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Abstract. Ruzsa and Szemerédi established the triangle removal lemma by
proving that: For every η > 0 there exists c > 0 so that every sufficiently large
graph on n vertices, which contains at most cn3 triangles can be made triangle
free by removal of at most η

`n
2

´
edges. More general statements of that type

regarding graphs were successively proved by several authors. In particular,
Alon and Shapira obtained a generalization (which extends all the previous
results of this type), where the triangle is replaced by a possibly infinite family
of graphs and containment is induced.

In this paper we prove the corresponding result for k-uniform hypergraphs
and show that: For every family F of k-uniform hypergraphs and every η > 0
there exist constants c > 0 and C > 0 such that every sufficiently large k-
uniform hypergraph on n vertices, which contains at most cnvF induced copies
of any hypergraph F ∈ F on vF ≤ C vertices can be changed by adding and
deleting at most η

`n
k

´
edges in such a way that it contains no induced copy of

any member of F .

1. Introduction

Answering a question of Brown, T. Sós, and Erdős [7, 30] Ruzsa and Sze-
merédi [27] established the triangle removal lemma. They proved that every graph
which does not contain many triangles can be “made easily” triangle free.

Theorem 1 (Triangle removal lemma). For every η > 0 there exists c > 0 and n0

so that every graph G on n ≥ n0 vertices, which contains at most cn3 triangles can
be made triangle free by removing at most η

(
n
2

)
edges. �

More general statements of that type regarding graphs were successively proved
by several authors in [1, 2, 3, 10]. In particular, the result of Alon and Shapira
in [2] is a generalization, which extends all the previous results of this type, where
the triangle is replaced by a possibly infinite family of graphs and containment is
induced. The main result of the present paper is Theorem 6, which is an extension
of the result of Alon and Shapira from graphs to k-uniform hypergraphs.

Before we state Theorem 6 we discuss some of the known extensions of the
Ruzsa–Szemerédi theorem for graphs and hypergraphs in more detail.

1.1. Previous work. A k-uniform hypergraph H(k) on the vertex set V is some
family of k-element subsets of V , i.e., H(k) ⊆

(
V
k

)
. Note that we identify hyper-

graphs with their edge set and we write V (H(k)) for the vertex set. In this paper
we only consider uniform hypergraphs, where the uniformity is some fixed number
independent of the size of the hypergraph. We usually indicate the uniformity by
a superscript.

A possible generalization of Theorem 1 to hypergraphs was suggested in [10,
Problem 6.1]. The first result in this direction was obtained by Frankl and Rödl [11]
who extended Theorem 1 to 3-uniform hypergraphs with the triangle replaced by
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K
(3)
4 – the complete 3-uniform hypergraph on 4 vertices. The general result, which

settles the conjecture from [10] was recently obtained independently by Gowers [15]
and Nagle, Skokan and authors [20, 25, 26] and subsequently by Tao in [33].

Theorem 2 (Removal lemma). For all k-uniform hypergraphs F (k) on ` vertices
and and every η > 0 there exist c > 0 and n0 so that the following holds.

Suppose H(k) is a k-uniform hypergraph on n ≥ n0 vertices. If H(k) contains
at most cn` copies of F (k), then one can delete η

(
n
k

)
edges from H(k) so that the

resulting sub-hypergraph contains no copy of F (k). �

Theorem 2 implies Szemerédi’s theorem [31] as well as its multidimensional exten-
sions due to Furstenberg and Katznelson [12, 13] (see, e.g., [15, 21, 24, 26, 28, 29, 33]
for details).

Similarly, as all known proofs of Theorem 1 are based on Szemerédi’s regularity
lemma [32] (see, e.g., [17]), all proofs of Theorem 2 rely on hypergraph generaliza-
tions of the regularity lemma (see, e.g., [15, 20, 22, 23, 25, 33]).

One possible generalization of Theorem 2 is to replace the single hypergraph F (k)

by a possibly infinite family F of k-uniform hypergraphs. Such a result was first
proved for graphs by Alon and Shapira [3] in the context of property testing. For a
family of graphs F consider the class Forb(F ) of all graphs H containing no mem-
ber of F as a subgraph. Clearly Forb(F ) is monotone, i.e., if H ∈ Forb(F ) and
H ′ is a subgraph of H (obtained from H by successive vertex and edge deletions),
then H ′ ∈ Forb(F ). Moreover, it is easy to see that for every monotone family
of graphs P (so-called monotone property P) there exists a family F such that
P = Forb(F ). Alon and Shapira proved the following in [3].

Theorem 3. For every (possibly infinite) family of graphs F of graphs and every
η > 0 there exist constants c > 0, C > 0, and n0 such that the following holds.

Suppose H is a graph on n ≥ n0 vertices. If for every ` = 1, . . . , C and every
F ∈ F on ` vertices, H contains at most cn` copies of F , then one can delete η

(
n
2

)
edges from H so that the resulting subgraph H ′ contains no copy of any member of
F , i.e., H ′ ∈ Forb(F ). �

Clearly, Theorem 2 for k = 2 is equivalent to Theorem 3 in the special case
when F consists of only one graph. While for finite families F Theorem 3 can be
proved along the lines of the proof of Theorem 2 (or be deduced from Theorem 2
directly), for infinite families F the proof of Theorem 3 is more sophisticated.

Perhaps one of the earliest results of this nature was obtained by Bollobás, Erdős,
Simonovits, and Szemerédi [5], who essentially proved Theorem 3 for the special
family F of blow-up’s of odd cycles. In [8] answering a question of Erdős (see,
e.g., [9]) Duke and Rödl generalized the result from [5] and proved Theorem 3 for
the families of (r + 1)-chromatic graphs r ≥ 2.

The proof of Theorem 3 for arbitrary families F relies on a strengthened version
of Szemerédi’s regularity lemma, which was obtained by Alon, Fischer, Krivelevich,
and M. Szegedy [1] by iterating the regularity lemma for graphs.

Recently, Theorem 3 was extended by Avart and authors in [4] from graphs to
hypergraphs. The proof in [4] follows the approach of Alon and Shapira and is
based on two successive applications of the hypergraph regularity lemma from [22].

Another natural variant of Theorem 2 would be an induced version. For graphs
this was first considered by Alon, Fischer, Krivelevich, and M. Szegedy [1]. Note
that in this case in order to obtain an induced F -free graph, we may need to not
only remove, but also to add edges.

Theorem 4. For all graphs F on ` vertices and and every η > 0 there exist c > 0
and n0 so that the following holds.



GENERALIZATIONS OF THE REMOVAL LEMMA 3

Suppose H is a graph on n ≥ n0 vertices. If H contains at most cn` induced
copies of F , then one can change η

(
n
2

)
pairs from V (H) (deleting or adding the

edge) so that the resulting graph H ′ contains no induced copy of F . �

An extension of Theorem 4 to 3-uniform hypergraphs was obtained by Ko-
hayakawa, Nagle, and Rödl in [16].

In [2] Alon and Shapira proved a common generalization of Theorem 3 and The-
orem 4, extending Theorem 4 from one forbidden induced graph F to a forbidden
family of induced graphs F . The aim of this paper is to extend their result to
k-uniform hypergraphs.

1.2. Main result. For a family of k-uniform hypergraphs F , let Forbind(F ) be the
family of all hypergraphs H(k) which contain no induced copy of any member of F .
Clearly, Forbind(F ) is a hereditary family (or hereditary property) of hypergraphs,
i.e., if H(k) ∈ Forbind(F ) and H̃(k) is an induced sub-hypergraph of H(k), then
H̃(k) ∈ Forbind(F ).

Definition 5 (η-far). For a constant η ≥ 0 and a possibly infinite family of k-
uniform hypergraphs P we say a given hypergraph H(k) is η-far from P if every

hypergraph G(k) on the same vertex set V (H(k)) with |G(k)4H(k)| ≤ η
(|V (H(k))|

k

)
satisfies G(k) 6∈ P, where G(k)4H(k) denotes the symmetric difference of the edge
sets of G(k) and H(k).

The main objective of this paper is to prove the following.

Theorem 6. For every (possibly infinite) family F of k-uniform hypergraphs and
every η > 0 there exist constants c > 0, C > 0, and n0 such that the following
holds.

Suppose H(k) is a k-uniform hypergraph on n ≥ n0 vertices. If for every ` =
1, . . . , C and every F (k) ∈ F on ` vertices, H(k) contains at most cn` induced
copies of F (k), then H(k) is not η-far from Forbind(F ).

In other words one can change (add/delete) up to at most η
(
n
k

)
k-tuples in

V (H(k)) (to/from H(k)) so that the resulting hypergraph G(k) contains no induced
copy of any member of F , i.e., so that G(k) ∈ Forbind(F ).

Moreover, since Forbind(F ) is a subset of the family F of all hypergraphs not
contained in F , such a hypergraph H(k) is also not η-far from F .

For graphs Theorem 6 was first obtained by Alon and Shapira [2]. The proof
in [2] is again based on the strong version of Szemerédi’s regularity lemma from [1].
Another proof for graphs was found by Lovász and B. Szegedy [19] (see also [6]).
Below we discuss a few consequences of Theorem 6, which motivated the original
work for graphs.

Recall that for every hereditary property P of k-uniform hypergraphs, there
exists a family of k-uniform hypergraphs F such that P = Forbind(F ). Con-
sequently, Theorem 6 states that if H(k) is η-far from some hereditary property
P = Forbind(F ), then it contains many (cn|V (F (k))|) induced copies of some “for-
bidden” hypergraph F (k) ∈ F of size at most C, which “proves” that H(k) is not
in P. In other words, if H(k) is η-far from some given hereditary property P, then
it is “easy” to detect that H(k) 6∈ P. This implies Corollary 7, which we discuss
after the following remark.

Note that if P is F , the complement of some family F , then P is not neces-
sarily hereditary. If H(k) is η-far from P in this case, then the “moreover-part” of
Theorem 6 still implies that H(k) contains many induced copies of some forbidden
hypergraph F (k) ∈ F of bounded size. In this case, however, containing a forbid-
den hypergraph does not necessarily imply that H(k) 6∈ P. Hence, an analogous
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statement of Corollary 7 for arbitrary properties P (which is known to be false) is
not implied.

Let us return to hereditary properties P. For such properties Theorem 6 has
an interesting consequence in the area of property testing (see, e.g., [14] for the
definitions). We say a property P of hypergraphs (i.e., a family of hypergraphs)
is testable with one-sided error if for every η > 0 there exists a constant q =
q(P, η) and a randomized algorithm A which does the following: For a given
hypergraph H(k) the algorithm A can query some oracle whether a k-tuple K of
V (H(k)) spans and edge in H(k) or not. After at most q queries the algorithm
outputs

• H(k) ∈ P with probability 1 if H(k) ∈ P and
• H(k) 6∈ P with probability at least 2/3 if H(k) is η-far from P.

If H(k) 6∈ P and H(k) is not η-far from P, then there are no guarantees for the
output of A .

Furthermore, we say a property P is decidable if there exists an algorithm which
for every hypergraph H(k) distinguishes in finite time if H(k) ∈ P or H(k) 6∈ P.
In this context Theorem 6 implies the following.

Corollary 7. Every decidable, hereditary property of hypergraphs is testable with
one-sided error.

The simple reduction of Corollary 7 from Theorem 6 in the context of graphs can
be found in [2]. We omit it here, since the proof works verbatim for hypergraphs.

1.3. Organization. The proof of Theorem 6 combines ideas from the work of Alon,
Fischer, Krivelevich, and M. Szegedy [1] and Lovász and B. Szegedy [19]. The main
tool in the proof is the hypergraph regularity lemma from [25] (Theorem 20) and the
accompanying counting lemma from [20] (Theorem 13). In Section 2 we introduce
the necessary definitions to state Theorem 13 and Theorem 20.

Then in Section 3 we prove a few preparatory results for the proof of the main
result, Theorem 6, which follows in Section 4.

2. Regularity method for hypergraphs

2.1. Basic definitions. For real constants α, β, and a non-negative constants ξ
we sometimes write α = β ± ξ, if β − ξ ≤ α ≤ β + ξ. For integers ` ≥ j ≥ 1,
the notation [`] denotes the set of integers {1, . . . , `} and

(
[`]
j

)
denotes the set of all

unordered j-tuples from [`].
In this paper `-partite, j-uniform hypergraphs play a special rôle, where j ≤

`. Given vertex sets V1, . . . , V`, we denote by K
(j)
` (V1, . . . , V`) the complete `-

partite, j-uniform hypergraph (i.e., the family of all j-element subsets J ⊆
⋃
i∈[`] Vi

satisfying |Vi ∩ J | ≤ 1 for every i ∈ [`]). If |Vi| = m for every i ∈ [`], then an
(m, `, j)-hypergraph H(j) on V1 ∪ · · · ∪ V` is any subset of K(j)

` (V1, . . . , V`). The
vertex partition V1 ∪ · · · ∪ V` is an (m, `, 1)-hypergraph H(1). (This definition may
seem artificial right now, but it will simplify later notation.) For j ≤ i ≤ ` and
set Λi ∈

(
[`]
i

)
, we denote by H(j)[Λi] = H(j)

[⋃
λ∈Λi

Vλ
]

the sub-hypergraph of the
(m, `, j)-hypergraph H(j) induced on

⋃
λ∈Λi

Vλ.
For an (m, `, j)-hypergraph H(j) and an integer 2 ≤ j ≤ i ≤ `, we denote

by Ki(H(j)) the family of all i-element subsets of V (H(j)) which span complete
sub-hypergraphs in H(j) of order i. For 1 ≤ i ≤ `, we denote by Ki(H(1)) the
family of all i-element subsets of V (H(1)) which ‘cross’ the partition V1 ∪ · · · ∪ V`,
i.e., I ∈ Ki(H(1)) if, and only if, |I ∩ Vs| ≤ 1 for all 1 ≤ s ≤ `. For 2 ≤ j ≤ i ≤ `,
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|Ki(H(j))| is the number of all copies of K(j)
i in H(j). Given an (m, `, j − 1)-

hypergraphH(j−1) and an (m, `, j)-hypergraphH(j), we sayH(j−1) underlies H(j)

if H(j) ⊆ Kj(H(j−1)). This brings us to one of the main concepts of this paper, the
notion of a complex.

Definition 8 ((m, `, h)-complex). Let m ≥ 1 and ` ≥ h ≥ 1 be integers. An
(m, `, h)-complex H is a collection of (m, `, j)-hypergraphs {H(j)}hj=1 such that

(a ) H(1) is an (m, `, 1)-hypergraph, i.e., H(1) = V1 ∪ · · · ∪ V` with |Vi| = m for
i ∈ [`], and

(b ) H(j−1) underlies H(j) for 2 ≤ j ≤ h, i.e., H(j) ⊆ Kj(H(j−1)).

We sometimes shorten the terminology (m, `, h)-hypergraph and (m, `, h)-complex
to (`, h)-hypergraph and (`, h)-complex, when the cardinality m = |V1| = · · · = |Vs|
isn’t of primary concern.

2.2. Regular complexes. We begin by defining a relative density of a j-uniform
hypergraph w.r.t. (j − 1)-uniform hypergraph on the same vertex set.

Definition 9 (relative density). Let H(j) be a j-uniform hypergraph and let
H(j−1) be a (j − 1)-uniform hypergraph on the same vertex set. We define the
density of H(j) w.r.t. H(j−1) as

d
(
H(j)

∣∣H(j−1)
)

=


|H(j)∩Kj(H

(j−1))|
|Kj(H(j−1))| if

∣∣Kj(H(j−1))
∣∣ > 0

0 otherwise .

We also define a notion of regularity for (m, j, j)-hypergraphs w.r.t. some under-
lying (m, j, j − 1)-hypergraphs.

Definition 10. Let constants δ > 0 and d ≥ 0 and a positive integer r be given
along with an (m, j, j)-hypergraph H(j) and an (m, j, j − 1)-hypergraph H(j−1) on
the same vertex set. We say H(j) is (δ, d, r)-regular w.r.t. H(j−1) if for every

collection X = {X(j−1)
1 , . . . , X

(j−1)
r } of not necessarily disjoint sub-hypergraphs

of H(j−1) satisfying∣∣∣∣ ⋃
i∈[r]

Kj(X(j−1)
i )

∣∣∣∣ > δ
∣∣∣Kj(H(j−1))

∣∣∣ , we have d
(
H(j)

∣∣X)
= d± δ ,

where

d
(
H(j)

∣∣X)
=

∣∣H(j) ∩
⋃
i∈[r]Kj(X

(j−1)
i )

∣∣∣∣ ⋃
i∈[r]Kj(X

(j−1)
i )

∣∣ .

We also write (δ, ∗, r)-regular to mean
(
δ, d

(
H(k)

∣∣H(k−1)
)
, r

)
-regular. Moreover,

we say H(j) is (δ,≥d, r)-regular w.r.t. H(j−1) if d
(
H(k)

∣∣H(k−1)
)
≥ d and H(j) is

(δ, ∗, r)-regular w.r.t. H(j−1).

We extend the notion of regular (m, j, j)-hypergraph to (m, `, j)-hypergraphs.

Definition 11 ((δ, d, r)-regular). For positive integersm, ` ≥ j we say an (m, `, j)-
hypergraph H(j) is (δ, d, r)-regular (resp. (δ,≥d, r)-regular) w.r.t. an (m, `, j−1)-
hypergraph H(j−1) if for every Λj ∈

(
`
j

)
, the restriction H(j)[Λj ] = H(j)

[⋃
λ∈Λj

Vλ
]

is (δ, d, r)-regular (resp. (δ,≥ d, r)-regular) w.r.t. the restriction H(j−1)[Λj ] =
H(j−1)

[⋃
λ∈Λj

Vλ
]
.

We now extend the notion of regularity from hypergraphs to complexes.

Definition 12 ((δ,d, r)-regular complex). Let δ = (δ2, . . . , δh) be a vector of
positive reals and let d = (d2, . . . , dh) be a vector of non-negative reals. We say an
(m, `, h)-complex H = {H(j)}hj=1 is (δ,d, r)-regular (resp. (δ,≥d, r)-regular) if
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(i ) H(2) is (δ2, d2, 1)-regular (resp. (δ2,≥d2, 1)-regular) w.r.t. H(1) and
(ii ) H(j) is (δj , dj , r)-regular (resp. (δj ,≥dj , 1)-regular) w.r.t. H(j−1) for every

j = 3, . . . , h.

2.3. Counting lemma. The following theorem was proved by Nagle and authors
in [20]. It was one of the key ingredients for the proof of the removal lemma,
Theorem 2, and will also play a crucial rôle here.

Theorem 13 (Counting lemma [20, Corollary 15]). For all integers 2 ≤ k ≤ ` the
following is true: ∀γ > 0 ∀dk > 0 ∃δk > 0 ∀dk−1 > 0 ∃δk−1 > 0 . . . ∀d2 > 0 ∃δ2 > 0
and there are integers r and m0 so that, with d = (d2, . . . , dk) and δ = (δ2, . . . , δk)
and m ≥ m0, whenever H = {H(j)}kj=1 is a (δ,≥d, r)-regular (m, `, k)-complex,
then ∣∣K`(H(k)

)∣∣ ≥ (1− γ)
k∏
j=2

d
(`

j)
j ×m` .

�

Since Theorem 6 concerns induced copies of hypergraphs an induced version of
the counting lemma, which is a simple corollary of Theorem 13, will be useful. For
the statement of that version we need the following definition.

Definition 14 ((δ,d, r)-regular, induced (m,F (k))-complex). Let F (k) be a k-
uniform hypergraph with V (F (k)) = [`]. Let δ = (δ2, . . . , δk) be a vector of positive
reals and let d = (d2, . . . , dk) be a vector of non-negative reals. We say an (m, `, k)-
complex H = {H(j)}kj=1 with vertex partition V1 ∪ · · · ∪Vk is a (δ,≥d, r)-regular,

induced (m,F (k))-complex if

(i ) the complex {H(j)}k−1
j=1 is a (δ′,≥d′, r)-regular (m, `, k − 1)-complex with

δ′ = (δ2, . . . , δk−1) and d′ = (d2, . . . , dk−1),
(ii ) for every k-tuple in K = {λ1, . . . , λk} ∈

(
`
k

)
we have

(a ) if K is an edge in F (k), then the (m, k, k)-hypergraph H(k)[K] =
H(k)[

⋃k
j=1 Vλj ] is (δk,≥dk, r)-regular w.r.t. H(k−1)[K]

(b ) if K is not an edge in F (k), then the (m, k, k)-hypergraph complement
Kk(H(k−1)[K]) \H(k)[K] is (δk,≥dk, r)-regular w.r.t. H(k−1)[K].

We then state the induced version of Theorem 13.

Corollary 15. For all integers 2 ≤ k ≤ ` the following is true: ∀γ > 0 ∀dk >
0 ∃δk > 0 ∀dk−1 > 0 ∃δk−1 > 0 . . . ∀d2 > 0 ∃δ2 > 0 and there are integers r
and m0 so that for every m ≥ m0 and for every k-uniform hypergraph F (k) with
vertex set [`] the following holds.

Let d = (d2, . . . , dk), δ = (δ2, . . . , δk), and let H = {H(j)}kj=1 be a (δ,≥d, r)-
regular, induced (m,F (k))-complex with vertex partition V1 ∪ · · · ∪ Vk. Then H(k)

contains at least

(1− γ)
k∏
j=2

d
(`

j)
j ×m`

induced copies of F (k).

Proof. It follows from Definition 14, that if H = {H(j)}kj=1 is a (δ,≥d, r)-regular,
induced (m,F (k))-complex, then H̃ = {H(1), . . . ,H(k−1), H̃(k)} is a (δ,≥ d, r)-
regular (m, `, k)-complex, where H̃(k) is defined by setting for every K ∈

(
`
k

)
H̃(k)[K] =

{
H(k)[K] if K ∈ F (k) ,

Kk(H(k−1)[K]) \H(k)[K] if K 6∈ F (k) .
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Moreover, every clique K(`)
k in H̃(k) corresponds to an induced copy of F (k) in H(k)

and, hence, Corollary 15 follows from Theorem 13 applied to H̃. �

2.4. Regularity lemma. In this section we introduce some more notation needed
for the statement of the hypergraph regularity lemma, Theorem 20, from [25]. First
we define the refinement of a partition.

Definition 16 (refinement). Suppose A ⊇ B are sets, A is a partition of A, and
B is a partition of B. We say A refines B and write A ≺ B if for every A ∈ A
there either exist a B ∈ B such that A ⊆ B or A ⊆ A \B.

2.4.1. Partitions. The regularity lemma for k-uniform hypergraphs provides a well-
structured family of partitions P = {P(1), . . . ,P(k−1)} of vertices, pairs, . . . , and
(k − 1)-tuples of the vertex set. We now discuss the structure of these partitions
recursively. Here the partition classes of P(j) will be (j, j)-hypergraphs, i.e., j-
uniform, j-partite hypergraphs.

Let k be a fixed integer and V be a set of vertices. Let P(1) = {V1, . . . , V|P(1)|}
be a partition of V . For every 1 ≤ j ≤ |P(1)|, let Crossj(P(1)) be the family of
all crossing j-tuples J , i.e., the set of j-tuples which satisfy |J ∩ Vi| ≤ 1 for every
Vi ∈ P(1).

Suppose for each 1 ≤ i ≤ j − 1 partitions P(i) of Crossi(P(1)) into (i, i)-
hypergraphs are given. Then for every (j − 1)-tuple I in Crossj−1(P(1)), there
exists a unique (j − 1, j − 1)-hypergraph P (j−1) = P (j−1)(I) ∈ P(j−1) so that
I ∈ P (j−1). For every j-tuple J in Crossj(P(1)), we define the polyad of J

P̂ (j−1)(J) =
⋃ {

P (j−1)(I) : I ∈
(
J
j−1

)}
.

In other words, P̂ (j−1)(J) is the unique set of j partition classes (or (j − 1, j −
1)-hypergraphs) of P(j−1) each containing a (j − 1)-subset of J . Observe that
P̂ (j−1)(J) we view as a (j, j − 1)-hypergraph. More generally, for 1 ≤ i < j, we set

P̂ (i)(J) =
⋃ {

P (i)(I) : I ∈
(
J
i

)}
and P (J) =

{
P̂ (i)(J)

}j−1

i=1
. (1)

Next, we define P̂(j−1), the family of all polyads

P̂(j−1) =
{
P̂ (j−1)(J) : J ∈ Crossj(P(1))

}
.

Note that P̂ (j−1)(J) and P̂ (j−1)(J ′) are not necessarily distinct for different j-
tuples J and J ′. We view P̂(j−1) as a set and, consequently, {Kj(P̂ (j−1)) : P̂ (j−1) ∈
P̂(j−1)} is a partition of Crossj(P(1)).

The structural requirement on the partition P(j) of Crossj(P(1)) is

P(j) ≺ {Kj(P̂ (j−1)) : P̂ (j−1) ∈ P̂(j−1)} . (2)

In other words, we require that the set of cliques spanned by a polyad in P̂(j−1)

is sub-partitioned in P(j) and every partition class in P(j) belongs to precisely
one polyad in P̂(j−1). Note that (2) implies (inductively) that P (J) defined in (1)
is a (j, j − 1)-complex. On a related note, we shall often drop the argument J ∈
Crossj(P(1)) from the notation P̂ (j−1)(J).

Throughout this paper, we want to have an upper bound on the number of
partition classes in P(j), and more specifically, over the number of classes contained
in Kj(P̂ (j−1)) for a fixed polyad P̂ (j−1) ∈ P̂(j−1). We make this precise in the
following definition.

Definition 17 (family of partitions). Suppose V is a set of vertices, k ≥ 2 is
an integer and a = (a1, . . . , ak−1) is a vector of positive integers. We say P =
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P(k − 1,a) = {P(1), . . . ,P(k−1)} is a family of partitions on V , if it satisfies
the following:

(i ) P(1) is a partition of V into a1 classes,
(ii ) P(j) is a partition of Crossj(P(1)) satisfying:

P(j) ≺ {Kj(P̂ (j−1)) : P̂ (j−1) ∈ P̂(j−1)}

and
∣∣{P (j) ∈ P(j) : P (j) ⊆ Kj(P̂ (j−1))

}∣∣ = aj for every P̂ (j−1) ∈ P̂(j−1) .

Moreover, we say P = P(k − 1,a) is T -bounded, if max{a1, . . . , ak−1} ≤ T .

It is easy to see that for a T -bounded family of partitions P(k − 1,a) and an
integer j, 2 ≤ j ≤ k − 1, we have

|P̂(j−1)| =
(
a1

j

) j−1∏
h=2

a
(j

h)
h ≤ T 2k

. (3)

2.4.2. Regular partitions. The following two definitions describe the “regularity”
properties of the partition the regularity lemma shall provide. While the first
definition deals with regularity properties of the auxiliary structure, the second
definition describes how H(k) interacts with the partition.

Definition 18 ((µ, δ,d, r)-equitable). Suppose V is a set of n vertices, µ > 0,
δ = (δ2, . . . , δk−1) ∈ (0, 1]k−2 and d = (d2, . . . , dk−1) ∈ [0, 1]k−2 are vectors of reals
and r is a positive integer.

We say a family of partitions P = P(k− 1,a) on V is (µ, δ,d, r)-equitable if:

(a )
∣∣(V
k

)
\ Crossk(P(1))

∣∣ ≤ µ
(
n
k

)
,

(b ) P(1) = {Vi : i ∈ [a1]} is an equitable vertex partition, i.e., |V1| ≤ · · · ≤
|Va1 | ≤ |V1|+ 1, and

(c ) for all but µ
(
n
k

)
k-tuples K ∈ Crossk(P(1)) the complex P (K) (see (1)) is

a (δ,d, r)-regular (n/a1, k, k − 1)-complex.∗

The following definition describes the “relation” of the k-uniform hypergraph
and the partition provided by the regularity lemma.

Definition 19 ((δk, ∗, r)-regular w.r.t. P). Suppose δk > 0 and r is a positive
integer. LetH(k) be a k-uniform hypergraph with vertex set V and P = P(k−1,a)
be a family of partitions on V . We say H(k) is (δk, ∗, r)-regular w.r.t. P, if∣∣∣ ⋃ {

Kk(P̂ (k−1)) : P̂ (k−1) ∈ P̂(k−1)

and H(k) is not (δk, ∗, r)-regular w.r.t. P̂ (k−1)
}∣∣∣ ≤ δk

(
|V |
k

)
.

Finally we state the regularity lemma for hypergraphs.

Theorem 20 (Regularity lemma). Let k ≥ 2 be a fixed integer. For every positive
integer S, all positive constants µ and δk and functions δj : (0, 1]k−j → (0, 1] for
j = 2, . . . k − 1 and r : N × (0, 1]k−2 → N there are integers T0 and n0 and d0 > 0
so that the following holds.

For every k-uniform hypergraph H(k) satisfying |V (H(k))| = n ≥ n0 and every
S-bounded family of partitions Q = Q(k−1,aQ) with an equitable vertex partition,
i.e., Q(1) = {V1, . . . , VaQ

1
} satisfies |V1| ≤ · · · ≤ |Va1 | ≤ |V1| + 1, there exists a

∗Strictly speaking in view of (b ) the vertex classes of P(1) have sizes in {bn/a1c, dn/a1e}. We,
however, omit floors and ceilings, as they have no influence on our arguments.
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family of partitions P = P(k− 1,aP) and a vector d = (d2, . . . , dk−1) ∈ (0, 1]k−2

so that for

δ = δ(d) = (δ2, . . . , δk−1), where δj = δj(dj , . . . , dk−1) for j = 2, . . . , k − 1,

and r = r(aP
1 , d2, . . . , dk−1)

the following holds:
(i ) P is (µ, δ,d, r)-equitable and T0-bounded,
(ii ) H(k) is (δk, ∗, r)-regular w.r.t. P,
(iii ) P ≺ Q, i.e., P(j) ≺ Q(j) for every j = 1, . . . , k − 1, and
(iv ) dj ≥ d0 for every j = 2, . . . , k − 1.

�

Theorem 20 slightly differs from the hypergraph regularity lemma of Rödl and
Skokan from [25]. However, a proof of Theorem 20 follows along the lines of [25].
We discuss the the five small differences below.

• In the definition of family of partitions (Definition 17), we require that for
every j = 2, . . . , k − 1 and every P̂ (j−1) ∈ P̂(j−1) there are precisely aj
partition classes in P(j), which decompose Kj(P̂ (k−1)). In [25] aj is only an
upper bound of the number of partition classes contained in Kj(P̂ (k−1)).
We may think of simply adding some artificial empty classes to P(j) to
have precisely aj classes for every P̂ (j−1) ∈ P̂(j−1).

• By Definition 18 part (b ) we require that the vertex classes of P(1) differ
in size by at most 1. We can require this additional assertion, provided the
initial vertex partition of Q has the same property, since it is well know that
such an assertion holds for the graph regularity lemma of Szemerédi [32]
and since the hypergraph regularity lemma in [25] is proved by induction
on the uniformity. For more details we refer to [25, Remark 7.19].

• We also use a slightly different notation for the boundedness of a par-
tition. More precisely the lemma in [25] admits a family of partitions
P = P(k − 1,a) such that |P̂(k−1)| ≤ T0. However, this clearly im-
plies by Definition 17 that maxj∈[k−1] aj ≤ T0, i.e., P is T0-bounded as
stated in (i ) of Theorem 20.

• Another difference concerns assertion (iii ) in Theorem 20. Recall that the
proof of Szemerédi’s regularity lemma relies on a procedure in which a given
non-regular vertex partition V0 ∪V1 ∪ · · · ∪Vs will be “almost” refined by a
partition W0∪W1∪· · ·∪Wt. Here “almost” refinement means that only the
“exceptional” class W0 may not be contained in V0, while for every other
class Wj there exist some Vi ⊇ Wj . However the initial vertex partition
U1 ∪ · · · ∪ Ur is completely arbitrary and one can insist that the partitions
obtained in the proof always refine the initial one, if one allows not only
one “exceptional” class, but one exceptional class, say Ui,0 ⊆ Ui, for each
i ∈ [r], i.e., one exceptional class for every vertex class from the initial
partition.

Similar adjustments can be made in the proof of the hypergraph regu-
larity lemma from [25], this way we will have for every j = 1, . . . , k− 1 and
every Q(j) ∈ Q(j) (of the given partition) always precisely one exceptional
class Q(j)

0 .
We also note that such an argument was carried out in [25, Corol-

lary 12.1], where the additional assertion (iii ) of Theorem 20 was proved in
the similar case when Q is replaced by an (`, k−1)-complex G = {G(j)}k−1

j=1

and “refinement” means for every j = 1, . . . , k − 1 and every P (j) either
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P (j) ⊆ G(j) or P (j) ∩ G(j) = ∅. The proof for a bounded partition Q in-
stead of a complex G is the same and follows the lines of the proof of [25,
Corollary 12.1].

• The last difference concerns (iv ). This condition was not “built in” the
regularity lemma of [25], but was explicitly proved, e.g., in [26, Claim 6.1].
We outline the simple proof here.

First recall that by Definition 18 the number of non-crossing k-tuples,
as well as, the number of k-tuples in irregular polyads is bounded by µ

(
n
k

)
for each reason. Therefore if µ < 1/8 (an assumption one can clearly make
without loss of generality) there are at least (1−2µ)

(
n
k

)
> (3/4)

(
n
k

)
k-tuples

in regular polyads. Now all those k-tuples have its
(
k
j

)
j-tuples (2 ≤ j < k)

in (dj , δj , r)-regular (j, j)-hypergraphs from P(j). Since the number of such
hypergraphs is bounded by T 2j

0 ≤ T 2k

0 we infer by the (dj , δj , r)-regularity
that T 2k

0 (dj + δj)
(
n
k

)
≥ 3

4

(
n
k

)
, which provided δj(dj , . . . , dk−1) ≤ dj/2 (an

assumption one can clearly make without loss of generality) implies dj ≥
1/(2T 2k

0 ) =: d0.

3. Auxiliary lemmas

3.1. Cluster hypergraphs. An important part of the argument in the proof of
Theorem 6 will be to compare hypergraphs of very different sizes to find two of
“similar structure.” For that we will use the hypergraph regularity lemma. Suppose
hypergraphs of different size were regularized by Theorem 20 with the same input
parameters. Then sizes of all of the families of partitions corresponding to each of
the hypergraphs are bounded by the same T0. Let us assume for now that all the
partitions have the same size or more precisely have the same vector a. Then we
would like to say that two hypergraphs have the same structure, if there densities
are similar on “every pair of corresponding polyads,” for an appropriate bijection
between the polyads of two partitions.

The similar idea of comparing “cluster graphs” corresponding to graphs of vari-
ous sizes was used by Lovász and B. Szegedy [19]. The structure of partition yielded
by the hypergraph regularity lemma is unfortunately more complicated than that
for Szemerédi’s regularity lemma. In Section 3.1.1 we first introduce the notion of
a labeled family of partitions, which in the graph case corresponds to a labeling
of the vertex classes of the regular partition. Then, in Section 3.1.2, we develop
the notion, which will later allow us to identify hypergraphs of the same structure,
which is similar to the edge weights of the cluster graph.

3.1.1. Labeled partitions. In this paper it will be convenient to consider labeled
families of partitions. Let P(k − 1,a) be a family of partitions on V (see Def-
inition 17). Consider an arbitrary numbering of the vertex classes of P(1), i.e.,
P(1) = {Vi : i ∈ [a1]}. For j = 2, . . . , k − 1 let ϕ(j) : P(j) → [aj ] be a labeling
such that for every polyad P̂ (j−1) ∈ P̂(j−1) the members of {P (j) ∈ P(j) : P (j) ⊆
Kj(P̂ (j−1))} are numbered from 1 to aj in an arbitrary way.

This way, we obtain for every k-tuple K = {v1, . . . , vk} ∈ Crossk(P(1)) an
integer vector x̂K = (x(1)

K , . . . ,x
(k−1)
K ), where

x
(1)
K = (α1 < · · · < αk) so that w.l.o.g. K ∩ Vαi = {vi} (4)

and for j = 2, . . . , k − 1 we set

x
(j)
K =

(
ϕ(j)(P (j)) : {vλ : λ ∈ Λ} ∈ P (j)

)
Λ∈([k]

j )
(5)
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Let
(
[a1]
k

)
<

= {(α1, . . . , αk) : 1 ≤ α1 < · · · < αk ≤ a1} be the set of all “naturally”
ordered k-element subsets of [a1] and set

Â(k − 1,a) =
(

[a1]
k

)
<

×
k−1∏
j=2

[aj ]× · · · × [aj ]︸ ︷︷ ︸
(k

j)-times

(6)

for the address space of all k-tuples K ∈ Crossk(P(1)). The definitions above yield
x̂K ∈ Â(k−1,a) for everyK ∈ Crossk(P(1)). Moreover, for every P̂ (k−1) ∈ P̂(k−1)

we have
x̂K = x̂K′ for all K,K ′ ∈ Kk(P̂ (k−1)) (7)

hence, for every P̂ (k−1) ∈ P̂(k−1) with Kk(P̂(k−1)) 6= ∅ we may set

x̂(P̂ (k−1)) = x̂K for some K ∈ Kk(P̂ (k−1)) . (8)

Let
P̂

(k−1)
6=∅ =

{
P̂ (k−1) ∈ P̂(k−1) : Kk(P̂(k−1)) 6= ∅

}
and

Â 6=∅ =
{
x̂ ∈ Â(k − 1,a) : ∃ P̂ (k−1) ∈ P̂

(k−1)
6=∅ such that x̂(P̂ (k−1)) = x̂

}
.

It is easy to see that the definition in (8) establishes a bijection between P̂
(k−1)
6=∅

and Â 6=∅.
Moreover, since |P̂(k−1)| = |Â(k − 1,a)| (see (3) and (6)) this bijection can be

extended to a bijection between P̂(k−1) and Â(k − 1,a). The inverse bijection
maps x̂ 7→ P̂ (k−1)(x̂) and in the case Kk(P̂ (k−1)(x̂)) 6= ∅, i.e., x̂ ∈ Â 6=∅ then

P (x̂) = P (K) for some K ∈ P̂ (k−1)(x̂) ,

is well defined due to (7). Note that P (x̂) = {P (j)}k−1
j=1 is a (k, k−1)-complex with

P (k−1) = P̂ (k−1)(x̂). For later reference we summarize the above.

Definition 21 (labeled family of partitions). Suppose k ≥ 2 is an integer and
a = (a1, . . . , ak−1) is a vector of positive integers. We say

Â(k − 1,a) =
(

[a1]
k

)
<

×
k−1∏
j=2

[aj ]× · · · × [aj ]︸ ︷︷ ︸
(k

j)-times

,

is the address space.
For a family of partitions P(k − 1,a) on some vertex set V = V1 ∪ · · · ∪ Va1

we say a set of mappings ϕ = {ϕ(2), . . . , ϕ(k−1)}, ϕ(j) : P(j) → [aj ] for every

j = 2, . . . , k − 1 is an a-labeling if for every P̂ (j−1) ∈ P̂(j−1) we have

ϕ(j)
({
P (j) ∈ P(j) : P (j) ⊆ Kj(P̂ (j−1))

})
= [aj ] .

Then x̂K = (x(1)
K , . . . ,x

(k−1)
K ) ∈ Â(k − 1,a) defined in (4) and (5) defines an

equivalence relation on Crossk(P(1)) (see (7)).
Consequently, such a labeling ϕ defines a bijection between Â 6=∅ and P̂

(k−1)
6=∅ (see

paragraph below (8)) which can be extended to a bijection between Â(k−1,a) and

P̂(k−1) such that

(a ) x̂ ∈ Â(k − 1,a) 7→ P̂ (k−1)(x̂) ∈ P̂(k−1) and

(b ) if Kk(P̂ (k−1)(x̂)) 6= ∅, then P (x̂) = P (K) for some K ∈ P̂ (k−1)(x̂) is well
defined,

(c ) K ∈ Kk(P̂ (k−1)(x̂K)) for every K ∈ Crossk(P(1)), and

(d ) P (x̂) = {P (j)}k−1
j=1 is a (k, k − 1)-complex with P (k−1) = P̂ (k−1)(x̂).
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3.1.2. Similarity of hypergraphs. The following definition will enable us to compare
hypergraphs of different sizes. Roughly speaking, we will think of two hypergraphs
of being “similar” if there exists an integer vector a so that for each of them there
exists an a-labeled family of partitions on there respective vertex sets such that for
every x̂ ∈ Â(k − 1,a) the hypergraphs have the similar density on the respective
polyad with address x̂.

Definition 22 ((da,k, ε)-partition). Suppose ε > 0, a = (a1, . . . , ak−1) is a vector

of positive integers, Â(k − 1,a) is an address space, da,k : Â(k − 1,a) → [0, 1] is a

density function, and H(k) is a k-uniform hypergraph.
We say an a-labeled family of partitions P = P(k − 1,a) on V (H(k)) is a

(da,k, ε)-partition of H(k) if for every x̂ ∈ Â(k − 1,a)

d
(
H(k)

∣∣P̂ (k−1)(x̂)
)

= da,k(x̂)± ε .

The concepts above allow to define an object similar to the cluster graph in the
context of Szemerédi’s regularity lemma. For a given δ > 0 Szemerédi’s regularity
lemma provides a partition of the vertex set V = V1 ∪ · · · ∪ Vt of a given graph
G, so that all but δt2 pairs (Vi, Vj) are (δ, ∗, 1)-regular. For many applications
of that lemma it suffices to “reduce” the whole graph to a weighted graph on [t],
where the weight of the edge ij corresponds to the density of the bipartite subgraph
of G induced on (Vi, Vj) (usually it will also be useful to mark those edges which
correspond to irregular pairs). With that notion of cluster graph, one may say that
two graphs G1 and G2 have the same structure if they admit a regular partition in
the same number of parts so that the weights (densities) of the cluster graphs are
essentially equal or deviate by at most ε.

The notion of address space extends the concept of the vertex labeling of the
cluster graph in the context of the hypergraph regularity lemma. This way the
function da,k plays the rôle of the edge weights of the cluster graph. As we consid-
ered two graphs to be similar if they admit a regular partition with essentially the
same cluster graph, we will view hypergraphs H(k)

1 and H(k)
2 to be ε-similar if there

exists an integer vector a (and hence an address space Â(k − 1,a)) and a density
function function da,k such that there is a “regular” (da,k, ε)-partition P1(k−1,a)
of H(k)

1 and a “regular” (da,k, ε)-partition P2(k − 1,a) of H(k)
2 .

The following lemma, which is a simple corollary of the regularity lemma for
hypergraphs, roughly states, that for any given infinite sequence (H(k)

i )∞i=1 of hy-
pergraphs and partitions, there exists a sub-sequence (H(k)

ji
)∞i=1 of “similar” hyper-

graphs (see (iv ) of Lemma 23) on a “regular family of partitions” (see (i ) and (ii )),
which refine the original partitions (see (iii )).

Lemma 23. Let a = (a1, . . . , ak−1) be a vector of positive integers. Suppose
(H(k)

i )∞i=1 is a sequence of hypergraphs such that ni = |V (H(k)
i )| → ∞ and for every

i ∈ N there is a family of partitions Qi = Qi(k−1,a) on V (H(k)
i ) with an equitable

vertex partition, Q(1) = {V1, . . . , Va1} satisfying |V1| ≤ · · · ≤ |Va1 | ≤ |V1|+1. Then
the following is true.

For all positive constants µ and δk and functions

δj : (0, 1]k−j → (0, 1] for j = 2, . . . k − 1 and r : N× (0, 1]k−2 → N

there exist an integer vector b = (b1, . . . , bk−1), an address space Â(k−1, b), a den-
sity function db,k : Â(k − 1, b) → [0, 1], some d0 > 0 and a sub-sequence (H(k)

ji
)∞i=1

of (H(k)
i )∞i=1 such that for every i ∈ N there is a vector dji = (dji,2, . . . , dji,k−1) ∈

[0, 1]k−2 and a b-labeled family of partitions Pji = Pji(k − 1, b) on V (H(k)
ji

) such
that
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(i ) Pji is (µ, δ(dji),dji , r(b1,dji))-equitable,
(ii ) H(k)

ji
is (δk, ∗, r(b1,dji))-regular w.r.t. Pji ,

(iii ) Pji ≺ Qji ,
(iv ) min{dji,2, . . . , dji,k−1} ≥ d0, and
(v ) Pji is a (db,k, µ)-partition of H(k)

ji
.

Since we introduced three concepts related to the partitions, before we start
with the proof, we briefly recall their meaning. Part (i ) of Lemma 23 describes
the regularity properties of the auxiliary partition Pji (see Definition 18) and (ii )
describes the regularity of the hypergraph H

(k)
ji

w.r.t. the partition Pji (see Defi-
nition 19). Finally (v ) states that the densities of all Hji (i ∈ N) on polyads with
the same address are essentially the same and described by the function db,k (see
Definition 22).

Proof. Note that for given input parameters S = maxj∈[k−1] aj , µ, and δk and
functions δj and r the regularity lemma, Theorem 20, guarantees for every i ∈ N
the existence of a family of partitions Pi on H(k)

i with properties (i )–(iv ) for some
b = bi (which may depend on i) and some d0 (independent of i).

The proof of Lemma 23 relies on the observation that it suffices to consider only
finitely many choices for the integer vector b and for the density function db,k (in
view of (v )), which implies that for an infinite sub-sequence of (H(k)

i )∞i=1 those
choices must be the same. It is obvious, that there are only finitely many choices
for b as Theorem 20 gives an upper bound T0 on maxj∈[k−1] bj , which is independent
of H(k)

i . However, the function db,k is real-valued and we have to use an appropriate
discretization. In view of Definition 21, one possible discretization is to consider
intervals in [0, 1] of length about 2µ. More precisely, let µ0 ∈ (0, 1] such that
d1/(2µ)e = 1/(2µ0) and for every b consider special density functions

db,k : Â(k − 1, b) → {(2j − 1)µ0 : j = 1, . . . , 1/(2µ0)} . (9)

Clearly, for every b there are only finitely many such density functions and, on
the other hand, for any hypergraph H

(k)
i and any bi-labeled family of partitions

Pi(k − 1, bi) there exist at least one such special function dbi,k so that (v ) holds.
Summarizing, since any given S = maxj∈[k−1] aj and input parameters µ, δk and

functions δj and r after an application of Theorem 20 to an S-bounded Qi and H(k)
i

the entries of the resulting bi is bounded by T0 there exist some particular vector b

and an infinite sub-sequence (H(k)
ji

)∞i=1 and a sequence of partitions (Pji)
∞
i=1 such

that properties (i )–(iv ) hold. Considering then only density functions db,k as in (9),
we infer the existence of some function db,k and the existence of some infinite sub-
sequences of (H(k)

ji
)∞i=1 and (Pji)

∞
i=1 such that (v ) holds. �

3.2. Index of a partition. In this section we recall the notion of index (or mean-
square density) of a family of partition, which plays a crucial rôle in the proofs of
the aforementioned (hyper)graph regularity lemmas.

Definition 24 (index). Let H(k) be a k-uniform hypergraph on n vertices and P
be a family of partitions on V (H(k)). The index of P w.r.t. H(k) is defined by

ind(P|H(k)) =
1(
n
k

) ∑ {
d2(H(k)|P̂ (k−1))

∣∣Kk(P̂ (k−1))
∣∣ : P̂ (k−1) ∈ P̂(k−1)

}
.

As an immediate consequence from the definition of index we have

0 ≤ ind(P|H(k)) ≤ 1 (10)
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for every hypergraph H(k) and every family of partitions P on V (H(k)). The
following is a simple consequence of the Cauchy–Schwarz inequality.

Fact 25. If H(k) is a k-uniform hypergraph and P ≺ Q are two refining families
of partitions on V (H(k)), then ind(P|H(k)) ≥ ind(Q|H(k)).

A proof of Fact 25 can be found in [25, Lemma 10.3].
The main lemma of this section, Lemma 27, considers two refining partitions,

with “almost” the same index. For the statement of that lemma we need the
following definition.

Definition 26 (ν-misbehaved). Let ν > 0 and P ≺ Q be two refining families

of partitions on the same vertex set. We say a polyad Q̂(k−1) ∈ Q̂(k−1) is ν-
misbehaved w.r.t. P, if∑ {∣∣Kk(P̂ (k−1))

∣∣ : P̂ (k−1) ∈ P̂(k−1) , P̂ (k−1) ⊆ Q̂(k−1) , (11)

and
∣∣d(H(k)|P̂ (k−1))− d(H(k)|Q̂(k−1))

∣∣ > ν
}
≥ ν

∣∣Kk(Q̂(k−1))
∣∣ .

We denote by MBP(Q, ν) the set of all ν-misbehaved polyads Q̂(k−1) ∈ Q̂(k−1).

The following is the main lemma of the section. It asserts that if the index of
two refining partitions is “close,” then there are only few misbehaved polyads in
the coarser partition.

Lemma 27. Let ε, ν > 0, H(k) be a k-uniform hypergraph on n vertices and
P ≺ Q be two refining families of partitions on V (H(k)). If ind(P|H(k)) ≤
ind(Q|H(k)) + ε, then∑ {∣∣Kk(Q̂(k−1))

∣∣ : Q̂(k−1) ∈ MBP(Q, ν)
}
≤ 2ε
ν3

(
n

k

)
.

The proof of Lemma 27 relies on the following well known lemma, which is the
defect form of the Cauchy–Schwarz inequality.

Lemma 28. Suppose ∅ 6= J ⊆ I are index sets. For every i ∈ I let σi and di be
arbitrary non-negative reals and let σI =

∑
i∈I σi and σJ =

∑
j∈J σj. If for some

(not necessarily positive) α ∈ R∑
j∈J

σj
σJ
dj =

∑
i∈I

σi
σI
di + α , then

∑
i∈I

σid
2
i ≥ σI

( ∑
i∈I

σi
σI
di

)2

+ α2σJ .

Proof of Lemma 27. Let Q̂(k−1) ∈ MBP(Q, ν) be fixed and let the hypergraphs
P̂ (k−1) ∈ P̂(k−1) with P̂ (k−1) ⊆ Q̂(k−1) be indexed by some set I and set for every
i ∈ I

di = d(H(k)|P̂ (k−1)
i ) and σi = |Kk(P̂ (k−1)

i )| .
Clearly, with σI = |Kk(Q̂(k−1))| and d = d(H(k)|Q̂(k−1)) we have

∑
i∈I σi = σI and

|H(k) ∩ Kk(Q̂(k−1))| = dσI =
∑
i∈I

diσi . (12)

Moreover, (11) corresponds to
∑
{σj : |dj − d| > ν} ≥ νσI and, consequently, for

some J ⊆ I we obtain∣∣∣∣ ∑
j∈J

σj
σJ
dj −

∑
i∈I

σi
σI
di

∣∣∣∣ =
∣∣∣∣ ∑
j∈J

σj
σJ
dj − d

∣∣∣∣ ≥ ν .

where σJ is defined as σJ =
∑
j∈J σj and J satisfies

σJ ≥
ν

2
σI
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Therefore, Lemma 28 implies∑
i∈I

σid
2
i ≥ σI

( ∑
i∈I

σi
σI
di

)2

+
ν3

2
σI . (13)

Summarizing, due to (13) and (12) we just showed for each Q̂(k−1) ∈ MBP(Q, ν)
that∑ {

d2(H(k)|P̂ (k−1))|Kk(P̂ (k−1))| : P̂ (k−1) ∈ P̂(k−1) and P̂ (k−1) ⊆ Q̂(k−1)
}

≥ d2(H(k)|Q̂(k−1))|Kk(Q̂(k−1))|+ ν3

2
|Kk(Q̂(k−1))| .

Consequently, we infer from Lemma 28 (applied to every Q̂(k−1) 6∈ MBP(Q, ν)
with α = 0) and the last inequality (applied to every Q̂(k−1) ∈ MBP(Q, ν)) that

ind(P|H(k)) ≥ ind(Q|H(k)) +
ν3

2
(
n
k

) ∑ {∣∣Kk(Q̂(k−1))
∣∣ : Q̂(k−1) ∈ MBP(Q, ν)

}
and hence the assumption of Lemma 27 implies∑ {∣∣Kk(Q̂(k−1))

∣∣ : Q̂(k−1) ∈ MBP(Q, ν)
}
≤ 2ε
ν3

(
n

k

)
.

�

4. Proof of the main result

4.1. Proof of Theorem 6. In our argument we will assume that Theorem 6 fails.
This means that there exists a family of k-uniform hypergraphs F and a constant
η > 0 such that for every c, C, and n0 there exists a hypergraph H(k) on n ≥ n0

vertices which is η-far from Forbind(F ) and which for every ` ≤ C contains at
most cn` induced copies of F (k) for every F (k) ∈ F on ` vertices. Applying this
assumption successively with c = 1/i and C = i for i ∈ N yields the following fact.

Fact 29. If Theorem 6 fails for a family of k-uniform hypergraphs F and η > 0,
then there exists a sequence of hypergraphs (H(k)

i )∞i=1 with ni = |V (H(k)
i )| → ∞

such that for every i ∈ N
(i ) H(k)

i is η-far from Forbind(F ) and
(ii ) for every ` ≤ i and every F (k) ∈ F with |V (F (k))| = ` the number of

induced copies of F (k) in H
(k)
i is less than n`i/i.

The same assumption (for graphs) was considered by Lovász and B. Szegedy [19].
While they derived a contradiction based on the properties of a “limit object” of a
sub-sequence of (H(k)

i )∞i=1 the existence of which was established in [18], here we will
only consider hypergraphs of the sequence (H(k)

i )∞i=1. More precisely, the following,
main lemma in the proof of Theorem 6, will locate two special hypergraphs I(k) =
H

(k)
i and J (k) = H

(k)
j in the sequence from which we derive a contradiction.

Lemma 30. Suppose Theorem 6 fails for F and η > 0. Then there exists a
hypergraph I = I(k) on ` vertices, an integer vector a = (a1, . . . , ak−1), a density
function da,k : Â(k − 1,a) → [0, 1], and a family of partitions QI = QI(k − 1,a)
on V (I(k)) such that

(I1 ) QI is a (da,k, η/24)-partition of I(k),
(I2 ) |Crossk(Q

(1)
I )| ≥ (1− η

24 )
(
`
k

)
, and

(I3 ) I(k) is η-far from Forbind(F ).
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Furthermore, there exists a hypergraph J = J (k) on n ≥ ` vertices, a family of
partitions QJ = QJ(k− 1,a) on V (J (k)), an integer vector b = (b1, . . . , bk−1), and
a family of partitions PJ = PJ(k − 1, b) on V (J (k)) such that

(J1 ) QJ is a (da,k, η/24)-partition of J (k) and
(J2 ) PJ ≺ QJ .

Moreover, there exists an `-set L ∈ Cross`(P
(1)
J ) such that

(L1 ) |L ∩ Vi| = |Ui| where Q
(1)
I = {Ui : i ∈ [a1]} and Q

(1)
J = {Vi : i ∈ [a1]},

(L2 )∣∣∣{K ∈
(
L
k

)
∩ Crossk(Q

(1)
J ) :

|d(J (k)|P̂ (k−1)
J (K))− d(J (k)|Q̂(k−1)

J (K))| > η
12

}∣∣∣ ≤ 4η
9

(
`
k

)
,

(L3 ) any k-uniform hypergraph G(k) with vertex set L and with the property

K ∈ G(k) ⇒ d(J (k)|P̂ (k−1)
J (K)) ≥ η

12

and K 6∈ G(k) ⇒ d(J (k)|P̂ (k−1)
J (K)) ≤ 1− η

12 ,

belongs to Forbind(F ).

For the proof of Lemma 30 we will successively chose sub-sequences of (H(k)
i )∞i=1

(see Fact 29), with each sequence being a sub-sequence of the previous. The sub-
sequences will be obtained by Lemma 23 and after finitely many iterations we will
select I(k) and J (k) from the “most current” sub-sequence (from which proper-
ties (I1-I3 ) and (J1-J2 ) will follow). We stop the iterations when the last sub-
sequence (H(k)

ji
)∞i=1 satisfies for every i ∈ N

ind(Pji |H
(k)
ji

) ≤ ind(Qji |H
(k)
ji

) + ε (14)

for some appropriately chosen ε = ε(η). Clearly, we will reach this situation after at
most 1/ε iterations (see (10) and Fact 25). By Lemma 27, we will infer from (14)
that a randomly selected `-tuple from the set of all `-tuples satisfying (L1 ) ad-
mits (L2 ). Moreover, if we select J (k) “far enough” in the sequence, then (ii ) of
Fact 29 will be the key for proving (L3 ). We give the precise details in Section 4.2
and below we derive the main result of this paper from Lemma 30.

Proof of Theorem 6. The proof is by contradiction. Suppose there exists a family
of k-uniform hypergraphs F and some η > 0 so that Theorem 6 fails. We apply
Lemma 30 which yields hypergraphs I(k) (on ` vertices) and J (k) (on n vertices) and
an `-set L ⊆ V (J (k)). In view of property (L3 ) we will define a hypergraph G(k) on
the vertex set L. In order to obtain the desired contradiction we will “compare” the
`-vertex hypergraph G(k) with the `-vertex hypergraph I(k). For that we need some
bijection ψ from L to V (I(k)). We will chose some bijection ψ which “agrees” with
the labellings of QJ and QI , i.e., we require that for any k-tuple K ∈ Crossk(Q

(1)
J )

the address x̂K (see Definition 21) of K w.r.t. the a-labeled partition QJ coincides
with the address x̂ψ(K) of ψ(K) w.r.t. the a-labeled partition QI . More precisely,
fix a bijection ψ : L → V (I(k)) such that for every K ∈

(
L
k

)
the following holds:

if K ∈ Crossk(Q
(1)
J ) then

ψ(K) ∈ Crossk(Q
(1)
I ) and x̂K = x̂ψ(K) . (15)

For a subset of E ⊆
(
L
k

)
we set ψ(E) = {ψ(K) : K ∈ E}.
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We then define the hypergraph G(k) on L by

K ∈ G(k) ⇐⇒

{
either d(J (k)|P̂ (k−1)

J (K)) ≥ η
12 and ψ(K) ∈ I(k)

or d(J (k)|P̂ (k−1)
J (K)) > 1− η

12 .
(16)

for every k-tuple K ∈
(
L
k

)
. Consequently, by (L3 ) of Lemma 30

G(k) ∈ Forbind(F ) . (17)

It is left to show ∣∣I(k)4ψ(G(k))
∣∣ ≤ η

(
`

k

)
, (18)

which due to (17) contradicts (I3 ) of Lemma 30, i.e., (18) contradicts the fact that
I(k) is η-far from Forbind(F ).

We cover the symmetric difference I(k)4ψ(G(k)) by four sets D1, . . . , D4 defined
by

D1 =
(
V (I(k))

k

)
\ Crossk(Q

(1)
I ) ,

D2 = ψ
(
{K ∈

(
L
k

)
∩ Crossk(Q

(1)
J ) :

|d(J (k)|P̂ (k−1)
J (K))− d(J (k)|Q̂(k−1)

J (K))| > η/12
})

,

D3 = I(k) ∩
⋃ {

Kk(Q̂(k−1)
I ) : d(I(k)|Q̂(k−1)

I ) < η/4
}
,

and

D4 =
(
L

k

)
\

(
I(k) ∩

⋃ {
Kk(Q̂(k−1)

I ) : d(I(k)|Q̂(k−1)
I ) > 1− η/4

})
.

We first show that indeed I(k)4ψ(G(k)) ⊆ D1 ∪ · · · ∪ D4. For that first consider
some K ′ ∈ I(k) \ ψ(G(k)) and set K = ψ−1(K ′). By the definition of G(k) in (16)
we have d(J (k)|P̂ (k−1)

J (K)) < η
12 . Then it is easy to show that if K ′ 6∈ D1 ∪ D2

then K ′ ∈ D3. Indeed, we have:

K ′ ∈ I(k) \
(
ψ(G(k)) ∪D1 ∪D2

)
(16)
=⇒ d(J (k)|P̂ (k−1)

J (K)) <
η

12
K′ 6∈D1∪D2=⇒ d(J (k)|Q̂(k−1)

J (K)) <
η

6
. (19)

Due to (J1 ) and (I1 ) of Lemma 30, both QJ and QI are (da,k, η/24)-partitions
with the same Â(k−1,a) and the same density function da,k : Â(k−1,a) → [0, 1].

Hence, on the one hand, we infer d(J (k)|Q̂(k−1)
J (K)) = da,k(x̂K) ± η/24 and,

on the other hand, due to (15) and K = ψ−1(K ′), we have d(I(k)|Q̂(k−1)
I (K ′)) =

da,k(x̂K) ± η/24. Thus, |d(J (k)|Q̂(k−1)
J (K)) − d(I(k)|Q̂(k−1)

I (K ′))| ≤ η/12 and the
right-hand side of (19) implies

K ′ ∈ I(k) \
(
ψ(G(k)) ∪D1 ∪D2

) (19)
=⇒ d(J (k)|Q̂(k−1)

J (K)) <
η

6
(J1 )&(I1 )

=⇒ d(I(k)|Q̂(k−1)
I (K ′)) <

η

6
+

η

12
=
η

4
=⇒ K ′ ∈ D3 .
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Similarly, for K ′ ∈ ψ(G(k)) \ I(k) and K = ψ−1(K ′) we infer by similar arguments
as above:

K ′ ∈ ψ(G(k)) \
(
I(k) ∪D1 ∪D2

)
(16)
=⇒ d(J (k)|P̂ (k−1)

J (K)) > 1− η

12
K′ 6∈D1∪D2=⇒ d(J (k)|Q̂(k−1)

J (K)) > 1− η

6
(J1 )&(I1 )

=⇒ d(I(k)|Q̂(k−1)
I (K ′)) > 1− η

4
=⇒ K ′ ∈ D4 .

Consequently, I(k)4ψ(G(k)) ⊆ D1∪· · ·∪D4. Moreover, from (I2 ) of Lemma 30 we
infer |D1| = |

(
V (I(k))

k

)
\ Crossk(Q

(1)
I )| ≤ η

(
`
k

)
/24 and (L2 ) implies |D2| ≤ 4η

(
`
k

)
/9.

Finally, the definitions of D3 and D4 yield |D3| ≤ η
(
`
k

)
/4 and |D3| ≤ η

(
`
k

)
/4.

Summarizing the above, we obtain∣∣I(k)4ψ(G(k))
∣∣ ≤ |D1|+ |D2|+ |D3|+ |D4| ≤

( η

24
+

4η
9

+
η

4
+
η

4

)(
`

k

)
< η

(
`

k

)
.

Thus we proved (18), which together with (17) yields a contradiction to (I3 ) of
Lemma 30. �

4.2. Proof of main lemma. Since the proof is a bit technical, we will first give
a sketch. The proof of Lemma 30 is based on iterative applications of Lemma 23.
Given an infinite sequence of hypergraphs (H(k)

i )∞i=1 each with a partition Qi(k −
1,a) (where a is the same for every i ∈ N) and “measures of precision” (constants
µ, δk and functions δk−1, . . . , δ2), Lemma 23 guarantees a vector b and a function
db,k : Â(k − 1, b) → [0, 1], a subsequence (H(k)

ji
)∞i=1 of (H(k)

i )∞i=1 and b-labeled
partitions Pji(k − 1, b) ≺ Qji such that

(a ) Pji is “sufficiently regular” and
(b ) Pji is (db,k, µ)-partition of H(k)

ji
.

We will show that after at most 1/ε iterations, we will get two consecutive partitions
Pji ≺ Qji with the refining polyads having similar densities, more precisely Pji

and Qji will satisfy the assumptions of Lemma 27. We then set J (k) equal to H(k)
ji

(for some appropriately chosen i) and I(k) equal to the smallest hypergraph of the
last sequence (H(k)

i )∞i=1 (to which we applied Lemma 23 in the last application).
Then Lemma 27 will imply that a random `-tuple (chosen uniform at random from
all `-sets satisfying (L1 )) will exhibit property (L2 ). Moreover, since by part (ii )
of Fact 29, which holds since we assume that Theorem 6 fails, J (k) = H

(k)
ji

contains
only a “few” induced copies of forbidden hypergraphs F (k) ∈ F and, hence, the
counting lemma (in form of Corollary 15) will yield (L3 ) of Lemma 30.

Proof of Lemma 30. Let F be a family of k-uniform hypergraphs and η > 0 and
suppose Theorem 6 fails for F and η. By Fact 29 there exist a sequence of hyper-
graphs (H(k)

i )∞i=1 with ni = |V (H(k)
i )| → ∞ admitting properties (i ) and (ii ) of

Fact 29. Without loss of generality we may assume that

|V (H(k)
i )|k = nki ≤ 3

2ni × · · · × (ni − k + 1) (20)

for every i ∈ N. In the proof we need an auxiliary constant ε defined by

ε =
1
6

( η

12

)4

. (21)

We want to iterate Lemma 23. This lemma locates a sub-sequence (H(k)
ji

)∞i=1

of hypergraphs satisfying (i )–(v ) of Lemma 23 within a sequence of hypergraphs
(H(k)

i )∞i=1. Note that in particular property (i ) of the sub-sequence (H(k)
ji

)∞i=1 yields
(among other things) the assumption allowing the next iteration, i.e., after an
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appropriate renaming and relabeling (i ) implies that there exist an integer vector a

and for every i ∈ N there is a family of partitions Qi = Qi(k − 1,a) on V (H(k)
i )

each of them having an equitable vertex partition (see (b ) of Definition 18).
For the first iteration we simply choose a = (1, . . . , 1) ∈ Nk−1 and for every i ∈ N

we let Qi = Qi(k− 1,a) be the trivial partition Qi = {{V (H(k)
i }, {∅}, . . . , {∅}} on

V (H(k)
i ) with only one vertex class and Crossj(Q

(1)
i ) being empty for j ≥ 2.

More generally, suppose that after p − 1 ≥ 0 iterations we are given an integer
vector a = (a1, . . . , ak−1) and sequences (H(k)

i )∞i=1 and (Qi)∞i=1 such that Qi =
Qi(k − 1,a) is a family of partitions on V (H(k)

i ). We will now choose µ, δk, and
functions δj (j = 2, . . . , k−1) and r with which we want to apply Lemma 23 in the
p-th iteration. For that set

`p = |V (H(k)
1 )| , µ = min

{
η
24 ,

`k

9k!

}
, (22)

and δk = min
{
`k

9k! , δk(ICL(`p, γ = 1/2, dk = η/12))
}
, (23)

where δk(ICL(`p, γ = 1/2, dk = η/12)) is given by the “induced counting lemma,”
Corollary 15, applied for hypergraphs on `p vertices with γ = 1/2 and dk = η/12.
Similarly, for j = 2, . . . , k − 1 let δj : (0, 1]k−j → (0, 1] be the function in variables
Dj , . . . , Dk−1 given by Corollary 15 for `p, γ = 1/2, and dk = η/12, i.e., for
j = 2, . . . , k − 1 we set

δj(Dj , . . . , Dk−1) = δj(ICL(`p, γ = 1/2, dk = η/12, Dk−1, . . . , Dj)) , (24)

and r(B1, D2, . . . , Dk−1) = r(ICL(`p, γ = 1/2, dk = η/12, Dk−1, . . . , D2)) , (25)

where we make no use of the variable B1 in the definition of r. For those choices
Lemma 23 yields an integer vector b, a density function db,k : Â(k − 1, b) → [0, 1],
a constant d0 > 0, a sub-sequence (H(k)

ji
)∞i=1 of (H(k)

i )∞i=1, and for every i ∈ N
a b-labeled family partitions Pji = Pji(k − 1, b) on H

(k)
ji

satisfying (i )–(v ) of
Lemma 23. We consider the index (see Definition 24) of the partitions Pji and
define

Sp =
{
i ∈ N : ind(Pji |H

(k)
ji

) ≤ ind(Qji |H
(k)
ji

) + ε
}
,

where ε was defined in (21). We distinguish two cases.
If Sp is finite then we iterate Lemma 23 and apply it in the next iteration (after

an appropriate relabeling) to the infinite sub-sequence

(H(k)
ji

)i∈N\Sp
with `p+1 = |V (H(k)

min N\Sp
)| .

If, on the other hand, Sp is infinite, then we stop iterating. Note that in each
iteration the index of Pji compared to the index of Qji with respect to H

(k)
ji

increases by a fixed ε (chosen independent of p) for every i ∈ N \ Sp. Hence, in
view of (10), after at most 1/ε iterations the above procedure ends with an infinite
set Sp.

Let a, (H(k)
i )∞i=1, (Qi)∞i=1, b, db,k : Â(k − 1, b) → [0, 1], d0 > 0, (H(k)

ji
)∞i=1,

(Pji)
∞
i=1, and Sp0 be the the input and outcome of that “final,” say p0-the, iteration

of Lemma 23. In other words for every i ∈ Sp0 we have a b-labeled family partitions
Pji = Pji(k − 1, b) on H(k)

ji
satisfying

(L23.i ) Pji is (µ, δ(dji),dji , r(b1,dji))-equitable,
(L23.ii ) H

(k)
ji

is (δk, ∗, r(b1,dji))-regular w.r.t. Pji ,
(L23.iii ) Pji ≺ Qji ,
(L23.iv ) min{dji,2, . . . , dji,k−1} ≥ d0, and
(L23.v ) Pji is a (db,k, µ)-partition of H(k)

ji
,
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where µ, δk, and functions δj and r were chosen in (22), (23), (24) and (25) depend-
ing on `p0 = ` = |V (H(k)

1 )|. Moreover, by the definition of Sp0 for every i ∈ Sp0 we
have

ind(Pji |H
(k)
ji

) ≤ ind(Qji |H
(k)
ji

) + ε (26)

Without loss of generality we may assume that p0 ≥ 1 and consequently due
to the choice of µp0−1 in (22) and from properties (i ) and (v ) of the penultimate
iteration of Lemma 23 there exist a density function da,k : Â(k−1,a) → [0, 1] such
that for every i ∈ N

|Crossk(Q
(1)
i )| ≥

(
1− η

24

) (
|V (H(k)

i )|
k

)
(27)

Q
(1)
i is an equitable vertex partition (see (b ) of Definition 18) (28)

and Qi is a (da,k, η/24)-partition of H(k)
i . (29)

Next we choose the special hypergraphs I(k) and J (k) and verify properties (I1-
I3 ) and (J1-J2 ). Then we will focus on (L1-L3 ). We set I(k) equal to the first
hypergraph in the given sequence for the last iteration, i.e.,

I(k) = H
(k)
1 , ` = `p0 = |V (I(k))| , and QI = QI(k − 1,a) = Q1(k − 1,a) . (30)

Note, however, that due to the relabeling in every iteration H
(k)
1 in (30) can be

different from the first hypergraph in the sequence (H(k)
i )∞i=1 originally obtained by

Fact 29, which holds since by assumption of Lemma 30 Theorem 6 fails.
Next we select J (k) from the last sub-sequence (H(k)

ji
)∞i=1. It will be essential for

our proof that the selected J (k) contains only a “few” induced copies of forbidden
hypergraphs F (k) ∈ F on ` or less vertices. For that we define the auxiliary
constant

α =
1
2

( η

12

)(`
k) k−1∏
h=2

d
(`

h)
0 ×

(
1
b1

)`
, (31)

where d0 is given by Lemma 23 (see (L23.iv )). We consider the subset S∗p0 ⊆ Sp0
with the property that for every i ∈ S∗p0

#
{
F (k)

ind

⊆ H
(k)
ji

}
< α|V (H(k)

ji
)||V (F (k))| for all F (k) ∈ F with |V (F (k))| ≤ ` . (32)

In fact S∗p0 is an infinite subset of Sp0 , since Sp0 is infinite and since (H(k)
ji

)∞i=1 is a
sub-sequence of the original sequence of hypergraphs, which satisfy in particular (ii )
of Fact 29. For technical reasons we also want the hypergraph J (k) to be large and
we select i0 in S∗p0 sufficiently large, so that

1
b1

∣∣V (H(k)
ji0

)
∣∣ ≥ m0(ICL(`, γ = 1/2, dk = η/12, dk−1 = d0, . . . , d2 = d0)) , (33)

where m0(ICL(`, γ = 1/2, dk = η/12, dk−1 = d0, . . . , d2 = d0)) is given by Corol-
lary 15. We then set

J (k) = H
(k)
ji0

, n = |V (J (k))| , dJ = (dJ,2, . . . , dJ,k−1) = (dji0 ,2, . . . , dji0 ,k−1) ,

QJ = QJ(k − 1,a) = Qji0
(k − 1,a) and PJ = PJ(k − 1, b) = Pji0

(k − 1, b) .

Properties (I1-I3 ) and (J1-J2 ) of Lemma 30 are immediate for those choices of I(k)

and J (k). Indeed (I1 ) and (J1 ) follow from (29) and (I2 ) is satisfied due to (27).
Property (I3 ) follows from part (i ) of Fact 29 and, finally, (J2 ) is a consequence
of (L23.iii ).
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It is left to prove the existence of an `-set L ∈ Cross`(P
(1)
J ) which displays

properties (L1-L3 ). For that we consider a random `-set from V (J (k)). More pre-
cisely, let the labeled vertex partitions of QI and QJ be Q

(1)
I = {U1, . . . , Ua1} and

Q
(1)
J = {V1, . . . , Va1}. We select an `-set uniformly at random from the probability

space

Ω =
a1∏
i=1

(
Vi
|Ui|

)
,

i.e., we select precisely |Ui| vertices from Vi for every i = 1, . . . , a1. Due to that
particular choice of L, it displays property (L1 ). In view of the other “desired”
properties of L we consider the following “bad” events

B1 : L 6∈ Cross`(P
(1)
J ) ,

B2 : ∃K ∈
(
L
k

)
∩ Crossk(P

(1)
J ) : P J(K) is not a

(δ(dJ),dJ , r(b1,dJ))-regular (n/b1, k, k − 1)-complex ,

B3 : ∃K ∈
(
L
k

)
∩ Crossk(P

(1)
J ) : J (k) is not (δk, ∗, r(b1,dJ))-regular w.r.t. P̂J(K) ,

and

B4 :
∣∣∣{K ∈

(
L
k

)
∩ Crossk(Q

(1)
J ) :

|d(J (k)|P̂ (k−1)
J (K)− d(J (k)|Q̂(k−1)

J (K))| > η/12
}∣∣∣ > 4η

9

(
`

k

)
.

Next we estimate the probabilities of the events B1, . . . , B4. For that the following
observation will be useful.

Fact 31. For every K ∈ Crossk(P
(1)
J )

extL(K) := |{L ∈ Ω: K ⊆ L}| = (1± o(1))
(
`

n

)k (
n/a1

`/a1

)a1

,

where o(1) → 0 as both ` and n tend to infinity and a1 is fixed.

Proof. Recall that by the definition of Ω, extL(K) is counting for a fixed k-set K
the number of `-sets L each of which contain K and for every i ∈ [a1] intersect
the set Vi in |Ui| = `/a1. This number is smallest if K ⊆ Vi for some i ∈ [a1] and
largest when |K ∩ Vi| ≤ 1 for every i ∈ [a1]. Consequently and (28) we have for
every K ∈

(
V (J(k))

k

)
(
n/a1 − k

`/a1 − k

)(
n/a1

`/a1

)a1−1

≤ extL(K) ≤
(
n/a1 − 1
`/a1 − 1

)k(
n/a1

`/a1

)a1−k

,

and straightforward calculations yield Fact 31. �

Without loss of generality we assume that ` and n are sufficiently large, so that
for every K ∈

(
V (J(k))

k

)
extL(K) =

(
1± 1

3

) (
`

n

)k (
n/a1

`/a1

)a1

. (34)

(This can easily be achieved by focusing on only sufficiently large hypergraphs in
the sub-sequence (H(k)

ji
)∞i=1 in the iteration procedure.) We now turn our attention

to the events B1, . . . , B4 and prove upper bounds on the probabilities of those “bad”
events. We start with B1 ∪B2 ∪B3, i.e., we estimate the events that there is some
k-set K ⊂ L such that either K 6∈ Crossk(P

(1)
J ) or P J(K) (see (1)) is not regular

of J (k) is not regular w.r.t. P̂J(K).
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By (L23.i ) we have∣∣{K ∈
(
V (J(k))

k

)
: K 6∈ Crossk(P

(1)
J )

}∣∣ ≤ µ

(
n

k

)
.

Moreover, it follows from (L23.i ) that∣∣{K ∈ Crossk(P
(1)
J ) : P J(K) is not (δ(dJ),dJ , r(b1,dJ))-regular

∣∣} ≤ µ

(
n

k

)
and from (L23.ii ) that∣∣{K ∈ Crossk(P

(1)
J ) : J (k) is not (δk, ∗, r(b1,dJ))-regular w.r.t. P̂J(K)

∣∣} ≤ δk

(
n

k

)
.

Due to (34) each k-tuple K ∈
(
V (J(k))

k

)
extends to at most (4/3)(`/n)k

(
n/a1
`/a1

)a1

different `-sets L ∈ Ω. Consequently, the number of pairs (L,K), with L ∈ Ω and
K ∈

(
L
k

)
which is bad, i.e., K 6∈ Crossk(P

(1)
J ), or P J(K) is not regular, or J (k) is

not regular w.r.t. P̂J(K), is at most

(2µ+ δk)
(
n

k

)
× 4

3

(
`

n

)k (
n/a1

`/a1

)a1

. (35)

As |Ω| =
(
n/a1
`/a1

)a1
, the expected number of bad k-tuples K in

(
L
k

)
for a random

`-set L is at most

(2µ+ δk)×
4`k

3k!
<

1
2

(36)

(see (22), (23), and (30)). Therefore, by Markov’s inequality we have

P(B1 ∪B2 ∪B3) <
1
2
. (37)

Next, we consider B4. Here we use the abortion criteria for the iteration of
Lemma 23, i.e., we use (26). By Lemma 27 we infer from (26) that∣∣∣{K ∈ Crossk(Q

(1)
J ) : Q̂(k−1)

J (K) ∈ MBPJ
(QJ , η/12)

}∣∣∣ ≤ 2ε
(η/12)3

(
n

k

)
.

Moreover, we say a k-tuple K ∈ Crossk(Q
(1)
J misbehaves if |d(J (k)|P̂ (k−1)

J (K) −
d(J (k)|Q̂(k−1)

J (K))| > η/12. Hence for every Q̂
(k−1)
J 6∈ MBPJ

(QJ ,
η
12 ) it follows

from the definition of MBPJ
(QJ ,

η
12 ) (see Definition 26) that∣∣{K ∈ Kk(Q̂(k−1)

J ) : K misbehaves
}∣∣ ≤ η

12

∣∣Kk(Q̂(k−1)
J )

∣∣ .
Therefore, the combination of the last two estimates yields∣∣{K ∈ Crossk(Q

(1)
J ) : K misbehaves

}∣∣ ≤ ( 2ε
(η/12)3

+
η

12

)(
n

k

)
(21)

≤ η

9

(
n

k

)
.

Consequently, similar calculations as in (35) and (36) give that for randomly chosen
`-set L ∈ Ω the expected number of misbehaved k-tuples K ∈

(
L
k

)
∩ Crossk(Q

(1)
J )

is at most
η

9
× 4`k

3k!

(20)

≤ 2η
9

(
`

k

)
, (38)

since ` = |V (I(k))| and I(k) is a hypergraph from the sequence (H(k)
i )∞i=1.

Recalling that B4 is the event that a random `-set L ∈ Ω contains more than
(4η/9)

(
`
k

)
misbehaved k-tuples we infer from (38) by Markov’s inequality

P(B4) ≤
1
2
. (39)
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From (37) and (39) we infer that there exist a “good” `-set, i.e., there exist an
`-set L ∈ Ω \ (B1 ∪ · · · ∪ B4). We now show that such an `-set has the desired
properties (L1-L3 ) of Lemma 30.

First, since L 6∈ B1 we have L ∈ Cross`(P
(1)
J ) as required. Moreover, (L1 ) holds

by definition of Ω and (L2 ) is equivalent to L 6∈ B4.
Finally, we focus on property (L3 ). Let a hypergraph G(k) with vertex set L be

given as in (L3 ). Let P J(L) = {P (j)
J (L)}kj=1 be defined for j ∈ [k] by

P
(j)
J (L) =


⋃ {

P
(j)
J (K) : K ∈

(
L
k

)}
if j = 1 . . . , k − 1 ,⋃ {

J (k) ∩ Kk(P̂ (k−1)
J (K)) : K ∈

(
L
k

)}
if j = k .

(40)

Since L 6∈ B2∪B3 we have for every K ∈
(
L
k

)
that P J(K) is a (δ(dJ),dJ , r(b1,dJ))-

regular (n/b1, k, k − 1)-complex and that J (k) is (δk, ∗, r(b1,dJ))-regular w.r.t.
P̂

(k−1)
J (K). Moreover, the assumptions on G(k) in (L3 ) imply d(J (k)|P̂ (k−1)

J (K)) ≥
η/12 for K ∈ G(k) and d(J (k)|P̂ (k−1)

J (K)) ≤ 1− η/12 for K 6∈ G(k). Consequently,
the definition of P J(L) in (40) yields that P J(L) is a (δ′,≥d′, r(b1,dJ))-regular,
induced (n/b1, G(k))-complex with δ′ = (δ(dJ), δk) and d′ = (dJ , η/12). Due to
the choice of δk, and the functions δj and r in (23), (24), and (25) and due to (33)
we can apply the “induced” counting lemma, Corollary 15. It follows that J (k)

contains at least

1
2

( η

12

)(`
k) k−1∏
j=2

d
(`

j)
J,j ×

(
n

b1

)` (L23.iv )

≥ 1
2

( η

12

)(`
k) k−1∏
j=2

d
(`

j)
0 ×

(
n

b1

)`
(31)
= α|n|`

induced copies of G(k). Then the choice of J (k) due to (32) implies that G(k) 6∈ F .
Similarly, for every subset L′ ⊆ L we infer from Corollary 15 applied to P J(L′)
that the number of induced copies of G(k)[L′] in J (k) is at least

1
2

( η

12

)(|L′|
k ) k−1∏

j=2

d
(|L′|

j )
J,j ×

(
n

b1

)|L′| (L23.iv )

≥ 1
2

( η

12

)(`
k) k−1∏
j=2

d
(`

j)
0 × n|L

′|

b`1

(31)
= α|n||L

′| .

Hence, the choice of J (k) in view of (32) implies G(k)[L′] 6∈ F . Since we in-
ferred G(k)[L′] 6∈ F for any L′ ⊆ L we have G(k) ∈ Forbind(F ), which is (L3 )
of Lemma 30. We thus showed that L displays all required properties and this
concludes the proof of Lemma 30. �

References

[1] N. Alon, E. Fischer, M. Krivelevich, and M. Szegedy, Efficient testing of large graphs, Com-
binatorica 20 (2000), no. 4, 451–476. 1, 1.1, 1.2, 1.3

[2] N. Alon and A. Shapira, A characterization of the (natural) graph properties testable with
one-sided error, Proceedings of the fourty-sixth annual IEEE Symposium on Foundations of
Computer Science, IEEE Computer Society, 2005, pp. 429–438. 1, 1.1, 1.2, 1.2

[3] , Every monotone graph property is testable, Proceedings of the thirty-seventh annual
ACM symposium on Theory of computing (New York, NY, USA), ACM Press, 2005, pp. 128–
137. 1, 1.1
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