Homotopical algebra and homotopy colimits

Birgit Richter

New interactions between homotopical algebra and quantum field theory

Oberwolfach, 19th of December 2016

Homotopical algebra – What for?

Often, we are interested in (co)homology groups.

 $H^2(X,\mathbb{Z})=[X,\mathbb{C}P^\infty]=[X,BU(1)]$ classifies line bundles on a space X.

Many geometric invariants of a manifold M can be understood via its de Rham cohomology groups.

In order to calculate or understand such (co)homology groups, we often have to perform constructions on the level of (co)chain complexes: quotients, direct sums,...

For these constructions one needs models.

Homotopical algebra: Study of homological/homotopical questions via model categories.

Definition given by Quillen in 1967 [Q].

Flexible framework, can be used for chain complexes, topological spaces, algebras over operads, and many more – allows us to do homotopy theory.

Chain complexes, I

Let R be an associative ring and let Ch_R denote the category of non-negatively graded chain complexes of R-modules.

The objects are families of R-modules C_n , $n \ge 0$, together with R-linear maps, the differentials, $d = d_n \colon C_n \to C_{n-1}$ for all $n \ge 1$ such that $d_{n-1} \circ d_n = 0$ for all n.

Morphisms are chain maps $f_* \colon C_* \to D_*$. These are families of R-linear maps $f_n \colon C_n \to D_n$ such that $d_n \circ f_n = f_{n-1} \circ d_n$ for all n. The nth homology group of a chain complex C_* is

$$H_n(C_*) = ker(d_n \colon C_n \to C_{n-1})/im(d_{n+1} \colon C_{n+1} \to C_n).$$

 $ker(d_n\colon C_n \to C_{n-1})$ are the *n*-cycles of C_* , Z_nC_* , and $im(d_{n+1}\colon C_{n+1} \to C_n)$ are the *n*-boundaries of C_* , B_nC_* . Here, we use the convention that $Z_0C_*=C_0$. Chain maps f_* induce well-defined maps on homology groups $H_n(f)\colon H_n(f)\colon H_n(C_*)\to H_n(D_*),\ H_n(f)[c]:=[f_n(c)].$

The homotopy category

A chain map f_* is called a quasi-isomorphism if the induced map

$$H_n f: H_n(C_*) \rightarrow H_n(D_*)$$

is an isomorphism for all $n \ge 0$.

For understanding homology groups of chain complexes we would like to have a category $Ch_R[qi^{-1}]$ where we invert the quasi-isomorphisms.

Such a category is usually hard to construct. (How can you compose morphisms? How can you make this well-defined?...) Model categories give such a construction.

Model categories, I

A model category is a category ${\mathcal C}$ together with three classes of maps

- ▶ the weak equivalences, (we)
- ▶ the cofibrations (cof) and
- ▶ the fibrations (fib).

These classes are closed under compositions and every identity map is in each of the classes.

An $f \in fib \cap we$ is called an acyclic fibration and a $g \in cof \cap we$ is called an acyclic cofibration.

We indicate weak equivalences by $\stackrel{\sim}{\longrightarrow}$, cofibrations by \longrightarrow and fibrations by \longrightarrow .

These classes of maps have to satisfy a lot of compatibility conditions...

Model categories, II

- M1 The category \mathcal{C} has all limits and colimits.
- M2 (2-out-of-3): If f, g are morphisms in \mathcal{C} such that $g \circ f$ is defined, then if two of the maps $f, g, g \circ f$ are weak equivalences, then so is the third.
- M3 If f is a retract of g and g is in we, cof or fib, then so is f.
- M4 For every commutative diagram

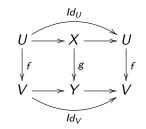
- in $\mathcal C$ where i is a cofibration and q is an acyclic fibration or where i is an acyclic cofibration and q is a fibration, a lift ξ exists with $q \circ \xi = \beta$ and $\xi \circ i = \alpha$.
- M5 Every morphism f in $\mathcal C$ can be factored as $f=p\circ j$ and $q\circ i$, where j is an acyclic cofibration and p is a fibration, q is an acyclic fibration and i is a cofibration.

Model categories, II

M1 allows us to make constructions.

M2: think of maps that induce isomorphisms on homology or homotopy groups. These will automatically satisfy 2-out-of-3.

M3: f is a retract of g if it fits into a commutative diagram



M4: The lift ξ in $A \xrightarrow{\alpha} X$ is not required to be unique! $i \bigvee_{\beta} \bigvee_{\beta} \bigvee_{\gamma} q$

M5: Can be used for constructing projective/injective resolutions, CW-approximations etc.

Chain complexes, II

The category Ch_R has several model category structures. The one we will use is: A chain map $f: C_* \to D_*$ is a

- ▶ weak equivalence, if f_* is a quasi-isomorphism, i.e., H_*f_* is an isomorphism for all $n \ge 0$,
- ▶ fibration, if f_n : $C_n \to D_n$ is an epimorphism for all $n \ge 1$,
- ▶ cofibration, if $f_n: C_n \to D_n$ is a monomorphism with projective cokernel for all $n \ge 0$.

This *does* define a model category structure on Ch_R . What are projective modules?

Projective modules

Let R be a ring. A left R-module P is projective if for every epimorphism $\pi\colon M\to Q$ of R-modules and every morphism $f\colon P\to Q$ of R-modules there is an R-linear morphism $\xi\colon P\to M$ that lifts f to M:

If $R = \mathbb{Z}$ then the projective modules are exactly the free ones, that is, $P = \bigoplus_I \mathbb{Z}$.

If R is a field, then every module is projective.

A light exposure to a typical argument

There are spheres and disks in Ch_R !

$$(\mathbb{S}^n)_m = \begin{cases} R, & m = n, \\ 0, & \text{otherwise.} \end{cases}$$

The sphere complex has d = 0 for all m.

$$(\mathbb{D}^n)_m = \begin{cases} R, & m = n, n - 1, \\ 0, & \text{otherwise.} \end{cases}$$

Here $d:(\mathbb{D}^n)_n=R \to R=(\mathbb{D}^n)_{n-1}$ is the identity map. Exercise: Calculate the homology groups of spheres and disks. Show that every chain map from \mathbb{S}^n to a chain complex C_* picks out an n-cycle $c\in Z_n(C_*)$ and that every chain map from \mathbb{D}^n to a chain complex C_* picks out an element $x\in C_n$. Therefore there is a canonical map $i_n\colon \mathbb{S}^{n-1}\to \mathbb{D}^n$.

Lemma

- 1) A morphism in Ch_R is a fibration if and only if it has the lifting property with respect to all maps $0 \to \mathbb{D}^n$ with $n \ge 1$.
- 2) A morphism in Ch_R is an acyclic fibration if and only if it has the lifting property with respect to all maps $i_n : \mathbb{S}^{n-1} \to \mathbb{D}^n$ for $n \ge 0$. Proof: of 1): We assume that there is a lift ξ in the diagram

for all $n \geq 1$ and we have to show that p_n is surjective for all $n \geq 1$. Any $y \in Y_n$ corresponds to $\beta \colon \mathbb{D}^n \to Y$, sending $1_R \in \mathbb{D}_n^n$ to y. A lift ξ picks an element $x \in X_n$ and the property $p_n \circ \xi_n = \beta_n$ ensures that x is a preimage of y under p_n , hence p_n is surjective.

Towards the homotopy category

When are two chain maps $f_*, g_* \colon C_* \to D_*$ homotopic? A chain homotopy H between f_* and g_* is a sequence of R-linear maps $(H_n)_{n \in \mathbb{N}_0}$ with $H_n \colon C_n \to D_{n+1}$ such that for all n

$$d_{n+1}^D \circ H_n + H_{n-1} \circ d_n^C = f_n - g_n.$$

$$\cdots \xrightarrow{d_{n+2}^{C}} C_{n+1} \xrightarrow{d_{n+1}^{C}} C_{n} \xrightarrow{d_{n}^{C}} C_{n-1} \xrightarrow{d_{n-1}^{C}} \cdots$$

$$\vdots \xrightarrow{H_{n+1}} f_{n+1} \left(\begin{array}{c} \downarrow g_{n+1} & \downarrow f_{n} \\ \downarrow \downarrow g_{n+1} & \downarrow f_{n} \end{array} \right) \left(\begin{array}{c} \downarrow g_{n} & \downarrow f_{n-1} \\ \downarrow g_{n} & \downarrow f_{n-1} \end{array} \right) \left(\begin{array}{c} \downarrow g_{n-1} \\ \downarrow g_{n-1} & \downarrow g_{n-1} \end{array} \right)$$

$$\vdots \xrightarrow{d_{n+2}^{D}} D_{n+1} \xrightarrow{d_{n+1}^{D}} D_{n} \xrightarrow{d_{n}^{D}} D_{n-1} \xrightarrow{d_{n}^{D}} \cdots$$

If f_* is chain homotopic to g_* , then $H_*f = H_*g$.

We can express this in a more "geometric" way.

The cylinder on C_* is the chain complex $cyl(C)_*$ with $cyl(C)_n = C_n \oplus C_{n-1} \oplus C_n$ and with $d: cyl(C)_n \to cyl(C)_{n-1}$ given by the matrix

$$d = \begin{pmatrix} d_n & id & 0 \\ 0 & -d_{n-1} & 0 \\ 0 & -id & d_n \end{pmatrix}$$

The "top" and the "bottom" of the cylinder embed as

$$C_n \rightarrow cyl(C)_n, \quad c \mapsto (c,0,0)$$

and

$$C_n \to cyl(C)_n$$
, $c \mapsto (0,0,c)$.

There is also a map $q: cyl(C)_* \to C_*$ sending (c_1, c_2, c_3) to $c_1 + c_3$. These maps are chain maps.

Exercise: Two chain maps $f_*, g_* \colon C_* \to D_*$ are chain homotopic if and only if they extend to a chain map

$$f_* + H_* + g_* : cyl(C)_* \to D_*.$$

Cylinder objects in a model category

Let C be an object in a model category C. We call an object cyl_C a cylinder object for C, if there are morphisms

$$C \sqcup C \xrightarrow{i} cyl_C \xrightarrow{q} C$$

that factor the fold map $\nabla\colon C\sqcup C\to C$. For $\mathcal{C}=Ch_R$ the categorical sum $C_*\sqcup C_*$ is the direct sum $C_*\oplus C_*$ and the fold map ∇ sends (c_1,c_2) to c_1+c_2 . $cyl(C)_*$ as above is a cylinder object: we can take $i(c_1,c_2)=(c_1,0,c_2)$ and $q\colon cyl(C)_*\to C_*$ as above. A cylinder object cyl_C is good, if i is a cofibration and it is very good if in addition q is an acyclic fibration.

good if in addition q is an acyclic fibration. Warning: In general, cyl_C won't be functorial in C! In Ch_R our cylinder object $cyl(C)_*$ won't be good in general: i is

not a cofibration in general, because the cokernel of i_n is C_{n-1} which won't be projective in general. However, q is always surjective in all degrees, hence a fibration. Good and very good cylinder objects exist thanks to M5. The map $i: C \sqcup C \to cyl_C$ has components $i_0: C \to cyl_C$ and $i_1: C \to cyl_C$ given by the two maps $C \to C \sqcup C$.

Left homotopies

Two morphisms in a model category $f,g:C\to D$ are called left homotopic, if there is a cylinder object cyl_C of C and a morphism $H:cyl_C\to D$ such that $H\circ i_0=f$ and $H\circ i_1=g$. Problems:

- Being left homotopic is no equivalence relation in general.
- There is a dual notion of being right homotopic (using "path objects" instead of cylinder objects) and these notions don't agree in general.

We need to restrict to nice objects!

Digression: initial and terminal objects

Every chain complex C_* receives a unique chain map f from the trivial chain complex 0 with $0_n = 0$ for all $n \ge 0$, the trivial abelian group,

 $f_n = 0: 0 \to C_n$, and it also has a unique chain map $g: C_* \to 0$, sending everything to zero.

In the category of topological spaces every topological space X receives a unique map from the empty topological space \varnothing (by convention) and for every one-point topological space $\{*\}$ there is a unique continuous map $p\colon X\to \{*\}$.

Definition: An object i in a category $\mathcal C$ is called initial, if every object C of $\mathcal C$ has a unique morphism $f \in \mathcal C(i,C)$. Dually, an object t of $\mathcal C$ is called terminal, if for every object C of $\mathcal C$ there is a unique morphism $g \in \mathcal C(C,t)$.

So, 0 is initial and terminal in the category Ch_R and \varnothing is initial in Top whereas any one-point space is terminal in Top.

Cofibrant and fibrant objects

Initial objects and terminal objects exist in every model category. Definition: An object C in a model category is cofibrant, if the unique morphism $i \to C$ is a cofibration. Dually, an object P in a model category is fibrant, if the unique morphism $P \to t$ is a fibration.

In Ch_R every object is fibrant, but only those chain complexes C_* with C_n projective for all $n \ge 0$ are cofibrant.

For every object X in a model category, we can factor the unique map $i \to X$ as

$$i \rightarrow QX \xrightarrow{q} X$$

with $f \in cof$ and $q \in fib \cap we$. We call this a cofibrant replacement of X. (This can be made functorial in X.) In Ch_R this gives projective resolutions of any R-module M viewed as $\mathbb{S}^0(M)$.

The homotopy category of a model category

For a cofibrant object QX we can factor the unique map $QX \to t$ as

$$QX > \xrightarrow{j} RQX \xrightarrow{p} t$$

with $j \in cof \cap we$ and $p \in fib$. Then we have an object RQX that is both fibrant and cofibrant and has a zig-zag of weak equivalences

$$X \xrightarrow{q} QX > \xrightarrow{j} RQX$$

Definition: The homotopy category, Ho(C), of a model category C has as objects the objects of C and Ho(C)(X, Y) is the set of (left) homotopy classes of maps from RQX to RQY.

This is the right thing: There is a functor $\gamma\colon \mathcal{C}\to Ho(\mathcal{C})$ with $\gamma(X)=X$ and $\gamma(f\colon X\to Y)=[RQf\colon RQX\to RQY].$

Theorem: For any f in \mathcal{C} we have: $\gamma(f)$ is an isomorphism in $Ho(\mathcal{C})$ if and only if f is a weak equivalence.

So $Ho(\mathcal{C})$ is a model for $\mathcal{C}[we^{-1}]!$

What are diagrams?

Take any small category \mathcal{D} . That is a category whose objects constitute an actual set and not a proper class. Let \mathcal{C} be an arbitrary category.

A \mathcal{D} -diagram in \mathcal{C} is a functor $F: \mathcal{D} \to \mathcal{C}$: So for every object D of \mathcal{D} you have an object F(D) of \mathcal{C} and for every morphism $f \in \mathcal{D}(D_1, D_2)$ you get a morphism $F(f): F(D_1) \to F(D_2)$. This has to be consistent: for $g \in \mathcal{D}(D_2, D_3)$ we have

$$F(g) \circ F(f) = F(g \circ f)$$
 and $F(id_D) = id_{F(D)}$ for all objects D of D . Examples:

- ▶ $\mathcal{D} = (2 \leftarrow 0 \rightarrow 1)$ and $\mathcal{C} = Ch_R$ gives a diagram $F(2) \leftarrow F(0) \rightarrow F(1)$ of chain complexes and chain maps.
- ▶ For $\mathcal{D} = (0 \to 1 \to 2 \to ...)$ and $\mathcal{C} = \textit{Top}$ we get a sequence $F(0) \to F(1) \to F(2) \to ...$ of topological spaces and continuous maps.
- ▶ If S is any set, then we can consider it as a category whose only morphisms are identity maps. A functor $F: S \to \mathcal{C}$ for any \mathcal{C} is just an S-indexed family of objects.

What are colimits?

Let $F: \mathcal{D} \to \mathcal{C}$ be a functor as above. Then a colimit of F is an object $\mathrm{colim}_{\mathcal{D}} F$ of \mathcal{C} that is "as close to the diagram that F defines as it can be".

Definition: A colimit of F over \mathcal{D} is an object $\operatorname{colim}_D F$ of \mathcal{C} together with morphisms $\tau_D \colon F(D) \to \operatorname{colim}_D F$ in \mathcal{C} such that for all $f \in \mathcal{D}(D_1, D_2)$

$$F(D_1) \xrightarrow{\tau_{D_1}} \operatorname{colim}_D F$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow$$

commutes. Furthermore, if C is any other object of C with morphisms $\eta_D \colon F(D) \to C$ such that

$$\eta_{D_2} \circ F(f) = \eta_{D_1} \quad \forall f \in \mathcal{D}(D_1, D_2)$$

then there is a unique morphism ξ : colim $_{\mathcal{D}}F \to C$ with $\xi \circ \tau_D = \eta_D$ for all objects D of \mathcal{D} .

Examples of colimits

▶ Colimits for $\mathcal{D} = (2 \leftarrow 0 \rightarrow 1)$ are called pushouts. In Ch_R the pushout of $F(2) \leftarrow F(0) \rightarrow F(1)$ is the chain complex

$$(F(2) \oplus F(1))/\sim$$

where \sim identifies the image of F(0) in F(1) and F(2). This fit into a diagram

$$F(0) \longrightarrow F(2)$$

$$\downarrow \qquad \qquad \downarrow^{\tau_2}$$

$$F(1) \xrightarrow{\tau_1} (F(2) \oplus F(1)) / \sim$$

For $\tau_0 \colon F(0) \to (F(2) \oplus F(1))/\sim$ you take the map from F(0) to $(F(2) \oplus F(1))/\sim$ in the diagram (they are both the same).

Examples of colimits – continued

- ▶ For a diagram of the form $F(0) \to F(1) \to F(2) \to \dots$ in *Top* the colimit is given by $\bigsqcup_{n\geq 0} F(n)/\sim$ where \sim identifies $x\in F(m)$ with the image of x in F(n) under the maps in the sequence for $m\leq n$. Such colimits are called sequential colimits.
- ▶ A colimit over a diagram indexed on a set S viewed as a category is the coproduct of the objects F(s), $s \in S$ and is denoted by $\bigsqcup_S F(s)$. For sets or topological spaces you get the disjoint union of the F(s), for chain complexes you get $\bigoplus_S F(s)$.

Homotopy invariance

Slogan: Homotopy colimits are homotopy invariant colimits

What does that mean?

Usual colimits are *not* homotopy invariant:

Take the pushout of

$$\mathbb{S}^n \longrightarrow *$$

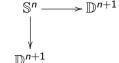
Here
$$\mathbb{S}^n = \{x \in \mathbb{R}^{n+1}, |x| = 1\}$$
 is the unit sphere in \mathbb{R}^{n+1} .

An explicit formula for the pushout is $*\sqcup */\sim$ where the two points are glued together, so

is a pushout diagram.

But the unit (n+1)-disk $\mathbb{D}^{n+1}=\{y\in\mathbb{R}^{n+1}, |y|\leq 1\}$ is contractible, so homotopy equivalent to a point *.

The pushout of



is \mathbb{S}^{n+1} .

Thus replacing * by the homotopy equivalent \mathbb{D}^{n+1} changed the homotopy type of the pushout.

That's bad, if you want to work up to homotopy...

What should a homotopy colimit do for us?

In a model category all colimits exist by assumption. We can actually view the colimit as a functor

$$\mathsf{colim}_\mathcal{D} \colon \mathcal{C}^\mathcal{D} o \mathcal{C}$$

where $\mathcal{C}^{\mathcal{D}}$ denotes the category of functors from \mathcal{D} to \mathcal{C} . It is left adjoint to the constant functor

$$\Delta \colon \mathcal{C} \to \mathcal{C}^{\mathcal{D}}, \quad \Delta(\mathcal{C})(\mathcal{D}) = \mathcal{C} \quad \forall \, \mathcal{D}$$

and Δ sends any morphism in $\mathcal D$ to the identity map on $\mathcal C$. We want to transform this into a functor

$$\mathsf{hocolim}_{\mathcal{D}} \colon \mathsf{Ho}(\mathcal{C}^{\mathcal{D}}) \to \mathsf{Ho}(\mathcal{C})$$

...at least, if $\mathcal{C}^{\mathcal{D}}$ possesses a model category structure and thus a homotopy category, $Ho(\mathcal{C}^{\mathcal{D}})$. (Warning: $Ho(\mathcal{C}^{\mathcal{D}}) \neq Ho(\mathcal{C})^{\mathcal{D}}$!)

Model category definition of hocolims

Assume that $\mathcal{C}^{\mathcal{D}}$ possesses a model category structure. Then if the colimit functor $\operatorname{colim}_{\mathcal{D}}$ preserves cofibrations and if the functor Δ preserves fibrations, then there is an adjoint pair of functors

$$Ho(\mathcal{C}^{\mathcal{D}}) \xrightarrow[R\Delta]{hocolim_{\mathcal{D}}} Ho(\mathcal{C})$$

Recipe for hocolim $_{\mathcal{D}}F$:

- 1. Take your diagram F and its cofibrant replacement $i \longrightarrow Q(F) \xrightarrow{\sim} F$ in $\mathcal{C}^{\mathcal{D}}$.
- 2. The colimit $colim_D Q(F)$ models $hocolim_D F$.

Why are we not happy with that?

Usually, model structures on diagram categories $\mathcal{C}^{\mathcal{D}}$ are complicated.

The cofibrant replacement of a diagram in $\mathcal{C}^{\mathcal{D}}$ is *not* just given by the cofibrant replacement of each F(D), but is way more involved. How do we get explicit models?

Bousfield-Kan, Hirschhorn, Rodríguez-González

- ▶ 1972: Bousfield and Kan constructed models for homotopy colimits for diagrams in simplicial sets; those are combinatorial models of topological spaces.
- People observed that the Bousfield-Kan construction transfers to many other settings "with a simplicial structure" (see Hirschhorn's book [H]).
- Rodríguez-González [RG] gave a systematic account on the question, when there is a Bousfield-Kan model of a homotopy colimit.

Examples of homotopy colimits, I

Consider a diagram

The double mapping cylinder. We saw that ordinary pushouts in topological spaces are *not* homotopy invariant.

of topological spaces and continuous maps. (I.e. $F(i) = X_i$). Replace X_0 , the space you use for gluing, by the cylinder $X_0 \times [0,1]$.

The homotopy colimit of the diagram can be expressed as

$$(X_1 \sqcup X_0 \times [0,1] \sqcup X_2)/\sim$$

where you glue points $(x_0,0) \in X_0 \times [0,1]$ to $g(x_0)$ and $(x_0,1)$ to $f(x_0)$.

Examples of homotopy colimits, II

For a sequential diagram of topological spaces $X_0 \to X_1 \to X_2 \to \dots$ the telescope is an explicit model of hocolim $\mathbb{N}_0 X$:

- 1. Replace every X_n by the cylinder $X_n \times [n, n+1]$.
- 2. Glue the points $(x_n, n+1) \in X_n \times [n, n+1]$ to the points $(f_n(x_n), n+1) \in X_{n+1} \times [n+1, n+2]$.
- 3. This gives a telescope

$$\left(\bigsqcup_{n\geq 0}X_n\times [n,n+1]\right)/\sim.$$

Example: hocolim in non-negative chain complexes

Let \mathcal{D} be any small category and let $F: \mathcal{D} \to Ch_R$ be any functor. Rodríguez-González describes an explicit model of hocolim $_{\mathcal{D}}F$:

- 1. We consider morphisms in the category \mathcal{D} . Let $N(\mathcal{D})_n$ be the set of morphisms $D_0 \xrightarrow{f_1} D_1 \xrightarrow{f_2} \dots \xrightarrow{f_n} D_n$. Here, by
- 2. If we denote an element of $N(\mathcal{D})_n$ as above as $\underline{f} = (f_n, \dots, f_1)$, then we can define

convention $N(\mathcal{D})_0$ is the set of objects of \mathcal{D} .

$$d_i(f_n,\ldots,f_1) := \begin{cases} (f_n,\ldots,f_2), & i=0, \\ (f_n,\ldots,f_{i+2},f_{i+1}\circ f_i,f_{i-1},\ldots,f_1), & 0< i< n, \\ (f_{n-1},\ldots,f_1), & i=n. \end{cases}$$

- 3. Thus d_i erases the object D_i , so in d_0 f_1 is omitted because its source is gone, in d_n f_n is omitted because it lost its target, and all the inner d_i force a composition because the intermediate object disappeared.
- 4. We call D_0 the source of $\underline{f} = (f_n, \dots, f_1)$ and denote it by $s\underline{f}$.

We can build a double chain complex out of our diagram and out of the above construction:

Each F(D) is a chain complex with a differential $d: F(D)_n \to F(D)_{n-1}$. We can build

$$\delta \colon \bigoplus_{\underline{f} \in \mathcal{N}(\mathcal{D})_n} F(s\underline{f}) \to \bigoplus_{\underline{g} \in \mathcal{N}(\mathcal{D})_{n-1}} F(s\underline{g})$$

by using the alternating sum $\sum_{i=0}^{n} (-1)^{i} d_{i}$ of the d_{i} 's above. The resulting double complex looks as follows:

The associated total complex is a model for the homotopy colimit. This is rather involved, but explicit and useful for constructions.

References

- [Q] Quillen, Daniel G. Homotopical algebra. Lecture Notes in Mathematics, No. 43, Springer, 1967 (the original source)
- [DS] Dwyer, W. G.; Spaliński, J. Homotopy theories and model categories. Handbook of algebraic topology, 73–126, North-Holland, Amsterdam, 1995. (good survey)
- [H] Hirschhorn, Philip S. Model categories and their localizations. Mathematical Surveys and Monographs, 99. AMS, Providence, RI, 2003. xvi+457 pp. (comprehensive account)
- [Du] Dugger, Daniel, A primer on homotopy colimits, notes available at http://pages.uoregon.edu/ddugger/
- [RG] Rodríguez-González, Beatriz, Realizable homotopy colimits. Theory Appl. Categ. 29 (2014), No. 22, 609–634. (explicit models for hocolims)
- [BSS] Benini, Marco; Schenkel, Alexander; Szabo, Richard J. Homotopy colimits and global observables in abelian gauge theory. Lett. Math. Phys. 105 (2015), no. 9, 1193–1222. (a sample application)