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Abstract. We study sufficient ℓ-degree (1 ≤ ℓ < k) conditions for the ap-
pearance of perfect and nearly perfect matchings in k-uniform hypergraphs. In

particular, we obtain a minimum vertex degree condition (ℓ = 1) for 3-uniform
hypergraphs, which is approximately tight, by showing that every 3-uniform
hypergraph on n vertices with minimum vertex degree at least (5/9+o(1))

`

n

2

´

contains a perfect matching.

1. Notations and Results

Our notation follows [2]. We refer to the set {1, 2, . . . , n} with n ∈ N by [n]. For

a set M and an integer k, we denote by
(

M
k

)

= {A ⊆ M : |A| = k} the set of all
k-element subsets of M and we denote by (M)k = {(v1, v2, . . . , vk) : {v1, . . . , vk} ∈
(

M
k

)

} the set of all ordered k-tuples of M . We often write v1v2 . . . vk ∈
(

M
k

)

instead

of {v1, v2, . . . , vk} ∈
(

M
k

)

. Throughout this paper H denotes a k-uniform hyper-
graph, that is a pair H = (V (H), E(H)) with vertex set V (H) and an edge set

E(H) ⊆
(

V (H)
k

)

. Often we write V instead of V (H) and identify H with its edge

set, i.e., H ⊆
(

V
k

)

. A k-uniform hypergraph is called k-partite if there is a partition
of the vertex set V into k sets V = V1∪̇ . . . ∪̇Vk such that every edge intersects every
Vi in exactly one vertex.

For a k-uniform hypergraph H and a set T = {v1, . . . , vℓ} ∈
(

V (H)
ℓ

)

let deg(T ) =
deg(v1 . . . vℓ) denote the number of edges containing v1 . . . vℓ and let δℓ(H) be the
minimum ℓ-degree of H, i.e., the minimum of deg(v1 . . . vℓ) over all ℓ-element sets of
vertices in H. Moreover, by a matching of H we mean a subset M ⊆ H of pairwise
disjoint edges of H and a perfect matching is a matching covering all vertices of H.
Of course, such a matching can only exist, if n = |V | is a multiple of k, which we
indicate by n ∈ kZ.

Definition 1. For all integers k > ℓ ≥ 1 and n ∈ kZ let t(k, ℓ, n) denote the

minimum t such that every k-uniform hypergraphH on n vertices satisfying δℓ(H) ≥
t contains a perfect matching.

For k = 2, in case of graphs, it is easily seen that t(2, 1, n) = n/2. Indeed, the
complete bipartite graph Kn/2+1,n/2−1 serves as lower bound and the upper bound
is an obvious consequence of Dirac’s theorem on the existence of Hamilton cycles.

For k ≥ 3, ℓ = k − 1 and n ∈ kZ the number t(k, k − 1, n) was investigated by
Kühn and Osthus [5] and Rödl et al. [12, 10, 9]. In particular, Rödl, Ruciński, and

The first author was supported by DFG within the research training group “Methods for
Discrete Structures”.

The second author was supported by GIF grant no. I-889-182.6/2005.

1
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Szemerédi [10] determined t(k, k − 1, n) for arbitrary k ≥ 3 and sufficiently large n
and showed

t(k, k − 1, n) = n/2 − k + ck,n , (1)

where ck,n ∈ {3/2, 2, 5/2, 3} depending on the parities of n and k. Another notable
phenomenon is that nearly perfect matchings, i.e., matchings covering all but a
constant number, say rk (for r ≥ k−2), of the vertices, already appear at minimum
(k − 1)-degree n/k − r (see [12]). Furthermore, for k ≥ 4 and ⌈k/2⌉ ≤ ℓ ≤ k − 1,
Pikhurko [8] showed

1

2

(

n

k − ℓ

)

− O(nk−ℓ−1) ≤ t(k, ℓ, n) ≤
1

2

(

n

k − ℓ

)

+ O(nk−ℓ−1/2
√

log n). (2)

Observe from (1) and (2) that t(k, ℓ, n) is roughly
(

n
k−ℓ

)

/2 for ⌈k/2⌉ ≤ ℓ ≤ k−1.

However, the approach in [8] breaks down for 1 ≤ ℓ < k/2 and for this regime no
sharp bounds are known so far. For example, for ℓ = 1 it was asked by Kühn and
Osthus [5] to determine t(k, 1, n). The best known upper bound we are aware of is
due to Daykin and Häggkvist [3], who showed t(k, 1, n) ≤ k−1

k

(

n−1
k−1

)

+ 1/k.
In the first part of this paper we will provide general upper bounds on the

minimum ℓ-degree which ensure the existence of perfect and nearly perfect match-
ings in k-uniform hypergraphs. First, we show an upper bound for the existence
of nearly perfect matchings in k-uniform, k-partite hypergraphs. Here the min-
imum ℓ-degree δℓ(H) of a k-uniform, k-partite hypergraph with vertex partition
V1∪̇ . . . ∪̇Vk is min deg(vi1 , . . . , viℓ

), where the minimum runs over all index sets

{i1, . . . , iℓ} ∈
(

[k]
ℓ

)

and all ℓ-sets of vertices vij
∈ Vij

for j = 1, . . . , ℓ.

Theorem 2. Let H be a k-uniform, k-partite hypergraph with partition classes
V1, . . . , Vk each of size |Vi| = n and suppose the minimum ℓ-degree of H is

δℓ(H) >
k − ℓ

k
nk−ℓ + knk−ℓ−1.

Then H contains a matching covering all but (ℓ − 1)k vertices. In particular, for
ℓ = 1 the matching is perfect.

Using this we obtain the following bound for the existence of (nearly) perfect
matchings for general k-uniform hypergraphs.

Theorem 3. For all integers k > ℓ > 0 there is an n0 such that for all n > n0 the
following holds: Suppose H is a k-uniform hypergraph on n > n0 vertices, n ∈ kZ

with minimum ℓ-degree

δℓ(H) ≥
k − ℓ

k

(

n

k − ℓ

)

+ kk+1(lnn)1/2nk−ℓ−1/2,

then H contains a matching covering all but (ℓ − 1)k vertices. In particular, for
ℓ = 1 the matching is perfect.

For ℓ = 1 slightly better bounds, compared to Theorems 2 and 3, were obtained
by Daykin and Häggkvist [3]. Those authors showed that the minimum degree
condition δ1(H) > k−1

k (nk−1 − 1) yields perfect matchings in the partite case and

δ1(H) > k−1
k (
(

n−1
k−1

)

− 1) yields perfect matchings in the general case.
Theorem 3 together with the absorbing technique, developed by Rödl, Ruciński,

and Szemerédi, yields the following theorem about the existence of perfect match-
ings in k-uniform hypergraphs.
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Theorem 4. For all γ > 0 and all integers k > ℓ > 0 there is a n0 such that for
all n > n0, n ∈ kZ the following holds: Suppose H is a k-uniform hypergraph on
n > n0 vertices with minimum degree

δℓ(H) ≥

(

max

{

1

2
,
k − ℓ

k

}

+ γ

)(

n

k − ℓ

)

then H contains a perfect matching.

In other words the theorem says

t(k, ℓ, n) ≤

(

max

{

1

2
,
(k − ℓ)

k

}

+ o(1)

)(

n

k − ℓ

)

for any k > ℓ > 0. For ℓ ≥ k/2 the maximum is 1/2 and this bound, which is best
possible up to the error term o(1), was already shown by Pikhurko [8]. For ℓ < k/2,
however, there is a gap between currently known upper and lower bound, since the
best lower bounds follow from well known constructions (see, e.g., [3, 5, 8, 10]).

Fact 5. For all k > 0 and all n ∈ kZ there are k-uniform hypergraphs H1 and H2

on n vertices with minimum ℓ-degrees (0 < ℓ < k)

δℓ(H1) =

(

n − ℓ

k − ℓ

)

−

( (k−1)n
k − ℓ + 1

k − ℓ

)

=

(

1 −

(

k − 1

k

)k−ℓ

− o(1)

)

(

n

k − ℓ

)

δℓ(H2) =
1

2

(

n

k − ℓ

)

+ O(nk−ℓ−1)

which do not contain a perfect matching.

Proof. In H1 we split the vertex set into sets A and B of size |A| = n
k − 1 and

|B| = (k−1)
k n + 1 and take as edges of H1 all those k-tuples intersecting A in at

least one vertex. It is easily seen that δℓ(H1) =
(

n−ℓ
k−ℓ

)

−
(

(k−1)n/k−ℓ+1
k−ℓ

)

. However,

since every edge of a matching covers at least one vertex in A and |A| = n
k −1 there

cannot exist a perfect matching.
For the second hypergraph H2 we split the vertex set into sets A and B such

that |A| is the maximal odd integer which does not exceed n/2. Further we take all
edges intersecting A in a even number of vertices. Then, due to parity, H2 does not
contain a perfect matching and the minimum ℓ-degree is 1

2

(

n
k−ℓ

)

+ O(nk−ℓ−1). �

We believe that for small ℓ (compared to k) the lower bound given by H1 in
Fact 5 is the right one. Indeed, the main result of this paper, justifies this for the
case k = 3 and ℓ = 1. Note that in this case δℓ(H1) = (5/9 − o(1))

(

n
2

)

.

Theorem 6 (Main result). For all γ > 0 there is an n0 such that for all n > n0,
n ∈ 3Z the following holds: Suppose H is a 3-uniform hypergraph on n vertices with

δ1(H) ≥

(

5

9
+ γ

)(

n

2

)

.

Then H contains a perfect matching.

In view of Fact 5, Theorem 6 is, up to the error term γ
(

n
2

)

, best possible and
this answers the question of Kühn and Osthus [5] asymptotically in the case k = 3.
Combining Theorem 6 with some previous results we give a classification of the
existence of perfect and nearly perfect matchings in 3-uniform hypergraphs in terms
of both minimum degrees δ1 and δ2 in Section 5.
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Organisation. In Section 2 we introduce a few auxiliary results. In particular, we
prove the Absorbing Lemma (Lemma 10). Section 3 contains the proofs of the upper
bounds for k-uniform hypergraphs, i.e., Theorem 2, Theorem 3, and Theorem 4.
Section 4 contains the proof of our main result, Theorem 6, and in Section 5 we
study the interplay of δ1 and δ2 in view of perfect and nearly perfect matchings in
3-uniform hypergraphs. We close with a few open problems in Section 6.

2. Preliminary Results

2.1. Partitioning uniform hypergraphs. In this section we show, by a simple
probabilistic argument, that there exists a partition of the vertex set of a hypergraph
which distributes the vertex degrees fairly (similar results appeared in [5, 8]). We
start with a folklore observation.

Proposition 7. Let H be a k-uniform hypergraph on n vertices. Then there is a
decomposition of the edge set of H into knk−1 pairwise edge disjoint matchings.

Proof. Consider the auxiliary graph G on the vertex set E(H) in which A, B ∈
E(H) are connected if and only if A and B have nonempty intersection. Then the
maximum degree of G is at most k

(

n−1
k−1

)

. Thus G has a proper colouring using

k
(

n
k−1

)

colours. And since the colour classes correspond to pairwise edge disjoint
matchings we obtain the proposition. �

Next, let V = V1∪̇V2∪̇ . . . ∪̇Vk be an equipartition of the vertex set of a k-uniform
hypergraph H, i.e., |Vi| = |Vj | for all i, j ∈ [k]. For a set T ⊂ V we say T is crossing
(with respect to V1, . . . , Vk) if for all i ∈ [k] we have |T ∩ Vi| ≤ 1. For a crossing
ℓ-set T = {v1, . . . , vℓ} let deg′(T ) = |{E ∈ H : T ⊂ E and E is crossing}| denote
its k-partite degree.

Lemma 8. For all k > ℓ ≥ 1 there is a n0 such that for all n > n0, n ∈ kZ and
every k-uniform hypergraph H on n vertices there is an equipartition of V (H) =
V1∪̇ . . . ∪̇Vk satisfying

deg′(T ) ≥
(k − ℓ)!

kk−ℓ
deg(T ) − 2(k lnn)1/2nk−ℓ−1/2

for each crossing ℓ-set T ∈
(

V
ℓ

)

.

A similar lemma appeared in [8, Corollary 2], for completeness we include a short
elementary proof.

Proof. First set m = k − ℓ and let V = U1∪̇ . . . ∪̇Uk be a random partition of V ,
where each vertex appears in vertex class Uj (j = 1, . . . , k) independently with
probability 1/k. For a fixed ℓ-set T = {v1, . . . , vℓ} let L = L(T ) denote the link
hypergraph of T which consists of the vertex set V (H) and the edge set L = {E ∈
(

V
m

)

: E ∪ T ∈ H}. Then L is an m-uniform hypergraph with deg(v1, . . . , vℓ) edges.

Using Proposition 7 we decompose the edge set of L into at most i0 ≤ mnm−1

nonempty pairwise edge disjoint matchings which we denote by M1, . . . , Mi0 .

For every i ∈ [i0], every edge E ∈ Mi, and every index set J ∈
(

[k]
m

)

, we say E
survived (in the partition

⋃

j∈J Uj), if |E∩Uj | = 1 for all j ∈ J . Since the partition

U1, . . . , Uk was chosen randomly we have for fixed J ∈
(

[k]
m

)

P [E survived] =
m!

km
.
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Thus, for Xi,J = Xi,J(T ) = |{E ∈ Mi : E survived}| we have

µi,J = µi,J (T ) = E [Xi,J ] =
m!

km
|Mi|.

Now call a matching Mi bad (with respect to the chosen partition U1, . . . , Uk) if

there exists a set J ∈
(

[k]
m

)

such that

Xi,J ≤

(

1 −

(

(4k − 2) lnn)

µi,J

)1/2
)

µi,J

and call T a bad set (with respect to U1, . . . , Uk) if there is at least one bad Mi =
Mi(T ). Otherwise call T a good set. For a fixed Mi the events “E survived” with
E ∈ Mi are jointly independent, hence we can apply Chernoff’s inequality (see,
e.g., [1]) and we obtain

P [Mi is bad] ≤
(

k
m

)

exp(−(2k − 1) lnn) =
(

k
m

)

n−2k+1.

Summing over all matchings Mi and recalling i0 ≤ mnm−1 and m ≤ k − 1 yields

P [there is at least one bad Mi] ≤ i0
(

k
m

)

n−2k+1 ≤ n−k

and summing over all ℓ-sets T we obtain

P [there is at least one bad T ] ≤ nℓn−k ≤ n−1.

Moreover, Chernoff’s inequality yields

P

[

∃ k0 ∈ [k] : |Uk0
| > n/k + n1/2(lnn)1/4/k

]

≤ k exp(−(ln n)1/2/(3k)) = o(1) .

Thus, with positive probability there is a partition U1, . . . , Uk such that all ℓ-sets
T are good and such that

|Uj | ≤ n/k + n1/2(lnn)1/4/k for every j ∈ [k] .

Consequently, by redistributing at most n1/2(lnn)1/4 vertices of the partition U1, . . . , Uk

we obtain an equipartition partition V = V1∪̇ . . . ∪̇Vk with

|Vj | = n/k and |Uj \ Vj | ≤ n1/2(lnn)1/4/k for every j ∈ [k] .

To verify that the partition V1, . . . , Vk satisfies the claim of the lemma note that
for a crossing ℓ set T and the m-set J = {j ∈ [k] : T ∩ Vj = ∅} we have

deg′(T ) ≥
∑

i∈[i0]

(

1 −

(

(4k − 2) lnn)

µi,J (T )

)1/2
)

µi,J (T ) − m
n1/2(lnn)1/4

k
nm−1

≥
∑

i∈[i0]

µi,J (T ) − ((4k − 2) lnn)1/2
∑

i∈[i0]

(µi,J (T ))1/2 − (lnn)1/4nm−1/2

=
m!

km
deg(T ) − ((4k − 2) lnn)1/2

∑

i∈[i0]

(µi,J (T ))1/2 − (lnn)1/4nm−1/2 .

The Cauchy-Schwarz inequality then gives

∑

i∈[i0]

(µi,J (T ))1/2 ≤



i0
∑

i∈[i0]

µi,J (T )





1/2

≤

(

mnm−1

(

n

m

))1/2

≤ nm−1/2.



6 HIÊ. P HÀN, YURY PERSON, AND MATHIAS SCHACHT

This implies that for the partition V1, . . . , Vk every crossing ℓ-set T satisfies

deg′(T ) ≥
m!

km
deg(T ) − ((4k − 2)1/2 + (lnn)−1/4)(ln n)1/2nm−1/2

≥
m!

km
deg(T ) − 2(k lnn)1/2nm−1/2 ,

which proves the lemma. �

2.2. Absorbing Lemma. In this section we prove an absorbing lemma, Lemma 10.
The idea was introduced by Rödl, Ruciński, and Szemerédi, e.g., in [11] (see
also [10]). The Lemma asserts the existence of a small and powerful matching
in a hypergraph with high minimum degree which, by “absorbing” vertices, creates
a perfect matching provided a nearly perfect matching was founded.

First consider the following simple proposition

Proposition 9. Let H be a k-uniform hypergraph on n vertices. For all x ∈ [0, 1]
and all integers m ≤ ℓ we have, if

δℓ(H) ≥ x

(

n

k − ℓ

)

, then δm(H) ≥ x

(

n

k − m

)

− O(nk−m−1) ,

where the constant in the error term only depends on k, ℓ, and m.

Proof. Consider a arbitrary m-set T = {v1, . . . , vm} ∈
(

V (H)
m

)

. Then the condition
on δℓ(H) implies that T is contained in at least
(

k − m

ℓ − m

)−1
∑

vm+1,...,vℓ∈(V \T
ℓ−m)

deg(v1, . . . , vℓ) ≥

(

k − m

ℓ − m

)−1(
n − m

ℓ − m

)

x

(

n

k − ℓ

)

≥ x

(

n

k − m

)

− O(nk−m−1)

edges, and the proposition follows. �

Lemma 10 (Absorbing lemma). For all γ > 0 and integers k > ℓ > 0 there is an n0

such that for all n > n0 the following holds: Suppose H is a k-uniform hypergraph
on n vertices with minimum ℓ-degree δℓ(H) ≥ (1/2 + 2γ)

(

n
k−ℓ

)

, then there exists a

matching M in H of size |M | ≤ γkn/k such that for every set W ⊂ V \ V (M) of
size at most γ2kn ≥ |W | ∈ kZ there exists a matching covering exactly the vertices
in V (M) ∪ W .

Proof. Let H be a k-uniform hypergraph with δℓ(H) ≥ (1/2 + 2γ)
(

n
k−ℓ

)

. From

Proposition 9 we know δ1(H) ≥
(

1
2 + γ

) (

n
k−1

)

(for all large n) and it suffices to
prove the lemma for ℓ = 1.

Throughout the proof we assume (without loss of generality) that γ ≤ 1/10 and

let n0 be chosen sufficiently large. Further set m = k(k − 1) and call a set A ∈
(

V
m

)

of size m an absorbing m-set for T = {v1, . . . , vk} ∈
(

V
k

)

if A spans a matching
of size k − 1 and A ∪ T spans a matching of size k, i.e., H[A] and H[A ∪ T ] both
contain a perfect matching.

Claim 11. For every T = {v1, . . . , vk} ∈
(

V
k

)

there are at least γk−1
(

n
k−1

)k
/2

absorbing m-sets for T .
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Proof. Let T = {v1, . . . , vk} be fixed. Since n0 was chosen large enough there are at
most (k − 1)

(

n
k−2

)

≤ γ
(

n
k−1

)

edges which contain v1 and vj for some j ∈ {2, . . . , k}.

Due to the minimum degree of H there are at least
(

n
k−1

)

/2 edges containing v1

but none of the vertices v2, . . . , vk. We fix one such edge {v1, u2, . . . , uk} and set
U1 = {u2, . . . , uk}. For each i = 2, 3, . . . , k and each pair ui, vi suppose we succeed
to choose a set Ui such that Ui is disjoint to Wi−1 =

⋃

j∈[i−1] Uj ∪ T and both

Ui ∪ {ui} and Ui ∪ {vi} are edges in H. Then, for a fixed i = 2, . . . , k we call such
a choice Ui good, motivated by Wk =

⋃

i∈[k] Ui being an absorbing m-set for T .

Note that in each step 2 ≤ i ≤ k there are k + (i − 1)(k − 1) ≤ k2 vertices in
Wi−1, thus the number of edges intersecting ui (or wi respectively) and at least one
other vertex in Wi−1 is at most k2

(

n
k−2

)

. So the restriction on the minimum degree

implies that for each i ∈ {2, . . . , k} there are at least 2γ
(

n
k−1

)

− 2k2
(

n
k−2

)

≥ γ
(

n
k−1

)

choices for Ui and in total we obtain γk−1
(

n
k−1

)k
/2 absorbing m-sets for T . �

Continuing the proof of the Lemma 10, let L(T ) denote the family of all those

m-sets absorbing T . From Claim 11 we know |L(T )| ≥ γk−1
(

n
k−1

)k
/2.

Now, choose a family F of m-sets by selecting each of the
(

n
m

)

possible m-sets
independently with probability

p = γkn/∆ with ∆ = 2

(

n

k − 1

)k

≥ 2n

(

n

m − 1

)

≥ 2m

(

n

m

)

. (3)

Then, by Chernoff’s bound (see, e.g., [1]), with probability 1− o(1), as n → ∞ the
family F fulfills the following properties:

|F| ≤ γkn/m (4)

and

|L(T ) ∩ F| ≥ γ2k−1n/5 ∀T ∈

(

V

k

)

. (5)

Furthermore, using (3) we can bound the expected number of intersecting m-sets
by

(

n

m

)

× m ×

(

n

m − 1

)

× p2 ≤ γ2kn/4.

Thus, using Markov’s bound, we derive that with probability at least 3/4

F contains at most γ2kn intersecting pairs. (6)

Hence, with positive probability the family F has all the properties stated in
(4), (5) and (6). By deleting all the intersecting and non-absorbing m-sets in such
a family F we get a subfamily F ′ consisting of pairwise disjoint absorbing m-sets
which, due to γ ≤ 1/10, satisfies

|L(T ) ∩ F ′| ≥ γ2k−1n/5 − γ2kn ≥ γ2kn ∀T ∈

(

V

m

)

.

So, since F ′ consists of pairwise disjoint absorbing m-sets, H[V (F ′)] contains a
perfect matching M of size at most γkn/k. Further, for any subset W ⊂ V \V (M)
of size γ2kn ≥ |W | ∈ kZ we can partition W into at most γ2kn/k sets of size k and
successively absorb them using a different absorbing m-set each time. Thus there
exists a matching covering exactly the vertices in V (F ′) ∪ W . �
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As a consequence we obtain the following.

Corollary 12. For all γ > 0 and k > ℓ ≥ 1 there is an n0 such that for all
n0 ≤ n ∈ kZ the following holds: If H is a k-uniform hypergraph on n vertices
with minimum ℓ-degree δℓ(H) ≥ (1/2 + 2γ)

(

n
k−ℓ

)

and for any set U ⊂ V of size

|U | ≤ γkn the remaining hypergraph H[V \ U ] has a matching covering all but at
most γ2kn vertices. Then H has a perfect matching.

Proof. Let γ, k, and ℓ be given. Then, applying Lemma 10 yields n0. Now let H
be a k-uniform hypergraph on n ≥ n0 vertices with minimum ℓ-degree δℓ(H) ≥
(1/2+2γ)

(

n
k−ℓ

)

. Then using Lemma 10 we can remove a matching M of size γkn/k

from H. Then, according to the assumption, the remaining hypergraphH[V \V (M)]
contains a matching M ′ such that, W , the set of the uncovered vertices has size at
most γ2kn ≥ |W | ∈ kZ. But due to Lemma 10 there is a matching covering exactly
those vertices in V (M) ∪ W , which together with M ′ forms a perfect matching of
H. �

3. General upper bounds for k-uniform hypergraphs

In this section we prove Theorems 2, 3, and 4. For this we verify general up-
per bounds on the minimum ℓ-degree, which guarantee the existence of a perfect
matching and nearly perfect matching in a k-uniform hypergraphs H.

Let H be a k-uniform, k-partite hypergraph on the partition classes V0, . . . Vk−1

and M a matching in H. For an edge E ∈ H we denote the unique vertex in E∩Vi by
vi(E) and for notational convenience below we consider all additions in Z/kZ. Fur-
ther let Ti = (vi, vi+1, . . . , vi+ℓ−1) with i ∈ Z/kZ and vj ∈ Vj for all j ∈ {i, . . . , i+ℓ−
1} and let E = (E0, E1, . . . , Ek−ℓ−1) ∈ [M ]k−ℓ be a (k− ℓ)-tuple of matching edges.
We say Ti and E are adjacent if {vi, . . . , vi+ℓ−1, vi+ℓ(E0), . . . , vi+k−1(Ek−ℓ−1)} ∈
H. The set N(Ti, (E0, . . . , Ek−ℓ−1)) = {vi+ℓ(E0), . . . , vi+k−1(Ek−ℓ−1)} is called the
neighbour of T with respect to E and by deg(Ti, [M ]k−ℓ) we denote the number
of (k − ℓ)-tuples E ∈ [M ]k−ℓ the tuple Ti is adjacent to.

Proof of Theorem 2. For the proof keep in mind that all additions are considered
in Z/kZ. Take M to be a largest matching in H. By adding arbitrary k-tuples if
necessary, without loss of generality we may assume |M | = n−ℓ. Then there are ℓk
unmatched vertices which we divide into k pairwise disjoint sets T0, . . . , Tk−1 with
Ti = {vi, vi+1 . . . , vi+ℓ−1} where vj ∈ Vj .

For an arbitrary edge E ∈ H say E is M -non-crossing if there is an F ∈ M such
that |E∩F | ≥ 2. Then, for a fixed i = 1, 2, . . . , k−1, the number of M -non-crossing
edges E with Ti ⊂ E and Tj ∩ E = ∅ for all j 6= i is at most knk−ℓ−1. Hence, the
restriction on the minimum ℓ-degree implies

deg(Ti, [M ]k−ℓ) ≥ δℓ(H) − knk−ℓ−1 >
k − ℓ

k
nk−ℓ.

And since this is true for each Ti, i ∈ {0, . . . , k − 1} the total degree is

deg(T0 . . . Tk−1, [M ]k−ℓ) :=
∑

i∈{0,...,k−1}

deg(Ti, [M ]k−ℓ) > (k − ℓ)nk−ℓ.

Then, by averaging, we conclude that there must be a (k − ℓ)-tuple of matching
edges (E0, . . . , Ek−ℓ−1) which is adjacent to at least (k − ℓ + 1) tuples Ti. And
without loss of generality let those Ti be T0, . . . , Tk−ℓ. From the definition note
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that N(Ti, (E0, . . . , Ek−ℓ−1)) = {vi+ℓ(E0), . . . , vi+k−1(Ek−ℓ−1)}, the neighbours of
those Ti with respect to (E0, . . . , Ek−ℓ−1), are pairwise disjoint. And since each
pair Ti and N(Ti, (E0, . . . , Ek−ℓ−1)) form an edge in H the (k− ℓ+1) tuples Ti and
their neighbours N(Ti, (E0, . . . , Ek−ℓ−1)) form a matching of size (k − ℓ + 1) in H.
Replacing E0, . . . , Ek−ℓ−1 by this matching we obtain a larger matching. �

Proof of Theorem 3. Let n0 be as asserted by Lemma 8 for given k and ℓ. Next let
H be a k-uniform hypergraph on n > n0 vertices, n ∈ kZ, with minimum ℓ-degree

δℓ(H) ≥
k − ℓ

k

(

n

k − ℓ

)

+ kk+1(lnn)1/2nk−ℓ−1/2.

According to Lemma 8 there is a partition of V = V (H) into k partition classes
V = V0∪̇ . . . ∪̇Vk−1 such that |Vi| = |Vj | = n/k =: m for all i, j and every crossing
ℓ-set T satisfies

deg′(T ) ≥
(k − ℓ)!

kk−ℓ
δℓ(H) − 2(k lnn)1/2nk−ℓ−1/2.

Using (m)k−ℓ ≥ mk−ℓ − mk−ℓ−1
∑

i∈[k−ℓ] i a simple calculation yields

deg′(T ) ≥
k − ℓ

k
mk−ℓ + kmk−ℓ−1

for all crossing ℓ-sets T . By Theorem 2 this ensures a matching covering all but
(ℓ − 1)k vertices. �

Proof of Theorem 4. Let γ > 0 and integers k > ℓ > 0 be given. Applying Corol-
lary 12 with γ1 = γ/(4k) and k, ℓ we obtain n′

0. Applying Theorem 3 with the same
k and ℓ we obtain n′′

0 . Set n0 = max{n′
0, 2n′′

0 , 4k4k/γ2} and let H be a k-uniform
hypergraph on kZ ∋ n > n0 vertices with minimum ℓ-degree

δℓ(H) ≥

(

max

{

1

2
,
k − ℓ

k

}

+ γ

)(

n

k − ℓ

)

.

We want to apply Corollary 12 and pick a set U of size |U | ≤ γk
1 n. Then the

remaining graph HU = H[V \ U ] has minimum degree

δℓ(HU ) ≥ δℓ(H) − γk
1n

(

n

k − ℓ − 1

)

≥

(

max

{

1

2
,
k − ℓ

k

}

+
γ

2

)(

n

k − ℓ

)

According to Theorem 3 there is a matching in HU covering all but (ℓ−1)k ≤ γ2k
1 n

vertices. Thus, by Corollary 12, H contains a perfect matching. �

Note that according to Fact 5 for ℓ ≥ k/2 the Theorem 4 is best possible up to
the constant γ.

4. Asymptotic bound for 3-uniform hypergraphs

In this section we prove Theorem 6. The major part is devoted to proving the
existence of a matching covering (1−o(1))n vertices in a 3-uniform hypergraph with
sufficiently high minimum degree. Together with Corollary 12 it will immediately
imply Theorem 6.
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4.1. Auxiliary results.

Definition 13. Let M be a matching in a 3-uniform hypergraph H. For a vertex

v ∈ V (H) we define the link graph of v with respect to the edges E1E2 . . . Ek ∈
(

M
k

)

to be the graph Lv(E1 . . . Ek) with the vertex set
⋃

i∈[k] Ei and the edge set

{ab : ∃i, j ∈ [k], i 6= j such that a ∈ Ei, b ∈ Ej and vab ∈ H}.

Observe that for a large matching M covering all but o(n) vertices of the hyper-
graph H we have e(Lv(M)) ≈ deg(v). We will study the link graphs Lv(M) of the
vertices v ∈ V (H) \ V (M) with respect to a largest matching M in H. Our goal
is to derive a contradiction by showing that either M can be enlarged or H must
have a rigid structure, which will violate the minimum degree condition of H.

The following statements will be useful for the analysis of the link graph.

Fact 14. Let B be a bipartite graph on six vertices with the partition classes E =
{e1, e2, e3} and F = {f1, f2, f3}. Then the following holds:

(1) if e(B) ≥ 7 then B contains a perfect matching,
(2) if e(B) = 6 then either B contains a perfect matching or is isomorphic to

B033 (see Figure 1),
(3) if e(B) = 5 then either B contains a perfect matching or B is isomorphic

to a graph in {B023, B113} (see Figure 1).

Proof. Suppose deg(e1) ≤ deg(e2) ≤ deg(e3). Then from e(B) ≥ 7 we infer
deg(e1) ≥ 1, deg(e2) ≥ 2 and deg(e3) ≥ 3, thus B contains a perfect matching.

For e(B) = 5 we consider two cases: deg(e1) = 0 and deg(e1) = 1. In the
first case we have deg(e2) = 2 and deg(e3) = 3 and B is isomorphic to B023. If
deg(e1) = 1 then again we distinguish two cases. If deg(e2) = 2 then deg(e3) = 2
and B is either isomorphic to B023 or contains a perfect matching. Else deg(v2) = 1
and deg(v3) = 3 and in this case either B is isomorphic to B113 or contains a perfect
matching.

Finally we consider e(B) = 6. Observe that adding one edge to B113 we obtain a
graph with a perfect matching since one vertex class has the degree sequence 1, 2, 3.
Adding an edge to B023 we see that the resulting graph contains a perfect matching
unless it is isomorphic to B033. �

B113 B023 B033

Figure 1. The critical graphs: the only balanced bipartite graphs
on six vertices and six or five edges without a perfect matching.

We will also need the following result from extremal graph theory which follows
from the work of Goodman in [4] (see also [7, 6] ).

Theorem 15. For all ε′ > 0 there is a c = c(ε′) > 0 and n0 = n0(ε
′) such that for

all n ≥ n0 the following holds. Suppose G is a graph on n vertices which contains
at least (1/2 + ε′)

(

n
2

)

edges. Then G contains cn3 triangles. �
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The following theorem asserts the existence of a matching covering all but o(n)
vertices.

Theorem 16. For all γ > 0 there is a n0 such that for all n > n0 the following
holds. Suppose H is a 3-uniform hypergraph on n vertices with minimum degree
δ(H) ≥ (5/9 + 4γ)

(

n
2

)

then H contains a matching leaving strictly less than γn
vertices unmatched.

Proof. For a given γ define ε = γ/150. Applying Theorem 15 with ε′ = min{γ2, ε}
we obtain c and n′

0. Then choose n0 = max{2110/ε5, 250/cε4, n′
0/ε}.

Next let M be a matching of maximum size in H and suppose |M | = ⌊(1−γ)n/3⌋.
(Otherwise we can simply add arbitrary 3-tuples to M to guarantee equality, since
we will show that M is not a maximum matching.) Let X = V (H) \ V (M) be the
set of the uncovered vertices. Then from the restriction on the minimum degree we
infer that the number of edges in the link graph of every vertex v ∈ X with respect
to M is

e(Lv(M)) ≥ degH(v) − 3|M | − |X |(n − |X |) >

(

5

9
+ γ

)(

n

2

)

. (7)

To derive a contradiction to (7) it is sufficient to show that there is a vertex

v ∈ X such that the pairs EF ∈
(

M
2

)

satisfying e(Lv(EF )) ≥ 6 contribute at most

30εn2 edges to Lv(M) in total, since then we would obtain

e(Lv(M)) ≤ 5

(

|M |

2

)

+ 30εn2 <

(

5

9
+ γ

)(

n

2

)

. (8)

We first prove the following fact.

Fact 17. There are no v1v2v3 ∈
(

X
3

)

and EF ∈
(

M
2

)

such that

• Lv1
(EF ) = Lv2

(EF ) = Lv3
(EF ) and

• Lv1
(EF ) contains a perfect matching,

Proof. Let E = {a, u, x}, F = {b, w, y} and let the perfect matching in Lv1
(EF )

consist of the edges ab, uw and xy. Since these edges belong to the link graph of
all vi, 1 ≤ i ≤ 3, we have that v1ab, v2uw, v3xy ∈ H. Thus, one can replace E and
F by these three edges to obtain a larger matching with contradiction to M being
the maximum matching. �

Fact 18. Let Y1 ⊂ X consist of those vertices v ∈ X for which there are at least εn2

pairs EF ∈
(

M
2

)

such that Lv(EF ) contains a perfect matching. Then |Y1| ≤ εn.

Proof. Consider the auxiliary bipartite graph G1 with vertex classes Y1 and
(

M
2

)

and {v, EF} being an edge if and only if Lv(EF ) contains a perfect matching. Then
G1 has at least |Y1|εn2 edges and if |Y1| exceeds εn, by averaging, there is a pair

EF ∈
(

M
2

)

such that degG1
(EF ) ≥ ε2n. Since the number of bipartite graphs on six

vertices having a perfect matching is at most 29 we conclude from the choice of n0

that there are ε2n/29 ≥ 3 vertices v1, v2, v3 ∈ Y1 such that Lv1
(EF ) = Lv2

(EF ) =
Lv3

(EF ) and Lv1
(EF ) containing a perfect matching. This yields a contradiction

to Fact 17. �

Now remove Y1 from X to obtain the set X1 ⊂ X of size |X1| ≥ γn/2. Note
that from Fact 14 each vertex v ∈ X1 satisfies the following: for all but εn2 pairs
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EF ∈
(

M
2

)

the link graph Lv(EF ) either contains at most four edges or is isomorphic
to a graph in {B113, B023, B033}.

Next we introduce some further notations. For a vertex v ∈ X let

• A(v) = {EF ∈
(

M
2

)

: Lv(EF ) ≃ B113},
• R(v) = {E ∈ M : there are εn elements F ∈ M with EF ∈ A(v)}.
• B(v) = {EF ∈

(

M
2

)

: Lv(EF ) ≃ B ∈ {B023, B033}}.

The remaining part of the proof is now devoted to showing

|B(v)| ≤ 2εn2 (9)

for some vertex v ∈ X1. This with Fact 18 would imply

e(Lv(M)) ≤ 5|A(v)| + 6|B(v)| + 9εn2 + 4

((

|M |

2

)

− |A(v)| − |B(v)|

)

≤ 5

(

|M |

2

)

+ 21εn2

thus (8) follows, and by contradiction, we obtain the theorem.
To this end we first argue that there are only few pairs in B(v) with both elements

located in R(v).

Fact 19. There are no v1 . . . v5 ∈
(

X1

5

)

and (E, F, G, H) ∈ (M)4 such that

(1) Lvi
(EFGH) = Lvj

(EFGH) for all i, j ∈ [5],
(2) {E, F}, {G, H} ∈ A(v1), and {F, G} ∈ B(v1).

Proof. It is sufficient to show that there is a matching of size five in Lvi
(EFGH).

With the five vertices v1 . . . v5 this yields a matching of size five in H and using this
as replacement of EFGH yields a contradiction to the maximality of M .

To this end note first that since Lv1
(EF ) ≃ B113 there is a vertex of degree three

in each E and F which we denote by e1 ∈ E and f1 ∈ F . The same holds for G
and H and we denote the respective vertices by g1 ∈ G and h1 ∈ H . Note that for
a graph B ∈ {B023, B033}, B contains two vertices of degree at least two in each
partition class. Consequently, since Lvi

(FG) ≃ B ∈ {B023, B033} there is a vertex
f2 ∈ F, f2 6= f1 which has at least two neighbours in G. Thus we can pick the edge
f2g2 in Lv1

(FG) such that g2 6= g1. In the graph Lv1
(EF ) (and Lv1

(GH), resp.),
by using the vertices f1, e1 (and g1, h1, resp.), we now find a matching of size two
which does not cover the vertex f2 and g2. This together yields a matching of size
five in Lvi

(EFGH). �

Fact 20. Let Y2 ⊂ X1 consist of those vertices v ∈ X1 such that there are at least

εn2 pairs FG ∈
(

R(v)
2

)

with FG ∈ B(v). Then |Y2| ≤ εn.

Proof. Consider the auxiliary bipartite graph G2 with vertex classes Y2 and (M)4
with {v, (E, F, G, H)} being an edge if and only if EF, GH ∈ A(v) and FG ∈ B(v).

Note that for each pair FG ∈
(

R(v)
2

)

with FG ∈ B(v), by definition of R(v) there are

at least εn(εn − 1) > (εn)2/2 pairs (E, H) ∈ (M)2 such that {v, (E, F, G, H)} ∈
E(G2). Hence, v has at least εn2(εn)2/2 neighbours and G2 contains at least
|Y2|ε3n4/2 edges.

Suppose |Y2| > εn then, by averaging, there is a EFGH ∈ (M)4 which has at
least ε4n neighbours in G2. Since the number of graphs on twelve vertices does not
exceed 266 from the choices of n0 we obtain ε4n/266 ≥ 5 vertices v1 . . . v5 ∈

(

Y1

5

)

such
that Lvi

(EFGH) = Lvj
(EFGH) for all i, j ∈ [5]. This contradicts Fact 19. �
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Next let X2 = X1 \ Y2 and S(v) = M \ R(v) for v ∈ X2. Note that |S(v)| > εn
otherwise from the previous fact we have at most

(

|S(v)|

2

)

+ |R(v)||S(v)| + εn2 ≤ 2εn2 (10)

pairs in B(v) which by (9) yields the theorem. Now we argue that there are only
few pairs of B(v) containing one element from R(v) and the other from S(v).

Fact 21. There are no v1 . . . v6 ∈
(

X2

6

)

and (E, F, G, H, I) ∈ (M)5 such that

(1) Lvi
(EFGHI) = Lvj

(EFGHI) for all i, j ∈ [5],
(2) {E, F}, {H, I} ∈ A(v1) and {F, G}, {G, H} ∈ B(v1).

Proof. Again it is sufficient to prove that one can find a matching of size six in
Lv1

(EFGHI). To this end first denote the vertices with degree three in Lv1
(EF ) by

e1 ∈ E, f1 ∈ F (and in Lv1
(HI) by h1 ∈ H, i1 ∈ I, resp.). Since FG ∈ B(v1) there

are two vertices in G having two neighbours in F . The same holds for GH ∈ B(v1).
Thus there are g1, g2 ∈ G, g1 6= g2 such that g1 has two neighbours in F and g2 has
two neighbours in H . Using them we can pick two matching edges in Lv1

(FGH)
which avoid f1 and h1. Now the vertices e1, f1 (and h1, i1, resp.) can be extended
to a matching of size two in Lv1

(EF ) (and Lv1
(HI), resp.) which leaves the chosen

neighbours of g1 (and g2, resp.) uncovered. Together this yields a matching of size
six. �

Fact 22. Let Y3 ⊂ X2 consist of all those vertices v ∈ X2 such that there are at
least εn2 pairs (E, F ) ∈ R(v) × S(v) which satisfy EF ∈ B(v). Then |Y3| ≤ εn.

Proof. For a vertex v ∈ Y3 and a G ∈ S(v) let xG denote the number of those
F ∈ R(v) such that FG ∈ B(v). Then there are xG(xG−1) choices (F, H) ∈ (R(v))2
such that FG, HG ∈ B(v). And since F, H ∈ R(v) we have at least εn(εn − 1)
choices (E, I) ∈ (M)2 such that EF, HI ∈ A(v). Thus G gives rise to at least
x2

G(εn)2/2 sets (E, F, H, I) ∈ (M)4 satisfying EF, HI ∈ A(v) and FG, GH ∈ B(v).
Recall that s = |S(v)| > εn according to (10) and that

∑

G∈S(v) xG ≥ εn2 since

v ∈ Y3. From Jensen’s inequality and s < n/3 we obtain:

(εn)2

2

∑

G∈S(v)

x2
G ≥

(εn)2

2
s

(

∑ 1

s
xG

)2

≥ ε4n5. (11)

Thus a vertex v ∈ Y3 gives rise to at least ε4n5 ordered tuples (E, F, G, H, I) ∈
(M)5 which satisfy EF, HI ∈ A(v) and FG, GH ∈ B(v). We consider the auxiliary
bipartite graph G3 with vertex classes Y3 and (M)5 and {v, (E, F, G, H, I)} being
an edge if and only if (E, F, G, H, I) satisfies EF, HI ∈ A(v) and FG, GH ∈ B(v).
If |Y3| exceeds εn then G3 contains at least ε5n6 edges. Then by averaging and the
choice of n0 we find v1 . . . v6 which with EFGHI meet the conditions in Fact 21.
This yields a contradiction. �

Let X3 = X2 \ Y3 and note that |X3| ≥ γn/4. Now before deriving the contra-
diction, we show that the density of B(v) in S(v) is at most 1/2 + ε.

Fact 23. There are no v1 . . . v4 and EFG ∈
(

M
3

)

such that

(1) Lv1
(EFG) = Lv2

(EFG) = Lv3
(EFG),

(2) EF, FG, GE ∈ B(v1).
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Proof. Similar to the previous arguments we are looking for a matching of size four
in the graph Lv1

(EFG). To this end denote the isolated vertex in Lv1
(EF ) by

x1, the one in Lv1
(FG) by x2 and the one in Lv1

(GE) by x3. Then there are
1 ≤ i, j ≤ 3 such that xi and xj belong to different edges and without loss of
generality let x1 ∈ E and x2 ∈ F . Since in the link graph Lv1

(EF ) the vertex x1

is not adjacent to any vertex of F there must be a vertex e2 ∈ E which has degree
three, hence is adjacent to x2. Take e2x2 as the first matching edge. In the link
graph Lv1

(GE) there is a vertex g1 ∈ G of degree at least two. This we use to
match a vertex e1 6= e2 in E. Note that e2 could equal x1. Lastly in the link graph
Lv1

(FG) the remaining vertices f1 6= x2 6= f2 have degree at least two, hence they
can be used to create a matching of size two in Lv1

(FG) which avoids the vertex
g1. Together this yields a matching of size four. �

Fact 24. Let Y4 ⊂ X3 contain all those vertices v ∈ X3 such that there are at least
(

1
2 + ε

) (

S(v)
2

)

pairs EF ∈
(

S(v)
2

)

such that EF ∈ B(v). Then |Y4| ≤ εn.

Proof. Consider B(v) ∩
(

S(v)
2

)

as edges on the vertex set S(v). Further note that

|S(v)| ≥ εn ≥ n0 and ε ≥ ε′. Applying Theorem 15 we obtain at least c(εn)3

triangles in S(v), i.e., EFG ∈
(

S(v)
3

)

such that EF, FG, GE ∈ B(v).
As before consider the auxiliary bipartite graph G4 on the partition classes Y4

and
(

M
3

)

with the edges {v, EFG} if and only if EFG ∈
(

S(v)
3

)

and EF, FG, GE ∈

B(v). In case |Y4| > εn we find by averaging a set EFG ∈
(

M
3

)

which, in G4,

is connected to at least cε4n vertices from Y4. And since n was chosen in such
a way that cε4n/240 > 3 there are v1v2v3 ∈

(

Y4

3

)

whose link graphs agree on
EFG, i.e., Lv1

(EFG) = Lv2
(EFG) = Lv3

(EFG). But by Fact 23 this yields a
contradiction. �

From Facts 18, 20, 22, 24 and the choice ε = γ/150 we infer that X \
⋃

i∈[4] Yi

is non-empty. For a vertex v ∈ X \
⋃

i∈[4] Yi the following properties hold by the

definitions of the sets Y1, . . . , Y4.

(1) There are at most εn2 pairs EF ∈
(

M
2

)

such that Lv(EF ) contains a perfect

matching. So their contribution to e(Lv(M)) is at most 9εn2. (Recalling
Fact 14 we note that if Lv(EF ) does not contain a perfect matching then
Lv(EF ) either contains at most four edges or is isomorphic to B113, B023

or B033.)

(2) There are at most εn2 pairs EF ∈
(

R(v)
2

)

such that EF ∈ B(v), contribut-

ing at most 6εn2 edges to Lv(M). Each of the remaining pairs have a
contribution of at most 5.

(3) There are at most εn2 pairs EF ∈ R(v)×S(v) such that EF ∈ B(v) - which
yields a contribution of at most 6εn2. Note that by definition of S(v) all
but εn|S(v)| of the remaining pairs from R(v)× S(v) contribute at most 4
edges to Lv(M).

(4) There are at most
(

1
2 + ε

) (

|S(v)|
2

)

pairs EF ∈
(

S(v)
2

)

such that EF ∈ B(v)

which yields a contribution of at most 6(1/2+ε)
(

|S(v)|
2

)

. For all but at most

εn|S(v)| of the remaining pairs from
(

S(v)
2

)

we have e(Lv(EF )) ≤ 4.
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Now let r = |R(v)| and s = |S(v)|. Counting the edges in the link graph of v with
respect to M = R(v)∪̇S(v) we obtain from the (1)-(4) and from s ≤ |M | < n/3

e(Lv(M)) ≤ 9εn2 +

[

6εn2 + 5

(

r

2

)]

+
[

6εn2 + 5εns + 4rs
]

+

[

6

(

1

2
+ ε

)(

s

2

)

+ 4

(

1

2
− ε

)(

s

2

)

+ 5εns

]

≤ 5

(

r

2

)

+ 5

(

s

2

)

+ 4rs + 30εn2

< 5

(

|M |

2

)

+ 30εn2 <

(

5

9
+ γ

)(

n

2

)

with contradiction to (7). �

As an immediate consequence we obtain Theorem 6.

Proof of Theorem 6. Let γ > 0 be given. Set γ1 = γ/4 and γ2 = γ6
1 . Applying

Corollary 12 with k = 3, ℓ = 1 and 2γ1 yields n′
0 and applying Theorem 16 with γ2

yields n′′
0 . We choose n0 = max{n′

0, 2n′′
0}. Now let n > n0, n ∈ 3Z and suppose H is

a 3-uniform hypergraph on n vertices with δ(H) ≥ (5/9+ γ)
(

n
2

)

. Then, trivially, H

has minimum degree δ(H) ≥ (1/2+2γ1)
(

n
2

)

and we would like to apply Corollary 12.

To this end note that for all subsets U ⊂ V (H) of size at most γ3
1n the remaining

hypergraph HU = H[V \ U ] still has minimum degree

δ(HU ) ≥

(

5

9
+

γ

2

)(

n

2

)

≥

(

5

9
+ 4γ2

)(

n′

2

)

where n′ = |V (H)| − |U |. Thus, due to Theorem 16 there is a matching in HU

covering all but γ2n
′ ≤ γ6

1n vertices. So, we can to apply Corollary 12 and obtain
a perfect matching in H. �

5. Perfect and nearly perfect matchings with several minimum

degrees

In the sequel we are interested in the interplay between several minimum degree
parameters of k-uniform hypergraphs. Our aim is to give an asymptotic characteri-
sation of the existence of a perfect matching and a nearly perfect matching in terms
of several minimum degrees. Recall that a nearly perfect matching in a hypergraph
on n vertices is a matching covering all but a constant number of vertices. Here,
we mainly focus on the asymptotic behaviour of k-uniform hypergraphs.

To be more precise let k ≥ 2 be fixed integers, n ∈ kZ and γ, x1, . . . , xk−1 > 0 be
arbitrary positive reals, then we define the subset Hk,n(γ, x1 . . . , xk−1) of k-uniform
hypergraphs H on n vertices to be

Hk,n(γ, x1 . . . , xk−1) =
{

H : δi(H) ≥ (xi + γ)
(

n
k−i

)

for i = 1, 2, . . . , k − 1
}

.

Due to Proposition 9 we have

δi(H) ≥ x

(

n

k − i

)

implies δi−1(H) ≥ x

(

n

k − i − 1

)

− O(nk−i−2), (12)

thus, we may assume xi ≥ xi+1 for i = 1, . . . , k − 2.
We say (x1, . . . , xk−1) asymptotically forces a perfect matching if for all

γ > 0 there is an n0 such that for all n > n0, n ∈ kZ every H ∈ Hk,n(γ, x1, . . . , xk−1)
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contains a perfect matching. Similarly, we say (x1, . . . , xk) asymptotically forces

a nearly perfect matching if there is a constant C such that for all γ > 0 there
is an n0 such that for all n > n0, n ∈ kZ every H ∈ Hk,n(γ, x1, . . . , xk−1) contains
a matching covering all but C vertices and there is an H ∈ Hk,n(γ, x1, . . . , xk−1)
which does not contain a perfect matching.

For arbitrary integers k ≥ 2 we are interested in the functions

sk : Dk−1 → {0, 1, 2}

on the domain Dk−1 = {(x1, . . . , xk−1) ∈ [0, 1]k : xi ≥ x2 ≥ . . . xk} which are
defined by

sk(x1, . . . , xk−1) =











2 (x1, . . . , xk) asymptotically forces a perfect matching

1 (x1, . . . , xk) asymptotically forces a nearly perfect matching

0 otherwise.

First note that sk(x1, . . . , xk−1) is monotone increasing in each xi. And for k = 3
our results determine s3(x1, x2) completely. We know s3(5/9, 0) = 2 by Theorem 6,
s3(1/2, 1/3) = 2 by Theorem 3 combined with the Absorbing Lemma, Lemma 10.
By Theorem 3 we know s3(1/3, 1/3) = 1 and combined with the lower bounds and
the monotonicity we know s3(x1, x2) for all x1 ≥ x2 (see Figure 2). Fact 5 gives
examples for s3(1/2, 1/2) and s3(5/9, 1/3).

Perfect matchings

Nearly perfect matchings

1
2

5/9

1
3

1/2

0

δ1

δ21

1

Figure 2. The function s3(x1, x2).

6. Open Problems

In Theorem 6 we determined the asymptotic value of t(3, 1, n). However, we
believe that the error term γ

(

n
2

)

in Theorem 6 can be reduced.
For ℓ < k/2 and k > 3 the asymptotic value of t(k, ℓ, n) is still not known and

the known upper and lower bound are far apart. It would be interesting to close
this gap.
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Further, we have shown that for ℓ > k/2 there is a significant difference between
perfect and nearly perfect matchings in terms of minimum ℓ-degrees (compare The-
orem 3 and Theorem 4). This phenomenon, however, cannot happen if ℓ = 1 (due
to the Absorbing Lemma, Lemma 10) and, more generally, it cannot happen if
((k− 1)/k)k−ℓ < 1/2 (see δℓ(H1) in Fact 5) and it would be nice to know for which
ℓ = ℓ(k) the minimum ℓ-degree for nearly perfect matchings and perfect matchings
have the same asymptotics.

More generally, the task of determining the function sk(x1, . . . , xk−1) for all k
and all xi remains open.
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Közl. 7 (1962), 283–286. 4.1

7. E. A. Nordhaus and B. M. Stewart, Triangles in an ordinary graph, Canad. J. Math. 15

(1963), 33–41. 4.1
8. O. Pikhurko, Perfect matchings and K3

4
-tilings in hypergraphs of large codegree, Graphs Com-

bin. 24 (2008), no. 4, 391–404. 1, 1, 1, 2.1, 2.1
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