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Homotopical algebra — What for?

Often, we are interested in (co)homology groups.

H?(X,Z) = [X,CP>] = [X, BU(1)] classifies line bundles on a
space X.

Many geometric invariants of a manifold M can be understood via
its de Rham cohomology groups.

In order to calculate or understand such (co)homology groups, we
often have to perform constructions on the level of (co)chain
complexes: quotients, direct sums,...

For these constructions one needs models.

Homotopical algebra: Study of homological /homotopical questions
via model categories.

Definition given by Quillen in 1967 [Q].

Flexible framework, can be used for chain complexes, topological
spaces, algebras over operads, and many more — allows us to do
homotopy theory.



Chain complexes, |

Let R be an associative ring and let Chr denote the category of
non-negatively graded chain complexes of R-modules.

The objects are families of R-modules C,, n > 0, together with
R-linear maps, the differentials, d = d,: C, — C,_1 foralln>1
such that d,_1 o d, = 0 for all n.

Morphisms are chain maps f.: C. — D,. These are families of
R-linear maps f,: C, — D, such that d, o f, = f,_1 o d, for all n.
The nth homology group of a chain complex C, is

Hn(Cy) = ker(dn: Cp — Cp—1)/im(dpt1: Cor1 — Cp).

ker(dn: C, — Ch—1) are the n-cycles of C,, Z,C,, and
im(dn+1: Chy1 — C,) are the n-boundaries of C,, B,C..
Here, we use the convention that ZyC, = Cy. Chain maps f,
induce well-defined maps on homology groups H,(f):

Hn(f): Ha(Cy) — Ha(Dy), Hn(f)[c] := [fa(c)].



The homotopy category

A chain map f, is called a quasi-isomorphism if the induced map
Hnf: Ha(C) — Hn(Dy)

is an isomorphism for all n > 0.

For understanding homology groups of chain complexes we would
like to have a category Chg[gi~!] where we invert the
quasi-isomorphisms.

Such a category is usually hard to construct. (How can you
compose morphisms? How can you make this well-defined?...)
Model categories give such a construction.



Model categories, |

A model category is a category C together with three classes of
maps

» the weak equivalences, (we)
» the cofibrations (cof) and
» the fibrations (fib).

These classes are closed under compositions and every identity
map is in each of the classes.

An f € fibN we is called an acyclic fibration and a g € cof N we is
called an acyclic cofibration.

We indicate weak equivalences by ———, cofibrations by >—
and fibrations by ——.

These classes of maps have to satisfy a lot of compatibility
conditions...



Model

M1
M2

M3
M4

M5

categories, |l

The category C has all limits and colimits.

(2-out-of-3): If f, g are morphisms in C such that gof is
defined, then if two of the maps f, g, g o f are weak
equivalences, then so is the third.

If fis a retract of g and g is in we, cof or fib, then so is f.
For every commutative diagram

A—=X

|

B——Y

in C where i is a cofibration and g is an acyclic fibration or
where 7 is an acyclic cofibration and ¢ is a fibration, a lift £
exists with go§ = and o/ = a.

Every morphism f in C can be factored as f = poj and go 1,
where j is an acyclic cofibration and p is a fibration, g is an
acyclic fibration and /7 is a cofibration.



Model categories, Il
M1 allows us to make constructions.
M2: think of maps that induce isomorphisms on homology or
homotopy groups. These will automatically satisfy 2-out-of-3.
M3: f is a retract of g if it fits into a commutative diagram

Idy

— s X —

f g

{<=—C
S —C

— Y —

Idy

M4: The lift £ in A—%= X is not required to be unique!

 ——
M5: Can be used for constructing projective/injective resolutions,
CW-approximations etc.



Chain complexes, I

The category Chgr has several model category structures. The one
we will use is: A chain map f: C, — D, is a

» weak equivalence, if f, is a quasi-isomorphism, i.e., H.f, is an
isomorphism for all n > 0,

» fibration, if f,: C, — D, is an epimorphism for all n > 1,
» cofibration, if f,: C,, = D, is a monomorphism with projective
cokernel for all n > 0.

This does define a model category structure on Chg.
What are projective modules?



Projective modules

Let R be a ring. A left R-module P is projective if for every
epimorphism 7: M — @ of R-modules and every morphism
f: P— Q of R-modules there is an R-linear morphism £: P — M
that lifts f to M:

P

|

£
M- Q

If R = Z then the projective modules are exactly the free ones,
that is, P = P, Z.
If R is a field, then every module is projective.



A light exposure to a typical argument

There are spheres and disks in Chg!

(S = {R, m = n,

0, otherwise.

The sphere complex has d = 0 for all m.

(D) = R, m=nn-—1,
m 0, otherwise.

Here d: (D"), = R — R = (D"),—1 is the identity map.

Calculate the homology groups of spheres and disks.
Show that every chain map from S” to a chain complex C, picks
out an n-cycle ¢ € Z,(C,) and that every chain map from D" to a
chain complex C, picks out an element x € C,. Therefore there is
a canonical map i,: S™1 — D".



Lemma

1) A morphism in Chg is a fibration if and only if it has the lifting
property with respect to all maps 0 — D" with n > 1.

2) A morphism in Chg is an acyclic fibration if and only if it has the
lifting property with respect to all maps i,: S™™! — D" for n > 0.

Proof: of 1): We assume that there is a lift £ in the diagram

0—2> X

)

for all n > 1 and we have to show that p, is surjective for all n > 1.
Any y € Y, corresponds to 8: D" — Y, sending 1r € D] to y. A
lift £ picks an element x € X, and the property p, o &, = [
ensures that x is a preimage of y under p,, hence p, is surjective.



Towards the homotopy category

When are two chain maps f,, g.: C; — D, homotopic?
A chain homotopy H between f, and g, is a sequence of R-linear
maps (Hp)nen, with Hp: C, — Dpy1 such that for all n

dP o Hy+ Hy10dS =, — g

d¢ d¢ d< d¢
+2 +1 —1
. Cn+1 . Cn . Cn—l -
Hnt1 H, Hn1
| Jos 2 Jo 2 s
dP., dD+1 dP dp
Dn+1 Dn Dn—l

If £, is chain homotopic to g, then H.f = H.g.



We can express this in a more “geometric’ way.

The cylinder on C, is the chain complex cyl/(C). with
eyl(C)n=Cp @ Cr1 ® C, and with d: cyl(C)y — cyl(C)p-1
given by the matrix

dn id 0
d=10 —dys-1 O
0 —id d,

The “top” and the “bottom"” of the cylinder embed as
Ch— cyl(C)pn, ¢ (c,0,0)

and
Ch — cyl(C)n, ¢ (0,0,c).

There is also a map g: cyl(C). — C, sending (c1, 2, c3) to
c1 + c3. These maps are chain maps.

Two chain maps f,, g.: C. — D, are chain homotopic if
and only if they extend to a chain map

fo + Ho + g cyl(C)y — Ds.



Cylinder objects in a model category

Let C be an object in a model category C. We call an object cyl¢
a cylinder object for C, if there are morphisms

CUC—Lscyle 2~

that factor the fold map V: C L C — C.

For C = Chg the categorical sum C, Ul C, is the direct sum
C. @ C, and the fold map V sends (c1, &) to ¢1 + .
cyl(C). as above is a cylinder object: we can take

i(c1, ) = (c1,0,c) and q: cyl(C), — C, as above.



A cylinder object cylc is good, if i is a cofibration and it is very
good if in addition g is an acyclic fibration.

Warning: In general, cylc won't be functorial in C!

In Chg our cylinder object cy/(C). won't be good in general: i is
not a cofibration in general, because the cokernel of i, is C,_1
which won't be projective in general. However, g is always
surjective in all degrees, hence a fibration.

Good and very good cylinder objects exist thanks to M5.

The map i: CUU C — cylc has components iy: C — cylc and

ir: C — cylc given by the two maps C — C U C.



Left homotopies

Two morphisms in a model category f,g: C — D are called left
homotopic, if there is a cylinder object cylc of C and a morphism
H: cylc — D such that Hoig=f and Ho iy = g.

Problems:

» Being left homotopic is no equivalence relation in general.

» There is a dual notion of being right homotopic (using “path
objects” instead of cylinder objects) and these notions don't
agree in general.

We need to restrict to nice objects!






Digression: initial and terminal objects

Every chain complex C, receives a unique chain map f from the
trivial chain complex 0 with 0, = 0 for all n > 0, the trivial abelian
group,

fn=0:0— C,, and it also has a unique chain map g: C, — 0,
sending everything to zero.

In the category of topological spaces every topological space X
receives a unique map from the empty topological space & (by
convention) and for every one-point topological space {x} there is
a unique continuous map p: X — {x}.

Definition: An object i in a category C is called initial, if every
object C of C has a unique morphism f € C(i, C). Dually, an
object t of C is called terminal, if for every object C of C there is a
unique morphism g € C(C, t).

So, 0 is initial and terminal in the category Chg and & is inital in
Top whereas any one-point space is terminal in Top.



Cofibrant and fibrant objects

Initial objects and terminal objects exist in every model category.
Definition: An object C in a model category is cofibrant, if the
unique morphism i — C is a cofibration. Dually, an object P in a
model category is fibrant, if the unique morphism P — t is a
fibration.

In Chgr every object is fibrant, but only those chain complexes C,
with C, projective for all n > 0 are cofibrant.

For every object X in a model category, we can factor the unique
map i — X as

i— QX2 X
with f € cof and g € fibN we. We call this a cofibrant
replacement of X. (This can be made functorial in X.)

In Chg this gives projective resolutions of any R-module M viewed
as SO(M).



The homotopy category of a model category

For a cofibrant object QX we can factor the unique map QX — t
as

QX>%>RQXL>>t
with j € cof Nwe and p € fib. Then we have an object RQX that
is both fibrant and cofibrant and has a zig-zag of weak equivalences

X< Qx~1~RQX

Definition: The homotopy category, Ho(C), of a model category C
has as objects the objects of C and Ho(C)(X, Y) is the set of (left)
homotopy classes of maps from RQX to RQY'.



This is the right thing: There is a functor 7v: C — Ho(C) with
Y(X) =X and y(f: X = Y) = [RQf: RQX — RQY].

Theorem: For any f in C we have: ~(f) is an isomorphism in
Ho(C) if and only if f is a weak equivalence.

So Ho(C) is a model for C[we™!]!



What are diagrams?
Take any small category D. That is a category whose objects
constitute an actual set and not a proper class. Let C be an
arbitrary category.
A D-diagram in C is a functor F: D — C: So for every object D of
D you have an object F(D) of C and for every morphism
f € D(D1, D>) you get a morphism F(f): F(D1) — F(Dz). This
has to be consistent: for g € D(Dy, D3) we have
F(g)o F(f) = F(gof) and F(idp) = idr(p) for all objects D of D.
Examples:

» D=(2+0—1)and C = Chg gives a diagram
F(2) < F(0) — F(1) of chain complexes and chain maps.

» ForD=(0—1—2—...)and C = Top we get a sequence
F(0) — F(1) — F(2) — ... of topological spaces and
continuous maps.

» If S is any set, then we can consider it as a category whose
only morphisms are identity maps. A functor F: S — C for
any C is just an S-indexed family of objects.



What are colimits?
Let F: D — C be a functor as above. Then a colimit of F is an
object colimpF of C that is “as close to the diagram that F
defines as it can be".
Definition: A colimit of F over D is an object colimpF of C
together with morphisms 7p: F(D) — colimpF in C such that for
all f e D(Dl, Dz)

F(Dy) —2% colimpF
|
F(D>)

commutes. Furthermore, if C is any other object of C with
morphisms np: F(D) — C such that

77D20F(f) :77D1 \V/fED(D]_,DQ)

then there is a unique morphism &: colimpF — C with
& oTtp = np for all objects D of D.



Examples of colimits

» Colimits for D = (2 <— 0 — 1) are called pushouts. In Chg
the pushout of F(2) - F(0) — F(1) is the chain complex

(F(2) @ F(1))/ ~

where ~ identifies the image of F(0) in F(1) and F(2).
This fit into a diagram

FO)— F(2)

1

F(1) —(F) @ F(1))/ ~

For 70: F(0) — (F(2) & F(1))/ ~ you take the map from
F(0) to (F(2) @ F(1))/ ~ in the diagram (they are both the
same).



Examples of colimits — continued

» For a diagram of the form F(0) — F(1) — F(2) — ... in Top
the colimit is given by | |~ F(n)/ ~ where ~ identifies
x € F(m) with the image of x in F(n) under the maps in the
sequence for m < n. Such colimits are called sequential
colimits.

» A colimit over a diagram indexed on a set S viewed as a
category is the coproduct of the objects F(s), s € S and is
denoted by | | F(s). For sets or topological spaces you get
the disjoint union of the F(s), for chain complexes you get

Ds F(s).



Homotopy invariance

Slogan: Homotopy colimits are homotopy invariant colimits
What does that mean?

Usual colimits are not homotopy invariant:

Take the pushout of

SHH*
*

Here S” = {x € R™1 |x| = 1} is the unit sphere in R™1.
An explicit formula for the pushout is * LI x/ ~ where the two
points are glued together, so

St ——

|

*<— %

—_

is a pushout diagram.



But the unit (n + 1)-disk D" = {y e R™1 |y| <1} is
contractible, so homotopy equivalent to a point .
The pushout of

sh_____ o Dn+1

|

]D)nJrl

is STt

Thus replacing * by the homotopy equivalent D™ changed the
homotopy type of the pushout.

That's bad, if you want to work up to homotopy...



What should a homotopy colimit do for us?

In a model category all colimits exist by assumption. We can
actually view the colimit as a functor

colimp: CP = ¢

where CP denotes the category of functors from D to C. It is left
adjoint to the constant functor

A:C—CP, A(C)D)=C VD

and A sends any morphism in D to the identity map on C.
We want to transform this into a functor

hocolimp: Ho(CP) — Ho(C)

...at least, if CP possesses a model category structure and thus a
homotopy category, Ho(CP). (Warning: Ho(CP) # Ho(C)P!)



Model category definition of hocolims

Assume that CP possesses a model category structure. Then if the
colimit functor colimp preserves cofibrations and if the functor A
preserves fibrations, then there is an adjoint pair of functors

hocolimp
Ho(CP) Ho(C)
RA

Recipe for hocolimpF:

1. Take your diagram F and its cofibrant replacement
i Q(F)—~—=F in CP.
2. The colimit colimpQ(F) models hocolimpF.




Why are we not happy with that?

Usually, model structures on diagram categories C” are

complicated.

The cofibrant replacement of a diagram in CP is not just given by
the cofibrant replacement of each F(D), but is way more involved.
How do we get explicit models?



Bousfield-Kan, Hirschhorn, Rodriguez-Gonzalez

» 1972: Bousfield and Kan constructed models for homotopy
colimits for diagrams in simplicial sets; those are
combinatorial models of topological spaces.

» People observed that the Bousfield-Kan construction transfers
to many other settings “with a simplicial structure” (see
Hirschhorn's book [H]).

» Rodriguez-Gonzailez [RG]| gave a systematic account on the
question, when there is a Bousfield-Kan model of a homotopy
colimit.



Examples of homotopy colimits, |

The double mapping cylinder. We saw that ordinary pushouts in
topological spaces are not homotopy invariant.
Consider a diagram

Xo —> X

d

X1
of topological spaces and continuous maps. (l.e. F(i) = Xj).
Replace Xp, the space you use for gluing, by the cylinder

Xo X [07 1].
The homotopy colimit of the diagram can be expressed as

(Xl LI Xp X [0, ]_] |_|X2)/ ~

where you glue points (xp,0) € Xp x [0,1] to g(x0) and (xp, 1) to
f(xo).



Examples of homotopy colimits, |l

For a sequential diagram of topological spaces
Xo — X1 — Xo — ... the telescope is an explicit model of
hocolimpy, X:
1. Replace every X, by the cylinder X, x [n,n+ 1].
2. Glue the points (x,, n+ 1) € X, X [n, n+ 1] to the points
(fa(xn),n+1) € Xpp1 X [n+1,n+2].

3. This gives a telescope

| | Xo x [nn+1] ]/ ~.

n>0



Example: hocolim in non-negative chain complexes

Let D be any small category and let F: D — Chg be any functor.
Rodriguez-Gonzélez describes an explicit model of hocolimpF:

1. We consider morphisms in the category D. Let N(D), be the

set of morphisms Dy A D, b D,. Here, by
convention N(D)g is the set of objects of D.
2. If we denote an element of N(D), as above as

f={(fy,...,f1), then we can define
(fay ... ), i=0,
di(fay ooy f1) = (foy. .., fiya, fiy10 i, fiiy,...,f), 0<i<n,
(fnfl,...,fl), I = n.

3. Thus d; erases the object D;, so in dy f; is omitted because its
source is gone, in d, f, is omitted because it lost its target,
and all the inner d; force a composition because the
intermediate object disappeared.

4. We call Dy the source of f = (f,,...,f1) and denote it by sf.



We can build a double chain complex out of our diagram and out
of the above construction:

Each F(D) is a chain complex with a differential
d: F(D), — F(D)n—1. We can build

J: @ F(sf) — @ F(sg)

fEN(D)n gEN(D)n—1

by using the alternating sum >_7_(—1)d; of the d;'s above.
The resulting double complex looks as follows:



d d
@(fl)eN(D)l F(s(f))o<~— @(ﬁ)eN(D)l F(s(fi))1<=—-..

| :

@DGD F(D)O ? @DeD F(D)l J

The associated total complex is a model for the homotopy colimit.
This is rather involved, but explicit and useful for constructions.
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