REGULAR PARTITIONS OF HYPERGRAPHS:
REGULARITY LEMMAS

VOJTECH RODL AND MATHIAS SCHACHT

ABSTRACT. Szemerédi’s regularity lemma for graphs has proved to be a pow-
erful tool with many subsequent applications. The objective of this paper is
to extend the techniques developed by Nagle, Skokan, and authors and obtain
a stronger and more “user friendly” regularity lemma for hypergraphs.

1. INTRODUCTION

In the course of proving his celebrated density theorem concerning arithmetic
progressions [30], Szemerédi established the regularity lemma for graphs [31]. This
lemma turned out to be a very useful tool in extremal graph theory and theoretical
computer science (see, e.g., [18, 19] for a survey). Following the work of Frankl
and Rodl on 3-uniform hypergraphs [5], Gowers [10, 12] and Nagle, Skokan, and
authors [20, 26] developed generalizations of the regularity method to k-uniform
hypergraphs. Subsequently, Tao [32] also obtained such a generalization. Those
extensions yield the following theorem (see [10, 20, 27]), which settles a conjecture
of Erdés, Frankl, and Rodl [4].

Theorem 1 (Removal lemma). Let £ > k > 2 be integers and let € > 0 there
exist § = §(L, k,e) > 0 and ng = no(¢, k,e) so that the following holds.

Suppose F*¥) is a fized k-uniform hypergraph on £ vertices and H*) is a k-
uniform hypergraph on n > ng vertices. If H**) contains at most én’ copies of F*),
then one can delete en® edges of H*) to make it F*) -free.

This theorem can be viewed as an extension of the theorem of Ruzsa and Sze-
merédi [28], which addressed the case k = 2 and F(? being a triangle, the complete
graph on three vertices. In [4], Theorem 1 was verified for all graphs F2). Tt
was shown by Frankl and Ro6dl [5], Solymosi [29], and Tengan, Tokushige, and
authors [25], that Theorem 1 implies Szemerédi’s density theorem [30], as well as
some of its multidimensional extensions due to Furstenberg and Katznelson [7, &].
(It is not known, however, whether Theorem 1 also yields an alternative proof of

the density version of the theorem of Hales and Jewett [15], which was established
by Furstenberg and Katznelson [9] using ergodic theory.)
In this paper we continue the line of research from [5, 20, 26] and obtain a stronger

and hopefully easier to use regularity lemma for hypergraphs — Theorem 17. The
proof of a corresponding counting lemma will appear in a subsequent paper [23].
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A standard application of those theorems, following the lines of [4, 5, 10, 20, 27],
yields a proof of Theorem 1.

As a byproduct we obtain a result for hypergraphs, Theorem 14, which might be
of independent interest. Roughly speaking, in the context of graphs Theorem 14
says that for every fixed v > 0 any graph on n vertices can be approximated, by
adding and deleting at most vn? edges, by an e-regular graph on a vertex partition
into t parts, where ¢ = ¢(¢) is an arbitrary function of ¢, and thus we may have
e(t) < % This may perhaps be somewhat surprising, since it follows from the work
of Gowers [11], that there are graphs which if not changed admit only an e-regular
partition with ¢ classes, where ¢t > % In fact Gowers constructed graphs with
number of partition classes in any e-regular partition being bigger than a tower of
height polynomial in 1/e.

2. MAIN RESULTS

In what follows, we give a precise account of Szemerédi’s regularity lemma. For
a graph G = (V, E) and two disjoint sets A, B C V, let E(A, B) denote the set of
edges {a,b} € E with a € A and b € B and set e(A, B) = |E(A, B)|. We also set
d(A, B) =e(A, B)/(JA||B|) for the density of the pair A, B.

The concept central to Szemerédi’s lemma is that of an e-regular pair. Let € > 0
be given. We say that the pair A, B is e-regular if |d(A, B) — d(A’, B')| < € holds
whenever A’ C A, B’ C B, and |A4'||B’| > ¢|A||B].

We call a partition (1) = {V;: 0 <i <t} of V t-equitable if it satisfies |Vp| < ¢
and |V;| = [|V|/t] for i € [t]. We say the graph G = (V, E) is e-regular w.r.t. 1)
if all but t? pairs V;, V; are e-regular. Szemerédi’s lemma [31] may then be stated
as follows.

Theorem 2 (Szemerédi’s regularity lemma). For any positive real € and any inte-
ger to, there are positive integers ts, = ts,(e,t0) and ng, = ng,(e,to) such that for
every graph G = (V, E) with |V| = n > ng, vertices there exists a partition 21 of
V' such that

(@) 21 = {Vi: 0 <i <t} is t-equitable, where ty <t < tg,, and

(ii) G is e-regular w.r.t. 20,
Moreover, if (ts,)! divides n then Vi can be chosen to be empty.

We note that our definition of an e-regular pair differs slightly from the usual
one of [31]. However, it is easy to see that both are equivalent. Also we point
out that in an early version of the regularity lemma, which appeared in [30], the
partition structure was a bit different and more complicated from the one stated
above, which appeared in [31].

In this paper we consider two extensions of Theorem 2 to hypergraphs (see
Theorem 14 and Theorem 17). To simplify the notation we will restrict to the
case where Vj is empty. Since our result is of asymptotic nature, dealing with
hypergraphs on n vertices where n is very large, and since every hypergraph can be
altered to satisfy (ts,)!|n by adding or deleting a constant number (independent of
n) of vertices this additional divisibility assumption has no essential baring.

2.1. Basic notation. For real constants «, 3, and a non-negative constants £ we
sometimes write

a=p+¢, if f-E<a<pf+E.
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For a positive integer ¢, we denote by [¢] the set {1,...,¢}. For a set V and an
integer k > 1, let [V]* be the set of all k-element subsets of V. We may drop
one pair of brackets and write [¢]* instead of [[E]]k A subset H®) C [V]* is a
k-uniform hypergraph on the vertex set V. We identify hypergraphs with their edge
sets. For a given k-uniform hypergraph H®*), we denote by V(H*)) and E(H®)
its vertex and edge set, respectively. For U C V(H®), we denote by H*)[U] the
sub-hypergraph of H*) induced on U (i.e. H®[U] = H® N[U]*). A Ek-uniform
clique of order j, denoted by K J(k), is a k-uniform hypergraph on j > k vertices
consisting of all (i) different k-tuples.

In this paper {-partite, j-uniform hypergraphs play a special role, where j < (.
Given vertex sets V1, ..., Vp, we denote by Kéj) (Vi,...,Vp) the complete ¢-partite, j-
uniform hypergraph (i.e., the family of all j-element subsets J C Uiem V; satisfying
[V J| < 1 for every i € [¢]). If |V;|] = m for every i € [{], then an (m,?, j)-
hypergraph HU) on Vi U --- UV, is any subset of Klgj)(Vl, ..., V4). Note that the
vertex partition V3 U---U Vj is an (m, ¢, 1)-hypergraph H(). (This definition may
seem artificial right now, but it will simplify later notation.) For j < ¢ < £ and
set A; € [(]*, we denote by HU)[A;] = HU) [UAeAi V3] the sub-hypergraph of the
(m, ¢, j)-hypergraph HU) induced on Usea, V-

For an (m, ¢, j)-hypergraph H) and an integer j < i < £, we denote by KC;(H())
the family of all i-element subsets of V() which span complete sub-hypergraphs
in H\) of order i. Note that |C;(H9))| is the number of all copies of Ki(j) in H).

Given an (m, £, j — 1)-hypergraph HY=1) and an (m, £, j)-hypergraph HU) such
that V(HY) C V(HU-Y), we say an edge J of HY) belongs to HU=V if J €
K; (HU=Y), i.e., J corresponds to a clique of order j in HU~1. Moreover, HU~1
underlies H) if H) C KC;(HU~Y), i.e., every edge of H) belongs to HU~1. This
brings us to one of the main concepts of this paper, the notion of a complez.
Definition 3 ((m,{,h)-complex). Let m > 1 and £ > h > 1 be integers. An
(m, ¢, h)-complex H is a collection of (m, ¥, j)-hypergraphs {H(j)}?zl such that

(a) HW is an (m, £, 1)-hypergraph, i.e., HY) =V, U--- UV, with |V;| = m for
i € [4];
(b) HY=Y underlies H) for 2 < j < h, i.e., HY) C KC;(HU~Y).
Remark 4. We may also define hypergraphs and complexes in the same way for
underlying vertex sets Vi,...,V; with different cardinalities. In such a case we will
drop the m and say HU) is an (¢, j)-hypergraph or H is an (£, h)-complex.

2.2. Regular complexes. We begin with a notion of relative density of a j-
uniform hypergraph w.r.t. (j — 1)-uniform hypergraph on the same vertex set.

Definition 5 (relative density). Let HY) be a j-uniform hypergraph and let
HU=Y be a (j — 1)-uniform hypergraph on the same vertex set. We define the
density of HY) w.r.t. HU=Y as
|HO K, (1UD)|
d(H(j)"H(j_l)) - [K; (HG-1)]
0 otherwise.

it |K;(HU™D)| >0

We now define a notion of regularity of an (m, j, j)-hypergraph with respect to
an (m,j,j — 1)-hypergraph.
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Definition 6. Let realse > 0 and d; > 0 be given along with an (m, j, j)-hypergraph
HY) and an underlying (m, j,j — 1)-hypergraph HU=Y. We say HY) is (e,d;)-
reqular w.r.t. HU=D if whenever QU1 C HU-D satisfies

K;(QU=)| > e|K;(HU)|,  then d(HW|QU™V)=4d;+te.

We extend the notion of (g, d;)-regularity from (m, j, j)-hypergraphs to (m, ¢, j)-
hypergraphs H ).

Definition 7 ((¢,d;)-regular hypergraph). We say an (m,{, j)-hypergraph H¥)
is (e,d;)-reqgular w.r.t. an (m,£,j — 1)-hypergraph HU~Y if for every A; € [{)’
the restriction HW[A;] = HW [U/\eAj Vi is (e, d;)-regular w.r.t. to the restriction
HU-D[A;] = HU-D [Unea, VAl -

We sometimes write e-regular to mean (57 d(’H(J) ‘H(J_l)))—regu]ar.

Finally, we close this section with the notion of a regular complex.

Definition 8 ((e,d)-regular complex). Let ¢ > 0 and let d = (da,...,dy) be
a vector of non-negative reals. We say an (m, £, h)-complex H = {HW) ;-’:1 is
(e, d)-regular if HY) is (¢, d;)-regular w.r.t. HU=Y for every j = 2,..., h.

2.3. Partitions. The regularity lemmas for k-uniform hypergraphs which we prove
in this paper provide a well-structured family of partitions 22 = {21 ... (k=11
of vertices, pairs, ..., and (k — 1)-tuples of some vertex set. We now discuss the
structure of these partitions following the approach of [26]. First we define the
refinement of a partition.

Definition 9 (refinement). Suppose A O B are sets, o/ is a partition of A, and
A is a partition of B. We say &/ refines B and write & < A if for every A € &/
there either exists a B € % such that AC B or AC A\ B.

Let & be a fixed integer and V be a set of vertices. Throughout this paper we
require a family of partitions &2 = {21 ... 21D} on V to satisfy properties
which we are going to describe below (see Definition 10).

Let 21 = {Vi,...,Vipa)} be a partition of V. For every 1 < j < k let
Crossj(ﬁ(l)) be the family of all crossing j-tuples J, i.e., the set of j-tuples which
satisfy |J NV;| < 1 for every V; € 20,

Suppose that partitions Z® of Cross;(2()) into (i,7)-hypergraphs have been
defined for 1 < i < j — 1. Then for every (j — 1)-tuple I in Cross;_1(21)) there
exist a unique PU—Y = PU-U(I) € 20U~ 5o that I € PU~Y. Moreover, for
every j-tuple J in Crossj(@(l)) we define the polyad of J

POV = {790'—1)(1); Ie [J]j‘l} .

In other words, PU~1(J) is the unique collection of j partition classes of Z2@~1
in which J spans a copy of Kj(-jfl). Observe that PU~1(.J) can be viewed as a
(4,7 — 1)-hypergraph, i.e., a j-partite, (j — 1)-uniform hypergraph. More generally,
for 1 <i < j, we set

PO =U{POW: 1e}  and PO = {POWDYL ()

Next, we define 220~1 the family of all polyads
P00 = {PU-D(]): J € Cross;(2W) }.
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Note that PU=Y(J) and PU~D(J') are not necessarily distinct for different j-
tuples J and J'. We view 20~ as a set and, consequently, {C;(PU~1): PU-1 ¢
2=} is a partition of Cross;(2W1)). The structural requirement on the partition
20 of Cross;j(21)) we have in this paper is

20) < {ICj(ﬁ(j_l)): PU-D g gy, (2)

In other words, we require that the set of cliques spanned by a polyad in 21 is
sub-partitioned in 2\) and every partition class in 22U) belongs to precisely one
polyad in 20U~ Note, that due to (2) we inductively infer that P(J) defined
in (1) is a (4,4 — 1)-complex.

Throughout this paper we also want to have control over the number of partition
classes in 21) | and more specifically, over the number of classes contained in
K;(PU=D) for a fixed polyad PU~1 e 22U~ We render this precisely in the
following definition.

Definition 10 (family of partitions). Suppose V is a set of vertices, k > 2 is
an integer and a = (ay,...,ax—1) Is a vector of positive integers. We say & =
Pk —1,a) = {20, ... 2% is a family of partitions on V, if it satisfies the
following:

(i) 2 is a partition of V into a; classes,

(i1) 20 is a partition of Cross; (1)) satisfying:

PD refines {K;(PUV): PUTD ¢ pU-Dy
and |{P(j) e 2. pl) Kj(ﬁ(jil))}| —a; forevery PUD e 20D,
Moreover, we say & = P (k — 1, a) is t-bounded, if max{ay,...,ar_1} <t.

We now combine Definition 9 and Definition 10 and define the refinement of a
family of partitions.

Definition 11 (refinement of families). Suppose & = Z(k — 1,a”) and # =
#(k —1,a”) are families of partitions on the same vertex set V. We say & refines
Z# and write P < R, it 2) < ZY) (ct. Definition 9) for every j € [k — 1].

2.4. Main results. In this paper we prove two hypergraph regularity lemmas,
which may be viewed as strengthened versions of the hypergraph regularity lemma
from [26]. Those new lemmas were already applied in [2, 3, 21, 22, 24]. As in
Szemerédi’s regularity lemma, such hypergraph regularity lemmas should ensure
the existence of partitions of the edge set of a k-uniform hypergraph which satisfy
certain properties. Besides the structural conditions discussed in the last section
the partitions ensured by the main theorems in this paper will satisfy two more
properties which we define below. More specifically, the family of partitions &2
have to satisfy properties analogous to (i) and (4i) of Theorem 2. We first extend
the notion of equitability.
Definition 12 ((n,€, a)-equitable). Suppose V is a set of n vertices, n and € are
positive reals, a = (a1,...,ax_1) is a vector of positive integers, and ay divides n.

We say a family of partitions & = Z(k—1,a) onV (as defined in Definition 10)
is (n, €, a)-equitable if it satisfies the following:

(a) [[V]F\ Crossi(2M) | <n(});

(b) 2N = {V;: i € [a1]} is an equitable vertex partition, i.c., |Vi| = [V|/ay

for i € [a1];
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(¢) for every k-tuple K € Cross,(2(")) we have that P(K) = {75(;')}?;11 is an
(e,d)-regular (n/a1,k, k — 1)-complex, where d = (1/ag,...,1/ak_1).

Next, we extend (ii) of Theorem 2. In this paper we consider two possible
extensions, which give rise to the two different regularity lemmas below.

Definition 13 (perfectly e-regular). Suppose € is some positive real. Let G*) be
a k-uniform hypergraph with vertex set V and & = P(k — 1,a) be a family of
partitions on V. We say G) is perfectly e-reqular w.r.t. 2, if for every Ph-1 ¢
P*=1) we have that G®) N I, (P*=1) is e-regular w.r.t. P*—1),

The following theorem is one of the two main results in this paper.

Theorem 14 (Regular approximation lemma). Let k > 2 be a fized integer. For
all positive constants n and v, and every function e: N¥=1 — (0,1] there are inte-
gers trhm.14 and nrhm.14 So that the following holds.

For every k-uniform hypergraph H*) with |V (H®)| = n > nppm.14 such that
(tThm.14)! divides n there exist a k-uniform hypergraph G*) on the same vertex set
and a family of partitions P = P(k —1,a?) so that

(i) 2 is (n,e(a?),a”)-equitable and trym.14-bounded,

(ii) G*) is perfectly e(a?’)-reqular w.r.t. 2, and

(iii) |GFAHF)| < vnk,

Let us briefly compare Theorem 14 for k¥ = 2 with Theorem 2. Note that as
discussed in [19, Section 1.8] there are graphs with irregular pairs in any partition.
Therefore, due to the “perfectness” in (i) of Theorem 14 one has to alter H = H(?)
to obtain G = ¢(@.

The main difference between Theorem 14 for £k = 2 and Theorem 2, however,
is in the choice of € being a function of a{’. It follows from the work of Gowers
in [11] that it is not possible to regularize a graph H with an ¢ in such a way that,
e.g., ¢ < 1/ay can be ensured, where a’ = |22()] is the number of vertex classes.
Properties (7) and (4ii) of Theorem 14 assert, however, that by adding or deleting
at most vn? edges from H one can obtain a graph G which admits an £(a{”) regular
partition, with e(a?’) < 1/a{’. Such a lemma for graphs can be also deduced from
the iterated regularity lemma in [1].

The other result of this paper, Theorem 17, concerns the case in which we do not
change the given hypergraph H*). Due to the discussion above such a lemma needs
to allow exceptional pairs (or polyads for k£ > 3) in the partition &. Moreover, the
measure of regularity of H*®) w.r.t. & (called & here) cannot depend on af’. In
fact, in our proof of Theorem 17 &, is a constant independent of each a{’, ... ,a,‘?; 1-
On the other hand, as in [5, 26] we will infer that H*) is (6, *, r)-regular (defined
below), where ~ may depend on a?’, ... ,a,‘?; 1- We first extend Definition 7.

Definition 15 ((dx, dg, r)-regular hypergraph). Let 0, and dj be positive reals
and r be a positive integer. Suppose H*~1) is an (m, k, k—1)-hypergraph spanning
at least one K,ikil). We say an (m, k, k)-hypergraph H*) is (6, dy, r)-regular w.r.t.
HE=1) if for every collection o1 — {ngfl), el 5’“”} of not necessarily
disjoint sub-hypergraphs of H*=1) which satisfy

U ’Ck(Ql(-kl))‘ > 0k "Ck(H(k_l))) >0,

i€[r]
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we have

[H®) 0 U K (QF )]

k—1
| Usepny (2]
We write (O, *,r)-reqular to mean (5k,d(H(k)‘H(k_l)),r)—regular. Moreover, if
r = 1, then a (0k,dg,1)-regular hypergraph is (e,dy)-regular with ¢ = 0y (cf.
Definition 7) and vice versa.

deﬂ:(sk.

Finally, we give the second extension of (7) of Theorem 2, which will be ensured
by Theorem 17.

Definition 16 ((O, *,r)-regular w.r.t. &?). Suppose 0y is a positive real and r
is a positive integer. Let H®) be a k-uniform hypergraph with vertex set V and
P = P(k —1,a) be a family of partitions on V. We say H¥) is (0, *, r)-reqular
w.r.t. P, if

(U {rr@tn): pln e pton
and H™®) is not (Ok, *,7)-regular w.r.t. 75(1671)}‘ < 5k|V|k~

The following theorem is a strengthening of the main result of [26].

Theorem 17 (Regularity lemma). Let k > 2 be a fized integer. For all positive
constants 0 and 0y, and all functions r: N¥~1 — N and §: N¥~1 — (0, 1] there are
integers tThm.17 and NThm.17 So that the following holds.

For every k-uniform hypergraph H®) with |V(’H(k))| =N > NThm.17 such that
(trhm.17)! divides n, there exists a family of partitions P = P(k —1,a?’) so that

(i) & is (n,8(a?),a?)-equitable and trym,.17-bounded and
(ii) H®) is (On, %, r(a?))-reqular w.r.t. 2.

3. AUXILIARY RESULTS

In this section we review a few results that are essential for our proofs of Theo-
rem 14 and Theorem 17.

The following theorem can be used to estimate the number of copies of K z(h)
in an appropriate collection of dense and regular blocks within a regular partition
provided by the regular approximation lemma, Theorem 14. Moreover, it can be

k—1),

applied to count the number of K ]i s in the polyads of the partitions obtained

by Theorem 14 and Theorem 17.

Theorem 18 (Dense counting lemma). For all integers 2 < h < ¢ and all positive
constants v and dy there exist epcr, = epcL(h, £,7,do) > 0 and an integer mpcr, =
mper(h, 4,7, do) so that if d = (da, ..., dy) € R satisfying d; > do for2 < j<h
and m > mpc, and if H = {H(j)};‘:l is an (epcL,d)-regular (m, ¢, h)-complex,
then

h e
‘IC@(H(h))’ =(1=x7) H dj(j) xm?.
j=2
This theorem was proved by Kohayakawa, Rodl, and Skokan in [17, Theorem 6.5].

For completeness we give a short proof of a generalization of Theorem 18 in the
subsequent paper [23].
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The following two facts regard regularity properties of the union of regular hy-
pergraphs. The first of those two propositions states that the union of regular
(m, 4, j)-hypergraphs which share the same underlying (m,j,j — 1)-hypergraph is
regular. The proof is straightforward and we refrain from presenting it here.
Proposition 19. Letj > 2, m, t, r > 1 be fized integers and let § and d(1),...,d(t)
be positive reals. Suppose Pl(j), cee t(j) is a family of pairwise edge disjoint (m, j, j)-
hypergraphs with the same underlying (m, j,j — 1)-hypergraph PU-1),

If P s (6,d(T),r)-regular w.r.t. PU-D for every T € [t], then PY) is (t6,d,r)-
reqular w.r.t. PO~ where PU) = Urem PY) and d = > rep d(T). O

The next proposition gives us control when we union hypergraphs having differ-
ent underlying polyads. Before we make this precise, we define the setup for our
proposition.

Setup 20. Let j > 2, m, t > 1 be fixed integers and let 6 and d be positive reals.
Let {735]_1)}76@] be a family of (m, j,j — 1)-hypergraphs such that

U 75?71) is a j-partite (j — 1)-uniform hypergraph,

TEt]
;cj( U ﬁ;a‘w) — | K (BU). (3)
TE[t] TE[]

and K; (759‘1)) NK; (759_1)) =g for 1<7<7 <t.

Let {’Pﬁj)}Te[t] be a family of (m, j, j)-hypergraphs such that PY=D underlies PY

for any 7 € [t]. Set PU~1) = Urepy U and PU) = Urery ),

Proposition 21. Let r > 1 be a fized integer and let {’Pﬁj)}Te[t] and {ﬁﬁj‘l)}TEM
satisfy Setup 20. IfPﬁj) is (0,d,r)-reqular w.r.t. pU—D for every T € [t], then P
is (2v/6,d, r)-reqular w.r.t. PU-D, a

For » = 1 a proof of Proposition 21 appeared in [20] and the proof presented
there works verbatim for general r» > 1.

The proof of the following lemma is based on Chernoff’s inequality and the fact
that randomly chosen sub-hypergraphs of a regular hypergraph are regular. Similar
statements were proved in [5, 26] and we will omit the technical details here.
Proposition 22 (Slicing lemma). Let j > 2, sg, 7 > 1 be integers and let oy, 0o,
and pg be positive real numbers. There is an integer mgy, = msy(J, So,7, 00, 00, Do)
so that the following holds. If m > mgy,,

(i) PYU=Y is a (m, ], j — 1)-hypergraph satisfying |1C; (ﬁ(j’l))| >m’/Inm and

(ii) PU) C K; (75(3‘71)) is an (9, o, r)-regular (m, j, j)-hypergraph with o > 0o >

26 > 2.
Then for any positive integer 1 < s < sg and all positive reals p1, ...,ps satisfying

(ii) > e Pe < 1 and ps = po for o € [s]

there exists a partition {%(j),’fl(j), . .,'Z;(j)} of PY) such that 79 s (36, ps0,7)-
reqgular w.r.t. PU-1) for everyo=1,...,s.

Moreover, %(j) is (36, (1 — Zae[s] Do )0, T)-reqular w.r.t. PU-D and ’]B(j) =g if
Zoe[s] po = 1. O
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4. OUTLINE OF THE PROOFS

Roughly speaking, our proof of both theorems, Theorem 14 and Theorem 17, is
based on the following induction scheme

Theorem 17 for K = Theorem 14 for k = Theorem 17 for k + 1.

To carry out the technical details for such an induction scheme, we need to
strengthen the statements of Theorem 17 (regularity lemma) and of Theorem 14
(regularity approximation lemma) to more general, but, unfortunately, less esthet-
ically pleasing statement RL(k), Lemma 23, and RAL(k), Lemma 25.

Before we start to discuss these more general statements we will briefly outline
why they are needed. While the proof of the implication Theorem 14 for k =
Theorem 17 for k + 1 could follow the lines of [5, 26] (now using Theorem 14
for k to regularize the witnesses, which provides the cleaner partition &), the need
for generalizing the statements comes from the implication Theorem 17 for k¥ —
Theorem 14 for k. In our proof of this implication we need to apply Theorem 17 for k
twice. After the first application we obtain an (1,e(a?’),a?)-equitable partition
& which is bounded. However, the hypergraph H will only be di-regular w.r.t. &,
where d}, is a constant independent of a?’, and not E(a‘@ )-regular, as required by
part (ii) of Theorem 14. To obtain such an e(a?)-regular hypergraph G*), which
will be “v close to H®)” (cf. (iii) of Theorem 14) we need to apply Theorem 17
again. It will be essential for us that the partition obtained in the second application
of Theorem 17 will refine &2, the partition obtained in the first application. This is
the reason why we will strengthen the statement of Theorem 17 (see Lemma 23).
This change is due to the induction scheme requiring a corresponding strengthening
of Theorem 14 (see Lemma 25).

We now state the strengthened variant of Theorem 17. It allows us to enter
the regularity lemma with an initial equitable family of partitions & and a family

of k-uniform hypergraphs Hgk), e ,Hgk). It then guarantees the existence of an

equitable refinement & of ¢ for which each Hgk) is regular. (Since it might not be
completely obvious that Theorem 17 follows from Lemma 23 stated below, we give
the formal reduction after Remark 24.)

Lemma 23 (RL(k)). For all positive integers o and s, all positive reals n and dy,
and all functions r: N*=1 — N and 6: N¥=1 — (0,1] there is a positive real gy,
and positive integers try, and nry, such that the following holds. Suppose
(a) V is a set of cardinality n > ngry, and (try)! divides n,
(b) 0 = Ok —1,a%) is an (07, prr,a?)-equitable (for some n° > 0) and
o-bounded family of partitions on V', and
(c) #F) = {Hgk), .. ,Hgk)} is a partition of [V]*.
Then there exists a family of partitions P = P(k —1,a?) so that
(P1) 2 is (n,6(a”?),a?)-equitable and tgry,-bounded,
(P2) & <0,
and for every i € [s]
(H) Hz(»k) is (Og, *,7(a?))-regular w.r.t. 2.

Remark 24. In the inductive proof we will apply Lemma 23 twice. In the second
application in Section 5.2 it will be convenient to use a variant of Lemma 23, where
assumptions (a) and (b) are replaced by
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(") V=ViU-- UV, |Vi| =m > ngry/k and tgy,! divides m,
(') R = {R(j)};?;ll is a (urr/3,d)-regular (m,k,k — 1)-complex, where the
vertex set RD =V, U---UV, and d = (1/ag,...,1/ag—1), a; € N and
a; <ofor2<i<k.
Moreover, we weaken conclusion (P2) in this context, insisting only that &2 “re-
fines” the given complex R, more precisely
(P2)y 20 < RM =V, U---UV, and for every 2 < j < k and every PU) ¢ 20)
we have either PUW) C RU) or PU) N RY = .
Note that this version of Lemma 23 is in fact a consequence of Lemma 23.

We now verify that Lemma 23 implies Theorem 17 for the same k.

Proof: RL(k) = Theorem 17 for k. Let k be a fixed integer and let constants 7
and d;, and functions r: N¥~1 — N and §: N*=! — (0,1] be given by Theorem 17.
We want to apply Lemma 23. For that we will define an auxiliary family of par-
titions &. In fact any sufficiently equitable partition would do. In order to avoid
trivial cases we are going to split the vertex set into k parts of the same size and any
part of the partition &) will be isomorphic to the complete j-partite j-uniform
hypergraph of the appropriate order for 2 < j < k — 1 (see (4) below). With this
in mind we apply Lemma 23 with o = k, s = 2, and the given constants n and
0, and functions r and ¢ to obtain gy, try, and ngy. We then set thm.17 = trL
and NThym.17 = NRL-

Now let 7 > nrpm.17 be a multiple of ¢rym.17 = (trr)! and H*) be a hypergraph
with vertex set V, where |V| = n. Set af =k, af = 1for j = 2,...,k — 1,
a? =(a¥,...,af ) andlet V=V, U---U Voo = &) be some arbitrary equitable
vertex partition. Moreover, set

ﬁ(j):{K](])(‘/l17aVvlj)]—Szl<<Z]§alﬁ:k} (4)
and 2 = {H®) [V]F\ H*)Y. Clearly, & constructed that way is (77, i, a?)-
equitable for some n? > 0 and every p > 0. Consequently, V, & and #*) satisfy
the assumptions (a)-(c) of Lemma 23 for ngy, trr, 0 = af =k, s = 2 and any
prL- Then, (P1) and (H) yield conclusions (i) and (i) of Theorem 17. O

Next we state a similarly strengthened version of Theorem 14.

Lemma 25 (RAL(k)). For all positive integers o and s, all positive reals n and
v, and every function e: N¥=1 — (0,1] there is a positive real urar, and positive
integers trar, and nrai, such that the following holds. Suppose

(a) V is a set of cardinality n > nrar, and (trar)! divides n,
(b) © = O(k,a%) is a (09, urar,a?)-equitable (for some n? > 0) and o-
bounded family of partitions on V', and
(c) #*) = {Hgk), . ,’Hgk)} is a partition of [V]* so that %) < &),
Then there exist a family of partitions P = P(k —1,a?) so that
(P1) 2 is (n,e(a?),a?)-equitable and tgar,-bounded and
(P2) 2 < O(k—1)={0V}:].
Furthermore, there exists a partition 9*) = {Q%k), cee §’“)} of [V]¥ such that for
every i € [s] the following holds

(G1) Qi(k) is perfectly e(a?)-reqular w.r.t. 2,



REGULAR PARTITIONS OF HYPERGRAPHS I 11

(G2) |gi(’“)AH§k)| <wnF, and
(G3) if H™ C Cross,(6M) then G C Crossy(6M) and 9® < 6+,

Lemma 25 yields Theorem 14 for the same k in a similar way as Lemma 23
implies Theorem 17 and we omit the details. Hence it suffices to show

RL(2) and RL(k) = RAL(k) = RL(k+1) for k> 2,

in order to establish Theorem 17 and Theorem 14 inductively.

We outline the basis of the induction, the proof of RL(2), in Section 4.1. The
proofs of each of the two implications establishing the induction step are the content
of Section 5 and Section 6, respectively.

4.1. Sketch of the proof of RL(2). Observe that in the statement of RL(2),
Lemma 23 for £ = 2, the constant p and the function § have no bearing. Conse-
quently, RL(2) reduces to the following statement.

Lemma 26 (RL(2)). For all positive integers o and s, all positive reals n and da,
and any function r: N — N there are positive integers try, and nry, such that the
following holds.

Suppose

(a) V is a set of cardinality n > ngry, and (try)! divides n,

() 0 is a vertex partition V; U - - - U Voo of V, where [Vi| = -+ =[V,0| and
af <o

(¢) s ={Hy,...,H} is a partition of [V]? the complete graph on n vertices.
Then there exists a partition 20 = {Wy, ..., Wai@} of V' so that

(P1) [Wh| = =W,z Crossp(2M) > (1 — n(3), and af’ < try,
(P2) for every i € [a’] we have W; C V; for some j € [a{]
and for every i € [s]

(H) H; is (82, %,7(ai’))-reqular w.r.t. 20,

The proof of RL(2) follows closely the lines of the proof of Szemerédi’s regularity
lemma [31], Theorem 2. There are three differences, however. The first and the
last of them are standard.

(1) Rather than one graph we have a fixed number of graphs Hy,..., H to
regularize. Such a regularity lemma was used in a number of applications
and is discussed for example in [19, Section 1.9].

(2) This difference which regards the concept of regularity in (H) is perhaps
most significant. Instead of a single pair A’ C A, B’ C B, |A'||B'| > ¢|A||B|
that witnesses the irregularity of a bipartite graph with vertex classes A and
B, we consider here a more complicated witness; namely an r-tuple of pairs
(4;, B;) of sets where Ay,..., A, C A, By,...,B, C B and |Ui€[r] A; X
B;| < ¢|A||B| (cf. Definition 15 with & = 2 and H") = (4, B)).

We recall that the proof of Szemerédi’s regularity lemma [31] is based
on a procedure in which, having an initial partition @él), one constructs a

sequence Wél), @fl), ... of partitions. To each partition a quantity (called
index) is associated which is known to satisfy ind(2(1)) < 1 for every vertex

partition 2. On the other hand, one proves that if (@i(l) is irregular,
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then ind(@ﬁ_)l) > ind(@l(l)) +85/10. Consequently, one infers that after
at most 10/83 iterations one arrives to a partition which is d-regular.

While in [31], if @i(l) was partition into 01% parts implied that 3”}_?1 is
a partition into at most 4% ° parts, in our proof (due to the fact that the
P P

witness has 7(a”") parts for each pair) we may have as many as 4"(01 )*@1

partition classes in ﬂiil. Consequently, tgy, (which is an upper bound for
the number of classes in the final partition) depends not only on dy, but
also on the function r(-). It is independent, however, of the cardinality of
the vertex set V.

(3) In order to avoid the exceptional class V we assume that the cardinality
of V is divisible by (try)!. This allows us to redistribute all the vertices in
V; which would remain from subdividing the witnesses. Such a lemma was
considered, e.g., in [20].

5. ProOOF OF: RL(k) = RAL(k)

In order to simplify the presentation we break the proof into two parts. In the
first part we deduce RAL(k) from RL(k) and the following lemma.

Lemma 27. For every positive integer s, all positive reals v and €, and every vector
d = (da,...,dg_1) satisfying 1/d; € N for 2 <1i < k — 1, there exist positive reals
027 and &7 and integers tor and mor such that the following holds. Suppose

(a) m > mor and (to7)! divides m,

(b) R= {R(j)}é?;ll is a (927, d)-regular (m, k, k — 1)-complez,

(¢) F® C Kp(RFE=D) is &or-regular w.r.t. RF=V | and

(d) {Hgk), e ,Hgk)} is a partition of F*), where each Hgk) is (1//12,*,153;)—

regular w.r.t. R*=1 for every i € [s].

Then there exists a partition {Q:&k), . .7g§’“)} of F*¥) so that for every i € [s] the
following holds

(7) gi(’“) is (6,d(HEk)|R(k71)))—regular w.r.t. RE=1 and

(ii) 16" A HP| < vk (RED)].

In Section 5.1 we derive RAL(k) from Lemma 27 and RL(%), then, in Section 5.2,
we give the proof of Lemma 27 which is based on another application of RL(k).

5.1. Lemma 27 and RL(k) imply RAL(k). The idea of this reduction is as fol-
lows. Let @(k,a?) and #®) be given by RAL(k). We apply RL(k) to €'(k —
1) = {ﬁ(j)}étll and #*). The constants will be chosen in such a way that
after that application of RL(k) a “typical” polyad PE-D with its underlying
complex P = {75@)}?;11 matches the assumptions of Lemma 27 for R = P,
F®) = 0®) A G, (PF1) (where O®) ¢ ¢®), and {HM = 1 0 7k 1M ¢
AF) and Hflk) C 0", Lemma 27 then yields hypergraphs g~}L’“) satisfying (¢) and
(ii) of Lemma 27. Repeating this for all “typical” polyads PE-D and 0% ¢ gk
and taking appropriate care of the “untypical” case, then yields the promised hyper-
graphs gf“) ...G% with properties (G1)-(G3) of RAL(k). We give the technical
details of this outline below.
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Proof: RL(k) A Lemma 27 = RAL(k). Let positive constants orarL, SRAL, TRAL;
and vRaL, and a function egar,: N~ — (0,1] be given (w.l.o.g. we may assume
that egrar, is monotone in every coordinate). We have to determine pgratr, tRAL,
and nrar, (see (11)). Our proof relies on an application of RL(k) followed by
an application of Lemma 27. In order to match the assumptions of Lemma 27
the parameters for the application of RL(k) have to match these assumptions.
Consequently, “constant-wise” we first apply Lemma 27 to foresee what is needed
for its application, which will be provided by RL(k). With this in mind we set

827 = SRAL , Vo7 = VRAL/2. (5)

Note that for every choice of € and dy,...,dg_1 (satisfying 1/d; € N), Lemma 27

yields constants do7, £o7, to7, and moy. Accordingly, we define functions daux,

awc: NF71 (0, 1] and taux, Maunx: N¥*~! — N mapping any a = (a1, ...,a,_1) €

Nf=1 to the corresponding constant from Lemma 27 with € = egar(a) and dp =
1/ag,...,dp—1 = 1/ag_1. More precisely, we set for x € {4,£,t,m}

Taux (@) = TL27(5 = s27,v = var,€ = erav(a), da = 1/az, ..., dp—1 = 1/ar_1) (6)
where zp,07(s,v,€,da,...,dk_1) is given by Lemma 27 applied with constants s,
v, €, and da,...,dx_1. Without loss of generality we assume that the functions

defined in (6) are monotone in every coordinate.
We now choose the parameters for the application of RL(k). For that we set
Va7 VRAL }

ORL = ORAL, SRL = SRAL; "RL = NRAL, and JpRrr = ming —,
12 7 2sRAL

(7)
and consider functions rgr,: NF~! — N and dgp,: NF-1 — (0,1] defined for every
integer vector @ = (ay,...,ak—1) by

rru(@) = (fax(@)? and ®8)

(5RL((1) = min {ERAL(G),éaux(a),€DCL (h =k—1,0= k‘,’}/ = %’ do = 21<nij£1k ai_l)},
) (9)

where epcr,(h, ¢,7,do) is given by Theorem 18.

Having defined all input parameters of RL(k), Lemma 23, in (7), (8) and (9),
Lemma 23 now yields positive constants urr, trr, and nry,. We use tgry, to establish
“worst case” estimates on the functions £aux, taux, and maux and set

fworst = faux(tRLa s 7tRL) ) tworst = taux(tRLa ) tRL) ’
and  Myorst = Maux (tRLa cee 7tRL) (10)
Finally, we define ugar, trar, and ngar, promised by RAL(k). For that we set

€RAL(IRL, - -, tRL)  Eworst
2k Y Qk
231 251

HRAL = min {,URL ) } ;  tRAL = tRL + tworst , and
NRAL = Max {nRL ARLMworst » trumpeL(h =k — 1,0 =k,y =1 dy =tz]) ¢ .
(11)
Note that for given input parameters oga1,, SRAL; TRAL, VRAL, and eraL: Nk-1 _,
(0,1] of RAL(k), above in (11) we defined the corresponding output parameters.
Now we need to show, that with this choice we will be able to verify RAL(k),
Lemma 25.
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Let V, OraL, and 7% satisfying (a)—(c¢) of RAL(E), Lemma 25 be given, i.e.,
(RAL.a) |[V| =n > nrar, and (trarp)! divides n,
(RAL.b) Orar = Orar(k,a%rar) = {ﬁ’f(&L}?:l is (n7RAL uRAL, aPRAL)-equitable
(for some n?®AL > () and ogar-bounded, and
(RAL.c) | W] = sgar, and #® < o1 .
Our objective is to find a family of partitions Prar, = Prar(k — 1,a”RAL) on V
and a partition ¥*) = {ng), ceey gﬁ’;}AL of [V]¥ so that
(RAL.P1) PgraL is (MraL, erAL(@7RAL), @ RAL)-equitable and tga-bounded,

(RAL.P2) PraL < Oran(k—1) = {ﬁr@\L ;?;117

(RAL.G1) ka) is perfectly egar (@?®Ar)-regular w.r.t. Prat, for every i € [sraL),
(RAL.G2) \Qi(k)A Hgk)| < vrarnk for every i € [sgar], and

(RAL.G3) if Hgk) C Crossk(ﬁgA)L) then gi(’“) - Crossk(ﬁgp)&) for every i € [sraL]

and 9 < o)

Without loss of generality we may assume that
Hﬁ“ # @ for every i € [sraL].- (12)

Otherwise we simply set gfk) = o for every i € [sgar] for which Hl(»k) = @ and
obviously (RAL.G!)-(RAL.G3) holds for those g§’“) for any family of partitions
L.

As we already mentioned we want to apply RL(k) to V, Ory, = Orar(k —1) =
{ﬁr({j/iL ?;11, afrL = (alﬁRAL, .. .,af_R‘fL)7 and ##*) with constants orr,, SmL, TRL,
and Jy g, defined in (7) and functions rgy, and gy, defined in (8) and (9). For that
we have to verify that

(RL.a) |V| =n > ngy, and (try)! divides n,

(RL.b) One = Onu(k —1,a%%) = {121 is (n77%, pre, a%"%)-equitable (for

some 7=t > 0) and ogrr-bounded, and

(RL.c) || = sgy,.
We note that (RL.a) is an easy consequence of the choice of nrar, > ngry and
trar > try in (11) and (RAL.a). Similarly, (RL.b) follows from the choice of
purarL < prr in (11) and (RAL.b), while (RL.c) is a consequence of (RAL.c) and
the choice of s, = srar in (7). Having verified that (RL.a)—(RL.c) hold, we
reason that there is a family of partitions gy, = ZrL(k — 1,a”’"t) on V which
satisfies properties (P1), (P2), and (H) of Lemma 23

(RL.P1) PRy is (1rL, OrL(a?"), a”’"r)-equitable and tgy-bounded,

(RLPQ) QRL =< ﬁRL = ﬁRAL(k — 1), and

(RL.H) Hgk) is (0.RL, *, TR (@7"E))-regular w.r.t. Pgy, for every i € [spy].
We set

eQZRAL = f@RL and (I@RAL = a‘@RL . (13)

It then follows from (RL.PI) and (RL.P2) and the choices of nrr, = nrar in (7),
(SRL((I‘@RL) S ERAL(G,‘@RL) in (9), and tRAL Z tRL in (11), that

PraL satisfies (RAL.P1) and (RAL.P2). (14)
It is left to ensure the existence of () of [V]* which satisfies (RAL.G1)~(RAL.G3).
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Before we prove the existence of ¥) we make some preparations, which sim-

plify the presentation. We complete ﬁ}({XL (which partitions Crossk(ﬁl()}[ilj))7 to a

partition of [V]*. For that we set
= k
oW = o) U (IV]F\ Crossi(0{21) ) - (15)
We also define for every O%) ¢ 7
1(0W) = {i € [spar]: HP € O® and HP £ o} . (16)

Note that due to (RAL.c), (12), and (15) the family {I(O®): O®) ¢ ¢(®)} forms
a partition of [sgray]. Before we continue we make the observation.

Claim 28. For every O®) ¢ W) and P*-1 ¢ ﬂ(k Y the following holds. Set
Fk) = ok n /Ck(P(]C D), then F*) is (2tRLMRAL) reqular w.r.t. Ppk-1)

Proof. The claim is trivial if F&) = O®) 0K, (P*=1) = & and, hence, we assume
that
F® = oW (PR £ o (17)

We distinguish two cases. From, Pry, < Oran(k — 1) (cf (RL.P2)) we infer
that either P*~1) is contained in some polyad O*—1) ¢ ﬁ (k™ 1) or Kp(P*=D)n
Crossk(ﬁl({KL) = @. If (PN Crossk(ﬁ}({AL) = @ then we have O) =
[V]* \Crossk(ﬁl(%gL) (usmg (17)) and, consequently, F*) = K, (P*~1). Hence,
F#) is &-regular w.r.t. PE-D) for every £ > 0 which ylelds the claim in that case.

On the other hand, if PE=1) C O*=1) for some O*~1 ¢ ﬁgfml), then we have
due to (17) and the fact that Orar is a family of partitions (cf. Definition 10)
that O®) C Kp(OF=D). Therefore, if follows from (RAL.b) and the definition of
regularity (Definition 7) that

Kk (O]
| (PE=D))|
Clearly, |Kk(@(k_1))| < n* and due to the choice of dgp(a?") < epcL(h =
k—1,0 = k,y = 1/2,dy = ming<;cp 1/a”*") in (9), the appropriate choice of

nrAL > tr, X mpoL(h =k — 1,0 = k,v = 1/2,dy = t5;) in (11), and (RL.P1), by
Theorem 18, we infer

1Rt 1 () n * nk
K 75(’“‘1>‘>7 X > .
‘ Kl = 2 H a?RL aZm | T 23

F*) s (MRAL ) —regular w.r.t. PF=1 (18)

and the claim follows. O

We now continue with the proof of the existence of the partition ¥*) of [V]*
which satisfies (RAL.GI)—(RAL.G3). For that we will mainly use Lemma 27 ap-
plied to the polyads of #g1,. However, we distinguish between two types of polyads
and set

P ves {P(k Ve 20’ s (Gpe, *, rri(@”))-regular

w.r.t. PED for every i € [sRL]} .
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Case 1 (P*~1 ¢ @I({i_’;%_reg). In this case let K € Kp(P*~V) and set R =

P(K) = {PY(K) 5;11 with PE-D(K) = P*=D (see (1)). Let O®) e ¢® be
such that
F® = oW [, (PEY) £ &, (19)
and set
HY = HF A F®E = 1P A (PED) for e 1(0M). (20)

We want to apply Lemma 27 with parameters s = so7, v = va7, € = egaL(a?®v),
and d; = 1/a”™* for 2 < i < k. Note that due to the definition of the functions
Oaux, Cauxs tauxs, and Mmaux in view of (6), Lemma 27 yields constants do7, o7, tor
and mo7 which satisfy

527 = 5aux(af@RL) 5 527 = faux(agRL) 5

t27 = taux (a@RL) s and mo7 = maux(agRL) .

In order to apply Lemma 27 with the chosen parameters to m = n/a?m, R, Fk),
and {ﬁl(k) i € I{0")} we have to verify

(L.27.a) n/aZ" = m > Maux(@?5) and (Laux(@?70))! divides m,
(L.27.0) R = {R(j)};tll is a (Saux(a@?®), d)-regular (m, k, k — 1)-complex, where
d=(1/ay™, ... 1/a/"),
(L.27.¢) F®) C Kp(RE=D) is £uux (@m0 )-regular w.r.t. R¥~1 and
(L.27.d) the family {ﬁgk) i € I(0OW)} partitions F*), [I(O®))| < sy7, and
each ﬁgk) is (v27/12,%, (taux(a‘@RL))Qk)-regular w.r.t. RE=Y for every
i€ I(OW),
The verification of (L.27.a)—(L.27.d) is straightforward, but somewhat technical.
We give the details below.
Due to (RAL.a), (11), (10), (RL.b) and the monotonicity of the function maux
we have

n 2 tRL X Myorst = al‘@RL X maux(agRL) .

In order to verify (L.27.a) it is left to show that (faux(@?™))! divides m = n/a "%,
For that we note that due to the definition of tgay, in (11) we have trar, =
tRL + tworst, which due to (RAL.a) yields (tgrr, + tworst)! divides n. Consequently,
(tre)!(fworst)! divides n (to see this consider (*R+fworst)),

tworst

(cf. (RL.D)) it follows that n/a?"* = m is divisible by (fworst)!. It now follows that
(taux (@Z7E))! divides m since tyorst > taux(@?®+) due to the monotonicity of the
function ¢,,x.

Part (L.27.b) follows easily from (RL.b) and the choice of the function gy, in (9)
ensuring that drp(a@?"t) < Gaux(@?Rr).

Next we verify (L.27.c). Tt follows from the definition of F®*) that R*~1) =
P*=1) ynderlies F*). The second assertion of (L.27.¢) follows from 2t12~:LuRAL <
Eworst < Eaux(@ZRE) (cf. (11) and (10)) and Claim 28.

Finally, it is left to verify (L.27.d). It follows from the definitions in (16) and (20)
and the fact that s *) is a partition of [V]* (cf. (RAL.d)), that {’F[l(k) cie I(0W)}
partitions F*). Clearly, |[I(O™)| < so7. Moreover, from the assumption of this

Hence, from a?RL < trL
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case (REF—1) = pk—1) ¢ :@g}:;},reg) we know that ﬁgk) is (6k.RL, *, TRL(@7RL))-
regular w.r.t. RE=D = PE=D for every i € I(OW). Therefore, (L.27.d) follows
from the choice of §; rr, < v27/12 in (7) and 7Ry (a?®e) = (taux(a‘@RL))2k in (8).
Having verified (L.27.a)—(1.27.d), we are now able to apply Lemma 27 and infer
the existence of a partition {gg’“) i€ I(0O®)} of F(¥) so that for every i € I(O®)
(L.27.9) Q:(k) is erar (@?Rr)-regular w.r.t. P = RE=1 and
(L.27.i1) [GF AHWM | < vy |[Kp (PE-D)].
For i € I(O")) each g~f’“> given above defines QZ-(k) restricted to the polyad P*—1),
Formally we set
g (PEDY=G® for ie1(O®)), (21)
and repeat the procedure for every O%) o) satisfying (19). %

Case 2 (P*-1) ¢ f@g{;}‘reg). Again, let K € Kp(P*-1) anil set P =P(K) =
{PU(K)M with PE-D(K) = PH=D (see (1)). Let OF) € 6*) be such that

F® = 0" 0 (PED) £ o (22)
In this case fix some index ig € I(O®)). We then define for i € I(O®))
. (k) —
T A @
For later reference we note that for every i € I(O)
g7 (PD) c oW (24)
and
g}’“) (P*V)Y is egar(@?®)-regular w.r.t. PF1 (25)

Indeed, (24) is trivial for every i € I(O®) and (25) is trivial for i # ig. In
the case i = ig we have G (PE-D) = F®) = O®) A [ (P*=D) and (25)
follows from Claim 28 and the choice of prar, in (11) ensuring Qt%:L X HURAL <
eraL(trL, - - -, trL) < erRAL(@7RL). _

Again we repeat this procedure for every O*) € ¢(F) satisfying (22). %

We note that due to the both cases above the following statement holds:
() For every P~ € @I({i_l) and every O®) ¢ %) with O(k)ﬂle(ﬁ(i‘jfl)) #
& we have {gf’“)(ﬂk—l)); i € I(O¥)} is a partition of O%) N K, (PE-D).
Now we define the partition ¥*) and verify (RAL.G1)-(RAL.G3). For that we
set for i € [sraL]

o — (a0 (p-): PO ¢ ). @

Since 0 is a partition of [V]* we infer from (x) that ¥*) = {gf’“), . .,gg’;{)&}
forms a partition of [V]*.
Next we verify (RAL.G1). From (L.27.7) (combined with (21)) and (25) we

conclude that for all i € [sgar] and all pr-1) ¢ @é’fl) the defined gl(’“) is

eraL(a?RY)-regular w.r.t. P*=1) " Consequently, the definition of Prar, = 1.
and a?’®aL = @7RL in (13) yields (RAL.G1).
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In order to show (RAL.G2), let i € [sgrar] be fixed. It follows from (L.27.i%)
that

S {160 A H®) AP P e ol 1S

=

1
§VRALnk (27)

Moreover, from (RL.H) and Definition 15 we infer
Z {’(gi(k)AHl(k)) ﬂle(”ls(k_l))‘: plk-1) ¢ f@é’i}ireg}

U ™1
< Z {VCk(P(k Dy pl=b ¢ 921(1’1?;%{%} < spLOkRLN" < §VRALnk (28)

In view of (13) the inequalities (27) and (28) then yield (RAL.G2).
Finally, we consider (RAL.G3). For that for each O®) € &'F) we set

JOW) = {i € [spar]: ¥ nO® £ g}

Since (12) and ¥ is a partition of [V]*, the two assertions in (RAL.G3) are
implied by the following two statements which we verify below

J([V]F\ Crossk(ﬁlg&L) ) CI([V]F\ Crossk(ﬁl({lgL) ), and (29)
JONNJOF)y =g forall OF 20 e o® (30)

From (%) we infer for every P*~1) e @gfl) that if QZ-(k) (PE-D)NO® £ & then
g®) (P-1) C O®). Consequently, (x) yields

J(O®) C 1(0™) (31)

for every O®) ¢ ¢*) which gives (29).

Moreover, since #*) < ¢*) and, therefore, #*) < G*) (see (15), we have
I(ng)) N I(Oék)) = & for all distinct (’)Ek) and Oék) from 6*). Hence, (30) holds
as well, and consequently (RAL.G3) follows.

From the discussion above and (14) we infer that %gar, defined in (13) and
(k) defined in (26) satisfy the conclusions of RAL(k), Lemma 25, i.e., (RAL.P1)-
(RAL.G3). O

5.2. RL(k) implies Lemma 27. The proof of Lemma 27 is the heart of the im-
plication RL(k) = RAL(k) and its idea resembles the main idea from the work of
B. Nagle and the authors in [20]. Before we give with the detailed proof below, we
briefly discuss the main idea.

Recall that in Lemma 27 a (da7, d)-regular (m, k, k —1)-complex R = {RU)}?;ll
and a &-regular k-uniform hypergraph F®) C K (R®*=1D) are given. Moreover,
we are given a partition (%) = {Hgk): i € [s27]} of F*)| where every Hgk) is
(v, %, 1% )-regular w.r.t. RE=D. We will apply RL(k) to regularize every H\" e
%) with some appropriately chosen d; less than the given . For this regular-
ization we apply the variant of RL(k) discussed in Remark 24, which allows us to
find a tgp-bounded family of partitions Pry, = Pry(k — 1,a”"e) = {,@gg 5;11
such that for each j = 1,...,k — 1 and each PU) ¢ 91({]13 either P C RWY or
PUARU) = @. Since each Hz(»k) C F®) C K (R¥* 1), we will focus on the “inter-
esting” part of the partition &gy, and consider only those polyads Plh-1) ¢ 33}({1_1)
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which are subsets of R~ For that we set

FEO(R) = [P € SV pibD C RO,

From RL(k) we infer that for every “typical” P(~1) @1({171)(72)
() Hl(-k) is (6k,d(H£k)|75(k_1)), 1)-regular w.r.t. P*=1 for every i € [so7].

Moreover, we will prove (cf. Claim 30) that for every i € [so7] the typical density
d(Hgk)rp(k_l)) will be “near” to the density of Hgk) in RED e,

(ii) |d(HP[PE=D) — a(HP|RE-D)| < v/6 for “most” PE-1 ¢ ZED(R).

Property (ii) is the key observation in the proof of Lemma 27. Its proof is based on
our choice of to7 > tgy, and tRL > |39(k 1)(’R)\ The proof of (i) then is simple.
Assuming that there is a constant fraction of polyads in gz(k 1)(’R’,) which violate
(@) gives rise to a witness that is (v/12, % t27) irregular w.r.t. R(* (The choice

of to7 > tgry, allows us to “look” into a constant fraction of polyads in 9 (k- 1)(7"’,).)
Combining, (i) and (i) with an appropriate use of the slicing lemma Propo-

sition 22, allows us to prove that for a typical p-1) ¢ @ (k= 1)(7'\’,), H(k) needs

K2

to be altered only slightly (in less than v/6 proportion of the number of cliques
in P*=1) to become (2 /4, d(H™ |R*=1))-regular w.r.t. P*#=1. In other words,
the resulting graph, which we will denote by g(’“)( (k=1)), maintains 1arge degree
of regularity (we will choose §j, < €), while its density will be ~ d('H |R(k D).

On the other hand in the rare case of an atypical polyad P*=1) for which (i) or
(ii) does not hold for Hgk) we use slicing lemma to replace Hgk) by a randomly cho-
sen (and therefore extremely regular) gf’“) (P*-1), with d(g§k)(75<k—1>)|75(k—1>) ~
d(H® | R =1,

For each i € [s27] we then set Q(k UQ (k) (ﬁ(k_l)) where the union is taken
over all (typical and atypical) P*—1) e 9 (k= 1)( R). Since, gf’“) obtained that way
is (e2/4, d(’H(’C |R(*F=1)-regular for every P! k D e 3” (k= 1)(’R), Proposition 19 then
yields that Q'i(k) is (s,d(’f'll(»k)|73(’C D)-regular w.r.t. R k D). Moreover, since in the
typical case we changed Hl(»k) N Kr(PF=1) only “slightly” to become g}’“) (Pl
and since the atypical case, in which more drastic changes are needed, happens

rarely, we will be able to prove that |Qi(k)AH£k)| <wvn*.
We now give the technical details of the proof of Lemma 27, sketched above.

Proof: RL(k) = Lemma 27. Let positive reals so7, 127, and 97 and a vector doy =
(da,...,dk—1) satisfying 1/d; € N for 2 < i < k be given. Lemma 27 is trivial for
vo7 > 1. Moreover, without loss of generality we may assume that

gor <o < 1. (32)
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We will apply RL(k). For that we set’

ORL = 221?2(1@ 1/d;, SRL = S27 + 1, NRL = 1072, (33)

k—1 (f) 2
. Vo7 Hh:Z dh €57 Vo7
d  Spri = ver 34
an foRL = I g e X kE 7 3845, 18 (34)

and consider functions rgr,: N*~1 — N, and dgp,: NF—1 — (0, 1] defined for every
a=(ay,...,ap_1) € Ni=1 by

TRL((I) =1 and 5RL(C‘/) = EDCL (h =k— l,f = k,’)/ = l:fg,do = 2212_12]6 ai_l) y
(35)

where epcr(h, 4,7, dp) is given by Theorem 18.

Having defined all input parameters of RL(k), Lemma 23, in (33), (34), and (35),
Lemma 23 now yields positive constants ury,, trr,, and ngr,. We define do7, €97, tor,
and mo7 promised by Lemma 27. For that we set to7 = tgr,

2

19
5 _ . {#RL’ (h:k—17€:k7 :ld = 1 dz)}a :i
o7 = min 3 KL epay, T 2% = Sar 19262

(36)

and let mo7 be sufficiently large.
Having defined all the parameters of Lemma 27, now let m, R, F*) and %)
satisfying (a)—(d) of Lemma 27 for these parameters be given, i.e.,
(L.27.a) m > mgo7 and (t27)! divides m,
(L.27.b) R = {RW) 5;11 is a (0a7,dor)-regular (m, k, k — 1)-complex with vertex
set V=ViU---UVg,
(L.27.¢) F*) C K (RFD) is £y7-regular w.r.t. R¥~1  and
(L.27.d) the family (%) = {'Hgk)7 e ,Hé’ji} is a partition of F*) and every Hgk)
is (127/12, *,t%?)-regular w.r.t. RED for i € [sa7].
We have to ensure the existence of a partition @) = {g§’“>, R g§’§2} of F*) g0
that for every i € [so7]
(L.27.1) gz.(’“) is eg7-regular w.r.t. RF~1 | and
(L.27.i0) |G AHM | < vyr K (RED)).
Before we start we note for later use that due to (L.27.b) and the choice of da7 <
epcr(h =k —1,0=k,v=1/2,dp = mina<;<x d;) in (36) we infer for sufficiently
large m by DCL, Theorem 18, that

k-1
|Ki(RED)| = (1 + ;) 11 d,(j) x mk . (37)
h=2

Our proof is based on the variant of RL(k), Lemma 23, discussed in Remark 24.
More precisely we want to apply this variant of Lemma 23 with the constants and

functions chosen in (33), (34), and (35) to V, R, and H(()k) U{Hgk), cee 253}, where
k k
H = VIVFS = v (39)
1€ [s27]

ISince we later are only interested in partition classes P(9), which are sub-hypergraphs of the
given RU) (see, e.g., (40)), the constant nRy, is unessential for our proof and any positive constant
value would do.
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We artificially add H(()k) only to obtain a partition of [V]¥, to formally match the
assumption (¢) of RL(k) (see (RL.c) below). We have to verify the following
assumptions of Lemma 23 (see also Remark 24).
(RL.a’) [V|=km > ngr, V=V1U--- UV with V; = m and tgy,! divides m,
(RL.b") R = {RV) ;:11 is a (urL/3,do7)-regular (m,k, k — 1)-complex, where
d27 = (dg,. .. ,dk_1), 1/dl € N and 1/di < ORL for 2 <1 < ]4;, and
R = V1 U -U V;€7 and
(RL.c) {H(()k), 1 L HE) 2} is a partition of [V]¥ into sgy, parts.
Note that (RL.a’) follows from (L.27.a) and the choice of t57 in (36) for sufficiently
large m. Moreover, (RL.b’) is a consequence of the assumption on da7, and (L.27.b)
combined with the choice of do7 in (36) and ogy, in (33). Similarly, (RL.c) follows
from (L.27.d) in conjunction with (38) and the choice of sgy, in (33).

Having verified that (RL.a’), (RL.b"), and (RL.c) hold, Lemma 23 then ensures
the existence of a family of partitions 2y, = gy (k—1,a?*) on V which satisfies
the following properties:

(RL.P1) PRy is (MRL, 0rL(a?’RL), @a?’"v)-equitable and tgy-bounded,
(RL.P2") 2 < RM =V, U---UV; and for every 2 < j < k and every PU) e
2 we have either PU) C RO or PU QA RU) = &, and
(RL.H) Hgk) is (OkRL, *, TRL(a@7RL))-Tegular w.r.t. PRy, for every i € [spL].
Before we continue with the proof we make a few observations and develop some
notation. To an arbitrary polyad pE-1) ¢ @P({kljl) consider its corresponding
(m/a" k, k — 1)-complex P = {750)}?;11. (More precisely, recalling (1), P =
P(K)= {ﬁ(j)(K)}f;ll for any K € Ky(P*=1)). Due to (RL.P1) and part (¢) of
Definition 12, P is an (égr,(a?w), (1/ad ™", ... 1/a‘@RL) regular (m/a”™" k, k —
1)-complex. From the choice of the function 5RL in (35)we infer for sufficiently
large m by Theorem 18 that

k—1 (x) k
o= (I () - () -
h=2

(kl

holds for every P*-1 ¢ 32

Since each 'HZ(-k c Fk) C le(R(k_l)) for the rest of the proof we will focus to
the “interesting” part of the partition &gy, and consider only those polyads which
are sub-hypergraphs of R*~1. To this end we set

(@&—1)(7{) _ {75(1@—1) c 331({11—1): ph=1) ¢ R(Ic—l)}. (40)
Note that due to (RL.P2’) and the properties of &1, we have that
{KuPED): PED € DD (R) | partitions Kk (RHD). (41)
To simplify the notation we set
dor r (i) = d(HPRED).

The following claim, ensures the existence of a partition {g(’“) (PE-D)Y: 4 € [so7]}
of F®) A K (PE-D) for every polyad P*=1 in 28 (R) with the property
that gi(’“)(ﬁ(k*l)) is (€3,/4,dy = (i))-regular w.r.t. P for each i € [so7]. This
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property will enable us to use Proposition 21 to infer property (L.27.7) for gi(’“)
defined in the obvious way.
In order to verify (L.27.ii) we will need some additional information concerning

the {Q(k)( (k=1)): § € [s97]}. Here our analysis splits into two cases and we define”
'@lgik[:;)fmeg(R) = {ﬁ(k_l) € c@gi_l)( R): H(k) s (3k,RL, *, TRL (@7 Y))-Tegular

w.r.t. P for every i € [527]}. (42)

Below we present two claims, based on which we will ensure the existence of
{g§’“>: i € [s27]} with the desired properties (L.27.7) and (L.27.4). We then give
the proofs of the claims.

Claim 29. For any P*~1 e @gjl)(R) there exist a partition {gi(’“)(ﬁ(’“—l)): i€
[s27]} of FF) 0 Kp(PE=D)Y such that for every i € [s7]

g(’“)(ﬁ(’“*l)) is (€2 /4, dw = (i))-regular w.r.t. PE=1) (43)
Moreover, if P& ¢ gzgijfreg(’]i), then the partition {gf )iie [s27]} has the
additional property that for every i € [so7]
G (PED) A (Y NIk (PE))|
< (|doe (i) — d(HP [PED)| + 222) [k (PED)| - (44)

In order to verify (L.27.i7) we need further control over the quantity considered
in (44). The following claim ensures that “typically” |d» = (i) — d(HZ(-k) |PE-1)| <
%2z, For that we define for every i € [so7]

k—1) k
'@P({LBAD( JH)
= PtV ¢ PLEV(R): |doe r (i) — dHP[PED)| > w21 (45)
Claim 30. For every i € [so7]
. V. _
]U{ (PED): P ¢ D (R H(k))}‘ < SHKRED)L (46)

We now finish the proof of Lemma 27 based on Claim 29 and Claim 30. We use
Claim 29 and set QZ-(k) for every i € [s27] equal to

g = U{aP Pe): PO € SR} (a7)

From F*) C K, (R*=V) (cf. (L.27.¢)) combined with (41) and Claim 29 we infer
that 9(F) = {Qi(k): i € [s27]} defined in (47) is a partition of F*).

Now, we have to verify (L.27.7) and (L.27.i7) for every fixed ¢ € [s27] and this
choice of 4¥). So let i € [so7] be fixed.

We start. with property (L.27.7). Due to (41) the two families Bil(j\kal)(R)
and {GF (PHr-1): P-1) ¢ PED(R)} satisfy Setup 20 for j = k, and ¢ =

2Note that we exclude the artificially added hypergraph 'H(()k) in the definition of

(k—1)
]RL EaE reg(R)
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\@é’i_l)(R)L Consequently, in view of (43) we can apply Proposition 21 with
r=1,8 =¢3,/4, and d = d r(i), to infer

gi(’“) is (527,d(}f773(i)) regular w.r.t. U{ (k=1). pk=1) ¢ @g}'fl)(ﬂ)} = R(kfl),

and, therefore, (L.27.7) holds.

We now focus on (L.27.i7) for a fixed i € [s27]. We will estimate |gi(’“)A Hgk)| as
the sum of the symmetric difference taken over all polyads P*~1) e @1({11_1) (R). In
this sum we distinguish among polyads in which some H®*) € (%) is “irregular”,
in which Hgk) has “bad” (atypical) density and the remaining “typical” polyads in
which Hgk) has the correct density and every H®*) e %) is regular. With this in
mind we set

Dinres i) = Y { |6 PE)a (P I (PE))|:
PO e PEV RN R}
Dup(i) = > {[gP A (1P nicy(PED)) |
PO € P R\ PiL shp(RH) }
Diaali) = Z{ gi(k)(']ﬁ(kfl)) (H(k) N Ky (PE= 1))) .

P e P Shn(RHM) |

and note that
16878 HP| < Divneg (i) + D () + Daa(i) (48)
In the following we bound each of the terms of (48) separately. We start with
Dirreg (). Due to (RL.H) and the definition of @RkL ;; reg(R) in (42) we have

3 {‘/ck(ﬁ“@*l))‘: -1 ¢ PR\ pl- ;;reg(n)} < 827 X OprikEmE |

Clearly, the left-hand side of the last inequality is an upper bound on ®j,yeq () and
we infer

. ( )
Dirreg( ) < 827(5k RrRLK mk < — H d x mF < %"Ck(R(k_l))’ (49)

We consider Dyyp(¢). Since in view of (45) for each Ppk-1) ¢ @}({k}:éLD('R, 'Hl(»k))

we have |dy r(i) — d(HZ(»k)|75(k_1))\ < v97/6, we infer from (44) that for every
5(k— 5 (k—1 5 (k—1 k
PN € P e \ PHipan(R.HY)

9 P A (1M N (PE)| < Z e (RETD).
Consequently, directly from the definition of Dyyp (), we infer
v
Dupli) < 20 {[ (PO P € ST (RN P (R D)}
VN”C RV (50)
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Finally, we derive a bound for Dpaq (i) directly from the definition of Dyaq(7)
and (46)

Doaali) < Kk (RED)). (51)

We now conclude (L.27.77) from (49), (50), and (51), applied to (48). In order

to complete the proof of Lemma 27 we still have to verify Claim 29 and Claim 30,
which we will do below. (]

Proof of Claim 29. Let P*~—1 ¢ @I(&_l)(’R) be fixed. First we recall (39). Below
we will apply the slicing lemma, Proposition 22 to sub-hypergraphs of P*~1_ For
that, among others, we have to verify the assumption (i) of Proposition 22, i.e.,

|Ki(PE=)] > m*/Inm. (52)

This, however, follows from (39) for sufficiently large m. Therefore, we don’t have
to verify this condition in future applications of the slicing lemma. We begin with
the following consequence of the choice of {57 < 5%7/(19215%1) in (36)

FE N (P s (¢3,/96, d(]:(k)|R(k_1)))—regular w.r.t. PED (53)
The proof of Claim 29 splits into two main cases.

Case 1 (d(F®|RE*=1) > £2_/16). In this case we will treat “thin” hypergraphs
Hgk) w.r.t. R~ somewhat differently. To this end we set

2
{ie bl i) < ) ;
Rrum {Z € [s27]: dw (i) < 192557 (54)

Due to the definition of Rryn and the assumption of Case 1 we have

[s27] \ RTuiN # @ . (55)

We distinguish two sub-cases of Case 1 depending on P*~1) ¢ z@gf;}reg(’l@).
Case 1.1 (P*-1) ¢ @g:;;lmg(R)). In this particular case it suffices to prove
the existence of a partition {ka)(ﬁ(k_l)): i € [s27]} of F¥) 0 Kp(PF=D) which
satisfies (43) only. For this we will simply use the slicing lemma, Proposition 22, to
decompose F*) N [C, (75(}“’1)) into hypergraphs with the appropriate densities (as
required for (43)). More precisely, we apply Proposition 22, with

=k, sp=3=s r=1 5*@ *@ and = 637
J=Fr, 0 — 227, -4, 0 — 96 ) 0o = 16 ) Po = 1928277
to ﬁ(k_l) s and f(k) N Kk(ﬁ(k_l)) with s = |[827] \ RTHIN| 5

€3 _ dye (1) .
5= %, 0 =d(F®REDY)  and {pi = —d(]-'(k){R(k—U) t i€ [s27] \RTHIN} :

The conditions of Proposition 22 are immediate consequences of (52)—(54), and the
assumption of Case 1.1 Proposition 22 yields a family ’ZE)(k) U {’Ti(k): i € [s27] \
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Rruin} satisfying the following properties

k) U {T(k): i € [s27] \ Rrui} partitions F®) 0 K (PE-D) | (56)
T( ) s (€2,/32,dw g (i))-regular w.r.t P~V for i € [so7] \ Rrum (57)
%(k) is (527/32,d7(k))—regular w.r.t. PE~Y where (58)
0
54) 527

drw = d(F®RE=DY) Z {dyr(i): i €[sor] \ Rruin} <

Fix some ig € [s27] \ Rruin (due to (55) such an ig exists). We then define the

(59)

family Qi(k)(ﬁ(k*l)) for ¢ € [sa7] as follows

(%) if 7€ Rruin
gM@Pr-y = LT UM i =
7;( ) otherwise.

From (56) we infer that {Qi(k) (P*=1)) € [s57]} defined that way forms a partition
of F®) N K (P*=1) and it is left to verify (43) for every i € [s27].

First, let ¢ € Rruin. From the definition of Q ( (k— 1)) = @ we infer that
Qi(k)(’P(k DY is (¢,0)-regular w.r.t. PE=D) for all & > 0. Since i € RruIN,
dyw (i) < €%;/4, and, consequently, the (&', 0)-regularity for every ¢’ > 0 implies
that gi(’“)(ﬁ(k—U) is (€3;/4,dy = (i))-regular (i.e., (43) fori € RTHIN)

If ¢ € [s27] \ Rruin and 4 # dg, then (57) and the definition Q(k (PF-1)) = Z(k)
immediately implies (43).

It is left to verify (43) for ¢ = 4p. In that case Proposition 19 applied to
,];gk) and ’Z[)(k) implies by (57) and (58) that gff) (P*=1)) is (¢2./16)-regular w.r.t.
PE=1) | with density between dz x (io) and dye r (io) + €2./192 (cf. (59)). Conse-
quently, g}f) (P*=D) is ((e2,/16 42, /192), d s (o) )-regular w.r.t. P#=1 which
yields (43).

Having verified (43) for every i € [s27], we conclude Case 1.1. O
Case 1.2 (P*+-1 ¢ @RL % reg(R)). In this case we have to guarantee the ex-
istence of a partition of F®) N K (P*=1) which satisfies both (43) and (44) of
Claim 29. Due to (44) we have to be more careful in defining the desired parti-
tion. On the other hand, the assumption in this case says that ’Hgk) is 0p grr-regular
w. r t PE=1) for every i € [sy7]. This allows us to apply the slicing lemma, to any
H® A I (PR-D).

Below we give a short outline how we use this additional assumption. To simplify
the notation we set for every i € [so7]

dp p(i) = d(H PED).

We first consider the hypergraphs ’HE ) which are too “fat” in PED e, we
consider

2
e (P) = {i € [sor] \ Brvin: dp (i) > dor (D) + 70—} (60)

We apply the slicing lemma to split each Hgk) N Kr(PED) for i € Ipap(P) into
a “main” part /\/lz(»k) of density d =(i) and a “leftover” Egk). The Ml(k) will be
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used to define gfk)(ﬁ(kfl)). Furthermore, since each Egk) is regular, and since each
Hgk) NKk(PF=D) for i € Rypuiy is regular, as well, (by the assumption of the case),
we will infer that their union U™ =, 5 LM UUje g (Y NCK(PED)
is regular with density “very close” to

ASLIM(ﬁ) = Z {dﬁ"g(i) — dﬂjg(i): 1€ ISLIM(’]S)} , (61)
where
IsLv(P) = {Z € [s27] \ Rruin: dp p(i) < dow r (i) — 1962%5727 } : (62)

We then apply the slicing lemma again, this time to U*), to split it into regular
pieces of densities {d» = (i) — d,, 5(i): i € IsLim(P)}. For i € Ispiv(P) uniting
Hgk) NKk (75(}“’1)) with the appropriate slice from U/(¥) then gives rise to the desired
partition. We now implement the technical details of this plan.

Let Ipat(P) and Ispiv(P) be defined as in (60) and (62). We set

Tox(P) = {z € [s27) \ Rruuin: dp (i) = doe (i) £ 19%7} (63)

and note that [so7] is the disjoint union of IFAT(75), Tok (75), ISLIM(ﬁ), and Rruin-.
We will later need the following observation

S (dpp() —de @)+ 3 d%,ﬁm)— S (oo i) — dopp (1)

i Iome(P) i€RTHIN i€Isriv (P)
> {doe 5 ()¢ i € Inar(P) U Rruw U s (P) |
=3 {dsemi): i € Foar(P) U Tsunu(P) }|
=[>"{dse 5 () i € [s27] \ Tox(P)}
=3 {doem(@): i € [s27]\ (Tox(P) U Rew) }|
< [dFPPED) —aFPRE )|+ 3 |dorm @) — doe ()| + Y. dor(i)-

i€lok (P) 1€ RTHIN

Thus in view of (61) and (53), (54), and (63) we derive the following bound on the
left-hand side from above

2
€ar
S g (64)

Z (dﬁp(z) — dﬁ,n(i» + Z d%p(@)> — Astiv(P)

i€IpaT (P) 1€ RTHIN

Case 1.2 splits into two sub-cases depending on the size of Agrm(P).

Case 1.2.1 (Asrm(P) > €2./12). For every i € Ipap(P) we have, due to the
assumption of Case 1.2, that Hgk) N Kp(PF=D) s (Ok,RL, dp (1))-regular w.r.t.
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PE=D_ We apply the slicing lemma, Proposition 22, with

_ €37 . po= €37 :
192557 192557

to P*Y | and Hgk) NKR(PEY)  with

dﬁp(z) —dw r(1)

j:k7 80:27 T:17 60:6k:,RL7 0o

) d, i
S:2a§:6k,RLuQ:d(}fﬁ(z)7p1:%’7n(.)aand b2 =
' dyp p (%)

For this choice of parameters the assumptions of Proposition 22 are satisfied. Indeed

we have (52), ¢ > go since i € Ipar(P) and (60), go > 20 = di gy (cf. (34)), p1 > po
since i € Rruin by definition of IFAT(”ﬁ)7 and ps > py since i € IFAT(75).
Since p; + p2 = 1, Proposition 22 yields a partition ME’“) U £§’“) of Hgk) N

K (PE=D) for every i € Ipar(P), where
Mgk) is (36 RL, dye r (i))-regular w.r.t. P#~1 and (65)
L") is (30k,res (d e 5(1) — dop r (i)))-regular w.r.t. PED. (66)

We now collect all “leftovers” and distribute them among the hypergraphs 'Hl(.k)
which are too “slim” in P*~1_ For that we set

Uk — U Egk) U U (Hgk) n ,Ck(ﬁ(k—n)) )

iGIFAT(ﬁ) i€ RTHIN

From (66) and the assumption of Case 1.2 we infer with Proposition 19 that (%) is
(3s270k,r1)-regular w.r.t. PE=1) Moreover, by the choice of Ok.re in (34) we have
38970 r1, < €3,/48 and by (64) it follows that

U* is (3:/24, ASLIM(ﬁ))—regular w.r.t. PED (67)

We then apply the slicing lemma again, this time with

2 2 2
3 E: 3
| = k == =1 (5 = 27 = z27 = 27
J ) S0 527, r ’ 0 24’ Qo 12’ Po 192827 )

to P*D  and U® with s= |ISLIM( A) )
. A Lo (0) = ) :
§=—=r, o=Asm(P), and {Pz‘ =— P e ISLIM(P)} :
24 Asriv(P)

Here the assumptions of Proposition 22 are immediate consequences of (52) (show-
ing (i) of Proposition 22), (67) (showing that /*) is sufficiently regular), the as-

sumption of Case 1.2.1 (yielding o > g¢), and the definition of Isy(P) in (62)

combined with AsLIM(ﬁ) <1 (yielding p; > po).
Also, note that ZielsmM(ﬁ) p; = 1 and, consequently, Proposition 22 yields
a partition {’];(k): i € Isti(P)} of UM which by (67) has density “close” to

Asrium (P), so that

7™ s (3:/8, (doe R (i) — d%’ﬁ(i)))—regular w.r.t. PED (68)

K2
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Finally, we are ready to define the family {g““’( (k=1)): 4 € [s27]}. Set

16} if i€ RruiN
(k) ((k—1) ./\/lgk) if i€ IFAT(']s)
g (P )= (k) B(k—1) e A
Hi N ’Ck(P ) if i€ IOK(P)

(Hgk) N /Ck('/s(k_l))) U 7;(’6) if 1€ ISLIM(ﬁ) .

It is obvious that {Qi(k)(ﬁ(k_l)): i € [s27]} defined this way is a partition of F*) N
Kr(P*=1). We still have to verify (43) and (44).

We start with showing (43). First let ¢ € Rrpin. By definition of ng)(ﬁ(k_l)) it
is (¢’,0)-regular for every ¢’ > 0 and, hence, it is ((¢ + dse & (7)), doe, % (7))-regular.
Therefore, (43) follows from dyr (i) < €2,/(192s27) < €2, /4 (cf. (54)).

If i € Ipar(P), then (43) follows from (65) and 30 re, < €3;/4 (cf. (34)).

Now let i € Iox(P). Then G (PE-D) = HF A (PED) is (4.r1, d oy p(1))-
regular due to the assumption of Case 1.2. Since (63) |d 4, p(i) — dw R( ) <
€3./(192s27) and, hence, gf’“) (P is (Op.re + €3,/(192527), dw = (i))-regular.
Now (43) follows, since 0y, g1, + £37/(192s27) < £3./4 (cf. (34)).

Finally, let i e ISLIM(P) Then Proposition 19 applied to H( )N K (P*=1) and

7; yields that g ( (E=1)) is ((6x.RrL + €27/8), de = (i))-regular (cf. assumption of
Case 1.2 and (68)). Consequently, (43) follows since 0y rr, +¢3,/8 < 3, /4 (cf. (34)).

It is left to verify (44) for i € [s27] to conclude this case, Case 1.2.1. Again
our argument is different for each partition classes Rruin, IFAT(75), Iok (75), and

ISLIM(,IS) of [827}.
For ¢ € Rruin, due to notational reasons it will be easier to verify (44) in terms
of the corresponding density

67 (PU)A (1 N K (PEY))|
[ (PE=1)
If i € Rrmin, then dy R( ) < €2./(192s57) and, consequently,
a(gP(Pen) ) = doep0) < dor m () = dyp 5 ()] + 23,/ (192527)
Therefore, (44) follows for i € Rruin from 2. /(192s57) < v27/6 (cf. (32)).
If i € Iepr(P), then by definition of G (P*=1) = M) we have
67 (PEA (R Kk (PE))| = 1257
Moreover, due to (66) we have |£Z(»k)| < (dp (i) — de,r (i) + 36k, rL)| K (PE=D)],
which combined with the choice of o rr, < vo7/18 (cf. (34)) yields (44) for ¢ €
Ipar(P). X .
If i € Iok (P), then (44) is a consequence of the definition Qi(k)(P(k_l)) = Hgk) N
Kr(P¥=1) which yields that the left-hand side in (44) is 0.
Finally, we consider the case i € Ispim(P). It follows from the definition of
G*) (PE-1) and (68) that
(k - k 5 (k— k
60 PEA (1 0 K (PED))] = )
< (o 8) — dy p0) + /S| (PE )]

d(gi(k) (PE-D)A HE’“) ’75(1@—1)) _
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Consequently, (44) for i € Ispivm(P) follows from (32).

Having verified (43) and (44) for every i € [s27] we conclude Claim 29 in
Case 1.2.1. In order to finish Case 1.2, we have to consider the complementing
and rather trivial sub-case when ASLIM(ﬁ) is small. O

Case 1.2.2 (AgLiv(P) < €2,/12). In this case we set for every i € [s27]
G (PE-D) = 1) Ky (PED).
Therefore, (44) of Claim 29 holds trivially, and we only have to show (43). For

that we note, that due to the assumption of Case 1.2 we have ka) (75(’“_1)) is
(0k,RL> d 5 (1))-regular w.r.t. P*~1 and consequently for every i € [so7]

GPPEE D) is (Snr, + |d g 5(0) — dorr (i), dor (7)) -regular wort. PED.

(69)
In what follows we show that
2
‘d(}fn(z) —dyp(i)| < % for every i € [sa7], (70)

which combined with (69) and & g1, +€3,/6 < €3,/4 (cf. (34)), yields (43) for every
xS [827].

First we consider ¢ € Rruin. Due to (64) and the assumption of Case 1.2.2 we
have

2
5 (e pli=den®) + X dypli) < (554 55) < 20 ()
i€Ipar(P) 1€ RrHIN
where all terms on the left-hand side are positive (cf. (60)). Therefore, d ,, 5(i) <
£3./6 for every i € Rruin. Moreover, since dy (i) < €3,/(192s57) for every
i € Rryin, (70) holds for every ¢ € Rryin.

If i € Ipar(P), then (71) yields 0 < dyp p(1) — dwr(i) < €2./6 and conse-
quently (70) holds for those i.

For i € Iok(P), (70) follows from the definition of Iok (P) in (63).

Finally, we consider i € ISLIM(75). From the assumption of this case, Case 1.2.2,
and the definition of Agr(P) in (61) we infer 0 < dp (i) — dyp p(i) < €3,/12,
which clearly implies (70) for i € Ispv(P).

This concludes Case 1.2.2 the last sub-case of Case 1. O

Case 2 (d(F®|R*E-1D) < £2./16). In this case we set
GF (PE-Dy = FB) A (PED) and GHPED)=... =g (PE-D) =z
S27

Again we have to show (43) and (44) of Claim 29. We start with (43). Note that
gi(’“)(ﬁ(’“—l)) is (€2,/96)-regular w.r.t. P*=1 for every i € [so7]. (This is trivial
for ¢ > 2 and follows from (53) for ¢ = 1.) In order to show that gi(’“) (PF=D) is
also (€2, /4, dy w (i))-regular recall the assumption d(F*)|RF=1) < £2_/16, which
implies that d = (i) < €3./16 for every i € [s27]. Consequently, gf’“)(ﬂk—”) is
((€37/96 + €3./16), d = (i))-regular for every i € [so7] and (43) follows.

In order to infer (44) we observe that for ¢ € [so7]

M (PEDYA (HP N I (PE-D) € FR) A K (PHD)
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Moreover, due to the assumption d(F®|RF=1) < 2./16 and (53) we have
IF® 0 K (PEV)] < (e3,/16 + £3,/96) K (P D).
Property (44) then follows from €2 /16 + £2./96 < 1v97/6 (see (32)). O

In all cases we ensured the existence of a partition of F*) N Ky (P*~1), which
satisfies the conclusions of Claim 29. This concludes the proof of Claim 29. O

Proof of Claim 30. We assume the contrary, i.e.,

. : o y
U{re@®0): 260 € 2 DR A | > ST RE))

We may assume that @1(%]1_1«11)@(72 H(k)) - ?(k 1) b(R, H§k)) defined by

5 (k— k S(k— o (k— k)| A~(k— Vot
P RAL) = (PO € TV R): A [PE) > dop (i) + 75 |

satisfies

Ut 20 € oo )] | 2 2R @)

(The case concerning @Rli_,s}I)JIM (R, Hgk))instead of @1(1]1_;/)&1‘ (R, Hgk)) is very simi-
lar.) In what follows we will show that (72) contradicts the (v27/12, *, t%;)—regularity
of HZ(»k) w.r.t. RE=D (see (L.27.d)). Since
k—1
5 (k—1 k 5(k—1 ko (36) ok
|‘@1gtL,F1)%T(’R”H§ ))‘ < |<@1(>LL = H(a}?m)(") <thy = 13
h=1

this contradiction follows once we establish the following inequality

HE AU {KpPED): P e D DR HP) )

’U {Ku(PE-D): PO-D € DT Flng,Hg’f))}‘

By definition of QRL}AT(’R H ) we have d(HEk)Ws(k_l)) > dy (i) + v27/6
for every P*—1) ¢ BZ(L FAT(R H ) and, since Kk(ﬁfkfl)) ﬂle(’PQk 1)) = o for

all distinct Pfk . Pz(k Ve 3”1({1 P}AT(’R, H§’“)) C @1()&_1) (cf. 41) it suffices to
verify

oy min { [P PED € P (R 1) )
(d%,R(Z)-F?)

max { G, (PU-D)|: P01 € P D (R HO))

Vo7
>d + —
%’R() 12

to infer (73). In view of (39) we derive the following upper bound on the right-hand
side of the last inequality

(4o + ) ﬂ > (der()+20) (1= 20) 2 dormi) + 22,

which concludes the proof of Claim 30. (]
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6. PrOOF OF: RAL(k) = RL(k + 1)

In what follows we give a proof of RL(k + 1), Lemma 23, based on RAL(k),
Lemma 25. The proof presented here resembles the main ideas from [5, 26, 31]
combined with some techniques from [20]. In the next section we recall the concept
of an index of a partition (cf. Definition 32) and derive some facts about it. We
then give the proof of RL(k + 1) in Section 6.2.

6.1. The index of a partition. The following propositions center around the
notion of an inder. Throughout this section we will work under the following
setup.
Setup 31. Let %’él) be a fixed partition of some vertex set V and %1 be a
partition of [V]*. Moreover, let 2 ¥) be a partition refining Cross,(Z"), ie.,
for every X®) ¢ 2°(F) we have X*) C Crossk(%él)) or X n Crossk(%él)) = 0.
Let U(Z'®) = Y{a® . x®) ¢ 7)) D Crossk(%él)) be the set of k-tuples
partitioned by 2" (%),

For any K € U(Z (®)) let X®) (K) be that partition class of 2" %) which contains
K, ie.,

XO(E)y=x2® ¢ 2" 5o that K e X",

Moreover, for every (k + 1)-tuple K’ € [V]¥*1 satisfying [K']* CU(2 ) we set
XR (K'Y = U{X(k)(K): Ke [K’]k}
and 2™ ={xX®(K'): K' e [V]F st [K')F Ccu(2 ™)},

Note that every K’ € Crossps1 (%) satisfies [K']F C U(2 ), since 2 ® refines
Crossy, (%él)). O

We then define the index of a partition .2°(*) (satisfying the above setup) with
respect to %él) and 7+ as follows.

Definition 32 (Index). Given V, %’él), A EED and 2 %) as in Setup 31. We set
the index of 2 *) w.r.t. " and #*+Y equal to
1

ind(2 ®) = R > > d*(H*D |2 W) (K))

HEFD € (k+1) K'ECrosskJrl(.%él))

1
_ 2 (k+1)
- |V |k+1 Z Z d (H
Hk+1) e 2 (k+1) X (k) @ (k)
)e(k)gCrossk(%él))

?\?(k))|lck+1(/'\?(k))‘-

The next observation follows straight from the definition of the index.

Fact 33. For allV, %’él), A and 2 *) as in Setup 31, ind(2 ) is bounded
between 0 and 1. O

We now derive a few more propositions related to the index , which allow a
simpler presentation of the the proof of RL(k + 1).
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Proposition 34. Let V, %él), and A*Y be given as in Setup 31. Suppose
2k = {Xl(k),...,Xs(k)} and ) = {yfk),...,ys(k)} are partitions which re-
fine Crossy, (%él)). Moreover, let v be a given positive real. If for every £ € [s] we
have

(i) [P AV <vVIF and
(i) if Xék) C Crossk(%él)) then yfk) C Crossk(%él)),
then
ind(Z®) > ind(2 ®) =3(k + 1)s* kD) (74)
Proof. For every (k+ 1)-tuple I € [s]**! we set

6 = Ja® ana 3P = Jo®

il iel
From (i) we infer that for every I € [s]**! we have
101 ()] = [ ]| < K1 (A A K )]
<v(k+1D)|VIF (75)
Suppose the partition classes of s (F+1) are labeled ’Hgkﬂ), e ,’Hgkﬂ). For a more

concise notation we set for every I € [s]**1 and ¢ € [h]

(|2 = d(HIV | X)) and d(¢) = d(H

1) .
The triangle inequality and (75) gives for every I € [s]**! and ¢ € [h ]
101 (B (IR = K )29
< [KCrsr (B a(CI2) = [Coia D) ¢ D) | a1 2
{1k D] = 11 () (191 2)
| |Kaa (D] RS = [Korar DP9 a4
< 8| )] — o (A '€ 3wk + DIV (76)

Now let Z *) and % *) be defined as in Setup 31. Clearly, for every x® e g ®)
there exist a unique I € [s]**! so that xk) = Xj(k), while the converse fails to be
true in general. We define

S0 = {re s M e 20 and XM € Crossy(#") }.
Then we have

ind(2 %)) =

S OY K@)

|V|k+1
Ce[h] 1€5(2 ™)

and applying (7 ) for every ¢ € [h] and T € S(2°(®)) yields
S > K @IPEI) + vk + DhlS(2 )]

Celh) IeS(x (R)

1nd(3&”(k)

|V|k+1
(77)
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Due to assumption (i) we have that ﬁ;k) C Crossk(%él)) for every I € S(2' ).

Consequently, 5)}’” is either in #®) or ICkH(:)AJ}k)) = @ for every I € S(2Z ) and,
hence,

ind(# () |V|k+1 3 Z{Ucm W@ P*y: 1 e 5(%<k>)}.
Celn]
Therefore, the last inequality combined with (77) implies
ind(2 ®) <ind(#®) +3v(k + 1)hs* 1,
which concludes the proof of Proposition 34. O

The following proposition is a simple consequence of Jensen’s inequality.

Proposition 35. Suppose Y*) is an (m, k+1, k)-hypergraph and {z’%fk), .. ,Zﬁ’”}
is a family of (m,k + 1, k)-hypergraphs such that {IC;CH(Z’Z-(k)): i € [2]} partitions
leH(j)(k)), then

d*(H

MR V)] < > d*(

i€ [z]

Nk E®)] (78)

for every hypergraph H*+D C Ky pq (YH).

Proof. For K’ € Kj41(Y®) let Z(*)(K') be the unique member of {2§k)7 e 2’§k)}
so that K € Kj41(Z2® (K’)). Then we have

d(HEHD| Y0 = e AHEVZ) K1 (29)]
|’Ck+1( )]
ZK/E’CMA Yk ( k+1)|Z(k KI))
|Kisr (V®)] ’

and Jensen’s inequality yields (78), since

2 2
(Srce o AL 201

2 (D 0 [y 1 ()] = A
( )| k1 ( )| ‘/Ck+1(y(k))|
< > d J(K))
K'€Kkq1(YH))
= 3" R(HOZ0) i (29

i€[z]

O

The following proposition is a corollary of Proposition 35 and asserts that the
refinement of a family of partitions has the same or bigger index.

Proposition 36. Let V, %(1) HAFD and ) be given as in Setup 31 and
let %) be a partition refining Crossk(%’ (1) ) If %) < 7 ®) - then ind(% ®)) <
ind(Z®) .
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Proof. We observe that for every Y*) € @ (®) gatisfying Y*® C Crossy, (%(()1)) the
family {Kipy1(ZH#): Z0) ¢ Z®) and 20 C YF} partitions Kgy1 (Y*)). Conse-
quently, we can apply Proposition 35 to every H**1) € s#(*+1) and Yy*F) ¢ @ *),
which yields the proposition. (Il

In the proof of RL(k + 1) we will also deal with partitions which “almost” refine
each other (see Definition 37 below) and we need approximations of their index
(Proposition 38).

Definition 37. Given V, %’él), and Z¥) as in Setup 31. Moreover, let § > 0
and let 7® be a partition refining Cross;,(%."). We say the partition 7*) is a
B-refinement of 2°*) if

Z {‘T(k)’: T ¢ 70 1K) ¢ Z®) for every 2 e f'f(k)} < BIV|F.

The following proposition extends Proposition 36 and its proof is very similar
to [0, Lemma 3.6].

Proposition 38. LetV, 9’261), A and %) be given as in Setup 31, let TK)
be a [-refinement of Z%) for some > 0. Then ind(.7*)) > ind(Z*) 3.

Proof. We first define an auxiliary partition .#*) which is a refinement of 7 *)
and Z(*®). For that set

S*) = {T(k) NZF. 7k ¢ 70 and 20 ¢ Q"(k)}.
Due to Proposition 36 we have
ind(Z™®) < ind(.7®) . (79)
Let fo(k) be the family of polyads TH e 7®) which are sub-hypergraphs of
Crossy, (%él)) and for which there exists a 7*) € 7®) such that
70 70 and 7" ¢ Z®) for all ZF) ¢ gk

Since 7 *+1) is a partition of [V]**! and .7 *) is a B-refinement of 2 (*) we have

> S DT dHMIISW) Kk (SW)] < BIVIF x V], (80)
HEAD e 4D F(k) ¢ (R §(F) g ()
O gm i

Note that for every T *) o4 ﬁo(k) there exist some S®) € .Z*) guch that S*) = 7*),
Consequently,

ind(.#®)) —ind(.7®)

1 A .
SR 2 < > (MDY K (SY)

HEFD e+ F(k) e 5B\ G0 ¢ ()
0 SH CF)

—d? (H(k+1)|ff(k)) ‘Kk+1(7(k))|

1 (k+1)| &(h) sy )

HEFD e D) (k) g 5 (F) §(F) g 9 (F)
Oy )
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and the proposition follows from (79). O

The last proposition in this section concerns the index of a family of partitions Z
failing to satisfy (H) of RL(k 4 1). It can be shown that a certain refinement of Z
has an index of at least the index of & plus some positive constant depending
on Og4+1. This observation is the crucial idea in the proof of RL(k + 1). Since, it
roughly shows (together with Fact 33) that there are only finitely many refinements
which violate (H). The same idea was already used in [5, 26, 31].

Proposition 39. Let V, %él), and A*Y be given as in Setup 31 and let #*)
be a partition refining Crossy (%él)). Moreover, let § be a positive real and r > 1 be

an integer. If
) v
| Crossi1(2") | > (1 - 2) <k+1> (81)

and if there is some Hi(iﬂ) € AFD) which is (6, %, r)-irreqular® w.r.t. Z*), then
there exists a partition 2 F) of [V]**1 satisfying
(i) Z*) <5®),
(i) |2 0] < |2®)| x 20x12P1 gnd
(iii) ind(2Z *)) > ind(2®) +6/2.

In the proof of Proposition 39 we will use the defect form of the Cauchy—Schwarz
inequality, which we state first (see, e.g., [31] for a similar statement).

Proposition 40 (Defect Cauchy—Schwarz inequality). Suppose @ # J C I are
some index sets and d; > 0 is some non-negative real number for every i € I. If

1 1
jeJ el

for some (not necessarily non-negative) real a and if |a| > 6 and |J| > S|I| for

some 6 > 0, then
1 2
Stz (Td) + .

i€l i€l
d
Proof of Proposition 39. Let jjl(rl?o be the set of those polyads R® e %®) such
that
Hi(rkrﬂ) is (8, %,7)-irregular w.r.t. R%®) and (83)
RW) C Crossk(%’él)). (84)

From the definition (9, ¥, r)-regularity w.r.t. Z*) (see footnote 3) and (81) we infer
that

3 {\Kk (R®)]: R® ¢ @i(ﬁ?o} > g‘v‘k-&-l. (85)

3Strictly speaking in Definition 16 we only defined the regularity with respect to a fam-
ily of partitions while here we only have a partition Z*) of k-tuples. However, we can eas-
ily alter the definition based on #F) meaning that H*+D s (9, *, r)-regular w.r.t. 2% if
|U {Kp(R®)): RK) € 2% and H*E+D is not (8, *, r)-regular w.r.t. 7A€(k>}| < §|VIFFL
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For R (k) ¢ %(k)o there exist a witness of 1rregular1ty, i.e., there exits Q (7%(’“)) =

rr

S such that - or every ¢ € an
oM ..., 0™} such that O™ c R™ f, d
] U (0 ‘zé‘lckﬂ (RM)] >0, (36)
1€[r]
k
( 11£+1 |Q( ) )) = d(H k+1 |R(k))| + O(R(k) for OZR(k) Wlth |04R(k)| > 5

(87)

where d(H™®|Q A(k) (R™) ) = ‘H Y Uiepr Kr1( (Qh) |/|Uz€[r Krog1(Q k))"

Moreover we define for every R*) e 2% the family W(k (R®)) of those sub-
hypergraphs of R which are contained in some witness Q )(R(k)) with R*) C
R*). More precisely we set

WO RD) = (ROAGH: R € 25 with RO CR® and O® ¢ 5P (RO}

We observe that W) (R®)) might be empty (e.g., if R*) ¢ Crossk(,%’él))), that
the hypergraphs in W(k)(R(k)) are not necessarily disjoint, and that for every
R*) ¢ %) we have the following trivial upper bound Wgk on the number of
hypergraphs in W) (R(*)

wrw = [WH(RE)| <rx |2®)]. (88)
We now define the promised refinement 2" (%) of Z*%) . We construct 2 %) for each
R®*) € #*) separately. This partition of R*) will be called 2 *)(R*)) and is
given by the atoms arising from the intersection of the hypergraphs in W(k)(R(k))
(i.e., the regions of the Venn diagram of the family W) (R®))). More precisely,
it WE(RE)) £ & let WE(RF)) = {Wi(k): i € [wrm|} be some enumeration of
the elements of W® (R®*)) and set

2O (RE)) = {ﬂw N () RWAWH): (1,1} partitions [wR(m]}.
iel iele

It WH(RM) = &, then we set 2 F)(RF)) = {R®)}. Collecting “contributions”

for every R(¥) € %) in that way defines 2 (%)

r® = {gg(k) (R®)Y: R®) ¢ g(k)} .

Owing to the construction above, the partition 2" *) clearly refines 2| i.e., it
satisfies (i) of Proposition 39. Moreover, (88) and the construction yields (i) of
the proposition.

It is left to verify (m) For that we first fix some R*®) € ¥ )0 and consider the

witness of irregularity o) (R(k)) = {0 .. 0™} Since, Z7*) refines Z* it
satisfies the assumptlons of Setup 31 with V, %(1)7 and (k1) In particular, the
family of polyads Z ) is well defined and for every K' € ICkH(?AQ(k)) there exist a
XR(K') € 27® so that K/ € Kry1(X®). We are heading towards an application
of Proposition 40 with

I=Kpa(R¥)), J= U K1 (), and dg = d(Hi(rer)V?(k)(K/)) (89)

i=1
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for every K’ € I and verify (82) below for a3y and the choice above
, <8_’) (k+1), A (k) P
|J‘ Z dg d 1rr IQ ( ))
K'eJ

87 (89
( >d<7‘[1(fr+1)|7€(k)) + ap (k) (89) | | Z dgr + Qp -

K'el

Since, |og | > 9 (cf. (87)) and

(89)
|J| "=

" A (86) A 89

U /Ck+1(Qz(-k))’ > 5”Ck+1(R(k))‘ = o|1],
i=1
Proposition 40 yields

> di > III ( > dK/) +6%1]. (90)

K'el K'el

In view of (89) and since

Z (Hl(i+1)|)((k) (K’)) _ Z (Hl(rkr+1)|X(k)) |’Ck+1(9€(k))|
K/€K41(RM) X0 ¢ g ()
X0 R

- d( (k+1) |R(k))|le+1 Rk ))’

we can reformulate inequality (90) to
> @EETROE) = Y (@TIRD) +60). (o1)
K'€Rk11(RM)) K€K k41(R())

Note that (91) holds for every irregular polyad R*) ¢ 9?1(20. Summing over all
such polyads inequality (91) together with (85) yields

> oo @m0 (K

RO e | K'€K i1 (RMK)

54
> 2. > EOETIRG) S v
REeRE) | K€Kk (RM)
. e 5 - 5 (k)
Since 2" *) refines 2%, we can apply Proposition 35 to every R*¥) e 2(¥) \ %y
which is contained in Crossk(%él)) and we infer

> ROE)

K/GCrOSSk+1(@él))
4
(k+1 4
> Y EEETRED) + S,
K’ECrossk+1(%él))

Finally, part (iii) of Proposition 39 follows from the last inequality and Proposi-
tion 35 applied to every H*+1) ¢ s7(k+1) p(k+1) £ Hi(rkrﬂ) and every R e g*)
contained in Crossy (%(gl)). O
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6.2. Proof of RL(k 4 1). In what follows we give a proof of RL(k + 1) based on
RAL(k), or more precisely, based on Lemma 25. In the next section, Section 6.2.1,
we define all constants involved in the proof of this implication. In Section 6.2.2 we
state the so called index pumping lemma and deduce RL(k + 1) from it. We then
prove the index pumping lemma in Section 6.3.

6.2.1. Constants. We first recall the quantification of RL(k 4 1), Lemma 23 for
E+1

Y ORL, SRL> NRL, Ok+1.RL, TRL: N¥ — N, dgr: N¥ — (0,1] 3 prr > 0, trr, nRL -
So let positive integers oryr, and sgy,, positive reals nry, and 6541 g1, and positive
functions rry, and Jdry, be given. Without loss of generality we assume that

NRL < Ox+1,rL/2 and rry, and dgr, are monotone in every variable. (92)

For the definition of the promised constants pgy, trr, and nry, we need auxiliary
sequences of constants t;, 0;, s;, 1;, and v; and a sequence of functions ¢; : Nk-1 _,
(0,1] for ¢ > 0. First we define tg

. k+1)kt1 ..
top = min {t > [%—‘ ¢ (ory)! divides t} > ORl, - (93)

Without loss of generality we may assume that the given function dgy, is bounded
for every a = (a1, ...,a) € N¥ by

OhiimL 2 3
5 < AL o 2 and 4 < —. 94
RL(a) - 24t to an RL(a) — 2ayp ( )
For convenience we define the following integer-valued function f: N — N
24t
f(s) = min {x eEN:z> o %% and (to)! divides :E} . (95)
Ok+1,RL
We then define o;, s;, n;, and v; in terms of ¢;, 011 rL, WRL, and rrL(ti, ..., ;)
k T Qyeeesli 2k+1 64
0; =1og, S; = t? orRL (fiseosti)ts , i =nrL, and ;= mfﬁ% (96)

Moreover, for i > 0 we define the function &;: N¥=1 — (0,1] defined for every
a=(ay,...,ap_1) € NF71 ag

. — i ORL(a1,--ak—1,f(5:)) _ 1 3 1 _1 Ok 41,me
gi(a) = mm{ 185, ,epcL(k — 1, k, §72<TJII<1£171 ?j) ) 3 (s1) 0 T2site [

(97)
where epcr, is given by Theorem 18. Moreover, with out loss of generality we
assume that ¢; is monotone in every variable.

We then define t; {1 using tgar(o,s,n,v,e(:,...,-)) given by Lemma 25 and set

(95)
11 = max {ti ,tRAL(Oz‘,Sz‘ﬂ?sz’,@z‘(w ceey ')) 7f(5i)} > 8. (98)

This concludes the definition of the sequences ¢;, 0;, $;, 7, v; and €;: Nk-1 (0,1]
for ¢ > 0. We note that the sequence t; is monotone by definition. In a similar way
we define the monotone sequences p; for ¢ > 1 by setting p1 = ory(to, . - ., to) and

(k—1)-times

ORL(tis1,- .-, titt, f(5i)) } (99)

1202,

Mi+1 = min {Mz s MRAL (Oi7 Sis Mis Vi7€i('7 ey )) )
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and we define n; by setting ny = 1 and

ti+1mSL (kv f(sl)7 17 € (ti-‘rla e ati+1)7 f(il)a f(‘lsz)) ) (100)

ti+1mSL <ka f(si)7 13 %6RL (ti+17 e 7t’i+17 f(8l> B

%6RL (ti'i‘lv <. - 7ti+1a f(sl))7 f(iL)) } .

We also define auxiliary constants

4 =mn { e {epcr (5,7 + 1, 3, to)} v Hr8/6t, ) nl } )

* . 1 1 : " 1
no = 2Igjagkaax {tOmDCL(j7.7 + 17 2 %) ; tOmSL(j + 1aORL7 17 %7 17 UR,L)} .
(101)

Finally, we fix the constants pgrr, trr, and ngrp promised by Lemma 23 in the
following way

_ *
and ngrp = max {n ,n[g/(;gH,RL]} .

(102)

% k
pRL = /(265 ), tRL = s s

+1,RL—‘ ’

For the rest of this section let all constants and functions be fixed as stated in (93)-
(102).

6.2.2. The index pumping lemma. Now let a set V, a family of partitions & =
O(k,a?) and a family of (k + 1)-uniform hypergraphs #(*+1) satisfying the as-
sumptions (a)—(c¢) of RL(k + 1) be given, i.e.,

(RL.a) |V| =n > ngy, and (tgy)! divided n,

(RL.b) € = O(k,a?) is an (n?, urL,a?)-equitable (for some 7 > 0) and ory-

bounded family of partitions on V', and

(RL.c) s20+D = (1" 4Dy g a partition of [V]F+1.
The main idea of the proof is to inductively define a sequence of families of partitions
X = Ri(k, a@i) on V for ¢ > 0, which will satisfy

(Ro-1) %y = {%’éj) ?:1 is (nrr, /,Lrg/(;ﬁH’RL],a%)—equitable and tg-bounded,
(Ro.2) %y < O,
(Ri.1) %; = {%i(j) k_,is an (nR, SrL(a”i), a”i)-equitable and t;-bounded, and
(Rzg) R < Ry.
Note that due to the fact that Hrs/ot ]l < Srr(a”°) (cf. (99)), a family of
partitions %y which satisfies (Ro.1) and (Ro.2) also satisfies (R;.1) and (R;.2)
for i = 0.

Moreover, we will show that if there is a hypergraph H**+1) € s#*+1) which is
not (0k+1,RL: *,7(a”))-regular w.r.t. %Z;, then %;,, can be chosen in such a way
that the index increases by 4} +1.RL /8, More precisely we will show the following
so-called index pumping lemma, which proof merges some ideas from [20] and |
Cleaning Phase IJ.

)
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Lemma 41 (Index pumping lemma). Let 0 < i < f8/6,%+1’RLW be an integer and
let Zo be a family of partitions satisfying (Ro.1) and (Ro.2).

If #; = #;(k,a”) satisfies (R;.1-2), but fails to satisfy (H) of RL(k + 1) for
r(a”), then there exists a family of partitions Ziy1 = Fir1(k,a%+1) satisfy-
ing (Rit1.1) and (Rj41.2) and

ind(#;})) = ind(#;") +0L41 r1./8. (103)
where the index is defined with respect to %(()1) and A FY) (cf. Definition 32).

Next we deduce RL(k + 1) (i.e., Lemma 23) from Lemma 41. We then give the
proof of Lemma 41 in Section 6.3.

Proof of Lemma 23. Suppose all constants are fixed as in Section 6.2.1 and let V,
O = O(k,a?), and s+ satisfying (RL.a)—(RL.c) be given. We have to ensure
the existence of a family of partitions & = 2 (k,a?) on V satisfying

(RL.P1) & is (nry, 6rL(a?’), a?)-equitable and tgry-bounded,
(RL.P2) & < 0, and

(RL.H) Hgkﬂ) is (6r+1RL, * mRL(a?))-regular w.r.t. & for every i € [sgry].

Construction of a family %,. In view of Lemma 41 we first need an appropriate
family of partitions %,. We distinguish two cases depending on the size of n?.

Case 1 (n? < nry)- In this case we simply set %y = €. It then follows from
(RL.b) that %, is (nRL,,u[g/(;%JrLRL],a‘%"])—equitable7 since pgry, < p* < I8/68 o]
by (101) and (102). Also %y = O is ogp-bounded by (RL.b) and, hence, it is to-
bounded by (93). Therefore, %, chosen this way satisfies (Rg.1). Moreover, (Rg.2)
holds trivially. O

Case 2 (17 > nrr). We construct a refinement %, of & so that | Crossk+1(%’él)) | >
(1— URL)(kL)' We construct %y = {%él), . ,%(gk)} inductively. More precisely
we show for every j =1,...,k that the following statement (&, ) holds.

(&;) there is a (nRL,u*, (a‘l%, cee a]‘%))—equitable, to-bounded family of parti-

tions %o (4) :{%51)7 e ,,%’(gj)} on V, which refines 0(5) = {oM), ..., 00U},
Since, u* < purg T it then follows that there is a family of partitions %, so
that (Rop.1) and (Rg.2) are satisfied.
Induction start j = 1. We split each vertex class W € 6 into to/a{ classes of
size n/(a{ty), where t; is given in (93). Note that to/a{ is an integer by definition
of to and ory, > af. Moreover, n/(a{to) is an integer due to the choice of tgy, >
to > orr > af (cf. (102) and (93)) and (RL.a). This defines the partition %’él)
with a0 = t,. Note that

nk+1 (93)

n/t _ n
[V]k+1 \Cr035k+1(%(gl))‘ < to( /20>nk ! < % < 7MRL </€+ 1) .

Consequently, %(()1) is an (URL, w*, (a‘l%o))—equitable, to-bounded refinement of 1),
which establishes the induction start.
Induction step. Assume there exist a (nRL,u*, (a‘l%, .. .,a,J'»%D))—equitable7 to-

bounded family of partitions %y(j) = {%(gl), . ,%éj )} refining (). We define
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%éj U for cach polyad RY) ¢ @(()j ). We set aﬁf’l = ajﬁ;r1 and in view of state-
ment (S;1) we have to show that for every RU) € Qéj ) there exists a partition
{R,(IJ—H): a € [aj‘-%:fl]} of Kj11(RY) so that for every a € [aj‘-g:fl] the following two
assertions hold
1) RY™ s (u*, l/a?fl)—regular w.r.t. RU) and

(IT) either REY Crossjﬂ(%(()l))\Crossjﬂ(ﬁ(l)) or RY™) c 0U+D for

some QU+ ¢ U+,

So let R ¢ ?Z’éj) Emd let R be the corresponding gn'/a?OJ + 1, 7)-complex,
e, R = R(J) = {RW(JN},_, for any J' € K;11(RY) (see (1)). From the
induction assumption we infer that R is an (u*, (1/a, ..., 1/a?°))-regu1ar com-
plex. Therefore, by the choice of p* and ngy, > n* in (101) and (102) we can apply
Theorem 18 and infer that

. (]h ) j+1 )
L 1 1 n nitl
i1 (RD) = 5 [T (az) x (ﬂ) 2 5 (104)
1 0

Case 2.1 (R ¢ Cross;(0D)). In this case we simply apply the slicing lemma,
Proposition 22, with

jsL=j+1, sosL =0rL, rsL =1, dosL = p"/3, cos. =1, and po,st. = 1/orL,
to PP =RY, and PYTY =K1 (RY)  with
ssu=afyr, os=p'/3, os=1, and {pes=1/al: €€ ol ]}

It follows from (104) and the choice of n* in (101) that all assumptions of Propo-
sition 22 are satisfied for this choice of parameters. Consequently, there exist a
partition of K;;1(RY)) into a;ﬁl distinct (n/a?,j + 1,7 + 1)-hypergraphs which
are (u*,l/aﬁ‘_)l)—regular w.r.t. RU), ie., (I) holds. Moreover, since we assume
RG) ¢ Cross;(0() each of these (n/a‘l%,j + 1,7 + 1)-hypergraphs is contained in
CrOSSj+1(%(()1))\CrOSSJ‘+1(ﬁ(1)) and (II) holds. O

Case 2.2 (RY) C Cross;(0D)). Then there exists some OU) € ¢U) such that
RU C OW, since Zo(j) < O(j) by induction assumption. Moreover, there ex-
ists a family {Ogjﬂ),...,ot(lgll)} C OUTY of (ure,1/af,,)-regular (w.r.t. o)
(n/af,j+1,j+1)-hypergraphs which partition ;41(O9)). Hence (104) yields that
K1 (RW)N oYY s 2t2" g, 1/a¥,,)-regular w.r.t. RU) for every a € [af,,].
Therefore, from the choice of pgy, in (102) we infer that

{RYTY = Kj1a(RV)NOF: a € [af 4]}
is a partition of K4 1(RY)) which satisfies (I). Moreover, (IT) holds trivially. O

In both cases, Case 2.1 and Case 2.2, we defined a partition of ICj+1(7A2(j)) which
satisfies (I) and (II). Repeating the argument for every RU) e @é] ) gives rise to

,%éj *1 and establishes the induction step. Consequently, there exist a partition %,
which satisfies (Ro.1) and (Ro.2) in this case, Case 2. O
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Having constructed and appropriate family of partitions %, the rest of the
proof of Lemma 23 is based on successive applications of Lemma 41. This idea was
introduced by Szemerédi in [31] and also used in [5, 6, 10, 13, 14, 16, 20].

Since Z, was constructed in such a way that (Rg.7) and (Ro.2) hold, we note
that due to

(99) (92)
rssot,, ] < Oru(to,-.- to) < drp(a”),
and tg < tgr (cf. (98) and (102)) the partition & = Z, satisfies (RL.P1) and
(RL.P2). If (RL.H) holds as well, then we are done.

Otherwise we iterate Lemma 41 and infer the existence of a sequence of partitions
R; for i > 0, which satisfy (R;.1) and (R;.2). It then follows from Fact 33 and (103)
that there must be some 0 <o < [8/d;,; gy | such that %;, also admits (RL.H)
for rry,(@%). Since t; < tgy, (cf. (98) and (102)) and and %; < %y < O (cf. (R;.2)
and (Rg.2)) for every 0 < i < [8/5%+1’RLL P = X, satisfies (RL.P1), (RL.P2),
and (RL.H). This concludes the proof of Lemma 23 based on Lemma 41. O

6.3. Proof of the index pumping lemma. We prove Lemma 41 in this sec-
tion. The proof is mainly based on Lemma 25 and the propositions developed in
Section 6.1.

Proof of Lemma 41. Recall the definition of the constants and functions in (93)—
(102) in Section 6.2.1. Let 0 < 4 < [8/d,,, gy ] be some integer and suppose
R; = Hi(k,a”) satisfies (R;.1) and (R;.2) and fails to satisfy (H) of RL(k + 1)
for 7ry,(@”i). In other words

(—H;) there exist some sy € [sry] such that Hglgﬂ) is (6k+1’RL,*7rRL(a%))—

irregular w.r.t. Z;.
Then V, %’él), 2+ - and %fk) satisfy the assumptions of Proposition 39 with
d = Op+1rL and r = rre(@”%), due to (Rg.1) combined with (92) and (—H; ).
Consequently, there exists a partition 2 (%) of [V]* satisfying the conclusions (i)—
(iii) of Proposition 39, i.e.,

(P.39.5) 2®) < %Z-(k) < %’(()k) (cf. (R;.2) for the second ‘<),

(P.39.3i) |2 ®| < L@i(k)\ x 9rrL(@®i)x|2"| < s; (cf. t;-boundedness of %; in
(R;.1), the monotonicity of rgr,(-,...,-) in (92), and the definition of s;
in (96)), and

(P.39.3ii) ind(2 ®)) > ind(Z7) +0}, 1 pi/2-

The next step is to apply RAL(E), Lemma 25 to V, 0 = %, and %) = 27 (),
with constants o;, s;, 1;, Vi, and the function €;: N¥=1 — (0, 1] defined in (93)—(97).
For this we have to check the assumptions of Lemma 25;

(RAL.a) |V| > nrav(0i; si, 0is vis €i(c, - 7)) and (tran(0s, si, i, vis €i(c, o5 0)))!
divides n,

(RAL.b) %o = %o(k,a”0)isa (1, i, a”°)-equitable family of partitions (for some
7' >0 and p' < prar(04, Si, i, Vi, €i(vy -, +))) and o;-bounded, and

(RAL.c) s = |2 ®)| < s; and 2% < 2",

Property (RAL.a) is implied by (RL.a) and the fact that for i < [8/5%“31}

(102) (100) (100)

NRL = N[g/si,, 1 = Nl =2 NRAL(0i, 8i, i Vi €0, - -5 )
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and that the same line of inequalities holds with n replaced by t.

It follows from the definition of o; in (96) and (Ro.1) that %, is o;-bounded.
Moreover, (Rg.1) and (99) imply the required equitability of %y, which yields
(RAL.D).

Finally, (RAL.c) follows immediately from (P.39.i) and (P.39.ii).

Consequently, we can apply Lemma 25 to V, 6 = %, and %) = 2 %)
with constants o;, s;, 1;, v;, and &;: NF=1 — (0,1]. Lemma 25 then asserts that
there exist a family of partitions . = .(k — 1,a”), and a partition #*¥) =
{y@, ey 3{5,’“)} of [V]* so that

(RAL.S1) .7 is (m;,e:(a”),a” )-equitable and ¢;;-bounded family of partitions

(since t,'+1 > tRAL(Oi, S{Z‘, Ni, Vi, é‘i(', ey )) by (98)),

RAL.S2) & < %o(k —1) = {# 5]

RAL.YT1) yék) is perfectly (¢;(a”))-regular w.r.t. . for every £ € [s'],

RAL.Y2) D/ék)A Xz(k)’ < v;n* for every ¢ € [s'], and

RAL.Y3) if Xe(k) C Crossk(%(()l)) then yék) C Crossk(%él)) for every £ € [s'] and
k) < %ék) = Crossk(%él)).

In particular, (P.39.7) and (RAL. Y3) show that 2" (*) and # (¥) refine Crossy, (%’él)),

respectively. Hence, due to (RAL.Y2) and the first part of (RAL.Y3) the assump-

tions of Proposition 34 are satisfied for V, %(()1), AEAD R (k) spay =g <

si, and vp 34 = v; and, consequently, Proposition 34 yields

(
(
(
(

ind(# ®)) > ind(2 *) —3(k + 1)srLs{ v

(96) 4 (P.39.4i) 4

> ind(2 W) —Zeme ST i)y 4 2eme - (105)

Our next temporary goal is to construct a partition 2 (%) of Crossy, (7 (1)) which

forms a family of partitions together with .#(k — 1,a”). This means, that such
an Z(F) has to satisfy two conditions — it must partition Crossy(.#1)) and it must
refine {K(S*=D): S&-1) ¢ F(*=D}  The partition Z*) fails to satisfy any of
these two requirements. It partitions all of [V]* (rather than only Cross;(.#(1)))
and, more importantly, we cannot ensure that it refines {K(S*=1): S*k-1 ¢
k=11 However, we easily “fix” these shortcomings of % *) and define 2*) as
follows

gr(k) — {y(k) NKR(SED): YB) e (*) and SE-1) ¢ j(k_l)} : (106)

For convenience we set for every Stk=1) S S k=1)

W (SE-Dy = (20 ¢ g®) .z A jC (SE) £ ). (107)

The partition 2*) has the following properties which we verify below.
(1) 2™ partitions Crossy, (") and Z/*) < {Kp(S*=D): Sk-1) g k-1,
(22) |2 (SF=D)| < s; for every SF= ¢ F(=1) and
(23) for every SF=1 e #*=1) and 2 ¢ 2*)(SE+-1) we have that Z*) is
(ei(@”))-regular w.r.t. SE=1),
(z4) z® < %’ék) =< Cross;c(%’él)), and
(25) ind(Z®) > ind(Z") +6} 1 ru/4-
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Property (Z1) follows from the fact that % (*) partitions all of [V]¥ and the defi-
nition of Z7(*) in (106). Assertion (Z2) is an immediate consequence of (107) and
| (F)| = ' < s; (cf. (RAL.c)). We also note that (Z2) is simply a reformulation
of (RAL.Y1).

Hence, it is only left to verify (Z4) and (Z5). First we consider (Z4). For
that we first note that {K,(S*1): Sk-1) ¢ P*-D} partitions a superset of
Crossy, (%él)) due to (RAL.S2). Consequently, (Z4) follows from the definition of
Z®) in (106) and (RAL.Y3).

Finally we focus on (Z5). For that we consider the restriction of % (*) on
Crossk(%’él)), ie.,

g}/(k)|0r055k(%(”) - {y(k) ey ™. Yy c CrosSk(%(()l)) ¥
0

It follows from Definition 32 that the index of # (¥
A k+1) gatisfies

1
)‘Crossk(<52(()l)) w.r.t. %é ) and

. . (]OS) i 54
ind(Z P, o) = nd@®) > ind(#) 4558 (108)
On the other hand, in view of (Z4) the restriction of 2°*) on Cross, (ﬂél))

g(k)|Crossk(%(l>) = {Z(k) S g(k) Z(k) c Crossk(‘@él)) }
0

is a partition of Crossk(%él)) and, therefore, ind(Z*)) = ind(g(k)}cmqgk(@(”)) .
ssk ()
Moreover, we observe that 2*)| wy < 7 W] due to (106).
rossi (%, ') Crossy
Finally, Proposition 36 then yields (Z5)
ind(2®) = ind(fé‘o(lC

(V)

) ‘Crossk(%gl)))

(108)

4
>ind(@ W], > ind(9")) + e

Having verified (Z1)—(Z5) we come to the last part of the proof and define the
family of partitions %;+1. The careful reader (who managed not to get lost in details
so far) will note that due to (Z1) the partition Z°(*) together with . (k — 1,a”)
forms a family of partitions on V. Moreover, due to (RAL.S2) and (Z/) it satis-
fies (R;+1.2) and due to (RAL.S1), (Z2), and (Z3) it “almost” satisfies (R;41.1).
But unfortunately, the densities of the Z(*) € 2(*) vary and thus this family of
partitions ) U.#(k — 1,a”) is not equitable. In the final step of this proof we
derive Z; 41 from .7 (k — 1,a”) U Z®) by “cleaning the imperfections” of 2
mentioned above. For that we will use the following claim, which somewhat dry
proof is based on repeated applications of Proposition 22.

Claim 42. There exist a partition 7*) of Crossy(#1) such that

(T1) T® < {Kp(SE-D): Sk=1) ¢ g1}

(T2) |{T(k) e g®. Tk C le(S(k_l))}’ = f(si) for every fired S®=V ¢
PE-1)

(T3) every T® € T® s (6ri(a”, f(s:)),1/f(si))-reqular w.r.t. the unique
St e P which satisfies T® C Kp(SE-D),

(T4) 7® < %, and

(T5) T®) s q (0441.rL/8)-refinement of zk),

<%’é“>)
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We first finish the proof of Lemma 41 and give the proof of Claim 42, which
makes use of (Z1)—(Z4), afterwards. In order to conclude the proof of Lemma 41 we
have to define a family of partitions %;4+1 on V| which satisfies (R;j+1.1), (Ri+1-2),
and (103). With this in mind we set

aZi+1 — (af" .. ,a}il,f(si)),
) forjelk—1
G _ )7 or j €| ] % )
#iin = {mk) for j =k and - R (k,a”o) = (2}

We now first show that %1 = %Z;1(k,a”+1) is a family of partitions on V.
Due to the fact that .7 (k — 1,a”) is a family of partitions on V, we only have
to verify that %i(_’f_)l = .7 %) fulfills both requirements of part (ii) of Definition 10.
However, this is immediate from (77) and (72).

Next we consider (R;41.1). Note that (RAL.S1) (combined with (97)) and (T3)
show that %, 1 is (rL, Orw(@%i+1), a”i+1)-equitable. Moreover, (RAL.S1) and the
choice of ;11 > f(s;) in (98) imply that max;ep a;j
'@i-‘rl is ti_,_l—bounded and (Rz+11) holds.

The property (R;+1.2) follows from (RAL.S2) and (T4) and (103) is a conse-
quence of (Z5) and (T5), combined with Proposition 38.

Hence %;11 has the desired properties and we conclude the proof of Lemma 41
based on Claim 42. O

1< tq. In other words,

Proof of Claim /2. We have to show that there is a partition .7 *) of Crossy (1))
satisfying (T1)—(T5). For technical reasons we first extend the partition .@ék) from
a partition of Crossk(%’él)) to a partition of [V]* and we set
R®) = [V]#\ Crossy(2") and %" =z UR® (109)
In view of (T1) and (T4) it seems natural to define .7*) separately for every pair
Sk g k=) = RF) ¢ @ék) satisfying Kp(SEV)NR® £ g, (110)
In fact, we will prove the following claim.

Claim 42’. For every pair Sk=1) Rk satisfying (110) there exists a partition
FE(SE=D RE)Y of Ki(S*=D)NRE) satisfying the following properties
(T27)

f(si
|9 S(kl |{a(k@o) Zf R #R

f(si) if R® :R(’“),

(T3") every T®) e FE)(SE=D RK)Y js (6re(a”, f(s:)),1/ f(s:))-regular w.r.t.
Sk
(T5') and

J{T®: T® € 7®(GED RE) ana TM ¢ 200 yz®) ¢ g®)}]

< (S;éJré,RL ‘K:k (S(k—l)) N R(k)‘ )

“Note that f(si)/a,?o is an integer since aszo < to (cf. (Ro.1)) and due to the fact that the
definition of the function f(-) in (95) ensures that f(s;) is a multiple of (¢o)!.
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Before we verify Claim 42/, we deduce Claim 42 from it. So let .7 ®)(S*-1) R(F))
be given for every SE—D R*) satisfying (110). We then set

g® = U {ﬂ(k)(éﬁ(kfl),R(k)): S and R™ satisty (110)} .

Clearly, .7®) is a partition of Cross;(.7"), since @ék) is a partition of [V]*
(cf. (109)). Furthermore, (T1) and (T4) are immediate since we constructed .7 )
separately on Kp(S*F=D) N RE). Moreover, it is easy to see that (T2), (T3), and
(T5) are implied by its “prime” counterpart.

This finishes the reduction of Claim 42 to Claim 42, which is the last missing
piece in the proof of the implication RAL(k) = RL(k + 1). |

Below we prove Claim 42’. The proof resembles some ideas from [20, Section 5].
The main tool in that proof is the somewhat technical slicing lemma, Proposition 22
and we first give an informal outline to convey the idea.

Suppose S*=1 and R®) satisfy (110). Let 27*)(S* -1 RK)) be the collection
of those partition classes Z*) of 2°(*) which are contained in Kp(S*E=D) N RK),
ie.,

FW(EED RW) = (200 ¢ 201, 200 C o (SED) AR, (111)
Note that due to (Z1) and (Z4)
{20 20 ¢ 0 (SE=D RUN partitions i (SED)NRE). (112)

Indeed by (Z1), Z*) has each of its partition classes completely within or outside
Kir(S#=1) and by (Z4) the same is true for R*),

We will use the slicing lemma twice. In the first round we apply the slic-
ing lemma separately to each Z*) e 2*)(S¢=1 RK*)) to slice it in such a
way that all but at most one slice (“leftover” part) has density 1/f(s;) w.r.t.

S*=1_ On the other hand, we infer from the choice of Wit1 > H[g/s and

é+1,RL‘|
(Ro.1) that Kp(SED)nRE) is still (&, 1/61‘2/20 )-regular with 6’ < drr.(a”, f(s;))
(cf. (99)). (In the special case R*®) = R*) we have (§', 1)-regularity for any 6’ > 0.)
Consequently, the union of the earlier produced “leftovers” must have a density
very close to a multiple of 1/f(s;), since it is Kp(S*1) N R* minus regular
pieces of density 1/f(s;). Therefore, we can use the slicing lemma again (sec-
ond round) to “recycle” the “leftovers”, splitting it into regular pieces of density
1/f(s;) and the “recycled” partition will satisfy (72') and (73’). Finally, we will
show that it also exhibits (75') since we chose f(-) in (95) in such a way that
|2 ®)(SE=D RN x 1/f(si) < si/f(5:) < Ski1.r1/8, which is an upper bound
on the density of the union of the “leftovers”.
Below we give the technical details of the plan outlined above.

Proof of Claim /2'. Let S*=1 ¢ k=1 and R®) ¢ @ék) satisfying (110) be
given. We start with a few observations. From the choice of the function ¢; in (97)
and n; in 100 combined with (S1) we infer by Theorem 18 that

15001 () n\* nk
S(k—1

i+1
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Suppose R*®) £ R®)_ Let R*=1 be the polyad in ,@ék_l) such that R*) C
Ki(R*=1). Since, #*=1 < %1 (cf. (RAL.S2)) and R®) 0 K (S*E-D) # @
(cf. (110)) we have that S*=1 € R==1_ Consequently, we infer from (113) and
(Ro.1) that if R*) £ R®) then

RE) A K(SHY) is (Qt?ilufg/(; l/afo)-regular wor.t. SE1.

[ERRIAL
Moreover, if R®) = R*)_ then assumption (110) yields that Ky(S*—1) € R®)

and R®) N (SE-D)Y is (8, 1)-regular w.r.t. S&=1 for every & > 0. Therefore, in
view of

99 SR (tig1s - - - tig1, f(s5i)) RALST) 5y (a”, f(s;))
< ey < <R JA%))
HI8/0k ] = it = 1262 = 12627,

we have for every R e Q?ék) that
R(k) N ’Ck(g(kil)) is (%5RL(ay, f(si)),dR(m)—regular w.r.t. S(kil) 5 (114)

where
1 R if R(k) ﬁ(k)
Ao = { fog? i 7 (115)

1 if RW =R®

Furthermore, we infer from (114) combined with dgw > 1/a® > 1/ty (cf. (Ro.1))
that
(94)

d(R(k)‘S(kil)) Z —15RL(ay,f(si)) > max{léRL(ay,f(si)), 2} (116)
6 3 3to

1
to
Recall the definition 2°*)(S*=1 R®)) from (111) and let {Zl(k), e ,ng)} be an
enumeration of its members. Clearly, 2°*)(S*-1 R(*)) C 27(®)(SE=1) (cf. (107))
and due to (Z2) we have
z2 < 8. (117)
Our plan is to apply the slicing lemma to every member Z;k) of 9,4’6)(3(’“*1), RF).
For that we have to satisfy the assumptions of the slicing lemma among which we
have to ensure that d(Z;k) |S(k_1)) is not “too small”. However, since the Zj(k) arose
from an application of RAL(k), we only have limited control over their densities,
which leads to the following definition

ZTHIN = {j € [2]: d(ZJ(-k)IS(k_U) < ﬁ} (118)
Moreover, for every j € [z] we set
k) S(h—
G = [fs) x d(2{"18ED) . (119)

Clearly, ¢; > 0 if and only if j € Zruin. We now apply the slicing lemma, Propo-
sition 22, for every j € [z] \ ZTmin separately with
(k—1)-times

—~
; 1
JjsL=~k, sosL=s27, rsL=1, dosL= €i(ti+1a st ) s 00,SL = oy

and po.sL, = f(lsi) ,to Aélfjl) = Sk-1 , and Péli) = ZJ(-k) withsgr, = (5,

dsp = ei(a”),  os, = d(ZM[8* D) and {P SL= ——f
j £ d(Z;k)|S(k*1))
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It follows from (113) that the assumption (¢) of Proposition 22 is satisfied for
pE=1 _ (k-1
sL :

Moreover, (ii) is a consequence of (Z3) (yielding the (dsy,, osL, s1.)-regularity
of ’P(k) = (k)) the definition of Zpyn (yielding gsr, > 0o,s1), (RAL.S1) and
the monotonicity of the function e; (yielding ds, > do,s1,), and the choice of ¢;

n (97) (yielding go,s1, > 20sL). Furthermore assumption (74) of Proposition 22
is a consequence of the fact that d( \S(k D) < 1 (yielding Pe,SL > DPo,st, for
€€ [¢] =41,...,¢;} and the choice of the integer parameter (; in (119) (yielding
ZEE[C.f]p§’SL <1).

Having verified the assumptions of Proposition 22 for every J € [2] \ ZrHiN, we

infer that for every such j there exists a family { 50 ,T( ’T(k } such that

IR
{TJ(’(?,TJ“P, . ch)} partitions Z(*) | (120)
T(k) (351 ),1/f(si))-regular w.r.t. S for every £ =1,..., ¢j,and (121)

7},0 is (3¢;(a”), dj )-regular
(119)

for some 0 < djo < d(Z;k)|$(k_1)) - % < f(lsi) . (122)
(k)

Unfortunately, the “leftover” hypergraph 7;," might not be empty and has a
density differing from 1/f(s;). Moreover, in general Zryin is not empty and we

have to recycle the “leftovers” ’T(O with j € Zrgin and the hypergraphs Z( ) with
j € Zrgin. For that we Consrder their union

w- U T U 20 a2
jelz\ZraNn JEZTHIN
. k) S5(k—
Clearly, U*) is the complement of Uj et zem Ueere,) ’]; ¢ in RE) N Ky (SED).

Consequently, in view of (121), |Zruin| < z < s; (cf. (117)), and (114) an applica-
tion of Proposition 19 yields that

U is (%5RL(ay,f(si)) + 3ei(a”) s, dra — W)—regulm w.r.t. SE=D
(124)

Recall, that dg is an integer multiple of 1/f(s;). (This is obvious if R®*) = R*)

since f(s;) is an integer-valued function. Moreover, if R(*) # R®) | then dru =

1/61‘1,?0 which is a multiple of 1/f(s;) since (t9)! divides f(s;) (cf. (95)) and ¢y > a}?ﬁ

(cf. (Ro.1)).) Consequently,

A 2j€ZTH1N Gi __u
f(s:) f(s:)

This observation and the choice of the function ¢; in (97) allows us to rewrite (124)

U is (%JRL( 7 f(s i) 7 ) regular w.r.t. S*=1 (126)

for some integer 0 < u < f(s;). (125)

The further treatment of /(*) depends on the value of and we consider two cases.

Case 1 (u = 0). Note that the assumption v = 0 and (126) not necessarily implies
that (¥) = @. Tt rather yields, that

dUP|S*D) < Lspr (a7, f(s1)) -
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On the other hand, by (116)
d(RW|SE-1) > Lori(a”, f(s4)).

Therefore, from (112), we infer that Zrpin # [2] and there exist some jo € [z] \
Zruin with ¢, > 1 and hence Tjgki exists. We then define, the promised partition
F®)(SE=D RK)Y as follows

FWEED RW) = [T j € [2]\ Zru, j # o, and € €[]}
U {T(’“); €=2,.. .,gj} U {T.(’“) uu<k>} .

Jo,§ Jo,1
It follows from the definition of Z/(*) in (123) in conjunction with (120) and (112)
that .7 ®)(S*-1) R(*)) defined above indeed partitions Kp(S*=D) N RF). We
conclude this case with the verification of properties (T2'), (T3’), and (T5').
First we consider (72’). Clearly, |7®)(S*-D RM)| = 2 iele]\ Zoan & SO in
view of (125), we infer from the assumption u = 0 in this case, that

P jf R £ R(K)
O

TE(SED RW)| = G = droo x f(s) = U
709 = T Gmdmaxte) T

JE[ZI\ZTHrIN
which is (72").
Since €;(a”) < $0rL(a”, f(s;)) (cf. (97)), (121) guarantees (7T3’) for all mem-
bers of 7 (*) (S(kfl), R*)) with exception ’Z}f}k)UZ/l(}“). Consequently, verifying (73’)
reduces to showing that

T®E uu® s (5RL(ay, f(s:)),1/f(s;))-regular w.r.t. St=1 (127)

Jo,1

However, this follows from (121) and (126) by Proposition 19, since u = 0 and since
by the choice in (97) we have 3¢;(a”) < 20rr(a”, f(s:)).

Finally, we consider (T5’). Here we note that due to the definition of the parti-
tion 7 *)(S*=1 R(H)Y it suffices to show that

. s \
AT LUM|§ED) < %d(angw—l)) , (128)

For that we first derive from (127) combined with the definition of the function f(-)
in (95) and the bound from (94) that

. (127) 1 54
T7E Gy |gk-1y " £ S flg)) < CkHLRL 19
d( Jo,1 uu |8 ) = f(sz) +6RL(G/ 7f(81)) = 12t0 ( 9)
Therefore, (128) follows from (129) and (116). This concludes the proof of Claim 42’
in this case. O

Case 2 (u > 0). Recall, due to (126), is U® (%5RL(a‘5ﬁ,f(si)),%)—regular

w.r.t. SE=1 . In this case we are going to apply the slicing lemma to “recycle”
the edges of U™*)| i.e., to partition it into regular pieces of density 1/f(s;). More
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precisely, we apply Proposition 22 with

(k—1)-times
jsL =k, sosL = f(si), rs =1, dosL = 30rL(tis1,. .- tiv1, f(50)),
oosL =75, and posy = 7. to PGV =S and P =u® with
u 1
—u, Gs= 6 =% and = - .
SsL=1u, 0L =g ru(a”, f(si), osL [Tk an {Pg,SL " §€ [U]}

It follows from (113) that the assumption (¢) of Proposition 22 is satisfied for
ﬁé’ffl) = S*=1_ Moreover, (ii) follows from (126) (yielding the (dsr., osL,7sL)-
regularity of Pé’i) = U;k)), the assumption of the case v > 1 (yielding ogr, >
oosL), (RAL.S1) and the monotonicity (cf. (92)) of the function gy, (yielding
dst, > do,s1), and of (94) (yielding go,sr, > 20sr,). Furthermore, note that pe g1, >
Po,sL, since u < f(s;) (cf. (125)) and that that

Z p{,SL =1. (130)

Consequently, assumption (i) of Proposition 22 holds for the choice of parameters
above.

Having verified the assumptions of Proposition 22, we infer that there exists a
family {Z/{l(k), ceey ék)} (note that due to (130) there is “leftover” class L{( )) such
that

U™, .. U} partitions U™ (131)
Ut is (Orru(a”, f(s:)),1/f(s:))-regular wor.t. S®= for every € € [u]. (132)

We finally define the required family .7 (k)( (k=1) 'R()) in a straightforward man-
ner

FOSED RO)= (TP j € ]\ Zouny and € € [ Jo{u®, . uP}. (133)

Again it directly follows from the definition of /(¥) in (123) in conjunction with (131)
and (112) that 7 (S*=D R(F) defined above partitions Kj(S*1) N R®* and
it is left to verify (72'), (TS’ ), and (75') for this partition.

First we consider (72'). By the definition of .7 *)(S*=1 R*)) we have

Lo if R £ R
a, N
f(sy) if RK) =RK)

i

|7 ®)(SE-1 R Z Gru"E dew f(s )(“5){

j€[2]\ZrrIN
which is (72").
Property (T3’) is immediate from (132) and (121) combined with the choice of
the function &; in (97), which easily ensures 3¢;(a”’) < drr.(a”, f(s;)).
Finally, we discuss property (75’). Due to (120) and due to the definition of
F®)(SE=1) R(*)) in (133), the left-hand side of (75") is bounded by |t/ | and
thus it suffices to show that

) 52 .
d(U®|S*D) < 7k+§’RLd(R(’“)\S(’“*1)) . (134)
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From the definition of Z*) in (123), combined with (122) and the definition of
Zruin in (118) we infer that

d(u(k)|$(k71)) < |[Z] \ ZTHIN| (ﬁ + 35l(ay)) + |ZTHIN|%
(117) S;
= ey T

which by definition of f(-) in (95) and (97) gives d(u(k)|3(’“_1)) < 0py1re/(12t0).

Therefore, (134) follows from the last inequality and (116). This verifies (Z5'),

which finishes the proof of Claim 42" in this case.

In both cases we constructed a partition .7 ®) (SE=D RE)) of [0, (SE-D)NRF)

which exhibits properties (72'), (T3'), and (T5'), as required in Claim 42’. O
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