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Abstract. For k-uniform hypergraphs F and H and an integer r ≥ 2, let
cr,F (H) denote the number of r-colorings of the set of hyperedges of H with
no monochromatic copy of F and let cr,F (n) = maxH∈Hn cr,F (H), where the
maximum runs over all k-uniform hypergraphs on n vertices. Moreover, let
ex(n, F ) be the usual extremal or Turán function, i.e., the maximum number
of hyperedges of an n-vertex k-uniform hypergraph which contains no copy of
F .

For complete graphs F = K` and r = 2 Erdős and Rothschild conjectured
that c2,K`

(n) = 2ex(n,K`). This conjecture was proved by Yuster for ` = 3
and by Alon, Balogh, Keevash, and Sudakov for arbitrary `. In this paper,
we consider the question for hypergraphs and show that in the special case,
when F is the Fano plane and r = 2 or 3, then cr,F (n) = rex(n,F ), while

cr,F (n)� rex(n,F ) for r ≥ 4.

1. Introduction and results

We consider k-uniform hypergraphs H = (V,E), where E = E(H) ⊆
(
V
k

)
. For

k-uniform hypergraphs F and H and an integer r let cr,F (H) denote the number
of r-colorings of the set of hyperedges of H with no monochromatic copy of F
and let cr,F (n) = maxH∈Hn

cr,F (H), where the maximum runs over all k-uniform
hypergraphs on n vertices. Moreover, let ex(n, F ) be the usual extremal or Turán
function, i.e., the maximum number of hyperedges of an n-vertex k-uniform hy-
pergraph which contains no copy of F . We say a hypergraph H on n vertices is
extremal for F if e(H) = |E(H)| = ex(n, F ).

Clearly, every edge coloring of any extremal hypergraph H for F contains no
monochromatic copy of F and, consequently,

cr,F (n) ≥ rex(n,F )

for all r ≥ 2. On the other hand, let ForbF (n) denote the family of all labeled
hypergraphs on n vertices which contain no copy of F . Since every 2-coloring of
the set of hyperedges of a hypergraph H, which contains no monochromatic copy
of F , gives rise to a member of ForbF (n), e.g., consider always the subhypergraph
in one of the two colors, we have

c2,F (n) ≤ |ForbF (n)| .
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The size of ForbF (n) was first studied by Erdős, Kleitman, and Rothschild [8] and
Kolaitis, Prömel, and Rothschild [13, 14] for graph cliques F = K` on ` vertices
and by Erdős, Frankl, and Rödl [7] for arbitrary graphs F , i.e., |ForbF (n)| ≤
2ex(n,F )+o(n2) (see [3, 4] for recent improvements). Recently, the result from [7] was
extended in [15, 16] to k-uniform hypergraphs F , i.e,

|ForbF (n)| ≤ 2ex(n,F )+o(nk)

(see [17] for recent improvements when F is the hypergraph of the Fano plane). Re-
turning to the maximum number of hyperedge colorings without a monochromatic
copy of an arbitrary k-uniform hypergraph F , we have for two colors

2ex(n,F ) ≤ c2,F (n) ≤ 2ex(n,F )+o(nk) . (1)

In the graph case, when F = K` is a graph clique Yuster [20] (for ` = 3)
and Alon et al. [1] (for arbitrary `) closed the gap in (1) and showed, that the
lower bound is the correct order of c2,K`

(n), i.e., c2,K`
(n) = 2ex(n,K`), which was

conjectured by Erdős and Rothschild (see [6]). Moreover, Alon et al. showed that
c3,K`

(n) = 3ex(n,K`) and in both cases r = 2, 3 we have

cr,K`
(H) = cr,K`

(n) = rex(n,K`)

only when H is the (` − 1)-partite Turán graph. In fact, it was shown in [1] that
the same result holds for `-chromatic graphs which contain a color-critical edge.
Furthermore, it was observed in [1] that cr,K`

� rex(n,K`) for r ≥ 4.
In this paper, we determine cr,F (n) for r = 2, 3 and F being the 3-uniform hyper-

graph of the Fano plane, i.e., the unique triple system with 7 hyperedges on 7 ver-
tices in which every pair of vertices is contained in precisely one hyperedge. It was
shown independently by Füredi and Simonovits [10] and Keevash and Sudakov [11],
that for n sufficiently large the unique extremal Fano plane-free hypergraph on
n vertices is the balanced, complete, bipartite hypergraph Bn = (U ∪̇W,E(Bn)),
where |U | = bn/2c, |W | = dn/2e and E(Bn) consists of all hyperedges with at least
one vertex in U and one vertex in W . Therefore, for the Fano plane F we have for
sufficiently large n

ex(n, F ) = e(Bn) = |E(Bn)| =
(

n

3

)
−
(
dn/2e

3

)
−
(
bn/2c

3

)
≤ n3

8
− n2

4
≤ n3

8
(2)

and

δ1(Bn) = e(Bn)− e(Bn−1) =
(⌈n

2

⌉
− 1
)⌊n

2

⌋
+
(
bn/2c

2

)
≥ 3

8
n2 − n , (3)

where for a hypergraph H = (V,E) we denote by δ1(H) the minimum vertex degree,
i.e., δ1(H) = minu∈V

∣∣{{v, w} : {u, v, w} ∈ E
}∣∣.

Theorem 1. Let F be the 3-uniform hypergraph of the Fano plane and r = 2 or
r = 3. There exists an integer nr, such that for every 3-uniform hypergraph H on
n ≥ nr vertices we have

cr,F (H) ≤ rex(n,F ).

Moreover, the only 3-uniform hypergraph H on n vertices with cr,F (H) = rex(n,F ) is
the extremal hypergraph for F , i.e., H is isomorphic to Bn the balanced, complete,
bipartite hypergraph on n vertices.
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The following result shows that, similarly as in the case of graph cliques, Theo-
rem 1 does not extend to more than 3 colors (see also (24)).

Theorem 2. For the Fano plane F and r > 3 we have cr,F (n) � rex(n,F ) for
sufficiently large n.

Theorem 1 and Theorem 2 are a first extension of the results from Alon et al. [1]
to hypergraphs. In fact, our proof proceeds along similar lines and is based on the
stability result for the Fano plane due to Keevash and Sudakov [11] and Füredi and
Simonovits [10] and the weak hypergraph regularity lemma.

2. Tools

Throughout this paper we study 3-uniform hypergraphs and from now on by a
hypergraph we always mean a 3-uniform hypergraph. For a hypergraph H = (V,E)
and a subset U ⊆ V of the vertex set V we write EH(U) or simply E(U), if
the hypergraph under considerations is obvious, for the hyperedges of H that are
completely contained in U , i.e., EH(U) = E ∩

(
U
3

)
. We define the cardinality of

EH(U) by eH(U) or simply e(U). Similarly, for two disjoint subsets U and W we
write

E(U,W ) = {e ∈ E : e ⊆ U∪W, e∩U 6= ∅, e∩W 6= ∅} = E(U∪W )\(E(U)∪E(W ))

and e(U,W ) = |E(U,W )|. Analogously, for triples of pairwise disjoint subsets we
define E(W1,W2,W3) and e(W1,W2,W3).

The following stability result for Fano plane-free hypergraphs was proved by
Füredi and Simonovits [10] and Keevash and Sudakov [11].

Theorem 3 (Stability theorem for Fano plane-free hypergraphs). For every δ > 0
there exist ε > 0 and n0 such that every Fano plane-free hypergraph H on n ≥ n0

vertices with at least ( 1
8 − ε)n3 hyperedges admits a partition V (H) = X∪̇Y with

e(X) + e(Y ) < δn3. �

Another tool we use in this paper is the so-called weak hypergraph regular-
ity lemma. This result is a straightforward extension of Szemerédi’s regularity
lemma [19] for graphs. We only state the version for 3-uniform hypergraphs here.
Let H = (V,E) be a hypergraph and let W1,W2,W3 be mutually disjoint non-
empty subsets of V . We denote by dH(W1,W2,W3) = d(W1,W2,W3) the density
of the 3-partite induced subhypergraph H[W1,W2,W3] of H, defined by

dH(W1,W2,W3) =
eH(W1,W2,W3)
|W1||W2||W3|

.

We say the triple (V1, V2, V3) of mutually disjoint subsets V1, V2, V3 ⊆ V is (ε, d)-
regular, for positive constants ε and d, if

|dH(W1,W2,W3)− d| ≤ ε

for all triples of subsets W1 ⊆ V1,W2 ⊆ V2,W3 ⊆ V3 with |W1||W2||W3| ≥
ε|V1||V2||V3|. We say the triple (V1, V2, V3) is ε-regular if it is (ε, d)-regular for
some d ≥ 0.

An ε-regular partition of a vertex set V (H) has the following properties:
(i ) V = V1∪̇ . . . ∪̇Vt

(ii ) ||Vi| − |Vj || ≤ 1 for all i, j,
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(iii ) (Vi1 , Vi2 , Vi3) is ε-regular for all but at most ε
(

t
3

)
sets {i1, i2, i3} ⊆ [t] =

{1, . . . , t}.
The colored version of the weak regularity lemma (see e.g. [5, 9, 18]) states the

following.

Theorem 4. For all integers r ≥ 1 and t0 ≥ 1, and every ε > 0, there exist
T0 = T0(r, t0, ε) and N0 = N0(r, t0, ε) so that for every hypergraph H = (V,E) on
n ≥ N0 vertices, which hyperedges are r-colored E(H) = E1∪̇ . . . ∪̇Er, there exists
a partition V = V1∪̇ . . . ∪̇Vt, with t0 ≤ t ≤ T0, which is ε-regular simultaneously
with respect to all subhypergraphs Hi = (V,Ei) for 1 ≤ i ≤ r. �

For a hypergraph H and a regular partition of its vertex set we use the concept
of a cluster-hypergraph.

Definition 5. For a hypergraph H = (V,E) and an ε-regular partition V =
V1∪̇ · · · ∪̇Vt of its vertex set and a number γ > 0 let H(γ) = (V ∗, E∗) be the
cluster-hypergraph with vertex set V ∗ = [t] = {1, . . . , t} and edge set E∗, where for
1 ≤ i < j < k ≤ t it is {i, j, k} ∈ E∗ if and only if the triple (Vi, Vj , Vk) is ε-regular
and the density satisfies dH(Vi, Vj , Vk) ≥ γ.

In [12] a counting lemma for linear hypergraphs in the context of the weak
hypergraph regularity lemma was proved, where a hypergraph is said to be linear
if no two of its hyperedges intersect in more than one vertex. Since the Fano plane
is a linear hypergraph, we obtain the following lemma.

Lemma 6. For all γ > 0 there exists ε = ε(γ) > 0 and an integer m0 = m0(γ) such
that for every positive integer t the following holds. Let H = (V,E) be a hypergraph
with an ε-regular partition V = V1∪̇ · · · ∪̇Vt such that |Vi| ≥ m0 for every i ∈ [t]. If
the cluster-hypergraph H(γ) contains a copy of the Fano plane, then the hypergraph
H contains a Fano plane too. �

3. Structure of hypergraphs with many edge-colorings

For the proof of Theorem 1 we first analyse the structure of those hypergraphs,
which admit “many” Fano plane-free colorings.

Lemma 7 (Main Lemma). Let r = 2 or r = 3 and let F be the hypergraph of
the Fano plane. Then for every δ > 0 there exists n0 = n0(r, δ) such that every
hypergraph H = (V,E) on n ≥ n0 vertices with cr,F (H) ≥ re(Bn) admits a partition
V = X∪̇Y of its vertex set with e(X) + e(Y ) < δn3.

Proof. We prove the lemma only for r = 3, as the proof for r = 2 is very similar.
Let δ > 0 be given. Let h(x) := −x log x− (1− x) log(1− x) for 0 < x < 1 be the
entropy function. Fix γ sufficiently small with 0 < γ < 1 such that

133γ + 66h(6γ) <
δ

2
and 44γ + 22h(6γ) < ε′(δ/2) , (4)

where ε′(δ/2) is given by Theorem 3. Note that such a γ exists, since h(6γ) → 0
as γ → 0. Let ε = ε(γ) > 0 with ε < γ/2 be such, that Lemma 6 is satisfied.
Moreover, let t0 = max{1/ε, t′}, where t′ is sufficiently large, so that (2) holds,
i.e., ex(t, F ) = e(Bt) for every t ≥ t′, and so that Theorem 3 holds for δ/2 for all
hypergraphs on at least t′ vertices.

Let T0 = T0(3, t0, ε) and N0 = N0(3, t0, ε) be according to Theorem 4 and let
m0 = m0(γ) be according to Lemma 6. Finally, set n0 := max{N0, T0 ·m0}.
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Let H = (V,E) be a hypergraph on n ≥ n0 vertices, which admits at least 3e(Bn)

Fano plane-free 3-colorings of the set of hyperedges. Let us denote the colors by
red, blue and green.

Consider any fixed Fano plane-free 3-coloring of the set of hyperedges of H. By
Theorem 4 for r = 3 there exists a positive integer T0 = T0(3, t0, ε) and there exists
a partition V (H) = V1∪̇ . . . ∪̇Vt of the vertex set V (H), t0 ≤ t ≤ T0, which is ε-
regular with respect to each color class, where |Vi| ≤ dn/te, 1 ≤ i ≤ t. To simplify
the calculations, we assume in the following that |Vi| = n/t ∈ N, 1 ≤ i ≤ t. This
does not change our asymptotic analysis.

Let Hred(γ),Hblue(γ) and Hgreen(γ) be the corresponding cluster-hypergraphs on
the vertex set [t] = {1, . . . , t}, i.e., Hcol(γ) corresponds to all those hyperedges with
color col ∈ {red,blue, green}, which are contained in ε-regular triples of density
at least γ. By our assumption and by Lemma 6 each hypergraph Hcol(γ) is Fano
plane-free, hence each contains at most ex(t, F ) = e(Bt) hyperedges.

We count the number of 3-colorings of the set of hyperedges, which yield the
partition V (H) = V1∪̇ · · · ∪̇Vt of the vertex set and the cluster-hypergraphs Hred(γ),
Hblue(γ), and Hgreen(γ). To do so, first we bound from above the number of
hyperedges e ∈ E(H), which intersect some set Vi, 1 ≤ i ≤ t, in at least two vertices,
or are contained in a triple (Vi, Vj , Vk) which is not ε-regular, or for one color class
are contained in a triple (Vi, Vj , Vk) of edge-density less than γ, 1 ≤ i < j < k ≤ t.

The number of hyperedges e ∈ E(H), which intersect one of the sets V1, . . . , Vt

in at least two vertices, is at most

t

(
n/t

2

)
n <

1
2t

n3. (5)

The number of hyperedges e ∈ E(H), which are contained in one of the at most
3ε
(

t
3

)
ε-irregular triples (Vi, Vj , Vk), 1 ≤ i < j < k ≤ t, is at most

3ε

(
t

3

)(n

t

)3

<
ε

2
n3. (6)

The number of hyperedges e ∈ E(H), which for one of the three color classes are
contained in triples (Vi, Vj , Vk) of density less than γ, 1 ≤ i < j < k, is at most

3
(

t

3

)
γ
(n

t

)3

<
γ

2
n3. (7)

With t ≥ t0 ≥ 1/ε and ε < γ/2, the total number of all these hyperedges is by
(5)–(7) less than

γn3. (8)
These hyperedges can be chosen in at most((n

3

)
γn3

)
<

(
n3/6
γn3

)
≤ 2h(6γ)n3/6 (9)

ways – here we used
(

n
αn

)
≤ 2h(α)n for 0 < α < 1 – and can be colored by red, blue

or green in at most

3γn3
(10)

ways.
Next we consider the set of all remaining hyperedges in H, i.e., those, which

are contained in ε-regular triples (Vi, Vj , Vk) of density at least γ for every color
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class, 1 ≤ i < j < k. If {i, j, k} is a hyperedge in exactly s, 1 ≤ s ≤ 3, of the
cluster-hypergraphs Hred(γ),Hblue(γ),Hgreen(γ), then in the hypergraph H every
remaining hyperedge in the ε-regular triple (Vi, Vj , Vk) is colored by one of s possible
colors. As e(Vi, Vj , Vk) ≤ (n/t)3, we can color these hyperedges in at most

s(n/t)3 (11)

ways. Let es be the number of triples {i, j, k}, 1 ≤ i < j < k ≤ t, which are
hyperedges in exactly s cluster-hypergraphs. Hence, the number of 3-colorings,
which yield the partition V (H) = V1∪̇ · · · ∪̇Vt of the vertex set V (H) and the cluster-
hypergraphs Hred(γ),Hblue(γ),Hgreen(γ), is by (9)–(11) with e(Vi, Vj , Vk) ≤ (n/t)3,
1 ≤ i < j < k ≤ t, at most

2h(6γ)n3/6 · 3γn3
· (1e12e23e3)(n/t)3 = 2h(6γ)n3/6 · 3γn3

· (2e23e3)(n/t)3
. (12)

None of the cluster-hypergraphs contains a Fano plane, and hence they have at
most e(Bt) hyperedges, i.e., e(Hcol(γ)) ≤ e(Bt) ≤ t3/8 for col ∈ {red,blue, green}.
Observe that

2e2 + 3e3 ≤ e1 + 2e2 + 3e3 = e(Hred(γ)) + e(Hblue(γ)) + e(Hgreen(γ))

≤ 3e(Bt) ≤
3t3

8
, (13)

thus

e2 ≤
3t3

16
− 3e3

2
, (14)

and we infer by using 2 < 37/11 that

2e2 · 3e3
(14)

≤ 23t3/16−3e3/2 · 3e3 < 3(7/11)(3t3/16−3e3/2) · 3e3 ≤ 321t3/176+e3/22. (15)

Assume that for every choice of a Fano plane-free coloring of the set of hyperedges
of H we obtain

e3 <
t3

8
− 44γt3 − 22h(6γ)t3.

Then, we have

2e2 · 3e3
(15)
< 3t3/8−2γt3−h(6γ)t3 . (16)

Recalling that there are at most nT0 partitions of the vertex set V into at most T0

classes and that there are at most 23(T0
3 ) < 2T 3

0 choices for the cluster-hypergraphs
Hred(γ),Hblue(γ),Hgreen(γ), we infer from (12) and (16) that the total number of
such 3-colorings of H is at most

nT0 · 2T 3
0 · 2h(6γ)n3/6 · 3γn3

· (3t3/8−2γt3−h(6γ)t3)(n/t)3

= nT0 · 2T 3
0 · 2h(6γ)n3/6 · 3γn3

· 3n3/8−2γn3−h(6γ)n3

< nT0 · 2T 3
0 · 3n3/8−γn3−5h(6γ)n3/6 < 3e(Bn)

for sufficiently large n, which contradicts our assumption.
Hence, there exists a Fano plane-free 3-coloring of H, which yields a partition

V (H) = V1∪̇ · · · ∪̇Vt, t ≤ T0, and cluster-hypergraphs Hred(γ), Hblue(γ), Hgreen(γ)
such that

e3 ≥
t3

8
− 44γt3 − 22h(6γ)t3. (17)
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We infer

e1 + e2 ≤ e1 + 2e2

(13),(17)

≤ 132γt3 + 66h(6γ)t3. (18)
Let H3 be that hypergraph on the vertex set [t], which consists of all hyperedges,
which are contained in all three cluster-hypergraphs. Let H ′ be the subhyper-
graph of H, which contains all those hyperedges from H, which correspond to the
hyperedges in H3, i.e., {i, j, k} ∈ E(H3) if and only if E(Vi, Vj , Vk) ⊆ E(H ′).

Due to (17) and (4), by Theorem 3 there exists a partition [t] = A∪̇B such that

eH3(A) + eH3(B) <
δ

2
t3. (19)

Set X =
⋃

j∈A Vj and Y =
⋃

j∈B Vj . Then, it is

eH(X) + eH(Y )
(8)

≤ γn3 + (n/t)3(eH3(A) + eH3(B) + e1 + e2)
(18),(19)

≤ γn3 + (n/t)3(δt3/2 + 132γt3 + 66h(6γ)t3)
≤ γn3 + δn3/2 + 132γn3 + 66h(6γ)n3

(4)
< δn3,

which yields the desired partition V (H) = X∪̇Y . �

4. Proof of main result

Proof of Theorem 1. We prove only the case r = 3, as the proof for two colors is
similar. We first fix all constants needed for the proof. Let ξ, %, and ζ be defined
by the following equations

36 − 1 = 36−ξ, 34 − 1 = 34−%, and (3h(2ζ) + 1)(1 + 8ζ) log3(2) = 1− ζ , (20)

where h(x) := −x log x − (1 − x) log(1 − x) is the entropy function. Recall that
h(x) → 0 as x → 0 and, since log3(2) < 1, there exists such a ζ > 0 satisfying the
above such that (3h(2γ) + 1)(1 + 8γ) log3(2) < 1− γ for all 0 < γ < ζ. We set

γ := min
{

ξ

2000
,
ζ

2

}
≤ 1

25
and δ :=

%γ3

1000
, (21)

For the main steps of the proof it is sufficient to keep in mind that

0 < δ � γ � %, ξ, ζ.

Let n0 = n0(3, δ) be given by Lemma 7 and set nr = n3 ≥ n0 +
(
n0
3

)
sufficiently

large.
The proof is similar to that in [1] and proceeds by contradiction. Assume that

we are given a hypergraph H on n > n3 vertices with c3,F (H) ≥ 3e(Bn)+m for some
m ≥ 0. We show the following claim.

Claim 8. If c3,F (H) ≥ 3e(Bn)+m for some m ≥ 0 and H is not the balanced,
complete, bipartite hypergraph Bn, then there exists an induced subhypergraph H ′

on n′ vertices with n′ ≥ n− 3 and c3,F (H ′) ≥ 3e(Bn′ )+m+1.

Inductively, we arrive at some subhypergraph H0 with at least n0 vertices that
admits at least 3e(Bn0 )+(n0

3 )+1 Fano plane-free 3-colorings of the set of hyperedges,
which is impossible and yields the desired contradiction and it is left to verify
Claim 8. �
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Proof of Claim 8. Let H be a hypergraph on n vertices, H 6= Bn and c3,F (H) ≥
3e(Bn)+m with m ≥ 0. Clearly, this implies e(H) ≥ e(Bn). Without loss of general-
ity we may assume that δ1(H) ≥ δ1(Bn). Otherwise let v be a vertex of minimum
degree in H and consider H ′ := H − v. Since e(Bn−1) = e(Bn) − δ1(Bn) ≤
e(Bn)− δ1(H)− 1 we have

c3,F (H ′) ≥ c3,F (H)
3δ1(H)

= 3e(Bn)−δ1(H)+m ≥ 3e(Bn−1)+m+1.

In view of (3), from now on we may assume δ1(H) ≥ δ1(Bn) ≥ 3n2/8 − n.
Consider a partition of V (H) = X∪̇Y , which minimizes e(X) + e(Y ). Because of
Lemma 7 we know that e(X) + e(Y ) < δn3 and, hence

e(H) < e(Bn) + δn3

and it follows from e(H) ≥ e(Bn) that

e(X, Y ) ≥ e(Bn)− δn3 ≥ n3/8− n2/4− δn3 ,

which in turn implies

n/2− 2
√

δn ≤ |X|, |Y | ≤ n/2 + 2
√

δn. (22)

Our argument splits into two cases depending on the link(graph). For a vertex
v of H define its link L(v) := {{u, w} : {v, u, w} ∈ E(H)}, which is a graph on
V (H). First (in Case 1) we will assume that there exists a vertex v with at least
γn2 link edges in its “own” partition class.

Case 1 (H has the property that ∃Z ∈ {X, Y } and ∃v ∈ Z : |L(v) ∩
(
Z
2

)
| ≥ γn2).

Without loss of generality we may assume v ∈ Y with |L(v) ∩
(
Y
2

)
| ≥ γn2. The

minimality of e(X) + e(Y ) implies, that |L(v) ∩
(
X
2

)
| ≥ γn2, as otherwise we could

move v to X decreasing e(X) + e(Y ).
We split the Fano plane-free colorings of H into two classes C1 and C2 = C1.

Let C1 be the set of those colorings for which there exist L′
Y ⊂ L(v) ∩

(
Y
2

)
and

L′
X ⊂ L(v)∩

(
X
2

)
, of size at least γn2/4 each, and all hyperedges of the form {v}∪f

with f ∈ L′
X ∪ L′

Y have the same color.
For a fixed coloring from C1 there exist matchings MX ⊂ L′

X and MY ⊂ L′
Y ,

and min{|MX |, |MY |} ≥ γn/5. For three link edges f1, f2, f3 with f1 ∈ MY and
f2, f3 ∈ MX let t1, t2, t3, t4 ∈

(
V
3

)
be four triples (not necessarily hyperedges of H)

such that {{v} ∪ fi : i = 1, 2, 3} ∪ {t1, . . . , t4} forms a Fano plane. Note that each
of the triples t1, t2, t3, t4 contains precisely one vertex from f1 ⊂ Y and precisely
one vertex from each of f2 and f3 ⊂ X. (In fact, there are two different sets of
four triples t1, . . . , t4 for any given f1, f2, f3 and we just fix one of those two sets.)
Since {v} ∪ fi are of the same color either one of the triples tj must be missing
in H or there are only 34 − 1 ways to color t1, t2, t3, t4. Since |MX |, |MY | ≥ γn/5
there are at least γn

5

(
γn/5

2

)
possible choices for f1, f2, f3 and since there are at most

δn3 ≤ γ3n3/1000 hyperedges absent between X and Y , there are at least γ3n3/500
such Fano planes present in H for a fixed coloring in C1. Furthermore, note that for
two different choices of f1, f2, f3 and f ′1, f

′
2, f

′
3 the corresponding sets {t1, . . . , t4}
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and {t′1, . . . , t′4} are disjoint. Hence we obtain the following estimate on |C1|

|C1| ≤ 3
( (|X|

2

)
γn2/4

)( (|Y |
2

)
γn2/4

)
3e(H)

34γ3n3/500
(34 − 1)γ3n3/500

(20)

≤ 3 · 2n2
· 3e(Bn)+δn3−4γ3n3/500+(4−%)γ3n3/500

(21)
= 3 · 2n2

· 3e(Bn)−δn3
.

Consequently, for large enough n we have

|C1| ≤ 3e(Bn)−1.

Let C2 be the Fano plane-free edge colorings of H which do not belong to C1,
i.e., the family of those colorings for which there does not exist L′

Y ⊂ L(v) ∩
(
Y
2

)
and L′

X ⊂ L(v) ∩
(
X
2

)
, of size at least γn2/4 each, and such that all hyperedges of

the form {v} ∪ f with f ∈ L′
X ∪L′

Y have the same color. We have just shown that

C2 ≥ 3e(Bn)+m−1 .

Next we estimate the number of colorings of the set of hyperedges incident to v,
which can be extended to a coloring in C2. For a set W ⊆ V (H) we say e ∈ E(H)
is a hyperedge from v to W if v ∈ e and (e \ {v}) ⊂ W .

For any coloring from C2, by definition, for every col ∈ {red,blue, green} there is
a vertex class Vcol ∈ {X, Y } such that there are at most γn2/4 hyperedges from v
to Vcol, since otherwise the coloring would belong to C1. Note that because of (21)
and (22) the size of

(
Vcol
2

)
is at most n2/8 + γn2 and, consequently, there are at

most (
n2/8 + γn2

γn2/4

)
≤ 2h( 2γ

1+8γ )(1+8γ)n2/8
(21)

≤ 2h(2γ)(1+8γ)n2/8

ways to choose the hyperedges of color col between v and Vcol.
Since |L(v)∩

(
X
2

)
|, |L(v)∩

(
Y
2

)
| ≥ γn2 it is impossible that Vred = Vblue = Vgreen.

Hence for two colors, say red and blue, there will be at most γn2/4 hyperedges
from v to, say, X = Vred = Vblue (the case Y = Vred = Vblue is symmetric here
and the analysis is independent from the earlier assumption v ∈ Y ). Then for the
remaining third color there will be at most γn2/4 hyperedges of color green from v
to Y = Vgreen. Now we can color the remaining hyperedges from v to X only green,
and we can color the remaining hyperedges (there are at most n2/8 + γn2) from
v to Y with two colors, red and blue. We also had only 6 different possibilities to
choose Vred, Vblue, Vgreen ∈ {X, Y } in such a way.

Finally, there are at most n2/4 hyperedges, that contain v and intersect both
X and Y , and they can be colored arbitrarily, so in total in at most 3n2/4 ways.
Summarizing the above, we can estimate the number of possible colorings of the
hyperedges incident with v (which extend to a coloring in C2) from above by

6 · 23h(2γ)(1+8γ)n2/8 · 2(1+8γ)n2/8 · 3n2/4 = 6 · 3(3h(2γ)+1)(1+8γ) log3(2)n
2/8+n2/4

(20)

≤ 32+(1−γ)n2/8+n2/4 = 33n2/8−γn2/8+2
(3)

≤ 3δ1(Bn)−2 .

Setting H ′ := H − v we obtain

c3,F (H ′) ≥ |C2|
3δ1(Bn)−2

≥ 3e(Bn)+m−1

3δ1(Bn)−2
= 3e(Bn−1)+m+1 ,
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which proves Claim 8 for hypergraphs H satisfying the assumptions of Case 1.

Next we consider the case that every vertex v has at most γn2 link edges in its
own partition class.

Case 2 (H has the property that ∀Z ∈ {X, Y } and ∀v ∈ Z : |L(v)∩
(
Z
2

)
| ≤ γn2). As

still H 6= Bn there exists (without loss of generality) a hyperedge e = {v1, v2, v3} ⊂
Y . Let L :=

⋂3
i=1 L(vi) ∩

(
X
2

)
. From δ1(H) ≥ δ1(Bn) ≥ 3n2/8 − n it follows that

|L| ≥ (1− 4γ)
(|X|

2

)
> (2/3 + 1/6)

(|X|
2

)
(see (21)). By Turán’s theorem and (22) we

find at least 1
36

(|X|
2

)
≥ 1

360n2 edge-disjoint K4’s in L. Denote them by K1, . . . ,Kq,
where

q ≥ 1
360

n2 . (23)

Since Kj ⊂ L for every j = 1, . . . , q, every such Kj forms together with the
hyperedge e a Fano plane. Fixing a color for e we can color the 6 hyperedges that
correspond to the edges of every Kj in only 36 − 1 instead of 36 different ways.

Set H ′ := H − {v1, v2, v3}. Let Ee denote the set of hyperedges of H which
contain at least one vertex from e = {v1, v2, v3}. Obviously, |Ee| ≤ 3γn2 +3

(|X|
2

)
+

3|X||Y |. It follows from the choice of δ � γ (see (21)), e(X) + e(Y ) < δn3, and
e(H) ≥ e(Bn), that

|Ee|
(22)

≤ 9
8
n2 + 4γn2

(3)

≤ δ1(Bn) + δ1(Bn−1) + δ1(Bn−2) + 5γn2

= e(Bn)− e(Bn−3) + 5γn2 .

We can color the set of hyperedges of Ee in at most

3|Ee|

36q
(36 − 1)q (20)

= 3|Ee|−ξq

ways. Consequently,

c3,F (H ′) ≥ 3e(Bn)+m−|Ee|+ξq ≥ 3e(Bn−3)+m−5γn2+ξq
(21),(23)

≥ 3e(Bn−3)+m+1 ,

which concludes Case 2 and finishes the proof of Claim 8. �

5. Fano plane-free r-colorings (r ≥ 4)

Proof of Theorem 2. Let H = (V,E) be the complete 4-partite hypergraph with
the vertex partition V = V1∪̇V2∪̇V3∪̇V4 of almost equal size: ||Vi| − |Vj || ≤ 1 for
1 ≤ i < j ≤ 4. We color its hyperedges with colors from [r] as follows. The
hyperedges from E(V1 ∪V3, V2 ∪V4) can be colored with colors from {1, . . . , r− 2},
from E(V1 ∪V2, V3 ∪V4) with color r− 1 and from E(V1 ∪V4, V2 ∪V3) with color r.
Obviously, there are no monochromatic Fano planes, as all monochromatic induced
subhypergraphs are bipartite. It remains to verify a lower bound on the number of
possible colorings (we now assume for simplicity that 4 divides n):

• the hyperedges that intersect 3 of the possible 4 partition classes can be
colored arbitrarily (i.e., by r colors), which gives

r4( n
4 )3

colorings for those hyperedges,
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• the hyperedges from E(V1, V2), E(V1, V4), E(V2, V3) or E(V3, V4) can be
colored with r − 1 colors and since e(Vi, Vj) = 2

(
n/4
2

)
n
4 we obtain:

(r − 1)4·2(
n/4
2 )n

4

colorings for these hyperedges,
• the hyperedges from E(V1, V3) or E(V2, V4) can be colored with 2 colors in

22·2(n/4
2 )n

4

many ways.
Consequently,

c4,F (n) ≥ r4( n
4 )3(r − 1)4·2(

n/4
2 )n

4 22·2(n/4
2 )n

4

≥
(√√

2r(r − 1)
)n3/8−O(n2)

≥ (r + ε)e(Bn)

for any r ≥ 4 and for some ε > 0 and sufficiently large n. �

We note that this lower bound on the number of Fano plane-free r-colorings can
be easily improved. For example, if one distributes the available colors for the three
bipartitions as evenly as possible, then one obtains the following for r ≥ 4

cr,F (n) ≥ fn3/8−O(n2)
r ,with fr =


(

2
3

)3/4
r5/4 if r = 0 mod 3

r1/2
⌈

2
3r
⌉1/2 ⌊ 2

3r
⌋1/4 if r = 1 mod 3

r1/2
⌈

2
3r
⌉1/4 ⌊ 2

3r
⌋1/2 if r = 2 mod 3.

(24)

The next result gives an upper bound on cr,F (n) for any fixed integer r ≥ 4.

Theorem 9. For the Fano plane F and integers r ≥ 4 it is

cr,F (n) ≤
(
(3r/4)4/3

)n3/8+o(n3)

.

Proof. The arguments are similar to those used in the proof of Lemma 7. Let
γ > 0 be arbitrary and set ε = ε(γ) > 0 with ε < γ/2 such that Lemma 6 is
satisfied. Moreover, let t0 = max{1/ε, t′}, where t′ is sufficiently large, so that (2)
holds, i.e., so that ex(t, F ) = e(Bt) for every t ≥ t′. Let T0 = T0(r, t0, ε) and
N0 = N0(r, t0, ε) be given by Theorem 4 and let m0 = m0(γ) be given by Lemma 6.
Set n0 := max{N0, T0 ·m0} and let H = (V,E) be a hypergraph on n ≥ n0 vertices.

Consider any fixed r-coloring of the set of hyperedges of H without a monochro-
matic Fano plane F . By Theorem 4 there exists a partition V (H) = V1∪̇ . . . ∪̇Vt

of the vertex set V (H), t0 ≤ t ≤ T0, which is ε-regular with respect to each color
class, where w.l.o.g. |Vi| = n/t, 1 ≤ i ≤ t.

For γ > 0 and col ∈ [r] let Hcol(γ) be the corresponding cluster-hypergraphs
on the vertex set [t] = {1, . . . , t}, i.e., Hcol(γ) corresponds to all hyperedges of
color col ∈ {1, . . . , r}, which are contained in ε-regular triples of density at least γ.
Furthermore, for s ∈ [r] let es be the number of triples {i, j, k}, 1 ≤ i < j < k ≤ t,
which are hyperedges in exactly s of the cluster-hypergraphs Hcol(γ) with col ∈ [r].
By our assumption and by Lemma 6 each hypergraph Hcol(γ) is Fano plane-free,
hence contains at most e(Bt) hyperedges:

r∑
s=1

ses ≤ r · ex(t, F ) ≤ r · t3

8
. (25)
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Similarly, as in (5)–(12), the number of r-colorings of the set of hyperedges of
H, which yield the vertex partition V = V1∪̇ · · · ∪̇Vt and the cluster-hypergraphs
H1(γ), . . . ,Hr(γ), can be bounded from above by( (n

3

)
rγn3

)
· rrγn3

·

(
r∏

s=1

ses

)( n
t )3

≤ 2h(6rγ)n3/6 · rrγn3
·

(
r∏

s=1

ses

)( n
t )3

. (26)

Since
r∑

s=1

es ≤
(

t

3

)
≤ t3

6

we may view
∏r

s=1 ses as a product of at most t3/6 factors. The sum of those
factors equals

∑r
s=1 ses, which is due to (25) bounded from above by rt3/8. Since

a product of positive reals with bounded sum of the factors is maximized when all
factors are equal one can show that

r∏
s=1

ses ≤
(

rt3/8
t3/6

)t3/6

=
(

3r

4

)t3/6

, (27)

see, e.g., [1, Lemma 4.3].
The number t of partition classes is at most T0, hence there are at most nT0

partitions of the vertex set V into at most T0 classes. Given such a partition, we
have at most 2r(T0

3 ) < 2rT 3
0 choices for the cluster-hypergraphs H1(γ), . . . ,Hr(γ).

With (26) and (27) we obtain

cr,F (n) ≤ nT0 · 2rT 3
0 · 2h(6rγ)n3/6 · rrγn3

·
(
(3r/4)t3/6

)(n/t)3

≤ nT0 · 2rT 3
0 · 2h(6rγ)n3/6 · rrγn3

·
(
(3r/4)4/3

)n3/8

≤
(
(3r/4)4/3

)n3/8+o(n3)

, (28)

as γ > 0 can be chosen to be arbitrary small and the entropy h(γ) → 0 as γ → 0. �

Remark 10. The upper bound in Theorem 9 can be slightly improved. A more
careful analysis of (27), which uses the fact that every factor of

∏r
s=1 ses is an

integer, yields
∏r

s=1 ses ≤ b3r/4ca d3r/4eb, where a + b = t3/6 and a = (d3r/4e −
3r/4)t3/6. This gives

cr,F (n) ≤
(
b3r/4ca/3 d3r/4eb/3

)n3/8+o(n3)

,

where a + b = 4 and a = 4d3r/4e − 3r.

6. Concluding Remarks

The following generalization of the function c2,K`
(n) for graphs was studied by

Balogh [2]. For a fixed k-uniform hypergraph F , an integer r, and an r-coloring χ of
the hyperedges of F , which uses all r colors, we denote for a k-uniform hypergraph
H by cr,χ,F (H) the number of colorings of the set of hyperedges H with r colors
which do not contain a copy of F that is identical to χ up to permutation of
the color classes. We call such colorings of H (χ, F )-free. Similarly, as before
we set cr,χ,F (n) = max cr,χ,F (H), where the maximum runs over all k-uniform
hypergraphs on n vertices.
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6.1. Forbidden 2-colorings of the Fano plane. In [2] Balogh studied c2,χ,K`
(n)

and showed that c2,χ,K`
(n) = 2ex(n,K`). On the other hand, for three colors (r = 3),

it is easy to see that c3,χ,K3(n) ≥ 2(n
2) � 3n2/4, since trivially no 2-coloring of Kn

admits a triangle with 3 colors. We can prove a similar result for 2-colorings in the
special case, when F is the Fano plane.

Theorem 11. For every 2-coloring χ of the hyperedges of the Fano plane F , which
uses both colors, there exists an n0 such that for all n ≥ n0 we have c2,χ,F (n) =
2ex(n,F ) and the only 3-uniform hypergraph H on n vertices with c2,χ,F (H) =
2ex(n,F ) is Bn.

The proof of Theorem 11 follows the lines of the proof of Theorem 1 and we
discuss the required adjustments below.

Proof of Theorem 11 (sketch). First an analogous extension of Lemma 7 is proved.
Again the weak hypergraph regularity lemma yields cluster-hypergraphs Hred and
Hblue. Lemma 6 implies that for every 2-coloring, which does not contain a χ-
colored copy of F , the number e(H2) of hyperedges which appear in both cluster-
hypergraphs satisfies e(H2) = |E(Hred) ∩ E(Hblue)| ≤ e(Bt), where t is the num-
ber of vertex classes of the regular partition. Now a simple calculation (similar
to (12-16) shows that if e(H2) < (1 − o(1))e(Bt) for every (χ, F )-free coloring
of H, then this contradicts the assumption that c2,χ,F (H) ≥ 2e(Bn). Thus there
must be a (χ, F )-free coloring of H with e(H2) ≥ (1 − o(1))e(Bt). Now the sta-
bility theorem for Fano plane-free hypergraphs yields a partition A∪̇B = [t] with
|EH2(A) ∪ EH2(B)| = o(t3), however, we still have to bound the number of hy-
peredges of H1 = ([t], E(Hred)4E(Hblue)), which are completely contained in A
or B. For that we note that E(H1) ∪ E(H2) cannot contain a copy of F with
precisely one hyperedge in E(H1). Since then again Lemma 6 yields a copy of F
which has the same coloring as χ. (Here we use the assumption that χ is indeed
not a monochromatic coloring of F .) But since eH2(A,B) ≥ (1 − o(1))e(Bt) this
implies eH1(A) + eH1(B) ≤ o(t3) by a simple counting argument, which gives the
appropriate extension of Lemma 7.

In the second part, one follows the arguments from Section 4. Again the proof
goes by induction and we show that if c2,χ,F (H) ≥ 2e(Bn)+m and H 6= Bn then
there exists a subhypergraph H ′ on n′ ≥ n − 3 vertices such that c2,χ,F (H ′) ≥
2e(Bn′ )+m+1. The proof follows the lines of Section 4 (adjusted for the case r = 2).
We only have to change the definition of the set C1 in Case 1. Here we let C1 be
those (χ, F )-free colorings of H such that the link graph L′

Y of v contains many
(γn2/3) blue and L′

X contains many red edges or vice versa. With this adjustment
the proof is verbatim. �

6.2. Forbidden 3- and 4-colorings of the Fano plane. We close this note with
the observation that Theorem 2 can also be extended to this setting. More precisely,
cr,χ,F � re(Bn) for r = 4. In fact, similar to the example of Balogh for K3 above,
we have cr,χ,F (n) ≥ (r − 1)(

n
3) � re(Bn) for r ≥ 4.

This leaves the case r = 3 open. However, the similar question is also open for
graphs F with more than 3 edges, e.g., to our knowledge it is not known whether
c3,χ,K4(n) � 32n3/3 or if equality holds.
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