) |Uq` | ≤ 2q`|U |
and for every partition χ` : Uq` → [r + 1] one of the following holds

(ii.a ) ∣∣∣W` \
⋃`−1
j=1Wj

∣∣∣ ≥ (ξ′)2

42k+i+1K
|V | ,

(ii.b ) there exists an s ∈ [r + 1] such that∣∣∣Ei+1
U

(⋃`
j=1 U

s
qj

)∣∣∣ ≥ ξqi+1|E| .

We first deduce Lemma 2.7 from Claim 1. Let A denote the event that H[Uq]
is (i + 1, r + 1, ξ, q, U)-Ramsey and for given Uq(` − 1) = (Uq1 , . . . , Uq`−1

) and
for given χ(` − 1) = (χ1, . . . , χ`−1) with χj : Uqj → [r + 1] being consistent for
j = 1, . . . , `− 1, let Bχ(`−1) be the event that the conclusion of Claim 1 holds. In
other words, Claim 1 states that for the randomly chosen set Uq` we have

P
(
Bχ(`−1) | Uq(`− 1)

)
≥ 1− 2−bminq`|V | (40)

for any choice of Uq(` − 1) and any consistent family of partitions χ(`− 1). Note
that Uq(0) and χ(0) are vectors of length 0. For ` = 1 we set

P
(
Bχ(0) | Uq(0)

)
= P

(
Bχ(0)

)
,

where Bχ(0) denotes the event that

(i ) |Uq1 | ≤ 2q1|U |
and for every partition χ1 : Uq1 → [r + 1] one of the following holds

(ii.a ) |W1| ≥ (ξ′)2|V |/(42k+i+1K) ,
(ii.b ) there exists an s ∈ [r + 1] such that |Ei+1

U (Usq1)| ≥ ξqi+1|E| .
Again Claim 1 states that

P
(
Bχ(0)

)
≥ 1− 2−bminq1|V | .

Note that if Bχ(`) holds for every ` ∈ [L], then alternative (ii.a ) cannot always
occur since

42k+i+1K

(ξ′)2

(18)
< L .

Hence, if Bχ(`) holds for every ` ∈ [L], then conclusion (ii.b ) in Claim 1 must hold

for some ` ∈ [L]. Consequently, for every partition of
⋃`
j=1 Uqj into r + 1 classes

there exists some s ∈ [r + 1] such that |Ei+1
U (

⋃`
j=1 U

s
qj )| ≥ ξqi+1|E|. In other

words, since
⋃`
j=1 Uqj ⊆ Uq, the hypergraph H[Uq] is (i+ 1, r + 1, ξ, q, U)-Ramsey
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and event A occurs. Below we will verify that this happens with a sufficiently high
probability

P (¬A ) ≤
L∑
`=1

∑
Uq(`−1)

∑
χ(`−1)

P
(
¬Bχ(`−1) | Uq(`− 1)

)
P (Uq(`− 1)) ,

where the middle sum runs over all choices of Uq(`− 1) = (Uq1 , . . . , Uq`−1
) satisfy-

ing (39) and the inner sum runs over all partitions χ(`− 1) of Uq(`− 1). Note that

there are at most (r + 1)2|V |
∑`−1

j=1 qj such partitions of Uq(` − 1). Therefore, (40)
yields

P (¬A ) ≤
L∑
`=1

(r + 1)2|V |
∑`−1

j=1 qj · 2−bminq`|V | .

Since
∑`−1
j=1 qj ≤

bmin

4 log2(r+1)q` by (33) and q1 ≤ q` we have

P (¬A ) ≤ L · 2−bminq1|V |/2
(27),(31)

≤ 2−bq|V |

where the last inequality holds for sufficiently large n. This concludes the proof of
Lemma 2.7 and it is left to verify Claim 1. �

Proof of Claim 1. Let ` ∈ [L], Uq1 , . . . , Uq`−1
and partitions χ1, . . . , χ`−1 be given.

Note that this defines the sets W s
j for j ∈ [` − 1] and s ∈ [r + 1] as well. We first

observe that property (i ) of Claim 1 holds with high probability. Since (30) holds,
we have e(U) ≥ ζ|E| and, therefore, the (K,p)-boundedness of H combined with
Fact 2.12 yields

|U | ≥ ζ2

4K
|V | .

Hence, Chernoff’s inequality yields

P (|Uq` | ≥ 2q`|U |) ≤ 2 exp(−q`|U |/3)
(25)

≤ 2−2bminq`|V | . (41)

for sufficiently large n.
For the rest of the proof we distinguish two cases depending on the structure of

the complement of
⋃`−1
j=1W` in U . For that we set

Û = U \
`−1⋃
j=1

Wj .

Since H[U ] is (R(i+1, r+1), ζ)-Ramsey by assumption it follows from the definition

of the function R(·, ·) in Definition 2.3 combined with Fact 2.2 that either H[Û ] is

(R(i, r + 1), ζ)-Ramsey or H[U \ Û ] is ((r + 1)R(i + 1, r), ζ)-Ramsey. In the first
case we will use the induction assumption for i and r + 1 (see Case 1 below).

In the second case we recall that U \ Û =
⋃
j∈[`−1]Wj and Wj =

⋃
s∈[r+1]W

s
j ,

which leads to a partition of of U \ Û into r+ 1 classes. Again, Fact 2.2 yields that
one of those classes is (R(i + 1, r), ζ)-Ramsey and for that set we can apply the
induction assumption for i+ 1 and r in this case (see Case 2 below).
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Case 1 (H[Û ] is (R(i, r+1), ζ)-Ramsey). In this case we show that conclusion (ii.a )

of Claim 1 holds. Note that it follows from the Ramseyness of H[Û ] that e(Û) ≥
ζ|E|. Therefore, the (K,p)-boundedness of H combined with Fact 2.12 yields

|Û | ≥ ζ2

4K
|V | . (42)

In this case we appeal to the induction assumption for i and r + 1 and focus on
the restriction to H[Û ] (cf. (34)). In fact, the induction assumption for i and r+ 1
yields

P
(
H
[
Û(1−δ)q`

]
is (i, r + 1, ξ′, (1− δ)q`, Û)-Ramsey

)
≥ 1− 2−b

′(1−δ)q`|Û |

≥ 1− 2−(b′/2)q`|Û | .

Since being (i, r + 1, ξ′, (1 − δ)q`, Û)-Ramsey is closed under supersets, in view
of (21) we infer from Proposition 2.11 that with probability at least

1− 2−δ
2q`|Û |/20

(22),(42)

≥ 1− 2−b̂q`|V | (43)

the random set Ûq` has the property that H[Ûq` \ X] is (i, r + 1, ξ′, (1 − δ)q`, Û)-

Ramsey for every X ⊆ Ûq` with |X| ≤ δq`|Û |/2. In other words, for every such

set X and every partition Û1
q`
∪̇ . . . ∪̇Ûr+1

q`
of Ûq` there exists an s ∈ [r+1] such that∣∣∣Ei

Û
(Ûsq` \X)

∣∣∣ ≥ ξ′(1− δ)iqi`|E| . (44)

Recalling the definition

Ei
Û

(Ûsq` \X) = {e ∈ E(Û) : |e ∩ (Ûsq` \X)| ≥ i} .

and recalling that i+ 1 ≤ k and the definition in (37) we note that∣∣∣Ei
Û

(Ûsq` \X)
∣∣∣ ≤∑

u∈Û

∣∣∣{e ∈ E(Û) : u ∈ e and (e \ {u}) ∩ (Ûsq` \X)| ≥ i
}∣∣∣

=
∑
u∈Û

degi,Û (u, Ûsq` \X) .

Consequently, (44) implies∑
u∈Û

degi,Û (u, Ûsq` \X) ≥ ξ′(1− δ)iqi`|E| . (45)

Moreover, due to Proposition 2.10 and the choice of constants in (24) with prob-
ability at least

1− 2−bq`|V |+2+2 log2(k)
(29),(32)

≥ 1− 2−bq`|V |/2 (46)

there exists a set X ⊆ Vq` of size at most

|X| ≤ ηq`|V |
(23),(42)

≤ δq`|Û |/2

such that ∑
u∈Û

deg2
i,Û

(u, Ûsq` \X) ≤
∑
v∈V

deg2
i (v, Vq` \X) ≤ 16kKq2i

`

|E|2

|V |
, (47)
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where the last inequality follows in a similar way as (38). Let

Ŵ s
` =

{
u ∈ Û : degi,Û (u, Ûsq`) ≥

ξ′(1− δ)i

2
qi`
|E|
|V |

}
. (48)

Note that by definition Ŵ s
` ⊆W` and Ŵ s

` is disjoint from
⋃`−1
j=1Wj .

Summarizing, due to (43) and (46) with probability at least

1− 2−b̂q`|V | − 2−bq`|V |/2

the random set Ûq` satisfies properties (45) and (47) for every partition of Ûq` and
we infer by the Cauchy-Schwarz inequality that

16kKq2i
`

|E|2

|V |
(47)

≥
∑
u∈Û

deg2
i,Û

(u, Ûsq` \X) ≥
∑
u∈Ŵ s

`

deg2
i,Û

(u, Ûsq` \X)

≥ 1

|Ŵ s
` |

 ∑
u∈Ŵ s

`

degi,Û (u, Ûsq` \X)

2

.

Moreover,∑
u∈Ŵ s

`

degi,Û (u, Ûsq` \X)

=
∑
u∈Û

degi,Û (u, Ûsq` \X)−
∑

u∈Û\Ŵ s
`

degi,Û (u, Ûsq` \X)

(45),(48)

≥ ξ′

2
(1− δ)iqi`|E| .

Combining the last two estimates and δ ≤ 1/2 we obtain

|Ŵ s
` | ≥

(ξ′)2

42k+i+1K
|V | .

In other words, in this case property (ii.a ) holds with probability at least

1− 2−b̂q`|V | − 2−bq`|V |/2

and in view of (41) and the choice of bmin in (25) for sufficiently large n this yields
the proof of Claim 1 in this case.

Case 2 (H[Û ] is not (R(i, r + 1), ζ)-Ramsey). In this case we show that conclu-
sion (ii.b ) of Claim 1 holds. Due to (30), the assumption of this case combined
with Fact 2.2, and the definition of the function R(·, ·) in Definition 2.3 we have

H[U \ Û ] is ((r + 1) ·R(i+ 1, r), ζ)-Ramsey. (49)

Recall that

U \ Û =

`−1⋃
j=1

Wj =

`−1⋃
j=1

r+1⋃
s=1

W s
j .

For s ∈ [r + 1] let

W s = {w ∈ U \ Û : w ∈W s
j for some j ∈ [`− 1]} =

`−1⋃
j=1

W s
j .
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Clearly,

W 1 ∪ · · · ∪W r+1 = U \ Û .

We remark that this W 1∪· · ·∪W r+1 is not necessarily a partition of U\Û . However,
it follows from Fact 2.2 and (49) that there exists a t ∈ [r + 1] such that

H[W t] is (R(i+ 1, r), ζ)-Ramsey. (50)

In particular, (50) implies that e(W t) ≥ ζ|E|. Moreover, invoking the (K,p)-
boundedness of H (see Definition 2.4) for i = k − 1 and q′ = 1 shows that the
assumptions of Fact 2.12 are satisfied by H and W t. Consequently, we have

|W t| ≥ ζ2

4K
|V | . (51)

Moreover, due to (50) we can apply the induction assumption for i + 1 and r
to H[W t] (cf. (35)). This yields

P
(
H
[
W t

(1−δ)q`
]

is (i+ 1, r, ξ∗, (1− δ)q`,W t)-Ramsey
)
≥ 1− 2−b

∗(1−δ)q`|W t|

≥ 1− 2−(b∗/2)q`|W t| .

Similarly as in the former case, we infer from Proposition 2.11 that with probability
at least

1− 2−δ
2q`|W t|/20

(22),(51)

≥ 1− 2−b̂q`|V | (52)

the random set W t
q`

has the property that

H[W t
q`
\X] is (i+ 1, r, ξ∗, (1− δ)q`,W t)-Ramsey (53)

for every X ⊆W t
q`

with |X| ≤ δq`|W t|/2.
Note that in the statement above only partitions into r classes are considered,

while we have to deal with (r + 1)-partitions here. Let χ` : Uq` → [r + 1] be an

arbitrary partition. Depending on the cardinality of χ−1
` (t) ∩W t

q`
we will argue in

two different ways. In fact, if∣∣χ−1
` (t) ∩W t

q`

∣∣ ≥ δ

4
q`|W t| , (54)

then we infer from the fact that W t =
⋃`−1
j=1W

t
j and (36)∣∣∣Ei+1

U

(⋃`
j=1 U

t
qj

)∣∣∣ =
∣∣∣{e ∈ E(U) :

∣∣∣e ∩⋃`j=1 U
t
qj

∣∣∣ ≥ i+ 1
}∣∣∣

≥ 1

k

∑
u∈χ−1

` (t)∩W t
q`

degi,U

(
u,
⋃`
j=1 U

t
qj

)

≥ 1

k

∑
u∈χ−1

` (t)∩W t
q`

max
j∈[`−1]

degi,U (u, U tqj )

≥ 1

k
· δ

4
q`|W t| · ξ

′(1− δ)i

2
qi1
|E|
|V |

.
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Hence, if χ` satisfies (54), then since q1 ≤ q`∣∣∣Ei+1
U

(⋃`
j=1 U

t
qj

)∣∣∣ (51)

≥ δζ2ξ′(1− δ)i

32kK
qi+1
1 |E|

(31)

≥ δζ2ξ′(1− δ)i

32kK

(
B − 1

BL−1 − 1

)i+1

qi+1|E|
(26)

≥ ξqi+1|E| .

In other words, if χ` satisfies (54), then the resulting partition satisfies conclu-
sion (ii.b ) of Claim 1.

If, on the other hand, (54) does not hold, then setting

X =
(
χ−1
` (t) ∩W t

q`

)
∪
`−1⋃
j=1

Uqj

we have

|X|
(39)

≤ δ

4
q`|W t|+ 2|U |

`−1∑
j=1

qj ≤
δ

4
q`|W t|+ 2|V |

`−1∑
j=1

qj

(51)

≤ δ

4
q`|W t|+ 8K

ζ2
|W t|

`−1∑
j=1

qj
(33)

≤ δ

2
q`|W t| .

Since W t ⊆ U and χ−1
` (s) ∩ (W t

q`
\X) ⊆

⋃`
j=1 U

s
qj , it follows from (53) that there

exists some s ∈ [r + 1] \ {t} such that∣∣∣Ei+1
U

(⋃`
j=1 U

s
qj

)∣∣∣ ≥ ∣∣Ei+1
W t

(
χ−1
` (s) ∩ (W t

q`
\X)

)∣∣
≥ ξ∗(1− δ)i+1qi+1

` |E|
(31),(26)

≥ ξqi+1|E| ,

which again implies conclusion (ii.b ) of Claim 1.
Summarizing, it follows from (52) that in this case conclusion (ii.b ) of Claim 1

holds for any χ` : Uq` → [r+1] with probability at least 1−2−b̂q`|V |. This combined
with (41) concludes the proof of Claim 1, since

1− 2−b̂q`|V | − 2−2bminq`|V |
(25)

≥ 1− 2−bminq`|V |

for sufficiently large n. �

3. Proof of the new results

In this section we deduce Theorem 1.1 and Theorem 1.2 from Theorem 2.5.

Proof of Theorem 1.1. Note that due to (2) it suffices to verify the 1-statement of
Theorem 1.1 and we will show that this follows from Theorem 2.5. Let A be an
irredundant, partition regular (` × k)-integer matrix. It follows from elementary
linear algebra that mA = mA′ , whenever L(A) and L(A′) have the same set of
solutions. Hence, without loss of generality we may assume that A has full rank
(i.e., rank(A) = `), since we are only interested in the set of solutions L(A). As
mentioned in the introduction, it follows from Rado’s characterization of partition
regular matrices that k ≥ `+ 2.

For every n ∈ N we consider the k-uniform hypergraph Hn = ([n], En) where
the edges of Hn are the k-sets {x1, . . . , xk} ⊆ [n] such that (for some ordering) the
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vector (x1, . . . , xk) is a solution of L(A). (Note that we disregard solutions of L(A)
which consist of less than k distinct integers). Let pn = n−1/mA (cf. (1)).

The conclusion of Theorem 2.5 yields Theorem 1.1, since (by definition) H[Vn,qn ]
is r-Ramsey if and only if [n]qn → (A)r and we have to show that H and p satisfy
the assumptions of Theorem 2.5. This means, we have to verify the following

(a ) pkn|En| → ∞ as n→∞,
(b ) for every R ∈ N exists some ζ > 0 such that H is (R, ζ)-Ramsey, and
(c ) H is (K,p)-bounded for some K ≥ 1.

It was shown in [30, Proposition 2.2 (ii )] that mA ≥ k − 1 and due to Rado’s
characterization we have k − ` ≥ 2, which yields |En| = Ω(n2). Therefore, we have

pk|En| = Ω(n−k/(k−1) · n2) = Ω
(
n

k−2
k−1
)
.

Moreover, it follows from [5, Theorem 1] that for every R ∈ N there exists some
ζ > 0 for which H is (R, ζ)-Ramsey. Consequently, it suffices to verify that H is
(K,p)-bounded for some K ≥ 1. For i ∈ [k − 1] and q ≥ n−1/mA we have to show
that

µi(Hn, q) = O

(
q2i |En|2

n

)
.

Recalling the definition of µi(Hn, q) in (7) and Hn = ([n], En) we have

µi(Hn, q) = E

∑
x∈[n]

deg2
i (x, Vn,q)

 =
∑
x∈[n]

E
[
deg2

i (x, Vn,q)
]
. (55)

Note that E
[
deg2

i (x, Vn,q)
]

is the expected number of pairs (X,Y ) ∈ [n]k × [n]k

such that

(i ) x ∈ X ∩ Y ,
(ii ) X = {x1, . . . , xk} and Y = {y1, . . . , yk} are solutions of L(A), where

Ax = Ay = 0

for x = (x1, . . . , xk)t and y = (y1, . . . , yk)t, and
(iii ) |X ∩ ([n]q \ {x})| ≥ i and |Y ∩ ([n]q \ {x})| ≥ i.

For fixed x and (X,Y ) let w ≥ 1 be the largest integer such that there exist indices
i1, . . . , iw and j1, . . . , jw for which

xi1 = yj1 , . . . , xiw = yjw . (56)

Consequently,

x ∈ {xi1 , . . . , xiw} = {yj1 , . . . , yjw} (57)

Set W1 = {i1, . . . , iw} and W2 = {j1, . . . , jw}.
For fixed sets W1, W2 ⊆ [k] we are going to describe all (2k − w)-tuples X ∪ Y

satisfying (ii ) and (56). To this end consider the 2` × (2k − w) matrix B, which
arises from two copies A1 and A2 of A with permuted columns. Recall that for
a set of columns W of a matrix A we denote by AW the matrix obtained from
A by restricting to the columns indexed by W . We set A1 = (AW 1

| AW1
) and

A2 = (AW2
| AW 2

) where for every α = 1, . . . , w the column of AW1
which is

indexed by iα aligns with that column of AW2 which is indexed by jα. Then let

B =

(
AW 1

AW1
0

0 AW2
AW 2

)
.
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Without loss of generality we may assume that rank(AW 1
) ≥ rank(AW 2

) and,
therefore,

rank(B) ≥ rank(A) + rank(AW 1
) .

Clearly, the number of (2k−w)-tuples X∪Y satisfying (ii ) and (56) equals the num-
ber of solutions of the homogeneous system given by B, which is Θ(n2k−w−rank(B)).
Since A is an irredundant, partition regular matrix, it follows from [30, Proposi-
tion 2.2 (i )] that rank(A′) = rank(A) for every matrix A′ obtained from A by
removing one column. Consequently, any matrix B′ obtained from B by removing
one of the middle columns (i.e., one of the w columns of B which consist of a column
of AW1

and a columns of AW2
) satisfies

rank(B′) ≥ rank(A) + rank(AW 1
) = `+ rank(AW 1

) .

Therefore, it follows from (57) that the number of such (2k − w)-tuples that also
satisfy condition (i ) for some fixed x ∈ [n] is at most

O(n2k−w−1−`−rank(AW1
)) . (58)

Finally, we estimate the probability that a (2k − w)-tuple X ∪ Y satisfying (i ),
(ii ), and (56) also satisfies (iii ). Let j = |X ∩ Y ∩ ([n]q \ {x})|. Since j ≤ w − 1
and q ≤ 1 this probability is bounded by

w−1∑
j=0

q2i−j = O(q2i−w+1) .

In view of (58) we obtain

∑
x∈[n]

E
[
deg2

i (x, Vn,q)
]

=
∑
x∈[n]

k∑
w=1

∑
W1,W2⊆[k]
|W1|=|W2|=w

O(n2k−w−1−`−rank(AW1
)q2i−w+1) . (59)

Note that if w = 1, then again due to [30, Proposition 2.2 (i )] we have rank(AW 1
) =

` and, therefore, the contribution of those terms satisfies

∑
x∈[n]

∑
W1,W2⊆[k]
|W1|=|W2|=1

O(n2k−2`−2q2i) = O(n2k−2`−1q2i) = O

(
q2i |En|2

n

)
. (60)

For w ≥ 2 and W1 ⊆ [k] with |W1| = w we obtain from the definition of mA in (1)
and q ≥ n−1/mA that

qw−1 ≥ n−w+1−rank(AW1
)+` .
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Consequently,

∑
x∈[n]

k∑
w=2

∑
W1,W2⊆[k]
|W1|=|W2|=w

O(n2k−w−1−`−rank(AW1
)q2i−w+1)

=
∑
x∈[n]

k∑
w=2

∑
W1,W2⊆[k]
|W1|=|W2|=w

O(n2k−2−2`q2i)

= O(n2k−2`−1q2i) = O

(
q2i |En|2

n

)
. (61)

Finally, combining (55), (59), (60), and (61) we obtain

µi(Hn, q) = O

(
q2i |En|2

n

)
,

which concludes the proof of Theorem 1.1. �

Proof of Theorem 1.2. Let F be an `-uniform hypergraph with k = e(F ) ≥ ∆(F ) ≥
2 edges. For every n ∈ N we consider the k-uniform hypergraph Hn = (Vn, En),

where Vn = E(K
(`)
n ) and where the edges of Hn correspond to (unlabeled) copies

of F in K
(`)
n . Furthermore, let pn = n−1/mF (cf. (5)). It is easy to see that the

conclusion of Theorem 2.5 yields Theorem 1.2, i.e., H[Vn,qn ] is r-Ramsey if and

only if G(`)(n, qn) → (F )r. Therefore, it is left to show that H and p satisfy the
assumptions of Theorem 2.5 (see properties (a )-(c ) in the proof of Theorem 1.1).

Since ∆(F ) ≥ 2 it follows from the definition of mF in (5) that pn ≥ n−`+1.
Consequently, the expected number of hyperedges in G(`)(n, pn) is at least n. The
definition of mF ensures that the expected number of copies of F in G(`)(n, pn) is
at least of the same order as the expected number of edges in G(`)(n, pn). Conse-
quently, pkn|En| = Ω(n).

Moreover, the original proof of Ramsey’s theorem (see also [3]) implies that for
every R ∈ N there exists some ζ > 0 such that the sequence H = (Hn)n∈N is
(R, ζ)-Ramsey. Consequently, it is left to verify that H is (K,p)-bounded for some
constant K ≥ 1.

To this end we observe that Hn is a regular hypergraph with
(
n
`

)
vertices. More-

over, every vertex is contained in Θ(nv(F )−`) edges and |En| = Θ(nv(F )). We will
show that for q ≥ n−1/mF and i ∈ [k − 1] we have

µi(Hn, q) = E

[∑
v∈Vn

deg2
i (v, Vn,q)

]
=
∑
v∈Vn

E
[
deg2

i (v, Vn,q)
]

= O

(
q2i |En|2

|Vn|

)
.

Due to the definition of H every v ∈ Vn corresponds to an edge e(v) in K
(`)
n .

Therefore, the number E
[
deg2

i (v, Vn,q)
]

is the expected number of pairs (F1, F2) of

copies F1 and F2 of F in K
(`)
n satisfying e(v) ∈ E(F1) ∩ E(F2) and both copies F1

and F2 have at least i edges in E(G(`)(n, q)) \ {e(v)}. Summing over all such pairs
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F1 and F2 we obtain

E
[
deg2

i (v, Vn,q)
]
≤

∑
F1,F2 : e(v)∈E(F1)∩E(F2)

|E(F1)∩E(F2)|−1∑
j=0

q2i−j

= O

 ∑
F1,F2 : e(v)∈E(F1)∩E(F2)

q2i−(|E(F1)∩E(F2)|−1)

 (62)

since q ≤ 1. Furthermore,∑
F1,F2 : e(v)∈E(F1)∩E(F2)

q2i−(|E(F1)∩E(F2)|−1)

= O

 ∑
J : e(v)∈E(J)

n2v(F )−v(J)−`q2i−(e(J)−1)

 , (63)

where the sum on the right-hand side is indexed by all hypergraphs J ⊆ K(`)
n which

contain e(v) and which are isomorphic to a subhypergraph of F . It follows from
the definition of mF and q ≥ n−1/mF that nv(J)qe(J) = Ω(qn`), i.e., n−v(J)q−e(J) =
O(q−1n−`). Combining this with (62) and (63) we obtain

E
[
deg2

i (v, Vn,q)
]

= O

 ∑
J : e(v)∈E(J)

n2v(F )−v(J)−`q2i−e(J)+1


= O

 ∑
J : e(v)∈E(J)

n2v(F )−2`q2i

 .

Consequently,

µi(Hn, q) =
∑
v∈Vn

O(n2v(F )−2`q2i) = O(n2v(F )−`q2i) = O

(
q2i |En|2

|Vn|

)
,

which concludes the proof of Theorem 1.2. �
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[3] P. Erdős, On the number of complete subgraphs contained in certain graphs, Magyar Tud.
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