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Abstract. Let F0 be a fixed k-uniform hypergraph. The problem of finding
the integer F0-packing number νF0 (H) of a k-uniform hypergraph H is an
NP-hard problem. Finding the fractional F0-packing number ν∗F0

(H) however

can be done in polynomial time. In this paper we give a lower bound for
the integer F0-packing number νF0 (H) in terms of ν∗F0

(H) and show that

νF0 (H) ≥ ν∗F0
(H)− o(|V (H)|k).

1. Introduction

For positive integer `, we denote by [`] the set {1, . . . , `}. For set V and integer
k ≥ 1, we denote by

(
V
k

)
the set of all k-element subsets of V . By y = x ± ε we

mean |y − x| < ε. A subset H ⊂
(
V (H)

k

)
is called a k-uniform hypergraph on

vertex set V (H). Notice that we are identifying a hypergraph H with its edges, so
|H| will be the number of edges in the hypergraph. For U ⊂ V (H), we denote by
H[U ] the subhypergraph of H induced by U (i.e. H[U ] = H ∩

(
U
k

)
).

For fixed hypergraphs F0 and H, a subhypergraph F ⊂ H is a copy of F0 if
there exists a bijection of the vertex sets ψ : V (F0) → V (F ) ⊂ V (H) such that
{ψ(u1), . . . , ψ(uk)} is an edge in F if and only if {u1, . . . , uk} is an edge in F0.
Denote the set of copies of F0 in H by

(H
F0

)
.

A map ϕ∗ :
(H
F0

)
→ [0, 1] such that for any edge e ∈ H∑ {

ϕ∗(F ) : F ∈
(
H
F0

)
and e ∈ F

}
≤ 1, (1)

is called a fractional F0-packing of H. A fractional F0-packing ϕ of H with image
{0, 1} is called an integer F0-packing of H. The weight of a fractional F0-packing
ϕ∗ of H is defined

w(ϕ∗) =
∑

F∈(HF0
)
ϕ∗(F ).

The maximum weight of a fractional F0-packing of H is denoted ν∗F0
(H) and the

maximum weight of an integer F0-packing of H is denoted νF0(H).
Obviously, ν∗F0

(H) is an upper bound of νF0(H). The objective of this paper is
to prove the following theorem, which provides a lower bound on νF0(H) in terms
of ν∗F0

(H).
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Theorem 1.1 (Main Theorem). For every k-uniform hypergraph F0, and for all
η > 0, there exists N ∈ N, such that for all n > N and all k-uniform hypergraphs
H on n vertices,

ν∗F0
(H)− νF0(H) < ηnk.

For graphs, Theorem 1.1 was first proved in [14]. There the authors also provided
a deterministic algorithm constructing an integer F0-packing achieving the bound
of the theorem in polynomial time. The proof was based on the algorithmic version
of Szemerédi’s Regularity Lemma [1] and on the algorithmic version of the matching
result from [5] (due to Grable [11]). In [12], Theorem 1.1 was proved for 3-uniform
hypergraphs. While the general philosophy of that proof is very similar to that
of the graph case, the authors had to overcome many technical problems arising
from the application of the Regularity Lemma from [6] for 3-uniform hypergraphs.
Recent results of [13] can be used to give a deterministic algorithm in this case.
In [21], Yuster gave an alternative proof of Theorem 1.1 in the graph case. Although
the main approach (i.e., combined application of Szemerédi’s Regularity Lemma
with the matching result of [5]) is the same, his proof is simpler and allows him to
replace F0 by a family of graphs. On the other hand, these simplifications yield a
randomized, rather than a deterministic algorithm to find such an integer packing.

Our proof of Theorem 1.1 for all k ≥ 2 also follows the same general approach. So
in particular we will use a Regularity Lemma for k-uniform hypergraphs from [18]
(see Theorem 2.20) and an improved version of the matching result from [5] due
to Pippenger and Spencer [17] (see Theorem 2.1). The Regularity Lemma we use
here differs from that in [6] (and its extension for k-uniform hypergraphs from [19]).
Rather than regularizing the given hypergraph with a constant ε (independent of
the partition provided by the Regularity Lemma), the Regularity Lemma used here
yields a slightly changed regular hypergraph, but allows ε to depend on the size
of the partition. While the small “change” has no effect on our result this “im-
proved” regularity significantly simplifies the argument for 3-uniform hypergraphs
and allows the proof for general k.

Related Results. It follows from the result of Dor and Tarsi [4] that finding
νF0(H) is an NP-hard problem for all connected graphs F0 with at least 3 edges.
Since ν∗F0

(H) is the solution of a linear program, it can be computed in polyno-
mial time. Therefore, Theorem 1.1 shows that νF0(H) can be approximated in
polynomial time by a factor of (1 − η/c) for every η > 0 and for every k-uniform
hypergraphs H with νF0(H) ≥ c|V (H)|k. Thus this problem is an example of an
NP-hard problem which has a polynomial time approximation algorithm for appro-
priately defined “dense case” (see [2, 3, 7, 8] for other examples).

Finally, we mention a consequence of Theorem 1.1 based on a nice result of
Yuster [20]. Yuster proved a sufficient condition under which a hypergraph H ad-
mits fractional F0-decomposition, i.e., a fractional F0-packing ϕ∗ which satisfies (1)
with equality for every e ∈ H. For a real 0 ≤ γ ≤ 1 we say a k-uniform hyper-
graph H on n vertices is γ-dense if for every i = 1, . . . , k − 1

min
I∈([n]

i )

∣∣{e ∈ H : e ⊃ I
}∣∣ ≥ γ

(
n− i

k − i

)
.

Theorem 1.2 (Yuster [20]). For every k-uniform hypergraph F0 there exists an α >
0 and some N ∈ N, such that for all n > N every k-uniform, (1 − α)-dense
hypergraph H on n vertices admits a fractional F0-decomposition.
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The corollary below follows from a combined application of Theorem 1.1 and
Theorem 1.2.

Corollary 1.3. For every k-uniform hypergraph F0, and for all η > 0, there exists
an α > 0 and some N ∈ N, such that for all n > N every k-uniform, (1−α)-dense
hypergraphs H on n vertices admit an (integer) F0-packing that covers (1 − η)|H|
of the edges, where |H| denotes the number of edges in H.

Outline of the paper. In Section 2 we introduce some results that will be used
in the proof of Theorem 1.1. In Section 3 we state some technical lemmas, and
prove the main theorem, Theorem 1.1, from these lemmas. Finally, in Section 4,
we prove the lemmas.

2. Preliminary Results

In this section we introduce the main tools we use in the proof of Theorem 1.1.
In Section 2.1 we state a theorem of Pippenger and Spencer. Section 2.2 and
Section 2.3 are devoted to describe the setup for the Hypergraph Regularity Lemma1

of the first two authors, Theorem 2.20, which will be an essential tool in our proof.

2.1. A Matching Result for Hypergraphs. Let H be a k-uniform hypergraph
and let u be a vertex in V (H), we denote by degH(u) the degree of u, i.e., the
number of edges in H which contain u. For two distinct vertices u, w ∈ V (H) we
write co-degH(u,w) for the co-degree, which is the number of edges that contain
both vertices u and w. Recall that a matching M ⊂ H is a subset of the edges
of H such that no vertex occurs in more than one edge of M and a perfect
matching is a matching that covers every vertex of H. A theorem ensuring an
almost perfect matching in a regular hypergraph of bounded co-degree appeared in
[5]. The following extension, due to Pippenger and Spencer, is from [17].

Theorem 2.1 (Matching [17]). For every real ζ > 0, and real C ≥ 1 there exist
γMat = γMat(ζ, C) > 0 and NMat = NMat(ζ, C) such that for every n > D > NMat

the following holds.
If H is a k-uniform hypergraph on n vertices such that

(i) degH(u) = (1± γMat)D for all but at most γMatn vertices u ∈ V (H),
(ii) degH(u) ≤ CD for all u ∈ V (H), and
(iii) co-deg(u,w) ≤ γMatD for all distinct vertices u, w ∈ V (H),

then H contains a matching with at least (1− ζ)n
k edges.

2.2. Regular Complexes. In this section we develop the notation necessary for
the statements of Theorem 2.7 and Lemma 2.15, both of which are needed in the
proof of Theorem 1.1.

A k-uniform clique of order j, denoted by K(k)
j , is a k-uniform hypergraph on

j ≥ k vertices consisting of all
(

j
k

)
different k-tuples of the j vertices. Note that

we will sometimes use the parentheses superscript to emphasize the uniformity of
a hypergraph.

Given disjoint vertex sets V1, . . . , V`, we denote byK(i)
` (V1, . . . , V`) the complete

`-partite, i-uniform hypergraph (i.e. the family of all i-element subsets I ⊂
⋃

λ∈[`] Vλ

1There are different regularity lemmas for hypergraphs (see, e.g., [9, 18, 19]). The one we use
here is from [18] and there it is called ‘Regular Approximation Lemma’. However, since this is
the only one we use here, we will call it the ‘regularity lemma’.
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satisfying |Vλ∩I| ≤ 1 for every λ ∈ [`]). Any subsetH(i) ⊂ K
(i)
` (V1, . . . , V`) is called

an (`, i)-hypergraph on V1 ∪ · · · ∪ V`. If m ≤ |Vλ| ≤ m+ 1 for every λ ∈ [`] then
such H(i) is further specified as an (m, `, i)-hypergraph. Given integer j such that
i ≤ j ≤ `, j element subset J of [`], and (m, `, i)-hypergraph H(i), we denote by
H(i)[J ] = H(i)[

⋃
λ∈J Vλ] the (m, j, i)-subhypergraph of H(i) induced by vertex set⋃

λ∈J Vλ.
For (m, `, i)-hypergraph H(i) and integer j with i ≤ j ≤ `, we denote by Kj(H(i))

the set of j element subsets J of V (H(i)) for which every I ∈
(
J
i

)
is an edge of H(i)

(i.e. Kj(H(i)) is the family of vertex sets of elements of
(H(i)

K
(i)
j

)
).

Given (m, `, i − 1)-hypergraph H(i−1) and (m, `, i)-hypergraph H(i), we say an
edge I of H(i) belongs to H(i−1) if I ∈ Ki(H(i−1)), i.e. I is the vertex set of a copy
of K(i−1)

i in H(i−1). Moreover; H(i−1) underlies H(i) if H(i) ⊂ Ki(H(i−1)).

Definition 2.2 ((m, `, j)-complex). Let m ≥ 1 and ` ≥ j ≥ 1 be integers. An
(m, `, j)-complex H is a collection of (m, `, i)-hypergraphs {H(i)}j

i=1 such that

• H(1) is an (m, `, 1)-hypergraph, i.e. H(1) = V1 ∪ · · · ∪ V` with m ≤ |Vλ| ≤
m+ 1 for λ ∈ [`], and

• H(i−1) underlies H(i) for 2 ≤ i ≤ j, i.e. H(i) ⊂ Ki(H(i−1)).

Szemerédi’s Regularity Lemma decomposes the edge set of a graph so that ‘most’
edges belong to random-like (or ε-regular) subgraphs. In the Regularity Lemma for
hypergraphs (see Theorem 2.20 below) the ε-regular pairs are replaced by (ε,d)-
regular (m, k, k)-complexes (see Definition 2.6 below).

Many applications of Szemerédi’s Regularity Lemma are based on the result
that in an `-partite graph with vertex partition V1 ∪ · · · ∪ V` and all pairs (Vi, Vj),
1 ≤ i < j ≤ `, being ε-regular of density at least d� ε, one can find ‘many’ copies
of K`. The corresponding result for hypergraphs in the context of Theorem 2.20 is
Theorem 2.7.

In order to describe Theorem 2.7 we first introduce the notion of relative density
of an (m, i, i)-hypergraph with respect to an underlying (m, i, i− 1)-hypergraph.

Definition 2.3 (relative density). Let H(i) be an i-uniform hypergraph and let
H(i−1) be an (i − 1)-uniform hypergraph on the same vertex set. We define the
density of H(i) w.r.t. H(i−1) as

d
(
H(i)

∣∣H(i−1)
)

=


|H(i)∩Ki(H(i−1))|
|Ki(H(i−1))| if

∣∣Ki(H(i−1))
∣∣ > 0

0 otherwise .

We now define the concept of regularity of an (m, i, i)-hypergraph with respect to
an underlying hypergraph.

Definition 2.4. Let positive real ε and non-negative real di be given along with an
(m, i, i)-hypergraph H(i) and an underlying (m, i, i− 1)-hypergraph H(i−1). We say
H(i) is (ε, di)-regular w.r.t. H(i−1) if whenever Q(i−1) ⊂ H(i−1) satisfies∣∣Ki(Q(i−1))

∣∣ ≥ ε
∣∣Ki(H(i−1))

∣∣ , then d
(
H(i)

∣∣Q(i−1)
)

= di ± ε .

We extend the notion of (ε, di)-regularity from (m, i, i)-hypergraphs to (m, `, i)-
hypergraphs H(i) for arbritrary ` > i.
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Definition 2.5 ((ε, di)-regular hypergraph). Let positive real ε and non-negative
real di be given along with an (m, `, i)-hypergraph H(i) and an underlying (m, `, i−
1)-hypergraph H(i−1). We say H(i) is (ε, di)-regular w.r.t. H(i−1) if the induced
subhypergraph H(i)[I] of H(i) is (ε, di)-regular w.r.t. H(i−1)[I] for all I ∈

(
[`]
i

)
.

We sometimes write ε-regular to mean
(
ε, d

(
H(i)

∣∣H(i−1)
))

-regular.

Finally, we arrive at the notion of a regular complex.

Definition 2.6 ((ε,d)-regular complex). Let ε be a positive real and d = (di)
j
i=2

be a vector of non-negative reals. We say an (m, `, j)-complex H = {H(i)}j
i=1, for

` ≥ j, is (ε,d)-regular if H(i) is (ε, di)-regular w.r.t. H(i−1) for every i = 2, . . . , j.

With these definitions, we can state the following theorem of Kohayakawa,
Skokan, and Rödl [15].

Theorem 2.7 (Dense Counting Lemma [15, Thm. 6.5]). For all k ≥ 2 and pos-
itive reals ξ and d0 there exist δDCL = δDCL(k, ξ, d0) > 0 and integer mDCL =
mDCL(k, ξ, d0) so that the following holds.

If H = {H(i)}k−1
i=1 is a (δDCL,d)-regular (m, k, k − 1)-complex with d = (di)k−1

i=2

satisfying di > d0 for every i = 2, . . . , k − 1 and m > mDCL, then∣∣Kk

(
H(k−1)

)∣∣ = (1± ξ)mk
k−1∏
i=2

d
(k

i)
i . (2)

Remark 2.8. Without loss of generality we can assume that mDCL(k, ξ, d0) is
monotone decreasing in d0.

Note that (2) coincides with that of the random setting. More precisely, suppose
H(1) = V1 ∪ · · · ∪ Vk is a given vertex partition and H(2) is randomly chosen from
K

(2)
k (V1, . . . , Vk) = K2(H(1)) with probability d2, and for every i = 2, . . . , k − 1

suppose H(i) is a random subhypergraph of Ki(H(i−1)) with relative density di,
then with high probability the number ofK(k−1)

k ’s inH(k−1) would match (2). Thus
(ε,d)-regularity ensures that the number of K(k−1)

k ’s in an (ε,d)-regular complex
is approximately the same as in the corresponding random complex.

Since we will need to count not only cliques, but copies of an arbitrary fixed k-
uniform hypergraph F0, we appropriately generalize the concepts developed earlier.

Definition 2.9 ((m,F )-hypergraph). Let F be a j-uniform hypergraph with v
vertices, and F (j) be an (m, v, j)-hypergraph on vertex set V =

⋃
λ∈[v] Vλ.

Then F (j) is an (m,F )-hypergraph if there exists a labeling {x1, . . . , xv} of
the vertices of F such that the map f : V → {x1, . . . , xv} defined f(Vλ) = xλ for
λ ∈ [v], is edge preserving.

Note that a (m,K(j)
` )-hypergraph is just a (m, `, j)-hypergraph.

Definition 2.10. Given k-uniform hypergraph F0, and i ∈ [k], the ith shadow
∆i(F0) of F0 is defined by

∆i(F0) =
⋃

e∈F0

(
e

i

)
.

Definition 2.11 ((m,F0)-complex). Let F0 be a k-uniform hypergraph with v
vertices, and F = {F (j)}k

j=1 be an (m, v, k)-complex on vertex set V =
⋃

i∈[v] Vλi .
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Then F is an (m,F0)-complex if there is a labeling {x1, . . . xv} of the vertices
of F0 such that the map f : V → {x1, . . . , xv} defined f(Vλ) = xλ for λ ∈ [v],
preserves edges as a map from F (j) to ∆j(F0), for j = 2, . . . , k.

Note that every layer F (j) of an (m,F0)-complex F is an (m,∆j(F0))-hypergraph.
Below we extend the notion of regularity from (m, `, i)-hypergraphs and (m, `, j)-
complexes to (m,F )-hypergraphs and (m,F0)-complexes.

Definition 2.12 ((ε, dj , F )-regular hypergraph). Let a positive real ε and a
non-negative real di be given. Let F be a j-uniform hypergraph, and F (j) be an
(m,F )-hypergraph with underlying (m,∆j−1(F ))-hypergraph F (j−1).

Then F (j) is (ε, dj , F )-regular w.r.t F (j−1) if the induced subhypergraph F (j)[J ]
of F (j) is (ε, dj)-regular w.r.t F (j−1)[J ] for all edges J ∈ F .

Definition 2.13 ((ε,d, F0)-regular complex). Let ε be a positive real and let
d = (di)k

i=2 be a vector of non-negative reals. Let F0 be a k-uniform hyper-
graph, and F = {F (j)}k

j=1 be an (m,F0)-complex. Then F is (ε,d, F0)-regular,
if the (m,∆j(F0))-hypergraph F (j) is (ε, dj ,∆j(F0))-regular w.r.t F (j−1) for all
j = 2, . . . , k.

Again, note that in view of Definition 2.6 an (ε,d,K(k)
` )-regular complex recovers

the notion of an (ε,d)-regular (m, `, k)-complex.

Definition 2.14. Let F0 be a k-uniform hypergraph with v vertices, and let F ={
F (j)}k

j=1 be an (m,F0)-complex with vertex set V =
⋃v

λ=1 Vλ. A copy F of F0

in F (k) is crossing if |Vλ ∩ F | = 1 for every λ = 1, . . . , v.
Let extF (e) denote the number of (unlabeled) crossing copies F ⊆ F (k) of F0

that contain the edge e.

The following lemma asserts that for most edges e in a regular (m,F0)-complex
the number of crossing copies of F0 that contain e is the same as in the corresponding
random object.

Lemma 2.15 (Extension Lemma [18]). For every k-uniform hypergraph F0, and
all positive reals γ and d0 there exist δExt = δExt(F0, γ, d0) > 0 and an integer
mExt = mExt(F0, γ, d0) so that the following holds.

If F = {F (i)}k
i=1 is a (δExt,d, F0)-regular (m,F0)-complex with d = (di)k

i=2

satisfying di > d0 for every i = 2, . . . , k and m > mExt, then

extF (e) = (1± γ)m|∆1(F0)|−k
k∏

i=2

d
|∆i(F0)|−(k

i)
i ,

for all but at most γ|F (k)| edges e ∈ F (k).

Lemma 2.15 can be derived from Theorem 2.7 and a proof is given in [18].

2.3. Regularity Lemma for hypergraphs. Let k be a fixed integer and V be
a set of vertices. Throughout this paper we require a family of partitions P =
{P(j)}k−1

j=1 on V to satisfy properties which we are going to describe below (see
Definition 2.16).

Let P(1) = V1 ∪ · · · ∪ V|P(1)| be a partition of V . For every 1 ≤ j ≤ k let

Crossj = Crossj(P(1)) = K
(j)

|P(1)|(V1, . . . , V|P(1)|)
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be the family of all crossing j-tuples J .
For j = 2, . . . , k − 1, we will require that P(j) be a partition of Crossj , each

partition class will be a (j, j)-hypergraph – thus it seems appropriate to denote a
partition class of P(j) by P(j). We denote the partition class containing J ∈ Crossj

by P(j)(J).
There is a natural interaction between the partitions P(1), . . . ,P(k−1) of a fam-

ily. Every j-set J ∈ Crossj uniquely defines, for i = 1, . . . , j, a disjoint union

P̂(i)(J) =
⋃

I∈(J
i)
P(i)(I) (3)

of
(
j
i

)
partition classes of P(i). Note that P̂(i)(J) is a (j, i)-hypergraph. The use

of ‘̂ ’ is to emphasize the fact that the corresponding hypergraph is not a single
partition class of P(i), but a union of them. In the case where i = j − 1, we call
the (j, j−1)-hypergraph P̂(j−1)(J) a j-polyad; often, context will allow us to drop
the specification and refer to a j-polyad simply as a polyad.

We denote by P̂(j−1) the family of all j-polyads.

P̂(j−1) =
{
P̂(j−1)(J) : J ∈ Crossj

}
.

Note that P̂(j−1) induces a partition
{
Kj(P̂(j−1)) : P̂(j−1) ∈ P̂(j−1)

}
of Crossj .

This allows us to develop one of the properties that we will require of our family
of partitions. We say that the partitions P(j−1) and P(j) are cohesive if P(j)

refines the partition induced by P(j−1), i.e. if

P(j) ≺
{
Kj(P̂(j−1)) : P̂(j−1) ∈ P̂(j−1)

}
,

where ≺ is partition refinement. As well as having cohesion between consecutive
partitions, we will want to control the number of partition classes in each partition.
We accomplish this with the following definition.

Definition 2.16 (family of partitions P(k − 1,a)). Suppose V is a set of
vertices, k ≥ 2 is an integer, and a = (aj)k−1

j=1 is a vector of positive integers. We
say P = P(k − 1,a) = {P(j)}k−1

j=1 is a family of partitions on V if it satisfies
the following:

•
∣∣P(1)

∣∣ = a1,
• P is cohesive, i.e. for j = 2, . . . , k − 1, P(j−1) and P(j) are cohesive,

and
•

∣∣{P(j) ∈ P(j) : P(j) ⊂ Kj(P̂(j−1))
}∣∣ = aj for every P̂(j−1) ∈ P̂(j−1).

Moreover, we say P = P(k − 1,a) is L-bounded, if max{a1, . . . , ak−1} ≤ L.

Note that the requirement that a family P(k−1,a) be cohesive implies that for
1 < j ≤ k and J ∈ Crossj , the structure

P̂
(j−1)

(J) = {P̂(i)(J)}j−1
i=1

is a complex. Such a complex is uniquely determined by its top layer, the polyad
P̂(j−1)(J). Thus it is appropriate to call it a j-polyad complex or a polyad
complex for short. Denote by

Comj−1 = Comj−1(P) =
{
P̂

(j−1)
(J) : J ∈ Crossj(P(1))

}
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the set of all j-polyad complexes. In other words, polyad complexes are those
(n/a1, `, i)-complexes, where ` = j and i = j − 1, which naturally arise in a family
of partitions P.

Before we state the Regularity Lemma for hypergraphs, we must define a few
more conditions on families of partitions.
Definition 2.17 ((η, ε,a)-equitable). Suppose V is a set of n vertices, η and ε
are positive reals, and a = (aj)k−1

j=1 is a vector of positive integers.
We say a family of partitions P = P(k− 1,a) on V is (η, ε,a)-equitable if it

satisfies the following:
•

∣∣(V
k

)
\ Crossk

∣∣ ≤ η
(
n
k

)
,

• P(1) = {Vλ : λ ∈ [a1]} is an equitable vertex partition, i.e. |V1| ≤ · · · ≤
|Va1 | ≤ |V1|+ 1,

• every polyad-complex P̂
(k−1)

=
{
P̂(j)

}k−1

j=1
∈ Comk−1(P) is an (ε,d)-

regular (bn/a1c, k, k − 1)-complex, where d = (1/aj)k−1
j=2 .

Remark 2.18. From now on we will drop floors and ceilings, since they have no
effect on the arguments. Similarly, we will assume that |Vλ| = n/a1 for every
λ ∈ [a1].

Definition 2.19 (perfectly ε-regular). Suppose ε is some positive real. Let G be
a k-uniform hypergraph and P = P(k − 1,a) be a family of partitions on V (G).
We say G is perfectly ε-regular w.r.t. P, if for every polyad P̂(k−1) ∈ P̂(k−1)

we have that G ∩ Kk(P̂(k−1)) is ε-regular w.r.t. P̂(k−1).

Theorem 2.20 (Hypergraph Regularity Lemma [18]). Let k ≥ 2 be a fixed integer.
For all positive constants η and γ, and every function ε : Nk−1 → (0, 1] there are
integers L and n0 so that the following holds.

For every k-uniform hypergraph H with |V (H)| = n ≥ n0 there exist a k-uniform
hypergraph G on the same vertex set and a family of partitions P = P(k − 1,a)
so that

(i) P is (η, ε(a),a)-equitable and L-bounded,
(ii) G is perfectly ε(a)-regular w.r.t. P, and
(iii) |H4G| ≤ γnk.

Let us briefly compare Theorem 2.20 for k = 2 with Szemerédi’s Regularity
Lemma for graphs. Note that as discussed in [16, Section 1.8] there are graphs
with irregular pairs in any partition. Therefore, due to the “perfectness” in (ii) of
Theorem 2.20 one has to alter H to obtain G.

The main difference between Theorem 2.20 for k = 2 and Szemerédi’s Regularity
Lemma, however, is in the choice of ε being a function of a1. It follows from the
work of Gowers in [10] that it is not possible to regularize a graph H with an ε in
such a way that, for example, ε < 1/a1 can be ensured, where a1 = |P(1)| is the
number of vertex classes. Properties (i) and (iii) of Theorem 2.20 assert, however,
that by adding or deleting at most γn2 edges from H one can obtain a graph G
which admits an ε(a1) regular partition, with ε(a1) < 1/a1. This will allow us to
simplify the proof of Theorem 1.1 for 3-uniform hypergraphs from [12].

Remark 2.21. Recall that in Szemerédi’s Regularity Lemma it can be assumed
that the regular partition P(1) refines an initially given equitable partition of a
fixed number of parts. The same can be assumed in the context of Theorem 2.20,
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i.e., that the vertex partition P(1) of the family of partitions P refines an initial
partition of fixed size. (In this case L and n0 then also depend on the number of
parts of the initial partition.) In fact, such a lemma is a special case of the more
general lemma DRL(k) in [18].

3. Proof of Main Theorem

Now we sketch the idea of the proof of Theorem 1.1. The Matching Theorem,
Theorem 2.1, can be used to find large F0-packings in a hypergraph that has the
property that most edges occur in about the same number of copies of F0. The
hypergraph H, however, does not, in general, have this property. Applying the
regularity lemma allows us to decomposeH into several subhypergraphs each having
the property that each edge is in approximately the same number of copies of F0.
We then apply the Matching Theorem to each of these subhypergraphs separately.

The problem with this approach (which was already used in [14, 12, 21] to prove
Theorem 1.1 for graphs and 3-uniform hypergraphs) is that the densities of the
subhypergraphs provided by the regularity lemma can be ‘very small’ and may
depend on the number of parts in the regular partition P. (In fact, using this
approach, we will have to deal with densities that depend on the number of F0-
complexes occurring in the partition P, this clearly depends on size of P.)

The regularity lemma of Szemerédi, as well as its earlier extensions to hyper-
graphs in [6, 19, 9], output a partition with the number of partition classes may be
much bigger than 1/ε. This results in a situation in which the densities of the afore-
mentioned F0-complexes may be smaller than ε. This is not an environment where
regularity gives any information or control. Nevertheless, in each of [14, 12, 21],
this problem was resolved in a different way.

The approach taken in this paper is novel in the sense that we use Theorem 2.20.
This new regularity lemma allows us to regularize with an ε being an arbitrary
function of the number of partition classes of P. Even though Theorem 2.20
achieves this at the expense of having to slightly change the hypergraph, this can
easily be overcome, and the stronger regularity properties allow us to give a simpler
proof of the result for 3-uniform hypergraphs in [12], which extends to all k.

3.1. A tailored Regularity Lemma. As a first step in the proof of Theorem 1.1
we will apply the Regularity Lemma for hypergraphs, Theorem 2.20. In order to
simplify the presentation of the main proof we derive a variation (see Lemma 3.6
below) of Theorem 2.20, which is tailored to our situation.

Recall that in a typical application of Szemerédi’s Regularity Lemma the edges
belonging to sparse or irregular pairs are usually deleted (see, e.g., [16, Section 1.4]).
After application of Theorem 2.20 there are no irregular polyads (though this can
be said only of the slightly altered hypergraph G), but we still have to deal with
“sparse polyads” P̂ ∈ P̂(k−1). In our application the “sparseness” appears not only
in the form of few edges, i.e., d(G|P̂) is “small”, but also concerns a given fractional
F0-packing. Below we first develop the notation necessary to describe the notion
of sparse polyads w.r.t. a fractional packing (see Definition 3.5) and then we state
the variation of Theorem 2.20 tailored to our application, Lemma 3.6.

Definition 3.1. A k-uniform hypergraph G is γ-density-separated w.r.t. a fam-
ily of partitions P = P(k − 1,a) if for every P̂ ∈ P̂(k−1) the density d(G|P̂) is
either 0 or greater than γ.
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Definition 3.2. A copy F of F0 in G is crossing w.r.t. family of partitions P on
V (G) if |V (F ) ∩ Vλ| ≤ 1 for every λ = 1, . . . , |P(1)|.

The following characterizes those (m,F0)-complexes (see Definition 2.11) that
occur naturally in a family of partitions P and a k-uniform hypergraph G on the
same vertex set.

Definition 3.3 ((F0,G,P)-complex). Given k-uniform hypergraphs F0 and G, a
family of partitions P = P(k − 1,a) on V (G), and a copy F of F0 in G that is
crossing w.r.t. P, an (F0,G,P)-complex F = F(F ) = {F (i)}k

i=1 is defined by

• F (i) =
⋃

I∈∆i(F ) P(i)(I) for i = 1, . . . , k − 1, and

• F (k) =
⋃

e∈F

(
G ∩ Kk

(
P̂(k−1)(e)

))
.

Moreover, let C = C (F0,G,P) be the set of all (F0,G,P)-complexes. Given polyad
P̂ ∈ P̂(k−1), let CP̂ ⊆ C be the set of (F0,G,P)-complexes F = {F (i)}k

i=1 for
which P̂ ⊆ F (k−1).

Remark 3.4. Note that every (F0,G,P)-complex F ∈ C (F0,G,P) is an (m,F0)-
complex with m = |V (G)|/a1. Moreover, if

• P is (η, ε,a)-equitable for some constants η, ε, and vector a = (ai)k−1
i=1 ,

and
• F (k) is (ε, d, F0)-regular w.r.t. F (k−1),

then F is an
(
ε, ( 1

a2
, . . . , 1

ak−1
, d), F0

)
-regular (m,F0)-complex.

Definition 3.5. Let F0 and G be k-uniform hypergraphs, P = P(k − 1,a) be a
family of partitions, and ϕ∗G be an F0-packing of G.

(a) Call ϕ∗G crossing w.r.t. P if ϕ∗G(F ) = 0 for any copy F of F0 in G that
is not crossing w.r.t. P (cf. Definition 3.2).

(b) For an (F0,G,P)-complex F = {F (i)}k
i=1 ∈ C (F0,G,P) set

ϕ∗G(F) =
∑{

ϕ∗G(F ) : F is a copy of F0 in F (k)
}

max
{
|Kk(P̂)| : P̂ ∈ P̂(k−1)

} .

(c) For a positive real γ, we say ϕ∗G is γ-separated w.r.t. P if for every
(F0,G,P)-complex F ∈ C (F0,G,P) either

ϕ∗G(F) = 0 or ϕ∗G(F) ≥ γ

k−1∏
i=1

(
1
ai

)|∆i(F0)|−(k
i)
.

Observe that ϕ∗G(F) is normalized so that for any P̂ ∈ P̂(k−1) we have∑
F∈CP̂(F0,G,P)

ϕ∗G(F) ≤
∑

F∈CP̂

∑{
ϕ∗G(F ) : F is a copy of F0 in F (k)

}
|Kk(P̂)|

≤
∑

e∈Kk(P̂)

∑
F3e

{
ϕ∗G(F ) : F is a copy of F0 in G

}
|Kk(P̂)|

≤
∑

e∈G∩Kk(P̂) 1

|Kk(P̂)|
= d(G|P̂) .

(4)

Finally, we can state the variation of Theorem 2.20 mentioned earlier.
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Lemma 3.6 (Tailored Regularity Lemma). For all µ > 0, all k-uniform hy-
pergraphs F0, and all positive real-valued functions ε : Nk−1 → (0, 1], there exist
nReg = nReg(ε(·, . . . , ·), µ, F0) and LReg = LReg(ε(·, . . . , ·), µ, F0) such that the fol-
lowing holds.

For k-uniform hypergraph H with |V (H)| = n ≥ nReg, there exists a k-uniform
hypergraph G with V (G) = V (H), and a family of partitions P = P(k − 1,a)
on V (G), such that

(i) P is (µ, ε(a),a)-equitable and L-bounded,
(ii) G is perfectly ε(a)-regular w.r.t. P,
(iii) G is µ

5 -density-separated w.r.t. P, and
(iv) |H4G| < µnk.

Moreover; if ϕ∗H is a fractional F0-packing of H with weight w(ϕ∗H) = αnk for some
α > µ, then we can choose P and G, and find a fractional F0-packing ϕ∗G of G,
such that, in addition to the above properties,

(v) ϕ∗G is crossing w.r.t. P,
(vi) ϕ∗G is µ

5 -separated w.r.t. P, and
(vii) w(ϕ∗G) > (α− µ)nk.

We briefly compare Lemma 3.6 and Theorem 2.20. Note that properties (i), (ii),
and (iv) are the conclusion of Theorem 2.20 and (iii) is easily obtained by remov-
ing those edges which belong to sparse polyads. The fractional F0-packing ϕ∗G is
obtained by adjusting ϕ∗H appropriately. We give the formal but straightforward
proof of the existence of such a ϕ∗G satisfying (v)–(vii) in Section 4.1.

3.2. Decomposition Lemma. In our proof of Theorem 1.1 we will first apply the
Tailored Regularity Lemma, Lemma 3.6, from the last section. In the second step
we select for each (F0,G,P)-complex F = {F (i)}k

i=1 with ϕ∗G(F) > 0 (c.f. Defi-
nition 3.5 (b) and Lemma 3.6 (vi)), an (m,F0)-subhypergraph (m = |V (G)|/a1)
GF ⊆ F (k) which is (ε, ϕ∗G(F), F0)-regular w.r.t. F (k−1). Then the Extension
Lemma, Lemma 2.15, will imply that the auxiliary |F0|-uniform hypergraph LF
with V (LF ) equal to the edges set of GF and E(LF ) corresponding to the crossing
copies of F0 in GF , satisfies the assumptions of the Matching Lemma, Lemma 2.1.
Consequently, we will be able to infer that GF contains an integer F0-packing with
weight ‘close’ to the weight of the fractional packing ϕ∗G restricted to F (k). Repeat-
ing this process over all (F0,G,P)-complexes F ∈ C (F0,G,P) and ensuring that
GF ∩GF ′ = ∅ for all distinct F , F ′ ∈ C will yield the integer F0-packing satisfying
the conclusion of Theorem 1.1.

Below we formally define such a desired decomposition of G into regular (m,F0)-
subhypergraph’s GF . Then we state Lemma 3.8 which guarantees the existence
of such a decomposition in an environment provided by the Tailored Regularity
Lemma, Lemma 3.6.

Definition 3.7. Given k-uniform hypergraphs F0 and G, and family of partitions
P = P(k − 1,a), we have the set C = C (F0,G,P) of all (F0,G,P)-complexes.
For each F = {F (i)}k

i=1 ∈ C , let GF be a subset of F (k). If

GF ∩ GF ′ = ∅
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for all pairs of distinct F ,F ′ ∈ C , then the set {GF : F ∈ C } ∪ {T }, where

T = G \
⋃

F∈C

GF ,

is called a C -decomposition of G.
Moreover, we say a C -decomposition of G is (ε, ϕ∗G)-regular w.r.t. P for a

fractional F0-packing ϕ∗G of G, if for all F ∈ C ,

GF is (ε, ϕ∗G(F), F0)-regular w.r.t. F (k−1) ,

where ϕ∗G(F) is the quantity defined in Definition 3.5 (b).

Lemma 3.8 (Decomposition Lemma). For all k-uniform hypergraphs F0, and µ >
0, there exists εµ : Nk−1 → (0, 1] such that for all functions ε : Nk−1 → (0, 1] with
ε(·, . . . , ·) < εµ(·, . . . , ·) pointwise, and all L, there exists nDec = nDec(ε(·, . . . , ·), L)
such that the following holds.

For k-uniform hypergraph G with |V (G)| = n ≥ nDec, constants a, family P =
P(k−1,a) of partitions on V (G) , and F0-packing ϕ∗G of G, meeting properties (i),
(ii), (iii), (v), and (vi) of Lemma 3.6,2 there exists a C -decomposition of G that is
(3ε(a), ϕ∗G)-regular w.r.t. P.

The lemma is proved in Section 4.2.

3.3. Proof of Theorem 1.1. Let k-uniform hypergraph F0 and real 0 < η < 1
be given. Since the theorem is trivial for a single edge, we can assume that F0 has
more than one edge. For i = 1, . . . , k, let Mi = |∆i(F0)|. Let A = (Ai)k−1

i=1 be a
vector of formal variables, and

f(A) =
15
η

k−1∏
i=1

A
Mi−(k

i)
i

be a function of A. Note that when A1, . . . , Ak−1 are positive integers, then

f(A) > Ai for every i = 1, . . . , k − 1 , (5)

since |F0| > 1. Below we fix all constants and functions crucial for our proof.
(i) Let C : Nk−1 → R be such that

C(A) >
k−1∏
i=2

(
1
Ai

)(k
i)−Mi

×
(

1
f(A)

)1−Mk

.

(ii) Define γ : Nk−1 → (0, 1] by

γ(A) = γMat(η/100, C(A)),

where γMat is from Theorem 2.1 with ζ = η/100 and C = C(A).
(iii) Define ε : Nk−1 → (0, 1] by letting ε(A) be the pointwise minimum of

• η
100

1
f(A) ,

• εη/3(A), (given by Lemma 3.8 with µ = η/3)
• 1

3 · δExt

(
F0, γ(A), 1

f(A)

)
, and (given by Lemma 2.15)

• δDCL

(
k, η

100 ,min2≤i<k
1

Ai

)
. (given by Theorem 2.7)

(iv) Set L = LReg(ε(·, . . . , ·), η/3, F0), from Lemma 3.6.

2Note that properties (iv) and (vii) of Lemma 3.6 are not applicable here, since the hyper-
graph H and the quantity α are not quantified here.
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(v) Let m1 : Nk−1 → N be a componentwise increasing function such that
• m1(A) ≥ mExt

(
F0, γ(A), 1

f(A)

)
(given by Lemma 2.15), and

• that is large enough that NMat

(
η

100 , C(A)
)
, from Theorem 2.1, is

less than

|F0|
(
1− η

25

) η

15
·m1(A)k

k−1∏
i=1

(
1
Ai

)Mi

. (6)

(vi) Let N be an integer greater than the maximum of

• (15L2M1 )|F0|
(
η|F0| · γMat( η

100 , C(L, . . . , L))
)−1

,
• L ·m1

(
L, . . . , L

)
, (defined in (v))

• L ·mDCL

(
k, η

100 ,
1
L

)
, (given by Theorem 2.7)

• nDec(ε(·, . . . , ·), L), and (given by Lemma 3.8)
• nReg(ε(·, . . . , ·), η/3, F0). (given by Lemma 3.6)

Now let H be a k-uniform hypergraph on n > N vertices, with maximum fractional
packing ϕ∗H of weight w(ϕ∗H) = αnk. We may assume that α > η, since otherwise
we are done.

Tailored Regularity Lemma. Since n > N > nReg(ε(·, . . . , ·), η/3, F0), we
can apply the Tailored Regularity Lemma, Lemma 3.6, to H and ϕ∗H with µ =
η/3, ε(·, . . . , ·), and α. This yields a hypergraph G, a family of partitions P =
P(k − 1,a), and fractional F0-packing ϕ∗G of G, that satisfy properties (i)–(vii) of
Lemma 3.6.

By choice of ε(·, . . . , ·) and n > N , we have

ε(a) ≤ δDCL

(
k, η

100 , min
2≤i<k

1
ai

)
and

n

a1
>
N

L
> mDCL

(
k, η

100 ,
1
L

)
≥ mDCL

(
k, η

100 , min
2≤i<k

1
ai

)
,

(7)

where the last inequality follows from Remark 2.8. Consider any polyad-complex
P̂

(k−1)
of Comk−1. Since P is

(
η/3, ε(a),a

)
-equitable by property (i) of Lemma 3.6

the complex P̂
(k−1)

is an
(
ε(a), ( 1

a2
, . . . , 1

ak−1
)
)
-regular (n/a1, k, k − 1)-complex.

Thus in view of (7) we can apply Theorem 2.7 with ξ = η
100 and d0 = min2≤i<k

1
ai

to P̂
(k−1)

=
{
P̂(j)

}k−1

j=1
to show that

∣∣Kk(P̂(k−1))
∣∣ = (1± η

100
)
(
n

a1

)k

·
k−1∏
i=2

(
1
ai

)(k
i)
. (8)

Decomposition Lemma. By choice of ε(·, . . . , ·) < εη/3(·, . . . , ·) and choice of
n > N > nDec(ε(·, . . . , ·), L) we can apply the Decomposition Lemma, Lemma 3.8,
to G, P(k − 1,a), and ϕ∗G with µ = η/3, and L as chosen in (iv). Let {T } ∪
{GF : F ∈ C } be a (3ε(a), ϕ∗G)-regular C (F0,G,P)-decomposition that is given by
Lemma 3.8.

Observations. Note that by the definition of the function f we have

1
f(a)

=
η

15

k−1∏
i=1

(
1
ai

)Mi−(k
i)
. (9)
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Now ϕ∗G was provided by Lemma 3.6 with µ = η/3, so by property (vi) of that
lemma, ϕ∗G is η

15 -separated. By definition (see Definition 3.5(c)) this means that
for any (F0,G,P)-complex F in C such that ϕ∗G(F) 6= 0,

1
f(a)

≤ ϕ∗G(F) , (10)

and in view of (5),
1

f(a) ≤ min{ 1
a1
. . . , 1

ak−1
, ϕ∗G(F)} . (11)

Let C >0 be the subset of C of these (F0,G,P)-complexes, i.e.,

C >0 = {F ∈ C : ϕ∗G(F) > 0} .
Later we want to apply the Matching Lemma, Theorem 2.1, to find an integer
packing in GF for every F ∈ C >0 and for the verification of the assumptions we
will need the following observations.

Fix some F ∈ C >0 and let dF denote its density vector
(

1
a1
, . . . , 1

ak−1
, ϕ∗G(F)

)
.

We note the following:
(a) Since the C -decomposition is (3ε(a), ϕ∗G)-regular w.r.t. P (see Defini-

tion 3.7), each decomposition class GF is (3ε(a), ϕ∗G(F), F0)-regular w.r.t.
F (k−1) (see Definition 2.12).

(b) Since F is an (F0,G,P)-complex and since P is (η/3, ε(a),a)-equitable,
it follows from (a) that F is a

(
3ε(a),dF , F0

)
-regular (n/a1, F0)-complex

(see Remark 3.4).
(c) Recall that the function ε was chosen so that ε(a) ≤ η

100
1

f(a) ≤
η

100ϕ
∗
G(F).

Thus
ϕ∗G(F)− 3ε(a) >

(
1− 3η

100

)
ϕ∗G(F), (12)

and consequently, we infer from (a) that

|GF | > |F0|(ϕ∗G(F)− 3ε(a)) min
P̂∈P̂(k−1)

|Kk(P̂)|

(8−10)
> |F0|

(
1− 3η

100

)
η

15

k−1∏
i=1

(
1
ai

)Mi−(k
i) (

1− η

100

) (
n

a1

)k

·
k−1∏
i=2

(
1
ai

)(k
i)

> |F0|
(
1− η

25

) η

15
nk

k−1∏
i=1

(
1
ai

)Mi

(6)
> NMat(η/100, C(a)),

where we used the monotonicity of m1 for the last inequality.
(d) From the choice of the function ε and n > N in (iii) and (vi) we infer that

3ε(a) < δExt

(
F0, γ(a), 1

f(a)

)
and

n

a1
> mExt

(
F0, γ(a), 1

f(a)

)
.

Hence, by (b) and (11) we can apply the Extension Lemma, Lemma 2.15,
with γ = γ(a) and d0 = 1

f(a) to F . This way we infer that all but
at most γ(a) = γMat( η

100 , C(a)) proportion of the edges in GF occur in(
1± γMat( η

100 , C(a))
)
D crossing copies of F0 in GF , where

D =
(
n

a1

)M1−k k−1∏
i=2

(
1
ai

)Mi−(k
i)
·
(
ϕ∗G(F)

)Mk−1
.
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(e) An edge of GF can occur in at most ( n
a1

)M1−k crossing copies of F0, and
by the choice of the function C in (i) and equation (10) we have

(
n

a1

)M1−k

≤ C(a)D .

(f) Two different edges of GF can occur together in the most crossing copies
of F0 if they share k − 1 vertices, i.e. if the two edges are spanned by
k+ 1 vertices. In this case they can occur together in at most

(
n
a1

)M1−k−1

copies. Due to the choice of

n > N ≥ 15|F0|L|F0|×2M1

η|F0| × γMat( η
100 , C(L, . . . , L))

≥ 15|F0|L|F0|×2M1

η|F0| × γMat( η
100 , C(a))

in (vi) we have that

(
n

a1

)M1−k−1

≤ γMat

(
η

100 , C(a)
)
D .

Matching Theorem. After these preperations we head to the application of
the Matching Theorem, Theorem 2.1. Now for every F ∈ C >0 we construct an
auxillary |F0|-uniform hypergraph LF defined by

V (LF ) = E(GF ), and

E(LF ) =
{
E(F ) : F ∈

(GF
F0

)}
.

Since we verified properties (a)–(f) for every F ∈ C >0 we infer that LF has the
following properties:

(c′) |V (LF )| > NMat( η
100 , C(a)),

(d′) all but at most γMat( η
100 , C(a))|V (LF )| vertices x ∈ V (LF ), have degree

degLF
(x) ≤

(
1± γMat( η

100 , C(a))
)
D,

(e′) degLF
(x) ≤ C(a)D for all x ∈ V (LF ), and

(f ′) co-degLF
(x, y) ≤ γMat

(
η

100 , C(a)
)
D for all distinct x, y ∈ V (LF ).

Thus we can apply the Matching Theorem, Theorem 2.1, with ζ = η
100 and C =

C(a) to get an edge-packing of LF using at least (1− η
100 ) |V (LF )|

|F0| = (1− η
100 ) |GF |

|F0|

edges. This corresponds to a set of at least (1− η
100 ) |GF |

|F0| copies of F0 in GF , no two
of which share an edge. Thus the edge packing of LF corresponds to an integer
F0-packing ϕGF of GF with weight

w(ϕGF ) >
(
1− η

100

) |GF |
|F0|

. (13)

Since the number of edges of GF belonging to any of the |F0| underlying hyper-
graphs P̂ is |Kk(P̂)| times the density of GF with respect to Kk(P̂), we infer from
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(3ε(a), ϕ∗G(F), F0)-regularity of GF w.r.t. F (k−1) (see (a)) that

|GF |
|F0|

>
(
ϕ∗G(F)− 3ε(a)

)
× min
P̂∈P̂(k−1)

|Kk(P̂)|

(12)

>

(
1− 3η

100

) ∑
F∈(F(k)

F0
)
ϕ∗G(F )

max
P̂∈P̂(k−1)

|Kk(P̂)|
× min
P̂∈P̂(k−1)

|Kk(P̂)|

(8)

>
(
1− η

30

) (
1− η

100

)(
1 + η

100

) · ∑
F∈(F(k)

F0
)

ϕ∗G(F )

>
(
1− η

30

)2 ∑
F∈(F(k)

F0
)

ϕ∗G(F ) .

We then repeat the above for every F ∈ C >0 and set ϕG =
∑

F∈C >0 ϕGF . Now,
by the properties of a C -decomposition every edge of G is in at most one GF so ϕG
is indeed an integer F0-packing of G. The weight of ϕG is

w(ϕG) =
∑

F∈C >0

ϕGF

(13)

≥
(
1− η

100

) ∑
F∈C >0

|GF |
|F0|

≥
(
1− η

100

) (
1− η

30

)2 ∑
F∈C >0

∑
F∈(F(k)

F0
)

ϕ∗G(F ) .

Moreover, since ϕ∗G(F) = 0 for every F ∈ C \ C >0 we further infer that the
right-hand side of the last inequality equals(

1− η

100

) (
1− η

30

)2 ∑
F∈C

∑
F∈(F(k)

F0
)

ϕ∗G(F ) ≥
(
1− η

3

)
w(ϕ∗G)

≥
(
1− η

3

) (
α− η

3

)
nk ,

where the first inequality uses that ϕ∗G is crossing w.r.t. P, and the last inequality
follows from property (vii) of Lemma 3.6. Consequently,

w(ϕG) ≥
(
α− 2η

3

)
nk .

Finally, by property (iv) of Lemma 3.6 we have |H4G| < η
3n

k and, hence, the
restriction of ϕG to copies of F0 in H ∩ G has weight greater than (α− η)nk. This
completes the proof of the theorem. �

4. Proof of Lemmas

4.1. Proof of the Tailored Regularity Lemma. Recall that for given hyper-
graphH and fractional F0-packing ϕ∗H, the Tailored Regularity Lemma, Lemma 3.6,
outputs a hypergraph G, a family of partitions P, and a fractional F0-packing ϕ∗G
which satisfy (i)–(vii) of the lemma. The proof, which is based on a straightforward
application of Theorem 2.20 splits into three steps:

• To satisfy condition (v) and (vii) we first consider an auxiliary partition of
the vertices so that ‘most’ of the weight of ϕ∗H is in crossing copies of F0.
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• Then we apply Theorem 2.20 which outputs a family of partitions P and
a perfectly regular hypergraph G (which is a small perturbation of H).

• In the last step we adjust ϕ∗H to a fractional packing of G which satis-
fies (v)–(vii).

Proof of Lemma 3.6. We first fix the constants and functions involved in the proof
of Lemma 3.6. Let a real µ > 0, a k-uniform hypergraph F0 with v0 = |V (F0)|
vertices, and a function ε : Nk−1 → (0, 1] be given. The main tool of the proof
is the regularity lemma for hypergraphs, Theorem 2.20. For technical reasons we
will apply Theorem 2.20 with a slightly smaller ‘ε-function’, ε2.20 : Nk−1 → (0, 1]
defined for every A = (Ai)k−1

i=1 ∈ Nk−1 by

ε2.20(A) = min
{
ε(A), δDCL

(
k, 1

4 , min2≤i<k
1

Ai

)}
,

where δDCL is given by Theorem 2.7. Moreover, fix an integer ` in so that

` >
4v2

0

µ
.

Next we apply the variation of Theorem 2.20 discussed in Remark 2.21 with con-
stants η = µ and γ = µ/5, the function ε2.20, and the integer ` which is the number
of vertex classes of the initial vertex partition. Theorem 2.20 yields integers L
and n0 and we fix the constants LReg and nReg, promised by Lemma 3.6

LReg = L and nReg = max
{
n0, L ·mDCL(k, 1

4 ,
1
L )

}
,

where mDCL is given by Theorem 2.7.
Having defined all constants involved in the proof, let H be a k-uniform hy-

pergraph with |V (H)| = n ≥ nReg and ϕ∗H be a fractional F0-packing of H with
weight w(ϕ∗H) = αnk. We have to find a k-uniform hypergraph G and a fractional
F0-packing ϕ∗G of G which satisfy properties (i)–(vii) of Lemma 3.6.

Initial vertex partition. In view of (v) we first define an auxiliary vertex
partition of V for which the weight of ϕ∗H restricted to crossing copies of F0 is ‘close’
to αnk. For that consider a random equipartition of V into ` parts of cardinality
n
` .

It follows from the choice of ` that(
1− v0

`

)v0

>

(
1− µ

4v0

)v0

> 1− µ

4
.

Hence, for every subset X ⊆ V of cardinality v0 the probability that X is crossing
in the random partition can be bounded from below by

P(X is crossing) =

(
`
v0

) (
n
`

)v0(
n
v0

) >

(
`− v0
`

)v0

> 1− µ

4
.

Consequently, the expectation of the weight of the fractional packing ϕ∗H restricted
to the random equipartition is

E
[∑

{ϕ∗H(F ) : F ∈
(H
F0

)
and F is crossing}

]
>

(
1− µ

4

) ∑
{ϕ∗H(F ) : F ∈

(H
F0

)
}

=
(
1− µ

4

)
αnk

Thus there is some equipartition V = W1 ∪ · · · ∪W` for which∑
{ϕ∗H(F ) : F ∈

(H
F0

)
and |V (F ) ∩Wi| ≤ 1, i = 1, . . . , `} >

(
1− µ

4

)
αnk . (14)
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Regularization. Since n ≥ nReg ≥ n0 we can apply Theorem 2.20 toH and initial
partition V = W1∪· · ·∪W` with constants η = µ, γ = µ/5, and ε2.20. Theorem 2.20
then yields a k-uniform hypergraph G′ and a family of partitions P = P(k− 1,a)
satisfying properties (i)–(iii) of Theorem 2.20. Moreover, the vertex partition P(1)

refines the initial partition W1 ∪ · · · ∪W` (cf. Remark 2.21).
Since the family of partitions P is our final family of partitions, conclusion (i)

of Theorem 2.20 yields property (i) of Lemma 3.6.

Removing sparse polyads and defining G. We obtain G from G′ by deleting
those edges from G′ which belong to a polyad P̂ ∈ P̂(k−1) with d(G′|P̂) ≤ µ

5 .
Clearly, G defined this way satisfies properties (ii) and (iii) of Lemma 3.6. Next we
verify (iv). We infer from the definition of G that |G′4G| = |G′ \ G| ≤ µ

5n
k and,

hence, conclusion (iii) of Theorem 2.20 (with G′ for G) implies

|H4G| ≤ |H4G′|+ |G′4G| ≤
(µ

5
+
µ

5

)
nk <

µ

2
nk , (15)

yielding property (iv) of Lemma 3.6. There remains only to find an appropiate
fractional packing of G which satisfies (v)–(vii).

Defining the fractional packing ϕ∗G. Below for two copies F and F ′ of F0 in G
we write F ∼P F ′ if their (F0,G,P)-complex (see Definition 3.3) is the same, i.e.,

F ∼P F ′ ⇐⇒ F(F,G,P) = F(F ′,G,P) .

Then define fractional packing ϕ∗G on a copy F of F0 in G as follows. Set ϕ∗G(F ) = 0
if one of the following holds

(a ) F 6∈
(H∩G

F0

)
,

(b ) F is not crossing w.r.t. P,
(c )

∑
{ϕ∗H(F ′) : F ′ ∈

(H∩G
F0

)
and F ′ ∼P F} <

< µ
5

∏k−1
i=1

(
1
ai

)|∆i(F0)|−(k
i) ×max

{
|Kk(P̂)| : P̂ ∈ P̂(k−1)

}
and set ϕ∗G(F ) = ϕ∗H(F ) otherwise. It follows straight from the definition of ϕ∗G(F )
above, that properties (v) and (vi) of Lemma 3.6 hold.

We need only to verify (vii). The fractional packing ϕ∗G differs from ϕ∗H on
copies F of F0 satisfying one of the conditions (a )–(c ). Consequently,

w(ϕ∗H)− w(ϕ∗G) < A+B + C , (16)

where

A =
∑ {

ϕ∗H(F ) : F 6∈
(H∩G

F0

)}
,

B =
∑ {

ϕ∗H(F ) : F ∈
(H
F0

)
and F is not crossing w.r.t. P

}
, and

C =
µ

5

k−1∏
i=1

(
1
ai

)|∆i(F0)|−(k
i)
×max

{
|Kk(P̂)| : P̂ ∈ P̂(k−1)

}
× |C (F0,H,P)| ,

where |C (F0,H,P)| is the number of (F0,H,P)-complexes (see Definition 3.3).
The quantity A can be bounded by

A ≤
∑

e∈H\G

∑ {
ϕ∗H(F ) : F ∈

(H
F0

)
and e ∈ F

}
≤

∑
e∈H\G

1
(15)

≤ µ

2
nk , (17)
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and since P(1) refines W1 ∪ · · · ∪W` it follows from (14) that

B ≤ µ

4
αnk <

µ

4
nk . (18)

Finally, we consider the quantity C. Note that by the choice of the function ε2.20

we have ε2.20(a) ≤ δDCL

(
k, 1

4 ,min2≤i<k
1
ai

)
and the choice of n > N yields, by

remark 2.8,
n

a1
>

n

LReg
> mDCL

(
k, 1

4 , min
2≤i<k

1
L

)
> mDCL

(
k, 1

4 , min
2≤i<k

1
ai

)
.

Hence, we can apply Theorem 2.7 with ξ = 1
4 and d0 = min2≤i<k

1
ai

to every
polyad-complex in Comk−1(P) to get that

max
{
|Kk(P̂)| : P̂ ∈ P̂(k−1)

}
≤ 5

4

(
n

a1

)k

·
k−1∏
i=2

(
1
ai

)(k
i)
.

Moreover, the number of (F0,H,P)-complexes is bounded from above by

|C (F0,H,P)| ≤ a1!
(a1 − v0)!

k−1∏
i=2

a
|∆i(F0)|
i < av0

1

k−1∏
i=2

a
|∆i(F0)|
i .

Since v0 = |∆1(F0)| we infer that

C <
µ

4
nk . (19)

Therefore, property (vii) of Lemma 3.6 follows from (16) combined with (17), (18),
and (19) which finishes the proof. �

4.2. Proof of the Decomposition Lemma. The proof of the Decomposition
Lemma, Lemma 3.8, relies on the so called Slicing Lemma, which ensures that
random subhypergraphs of regular hypergraphs are again regular.

Lemma 4.1 (Slicing Lemma). Let d and ε be positive real numbers such that
0 < ε, d ≤ 1. Let P̂ be a (m, k, k − 1)-hypergraph satisfying |Kk(P̂)| ≥ mk/ lnm
and GP̂ be an (m, k, k)-hypergraph which is (ε, d)- regular w.r.t. P̂. Then, for every
0 < p1, . . . , pu < 1 such that

•
∑u

i=1 pi ≤ 1,
• k(lnm)/m ≤ ε3/5,

and for all i = 1, . . . , u,
• 3ε < pid,

the following holds:
There exists a partition GP̂ = TP̂∪GP̂1

∪· · ·∪GP̂u
such that GP̂i

is (3ε, pid)-regular
w.r.t. P̂ for every i = 1, . . . , u.

The proof of Lemma 3.8 is based on the Chernoff inequality, and is along the
lines of [19, Lemma 11.3]. We omit the details here.

Let us briefly recall the Decomposition Lemma. Roughly speaking, for a given k-
polyad P̂ ∈ P̂(k−1) the Decomposition Lemma guarantees that for every (F0,G,P)-
complex F = {F (i)}k

i=1 with P̂ ⊆ F (k−1) (i.e., F ∈ CP̂) there is a (3ε(a), ϕ∗G(F))-
regular (w.r.t. P̂) subhypergraph G(P̂,F) of G∩Kk(P̂) such that G(P̂,F)∩G(P̂,F ′) = ∅
for all distinct F , F ′ ∈ CP̂ . Since G is perfectly ε(a)-regular w.r.t. the given family
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of partitions P such a decomposition will be ensured by a straightforward appli-
cation of the Slicing Lemma. We give the formal proof below.

Proof of Lemma 3.8. Given F0 and µ > 0 let εµ : Nk−1 → (0, 1] be such that for
formal variables A = (Ai)k

i=1, εµ(A) is less than

• µ

15

k−1∏
i=1

(
1
Ai

)|∆i(F0)|−(k
i)

, and

• δDCL

(
k, 1

4 ,min2≤i<k
1

Ai

)
.

Let ε : Nk−1 → (0, 1] be such that ε(A) < εµ(A), and L be given. Without loss of
generality we may assume that ε(·, . . . , ·) is componentwise decreasing. Now fix an
auxiliary constant mDec large enough that

• 3
4 lnmDec > L2k

,

• k ln mDec
mDec

≤ ε(L,...,L)3

5 , and
• mDec > mDCL

(
k, 1

4 ,
1
L

)
.

Finally, set
nDec = L ·mDec .

Let G be a k-uniform hypergraph with vertex set V and |V | = n > nDec. Moreover,
let P = P(k − 1,a) be a family of partitions on V , and ϕ∗G be an F0-packing of
G meeting properties (i),(ii),(iii),(v), and (vi) of Lemma 3.6. Note that P(1) =
V1 ∪ · · · ∪ Va1 where for λ ∈ [a1], Vλ has size

m =
n

a1
>
n

L
>
nDec

L
= mDec . (20)

For each polyad P̂ ∈ P̂(k−1) we use Lemma 4.1 to partition the edges of G ∩
Kk(P̂) into partition classes G(P̂,F) where F runs over

CP̂ =
{

F = {F (i)}k
i=1 : F ∈ C (F0,G,P) and F (k−1) ⊆ P̂

}
,

(see Definition 3.3). We then join the partition classes corresponding to each F ∈ C ,
to get

GF =
⋃ {

G(P̂,F) : P̂ ∈ P̂(k−1) and P̂ ⊆ F (k−1)
}
.

These classes GF will define the required (3ε(a), ϕ∗G)-regular C -decomposition of G.
More precisely, let P̂ ∈ P̂(k−1) with d(G|P̂) > 0. Set

C >0

P̂ = {F ∈ CP̂ : ϕ∗G(F) > 0}

and for every F ∈ C >0

P̂
set

p(F ,P̂) =
ϕ∗G(F)

d(G|P̂)
.

We now verify the assumptions of Lemma 4.1 for G ∩ Kk(P̂):

• P is (µ, ε(a),a)-equitable, so polyad-complex P̂
(k−1)

, corresponding to
polyad P̂ is an

(
ε(a), (1/a2, . . . , 1/ak−1)

)
-regular (m, k, k−1)-complex. By

the earlier choice of the function ε we have ε(a) < δDCL

(
k, 1

4 ,min2≤i<k
1
ai

)
.

Moreover, due to (20), the choice of mDec and Remark 2.8 we have and

n/a1 = m > mDec > mDCL

(
k,

1
4
,
1
L

)
≥ mDCL

(
k,

1
4
, min
2≤i<k

1
ai

)
.
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Consequently we can apply Theorem 2.7 to P̂
(k−1)

with ξ = 1
4 and d0 =

min2≤i<k
1
ai

to get that

|Kk(P̂)| ≥
(

1− 1
4

) (
n

a1

)k

·
k−1∏
i=2

(
1
ai

)(k
i)
≥ 3

4
mk

L2k ≥
mk

lnm
,

where the last inequality is from the choice of mDec.
• G is (ε(a), d(G|P̂))-regular w.r.t. P̂ since by assumption of Lemma 3.8 the

hypergraph G satisfies property (ii) of Lemma 3.6.
• By definition of p(F ,P̂) and equation (4) we get∑

F∈C >0
P̂

p(F ,P̂) ≤ 1.

• Since m > mDec and ε is monotone in every coordinate, we have

k lnm
m

≤ ε(L, . . . , L))3

5
≤ ε(a)3

5
.

• From property (vi) of Lemma 3.6 (which holds by the assumption of
Lemma 3.8) and the choice of function ε, we have for every F ∈ C >0

P̂

p(F ,P̂)d(G|P̂) = ϕ∗G(F) >
µ

5

k−1∏
i=1

(
1
ai

)|∆i(F0)|−(k
i)
> 3ε(a).

Thus for each P̂ ∈ P̂(k−1) we can apply Lemma 4.1 to G ∩Kk(P̂) with d = d(G|P̂),
ε = ε(a), and u = |C >0

P̂
|, to get partition G ∩ Kk(P̂) = TP̂ ∪

⋃
F∈C >0

P̂
G(P̂,F)

such that G(P̂,F) is (3ε(a), p(F ,P̂)d(G|P̂))-regular w.r.t. P̂. We define the promised
C -decomposition of G by setting

GF =

{⋃ {
G(P̂,F) : P̂ ∈ P̂(k−1) and P̂ ⊆ F (k−1)

}
if ϕ∗G(F) > 0

∅ otherwise.

Clearly, if ϕ∗G(F) = 0, then GF is (3ε(a), 0, F0)-regular w.r.t. F (k−1). Moreover,
since for every F ∈ C with ϕ∗G(F) > 0 we have that p(F ,P̂)d(G|P̂) = ϕ∗G(F)

independent of P̂, the hypergraph GF defined above is also (3ε(a), ϕ∗G(F), F0)-
regular w.r.t. F (k−1), which concludes the proof. �
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