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Abstract. Motivated by results of Bagaria, Magidor and Väänänen, we study character-

izations of large cardinal properties through reflection principles for classes of structures.

More specifically, we aim to characterize notions from the lower end of the large cardinal
hierarchy through the principle SR− introduced by Bagaria and Väänänen. Our results

isolate a narrow interval in the large cardinal hierarchy that is bounded from below by

total indescribability and from above by subtleness, and contains all large cardinals that
can be characterized through the validity of the principle SR− for all classes of structures

defined by formulas in a fixed level of the Lévy hierarchy. Moreover, it turns out that

no property that can be characterized through this principle can provably imply strong
inaccessibility. The proofs of these results rely heavily on the notion of shrewd cardinals,

introduced by Rathjen in a proof-theoretic context, and embedding characterizations of

these cardinals that resembles Magidor’s classical characterization of supercompactness.
In addition, we show that several important weak large cardinal properties, like weak

inaccessibility, weak Mahloness or weak Π1
n-indescribability, can be canonically character-

ized through localized versions of the principle SR−. Finally, the techniques developed in

the proofs of these characterizations also allow us to show that Hamkin’s weakly compact

embedding property is equivalent to Lévy’s notion of weak Π1
1-indescribability.

1. Introduction

The work presented in this paper is motivated by results of Bagaria, Magidor, Väänänen
and others that establish deep connections between extensions of the Downward Löwenheim–
Skolem Theorem, large cardinal axioms and set-theoretic reflection principles. Our results
will focus on the characterization of large cardinal notions1 through reflection properties for
classes of structures. To motivate our work, we start by discussing results that provide such
characterizations for supercompact cardinals.

First, recall that classical work of Magidor in [16] yields a characterization of super-
compactness through model-theoretic reflection by showing that second-order logic has a
Löwenheim–Skolem–Tarski cardinal (see [5, Definition 6.1]) if and only if there exists a su-
percompact cardinal. Moreover, Magidor’s results show that if these equivalent statements
hold true, then the least Löwenheim–Skolem–Tarski cardinal for second-order logic is equal
to the least supercompact cardinal. Next, in order to connect supercompactness and reflec-
tion principles for second-order logic to set-theoretic reflection properties, we make use of
the following principle of structural reflection, formulated by Bagaria:

Definition 1.1 (Bagaria, [2]). Given an infinite cardinal κ and a class C of structures2 of
the same type, we let SRC(κ) denote the statement that for every structure A in C, there
exists an elementary embedding of a structure in C of cardinality less than κ into A.
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In order to precisely formulate the relevant results from [2], [3] and [5], we first need to
discuss certain subclasses of Σ2-formulas defined through standard refinements of the Lévy
hierarchy of formulas. Given a first-order language L that extends the language L∈ of set
theory, an L-formula is a Σ0-formula if it is contained in the smallest class of L-formulas
that contains all atomic L-formulas and is closed under negations, conjunctions and bounded
existential quantification. Moreover, given n < ω, an L-formula is a Πn-formula if it is the
negation of a Σn-formula, and it is a Σn+1-formula if it is of the form ∃x0, . . . , xm−1 ϕ for
some Πn-formula ϕ. Finally, given a class R, n < ω and a set z, a class P is Σn(R)-definable
(respectively, Πn(R)-definable) in the parameter z if there is a Σn-formula (respectively, a

Πn-formula) ϕ(v0, v1) in the language LȦ that expands L∈ by a unary relation symbol Ȧ
such that P consists of all sets x with the property that ϕ(x, z) holds in 〈V,∈, R〉. As usual,
we call Σn(∅)-definable classes (i.e. classes defined by a Σn-formula in L∈) Σn-definable and
Πn(∅)-definable classes Πn-definable. The closure properties of the class of all L∈-formulas
that are ZFC-provably equivalent to Σn+1-formulas then ensure that if R is a class that is
Π1-definable in the parameter z, then every class that is Σn(R)-definable in the parameter
z is also Σn+1-definable in this parameter.

Using Väänänen’s notion of symbiosis between model- and set-theoretic reflection prin-
ciples introduced in [19], Bagaria and Väänänen connected reflection principles for second-
order logic with the principle SR by showing that a cardinal κ is a Löwenheim–Skolem–Tarski
cardinal for second-order logic if and only if SRC(κ) holds for every class C of structures that
is Σ1(PwSet)-definable without parameters (see [5, Theorem 5.5] and [5, Lemma 7.1]), where
PwSet denotes the Π1-definable class of all pairs of the form 〈x,P(x)〉. In combination with
the results from [16] discussed above, this equivalence provides a characterization of the
first supercompact cardinal through the validity of the principle SRC(κ) for all Σ1(PwSet)-
definable classes of structures. This connection between supercompactness and structural
reflection for Σ2-definable classes was studied in depth by Bagaria and his collaborators
in [2] and [3]. In the following, define V to be the class of all L∈-structures3 of the form
Vα for some ordinal α. It is easy to see that the class V is Σ1(PwSet)-definable without
parameters. Following [2] and [3], Magidor’s characterization of supercompactness in [16]
can now be rephrased in the following way:

Theorem 1.2. The following statements are equivalent for every cardinal κ:

(i) κ is the least supercompact cardinal.
(ii) κ is the least cardinal with the property that SRV(κ) holds.

(iii) κ is the least cardinal with the property that SRC(κ) holds for every class of struc-
tures of the same type that is definable by a Σ2-formula with parameters in H(κ).4

It is natural to ask if other large cardinal notions can be characterized in similar ways, i.e.
given some large cardinal property, is there a class of formulas such that the least cardinal
with the given property provably coincides with the least reflection point for all classes of
structures defined by formulas from this class. Note that the validity of such characterization
can be seen as a strong justification for the naturalness of large cardinal axioms (see [1]).
Results contained in [2] and [3] already yield such characterizations for Σn+2-definable classes
of structures and so-called C(n)-extendible cardinals (see [2, Definition 3.2]). These results
also provide a characterization of Vopěnka’s Principle in terms of structural reflection. In
addition, results in [1] provide a characterization of the existence of X# for a set X of
ordinals through structural reflection and results in [6] yield such characterization for large
cardinal notions in the region between strong cardinals and “Ord is Woodin ”. Finally, the
results of [4] give characterizations of remarkable cardinals and other virtual large cardinals
through principles of generic structural reflection.

The work presented in this paper is devoted to the characterization of objects from the
lower part of the large cardinal hierarchy through principles of structural reflection. The

3Throughout this paper, we will often identify a class M with the L∈-structure 〈M,∈〉 to simplify our
formulations.

4It is easy to see that the parameters class H(κ) is maximal in this setting. Fix z /∈ H(κ) and let L∅
denote the trivial first-order language. Then the class C of all L-structures of cardinality |tc(z)| is definable

by a Σ1-formula with parameter z, and the principle SR−C (κ) obviously fails.
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starting point of this work is the following restriction of the principle SR, isolated by Bagaria
and Väänänen:

Definition 1.3 (Bagaria–Väänänen, [5]). Given an infinite cardinal κ and a class C of
structures of the same type, we let SR−C (κ) denote the statement that for every structure A
in C of cardinality κ, there exists an elementary embedding of a structure in C of cardinality
less than κ into A.

Our results will show that there exists a narrow interval in the large cardinal hierarchy
that contains all large cardinal notions for which there exists a natural number5 n > 1 such
that the given property can be characterized (as in Theorem 1.2) through the validity of the
principle SR− for all Σn-definable classes of structures. This interval is bounded from below
by total indescribability and from above by subtleness. Moreover, this analysis will show
that there is essentially only one large cardinal notion that can be characterized through
canonical non-trivial Π1-predicates6 R and the principle SR− for Σ1(R)-definable classes of
structures. This unique large cardinal notion turns out to be closely related to the following
property of large cardinals, introduced by Rathjen in a proof-theoretic context:

Definition 1.4 (Rathjen, [17]). A cardinal κ is shrewd if for every L∈-formula Φ(v0, v1),
every ordinal α and every subset A of Vκ such that Φ(A, κ) holds in Vκ+α, there exist
ordinals κ̄ and ᾱ below κ such that Φ(A ∩Vκ̄, κ̄) holds in Vκ̄+ᾱ.

The defining property of shrewd cardinals directly implies that all of these cardinals are
totally indescribable. Moreover, Rathjen showed that, given a subtle cardinal δ, the set of
cardinals κ < δ that are shrewd in Vδ is stationary in δ (see [17, Lemma 2.7]). The following
result now connects shrewdness to the consistency strength of principles the principle SR−

for Σ2-definable classes:

Theorem 1.5. The following statements are equiconsistent over the theory ZFC:

(i) There exists a shrewd cardinal.
(ii) There exists a cardinal κ with the property that SR−C (κ) holds for every class C of

structures of the same type that is definable by a Σ1(Cd)-formula without parame-
ters.

(iii) There exists a cardinal κ with the property that SR−C (κ) holds for every class C of
structures of the same type that is definable by a Σ2-formula with parameters in
H(κ).

This result shows that for all large cardinal properties whose consistency strength is
strictly smaller than the existence of a shrewd cardinal, there is no characterization of these
notions through canonical non-trivial Π1-predicates R and the principle SR− for Σ1(R)-
definable classes of structures. Moreover, it shows that the connection between the principle
SR− and the strict Löwenheim–Skolem–Tarski property (see [5, Definition 8.2]) as well as
the characterizations of weak inaccessibility, weak Mahloness and weak compactness stated
in [5, Theorem 8.3] need to be reformulated,7 because, by the above theorem, all of these
statements would imply that the consistency of the existence of a shrewd cardinal is strictly
weaker than the consistency strength of the existence of a total indescribable cardinal.

The proof of Theorem 1.5 is based on the following weakening of Definition 1.4:

Definition 1.6. An infinite cardinal κ is weakly shrewd if for every L∈-formula Φ(v0, v1),
every cardinal θ > κ and every subset A of κ with the property that Φ(A, κ) holds in H(θ),
there exist cardinals κ̄ < θ̄ with the property that κ̄ < κ and Φ(A ∩ κ̄, κ̄) holds in H(θ̄).

5Note that [2, Theorem 4.2] shows that SRC(κ) holds for every uncountable cardinal κ and every class C
of structures that is definable by a Σ1-formula with parameters in H(κ).

6More precisely, through Π1-predicates R with the property that the class Cd of all cardinals is Σ1(R)-

definable. The class Cd, the class Rg of all regular cardinals, the class PwSet and the class obtained by a

universal Π1-formula in L∈ are all examples of such predicates.
7The problematic part in the adaption of the proof of [5, Theorem 5.5] to a proof of these statements is

the fact that the cardinality of all L∈-models witnessing that some structure of cardinality κ is contained in
a Σ1(R)-definable class can be strictly greater than the given cardinal κ and therefore it is not possible to

apply the strict Löwenheim–Skolem–Tarski property at κ to these L∈-models. An example of such a class

of structures is the Σ1(PwSet)-definable class W introduced below.
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The notion of weak shrewdness turns out to be closely connected to principles of structural
reflection. Our results will allow us to show that if κ is a weakly shrewd cardinal, then
SR−C (κ) holds for every class C of structures that is Σ2-definable with parameters in H(κ)
(see Lemma 4.1). Moreover, the next theorem shows that this large cardinal property can
be canonically characterized through the principle SR− for Σ1(PwSet)-definable classes of
structures. In the following, let Lċ denote the first-order language that extends the language
L∈ of set theory by a constant symbol ċ and let W denote the class of all Lċ-structures
〈X,∈, κ〉 with the property that there exists a cardinal θ such that κ is an infinite cardinal
smaller than θ and X is an elementary submodel of H(θ) of cardinality κ with κ + 1 ⊆ X.
It is easy to see that the class W is definable by a Σ1(PwSet)-formula without parameters.

Theorem 1.7. The following statements are equivalent for every cardinal κ:

(i) κ is the least weakly shrewd cardinal.
(ii) κ is the least cardinal with the property that SR−W(κ) holds.

(iii) κ is the least cardinal with the property that SR−C (κ) holds for every class C of
structures of the same type that is definable by a Σ2-formula with parameters in
H(κ).

In combination with Theorem 1.5, this result directly yields the following equiconsistency:

Corollary 1.8. The following statements are equiconsistent over the theory ZFC:

(i) There exists a shrewd cardinal.
(ii) There exists a weakly shrewd cardinal. �

In addition, the third statement listed in Theorem 1.7 shows that large cardinal properties
of higher consistency strength than shrewdness cannot be characterized through the principle
SR− for Σ2-definable classes of structures. Together with our earlier observations, this shows
that weak shrewdness is basically the only large cardinal notions that can be characterized
with the help of canonical Π1-predicates R and the principle SR− for Σ1(R)-definable classes
of structures.

The above results directly motivate several follow-up questions. First, it is natural to ask
which large cardinal properties stronger than weak shrewdness can be characterized through
the principle SR− for classes of structures defined by more complex formulas. Second, these
results suggest to study the interactions between principles of structural reflection and the
behavior of the continuum function. In particular, it is interesting to ask whether any
large cardinal property that entails strong inaccessibility can be characterized through the
principle SR−. Finally, it is also natural to ask whether large cardinal notions weaker than
shrewdness can be characterized through further restrictions of the principle SR−.

The answers to the first two questions turn out to be closely related to the existence of
weakly shrewd cardinals that are not shrewd. The following result positions the consistency
strength of the existence of weakly shrewd cardinals that are, for various reasons, not shrewd
in the large cardinal hierarchy:

Theorem 1.9. (i) If κ is a weakly shrewd cardinal that is not shrewd, then there exists
an ordinal ε > κ with the property that ε is inaccessible in L and κ is a shrewd
cardinal in Lε.

(ii) The least subtle cardinal is a stationary limit of inaccessible weakly shrewd cardinals
that are not shrewd.

(iii) The following statements are equiconsistent over ZFC:
(a) There exists an inaccessible weakly shrewd cardinal that is not shrewd.
(b) There exists a weakly shrewd cardinal that is not inaccessible.
(c) There exists a weakly shrewd cardinal smaller than 2ℵ0 .

The techniques developed in the proofs of the above results will also allow us to show
that the existence of a weakly shrewd cardinal does not imply the existence of a cardinal κ
with the property that SR−C (κ) holds for every class C of structures that is definable by a Σ3-
formula without parameters (see Corollary 4.4 below). In contrast, the following technical
result shows that the existence of a weakly shrewd cardinal that is not shrewd directly implies
the existence of reflection points for classes of structures of higher complexities. Moreover,
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it will also allow us to show that the existence of reflection points for classes of structures
of arbitrary complexities has strictly weaker consistency strength than the existence of a
weakly shrewd cardinal that is not shrewd.

Theorem 1.10. Let κ be weakly shrewd cardinal that is not shrewd.

(i) There is a cardinal δ > κ with the property that the set {δ} is definable by a Σ2-
formula with parameters in H(κ).

(ii) Given 0 < n < ω and α < κ, if δ > κ is a cardinal with the property that the set {δ}
is definable by a Σ2-formula with parameters in H(κ), then there exists a cardinal
α < ρ < δ such that SR−C (ρ) holds for every class C of structures of the same type
that is definable by a Σn-formula with parameters in H(ρ).

(iii) Assume that 0# does not exist and κ is inaccessible. If δ > κ is a cardinal with
the property that the set {δ} is definable by a Σ2-formula with parameters in H(κ),
then there exists an inaccessible cardinal κ < ε < δ with the property that, in Vε,
the principle SR−C (κ) holds for every class C that is defined by a formula using
parameters from H(κ).8

Note that the set {2ℵ0} is always definable by a Σ2-formula without parameters. In
particular, the second part of the above theorem tells us that the existence of a weakly shrewd
cardinal smaller than the cardinality of the continuum implies the existence of various local
reflection points below 2ℵ0 . By Theorem 1.9, the existence of such cardinals is consistent
relative to the existence of a subtle cardinal.

Theorem 1.10 now allows us to show that ZFC is consistent with the existence of cardinals
with maximal local structural reflection properties. In the light of the results of [2, Section
4], the existence of such cardinals can be seen as a localized version of Vopěnka’s Principle.
Our results show that the consistency strength of this local principle is surprisingly small.
Moreover, they show that such reflection points can consistently exist below the cardinality
of the continuum. As above, we let Lċ denote the first-order language extending the language
L∈ by a constant symbol ċ. Given 0 < n < ω, we let SR−n denote the Lċ-sentence stating
that ċ is an infinite cardinal and SR−C (ċ) holds for every class C of structures of the same
type that is definable by a Σn-formula in L∈ with parameters in H(ċ).

Theorem 1.11. (i) The L∈-theory

ZFC + “ There exists a weakly shrewd cardinal that is not shrewd ”

proves the existence of a transitive model of the Lċ-theory9

ZFC + {SR−n | 0 < n < ω}.
(ii) The following theories are equiconsistent:

(a) ZFC + “ There exists a weakly shrewd cardinal that is not shrewd ”.
(b) ZFC + {SR−n | 0 < n < ω}+ “ ċ < 2ℵ0 ”.

This result answers the first two questions formulated above. The first part of the above
theorem shows that no large cardinal notion with consistency strength greater than or equal
to the existence of a weakly shrewd cardinal that is not shrewd can be characterized through
the principle SR−. Moreover, the second part of the corollary shows that no large cardinal
property that entails strong inaccessibility can be characterized through the principle SR−.
In particular, this shows that the statement of [5, Theorem 3.5] needs extra assumptions.10

In order to answer the third of the above questions, we now turn to the characterizations
of large cardinal notions weaker than shrewdness through principles of structural reflection.
In the light of the above results, we introduce further restricted forms of Σ2-definability that

8Note that this conclusion is a statement about the structure 〈Vε,∈, κ〉 that holds in V and is formulated
with the help of a formalized satisfaction relation (see, for example, [8, Section I.9]). In particular, this

statement also applies to possible classes in Vε that are defined through formulas with non-standard Gödel
numbers.

9More precisely, given some canonical formalization of this Lċ-theory, the above L∈-theory proves the

existence of a transitive set M such that for some ν ∈ M , every formalized axiom holds in the structure
〈M,∈, ν〉 with respect to some formalized satisfaction relation.

10For example, the argument presented in [5] works for all cardinals κ satisfying κ = κ<κ.
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will enable us to characterize several classical weak large cardinal notions through principles
of structural reflection. To motivate the upcoming definition, first observe that for every
0 < n < ω and every Σn(R)-definable class C of structures, the class of all isomorphic copies
of elements of C is again Σn(R)-definable from the same parameters. Next, note that Σ1-
absoluteness implies that a class Q is definable by a Σ1-formula with parameter z if and
only if there is a Σ1-formula ϕ(v0, v1) with the property that for every infinite cardinal δ
with z ∈ H(δ+),

H(δ+) ∩Q = {x ∈ H(δ+) | H(δ+) |= ϕ(x, z)}
holds. In contrast, let T denote the class of all triples 〈δ, x, a〉 with the property that δ
is an infinite cardinal, x is an element of H(δ+) and a is an element of the set Fml of
formalized L∈-formulas with the property that Sat(H(δ+), x, a) holds, where Sat denotes
the canonical formalized satisfaction relation for L∈-formulas.11 Then it is easy to see that
the class T is definable by a Σ2-formula without parameters and Tarski’s Undefinability
of Truth Theorem implies that for every infinite cardinal δ, the intersection H(δ+) ∩ T is
not definable in H(δ+). These observations motivate the restricted form of Σ2-definability
introduced in the definition below that provides us with a notion of complexity that lies
strictly in-between Σ1- and Σ2-definability (see Proposition 6.1 below).

Definition 1.12. Let R be a class and let n > 0 be a natural number.

(i) Given a set z, a class S is uniformly locally Σn(R)-definable in the parameter z if
there is a Σn(R)-formula ϕ(v0, v1) with the property that

H(κ+) ∩ S = {x ∈ H(κ+) | 〈H(κ+),∈, R〉 |= ϕ(x, z)}

holds for every infinite cardinal κ with z ∈ H(κ).
(ii) Given a class Z, a class C of structures of the same type is a local Σn(R)-class over

Z if the following statements hold:
(a) C is closed under isomorphic copies.
(b) C is uniformly locally Σn(R)-definable in a parameter contained in Z.

It can easily be shown that no new large cardinal characterizations can be obtained
through canonical Π1

1-classes R and the principle SR for local Σ1(R)-classes. First, note
that the class V̄ of all L∈-structures that are isomorphic to an element of the class V
defined above is a local Σ1(PwSet)-class over ∅. This shows that a cardinal κ is the least
supercompact cardinal if and only if it is the least cardinal with the property that SRC(κ)
holds for every local Σ1(PwSet)-class over ∅. Moreover, if V = L holds, then the fact that
H(δ+) = Lδ+ holds for every infinite cardinal δ implies that the class PwSet is Σ1(Cd)-
definable and hence the class V̄ is definable in the same way. This shows that no Π1

1-class
R with the property that the class Cd is Σ1(R)-definable can be used to characterize large
cardinal notions compatible with the assumption V = L through the principle SRC(κ) for
local Σ1(R)-classes.

In contrast, the next result shows how weak inaccessibility, weak Mahloness and weak
Π1
n-indescribability, introduced by Lévy in [15], can all be characterized through the validity

of the principle SR− for certain local Σn(R)-classes. Recall that, given natural numbers m
and n, a cardinal κ is weakly Πm

n -indescribable if for all relations A0, . . . , Am−1 on the set κ
and all Πm

n -sentences12 Φ in L∈ that hold in the structure 〈κ,∈, A0, . . . , Am−1〉, there exists
an ordinal λ < κ such that Φ holds in the corresponding substructure 〈λ,∈, A0, . . . , Am−1〉
with domain λ (see [15, Definition 1.(b)]). Note that a cardinal κ is Πm

n -indescribable if and
only if it is weakly Πm

n -indescribable and strongly inaccessible.

Theorem 1.13. (i) The following statements are equivalent for every cardinal κ:
(a) κ is the least weakly inaccessible cardinal.
(b) κ is the least cardinal with the property that SR−C (κ) holds for every local

Σ1(Cd)-class C over ∅.

11Note that the classes Fml and Sat are both defined by Σ1-formulas. Moreover, by using codes for
negated formulas, it is easy to see that the complement of Sat is also definable by a Σ1-formula.

12See [11, p. 295].
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(c) κ is the least cardinal with the property that SR−C (κ) holds for every local
Σ1(Cd)-class C over H(κ).

(ii) The following statements are equivalent for every cardinal κ:
(a) κ is the least weakly Mahlo cardinal.
(b) κ is the least cardinal with the property that SR−C (κ) holds for every local

Σ1(Rg)-class C over ∅.
(c) κ is the least cardinal with the property that SR−C (κ) holds for every local

Σ1(Rg)-class C over H(κ).
(iii) The following statements are equivalent for every cardinal κ and every 0 < n < ω:

(a) κ is the least weakly Π1
n-indescribable cardinal.

(b) κ is the least cardinal with the property that SR−C (κ) holds for every local Σn+1-
class over ∅.

(c) κ is the least cardinal with the property that SR−C (κ) holds for every local Σn+1-
class over H(κ).

The techniques developed in the proof of the above result will also allow us to show that
a large cardinal property isolated by Hamkins is in fact equivalent to Lévy’s notion of weak
Π1

1-indescribability. Hamkins defined a cardinal κ to have the weakly compact embedding
property if for every transitive set M of cardinality κ with κ ∈M , there is a transitive set N
and an elementary embedding j : M −→ N with crit (j) = κ (see [9]). He then showed that
this property implies both weak Mahloness and the tree property. Moreover, he showed
that if κ is weakly compact and G is Add(ω, κ+)-generic over V, then κ has the weakly
compact embedding property in V[G]. In the proof of Theorem 1.13, we will show that
weak Π1

n-indescribability can be characterized through the existence of certain elementary
embedding and this equivalence also allows us to conclude that weak Π1

1-indescribability
coincides with the weakly compact embedding property. These observations will also show
that the results of [10, Section 4] only work under the additional assumption that the given
cardinal is strongly inaccessible.

Finally, in unpublished work, Cody, Cox, Hamkins and Johnstone showed that various
cardinal invariants of the continuum do not possess the weakly compact embedding property
(see [9]). We will extend these results by showing that various definable cardinals cannot
be reflection points of certain classes of structures. For examples, our methods will allow
us to show that, although there can consistently exist weakly shrewd cardinals below the
dominating number d, the cardinal d is neither weakly shrewd nor the successor of a weakly
shrewd cardinal.

2. Shrewd cardinals

In this section, we derive some consequences of shrewdness that will be used in the proof of
Theorem 1.5. The starting point of this analysis is the following embedding characterization
for shrewd cardinals that resembles Magidor’s classical characterization of supercompactness
(see [16] and also [14, Theorem 22.10]):

Lemma 2.1. The following statements are equivalent for every cardinal κ:

(i) κ is a shrewd cardinal.
(ii) For all sufficiently large cardinals θ > κ, there exist cardinals κ̄ < θ̄ < κ, an

elementary submodel X13 of H(θ̄) and an elementary embedding j : X −→ H(θ)
such that κ̄+ 1 ⊆ X, j � κ̄ = idκ̄ and j(κ̄) = κ.

(iii) For all cardinals θ > κ and all z ∈ H(θ), there exist cardinals κ̄ < θ̄ < κ, an
elementary submodel X of H(θ̄) and an elementary embedding j : X −→ H(θ) such
that κ̄+ 1 ⊆ X, j � κ̄ = idκ̄, j(κ̄) = κ and z ∈ ran(j).

Proof. First, assume that (i) holds. Fix an L∈-formula Φ(v0, v1) with the property that
Φ(A, δ) expresses, in a canonical way, that the conjunction of the following statements holds
true:

(a) There exist unboundedly many strong limit cardinals.

13Note that, in general, the elementary submodel X will not be transitive.
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(b) δ is an inaccessible cardinal.
(c) There is a cardinal θ > δ, a subset X of H(θ) and a bijection b : δ −→ X such that

the following statements hold:
• δ + 1 ⊆ X, b(0) = δ and b(ω · (1 + α)) = α for all α < δ.
• The class H(θ) is a set and, given α0, . . . , αn−1 < δ and an element a of Fml

that codes a formula with n free variables, we have

〈a, α0, . . . , αn−1〉 ∈ A ⇐⇒ Sat(X, 〈b(α0), . . . , b(αn−1)〉, a)

⇐⇒ Sat(H(θ), 〈b(α0), . . . , b(αn−1)〉, a).

Fix a cardinal θ > κ, z ∈ H(θ) and a strong limit cardinal λ > θ with the property that
Vλ is sufficiently elementary in V. Pick an elementary submodel Y of H(θ) of cardinality
κ with κ ∪ {κ, z} ⊆ Y and a bijection b : κ −→ Y satisfying b(0) = κ, b(1) = 〈z, κ〉 and
b(ω · (1 + α)) = α for all α < κ. Define A to be the set of all tuples 〈a, α0, . . . , αn−1〉 with
the property that α0, . . . , αn−1 < κ, a ∈ Fml codes a formula with n free variables and
Sat(Y, 〈b(α0), . . . , b(αn−1)〉, a) holds.

Then κ + λ = λ and Φ(A, κ) holds in Vλ. In this situation, the shrewdness of κ yields
ordinals κ̄, λ̄ < κ with the property that Φ(A∩Vκ̄, κ̄) holds in Vκ̄+λ̄. By the definition of the

formula Φ, we know that κ̄ is an inaccessible cardinal, λ̄ is a strong limit cardinal and hence
κ̄ + λ̄ = λ̄ < κ. Moreover, since statements of the form “x = H(δ)” are absolute between
Vλ̄ and V, and the formulas defining the classes Fml and Sat are upwards absolute from Vλ̄

to V, there exists a cardinal κ̄ < θ̄ < λ̄, a subset X of H(θ̄) and a bijection b̄ : κ̄ −→ X such
that the following statements hold:

• κ̄+ 1 ⊆ X, b̄(0) = κ̄ and b̄(ω · (1 + α)) = α for all α < κ̄.
• Given an L∈-formula ϕ(v0, . . . , vn−1) and α0, . . . , αn−1 < κ̄, we have

H(θ) |= ϕ(b(α0), . . . , b(αn−1)) ⇐⇒ Y |= ϕ(b(α0), . . . , b(αn−1))

⇐⇒ H(θ̄) |= ϕ(b̄(α0), . . . , b̄(αn−1)) ⇐⇒ X |= ϕ(b̄(α0), . . . , b̄(αn−1)).

This shows that X is an elementary submodel of H(θ̄) with κ̄+ 1 ⊆ X and, if we define

j = b ◦ b̄−1 : X −→ H(θ),

then j is an elementary embedding with j � κ̄ = idκ̄, j(κ̄) = κ and 〈z, κ〉 ∈ ran(j). Since we
then also have z ∈ ran(j), we can conclude that (iii) holds in this case.

Now, assume that (ii) holds and assume, towards a contradiction, that there is an L∈-
formula Φ(v0, v1), an ordinal α and a subset A of Vκ witnessesing that κ is not a shrewd
cardinal. Pick a sufficiently large strong limit cardinal θ > κ + α with the property that
H(θ) is sufficiently elementary in V. By our assumption, we can find cardinals κ̄ < θ̄ < κ
and an elementary embedding j : X −→ H(θ) such that κ̄+ 1 ⊆ X ≺ H(θ̄), j � κ̄ = idκ̄ and
j(κ̄) = κ.

Claim. κ is a strong limit cardinal.

Proof of the Claim. Fix an ordinal µ < κ̄. Since we know that µ ∈ X, j(µ) = µ and
H(θ) |= “P(µ) exists”, elementarity yields an ordinal ν in X with X |= “2µ = ν ”. But then
H(θ̄) |= “2µ = ν ” and hence ν is a cardinal in V with 2µ = ν < θ̄ < κ. In this situation,
elementarity implies that X |= “2µ < κ̄”. Hence, we know that κ̄ is a strong limit cardinal
in X and this allows us to conclude that κ is a strong limit cardinal. �

By elementarity, we can now find an ordinal α in X and a subset A of Vκ̄ in X with the
property that the formula Φ(v0, v1), the ordinal j(α) and the subset j(A) of Vκ witness that
κ is not a shrewd cardinal. Since the above claim shows that Vκ̄ ⊆ X and j � Vκ̄ = idVκ̄ ,
we know that j(A) ∩Vκ̄ = A. In particular, it follows that Φ(j(A), κ) holds in Vκ+j(α) and
Φ(A, κ̄) does not hold in Vκ̄+α. Since Vκ̄+α is an element of X with j(Vκ̄+α) = Vκ+j(α),
we can now use elementarity to derive a contradiction. �

The above equivalence allows us to easily deduce several consequences of shrewdness.

Corollary 2.2. Shrewd cardinals are totally indescribable stationary limits of totally inde-
scribable cardinals.
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Proof. By definition, all shrewd cardinals are totally indescribable. Now, let κ be a shrewd
cardinal and let C be a closed unbounded subset of κ. Pick a cardinal θ > iω(κ) and use
Lemma 2.1 to find cardinals κ̄ < θ̄ < κ and an elementary embedding j : X −→ H(θ) with
κ̄ + 1 ⊆ X ≺ H(θ̄), j � κ̄ = idκ̄, j(κ̄) = κ and C ∈ ran(j). Then κ̄ ∈ C and elementarity
implies that θ̄ > iω(κ̄). But this setup ensures that the statement “κ is totally indescribable
” is absolute between H(θ) and V, and the statement “ κ̄ is totally indescribable ” is absolute
between H(θ̄) and V. In particular, we can use elementarity to conclude that κ̄ ∈ C is totally
indescribable. �

The next consequence of Lemma 2.1 will be crucial for our characterization of weakly
shrewd cardinals that are not shrewd in the next section. This result should be compared
with the corresponding statements for supercompact and remarkable cardinals (see [14,
Proposition 22.3] and [20, Theorem 1.3]). Remember that, given a natural number n > 0, a
cardinal κ is Σn-reflecting if it is inaccessible and Vκ ≺Σn V holds.

Corollary 2.3. Shrewd cardinals are Σ2-reflecting.

Proof. Pick a Σ2-formula ϕ(v0, . . . , vm−1) and sets z0, . . . , zm−1 ∈ Vκ with the property
that the statement ϕ(z0, . . . , zm−1) holds in V. By Σ1-absoluteness, there exists a cardinal
θ > κ with the property that ϕ(z0, . . . , zm−1) holds in H(θ). An application of Lemma 2.1
now yields cardinals κ̄ < θ̄ < κ and an elementary embedding j : X −→ H(θ) such that
κ̄+ 1 ⊆ X ≺ H(θ̄), j � κ̄ = idκ̄, j(κ̄) = κ and z0, . . . , zm−1 ∈ ran(j). Since shrewd cardinals
are inaccessible, we have Vκ̄ ⊆ X and j � Vκ̄ = idVκ̄ . In particular, we know that zi ∈ Vκ̄

and j(zi) = zi holds for all i < m. But then ϕ(z0, . . . , zm−1) holds in H(θ̄) ⊆ Vκ and hence
Σ1-absoluteness implies that this statement also holds in Vκ. �

3. Weakly shrewd cardinals

This section contains an analysis of the basic properties of weakly shrewd cardinals.
We start by slightly modifying the proof of Lemma 2.1 to obtain an analogous embedding
characterization for weakly shrewd cardinals.

Lemma 3.1. The following statements are equivalent for every cardinal κ:

(i) κ is a weakly shrewd cardinal.
(ii) For all sufficiently large cardinals θ > κ, there exist cardinals κ̄ < θ̄, an elementary

submodel X of H(θ̄) and an elementary embedding j : X −→ H(θ) with κ̄+ 1 ⊆ X,
j � κ̄ = idκ̄ and j(κ̄) = κ > κ̄.

(iii) For all cardinals θ > κ and all z ∈ H(θ), there exist cardinals κ̄ < θ̄, an elementary
submodel X of H(θ̄) and an elementary embedding j : X −→ H(θ) with κ̄+ 1 ⊆ X,
j � κ̄ = idκ̄, j(κ̄) = κ > κ̄ and z ∈ ran(j).

Proof. Assume that (i) holds. Fix a recursive enumeration 〈al | l < ω〉 of the class Fml. Let
Φ(v0, v1) be an L∈-formula such that Φ(A, δ) expresses that the conjunction of the following
statements holds true:

(a) δ is an infinite cardinal.
(b) There is a cardinal θ > δ, a subset X of H(θ) and a bijection b : δ −→ X such that

the following statements hold:
• δ + 1 ⊆ X, b(0) = δ and b(ω · (1 + α)) = α for all α < δ.
• The class H(θ) is a set and, given α0, . . . , αn−1 < δ and l < ω with the property

that al codes a formula with n free variables, we have14

≺l, α0, . . . , αn−1� ∈ A ⇐⇒ Sat(X, 〈b(α0), . . . , b(αn−1)〉, al)
⇐⇒ Sat(H(θ), 〈b(α0), . . . , b(αn−1)〉, al).

Fix a cardinal θ > κ, z ∈ H(θ) and a cardinal ϑ > 2θ with the property that H(ϑ) is
sufficiently elementary in V. Pick an elementary submodel Y of H(θ) of cardinality κ with
κ∪{κ, z} ⊆ Y and a bijection b : κ −→ Y with b(0) = κ, b(1) = 〈z, κ〉 and b(ω·(1+α)) = α for
all α < κ. Define A to be the set of all ordinals of the form ≺l, α0, . . . , αn−1� such that l < ω,

14We let ≺·, . . . , ·� : Ordn+1 −→ Ord denote iterated Gödel pairing.
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α0, . . . , αn−1 < κ, al codes a formula with n free variables and Sat(Y, 〈b(α0), . . . , b(αn−1)〉, al)
holds. Then Φ(A, κ) holds in H(ϑ) and our assumption yields cardinals κ̄ < ϑ̄ such that
κ̄ < κ and Φ(A∩ κ̄, κ̄) holds in H(ϑ̄). Since the formula defining the predicate Sat is absolute
between H(ϑ), H(ϑ̄) and V, the definition of Φ now yields a cardinal κ̄ < θ̄ < ϑ̄, a subset X
of H(θ̄) and a bijection b̄ : κ̄ −→ X such that the following statements hold:

• κ̄+ 1 ⊆ X, b̄(0) = κ̄ and b̄(ω · (1 + α)) = α for all α < κ̄.
• Given an L∈-formula ϕ(v0, . . . , vn−1) and α0, . . . , αn−1 < κ̄, we have

H(θ) |= ϕ(b(α0), . . . , b(αn−1)) ⇐⇒ Y |= ϕ(b(α0), . . . , b(αn−1))

⇐⇒ H(θ̄) |= ϕ(b̄(α0), . . . , b̄(αn−1)) ⇐⇒ X |= ϕ(b̄(α0), . . . , b̄(αn−1)).

This shows that X is an elementary submodel of H(θ̄) with κ̄ + 1 ⊆ X and the map
j = b ◦ b̄−1 : X −→ H(θ) is an elementary embedding with j � κ̄ = idκ̄, j(κ̄) = κ and
z ∈ ran(j). These computations show that (iii) holds in this case.

Now, assume that (ii) holds and (i) fails. Pick an L∈-formula Φ(v0, v1) witnessing that
κ is not a weakly shrewd cardinal, and a sufficiently large cardinal ϑ > κ with the property
that H(ϑ) is sufficiently elementary in V. Then there exists a cardinal κ < θ < ϑ with
the property that for some subset A of κ, the statement Φ(A, κ) holds in H(θ) and there
are no cardinals κ̄ < θ̄ such that κ̄ < κ and Φ(A ∩ κ̄, κ̄) holds in H(θ̄). Let θ be the
minimal cardinal with this property. By our assumption, we can find cardinals κ̄ < ϑ̄ and
an elementary embedding j : X −→ H(ϑ) with κ̄ + 1 ⊆ X ≺ H(ϑ̄), j � κ̄ = idκ̄ and
j(κ̄) = κ > κ̄. Since the cardinal θ is definable in H(ϑ) by an L∈-formula with parameter
κ, there is a cardinal θ̄ in X with j(θ̄) = θ. Since H(ϑ) is sufficiently elementary in V,
elementarity now yields a subset A of κ̄ in X with the property that Φ(j(A), κ) holds in
H(θ) and Φ(j(A)∩ κ̄, κ̄) does not hold in H(θ̄). Since j(A)∩ κ̄ = A, we can use elementarity
once more to derive a contradiction and conclude that (i) holds in this case. �

Corollary 3.2. Shrewd cardinals are weakly shrewd. �

Building upon the equivalence established in Lemma 3.1, we now focus on consequences
of weak shrewdness. The below results will allow us to precisely characterize the class of
structural reflecting cardinals that are not shrewd. Moreover, they will allow us to show
that the existence of such cardinals below the continuum is consistent.

We start by proving two basic observation about cardinal arithmetic properties of weakly
shrewd cardinals.

Proposition 3.3. Weakly shrewd cardinals are weakly Mahlo.

Proof. Let κ be a weakly shrewd cardinal. Then we can find a cardinal κ̄ < κ, an elementary
submodel X of H(κ̄+) with κ̄+ 1 ⊆ X and an elementary embedding j : X −→ H(κ+) with
j � κ̄ = idκ̄ and j(κ̄) = κ. First, assume that κ is singular. Then elementarity implies that
κ̄ is singular and there is a cofinal function c : cof(κ̄) −→ κ̄ that is an element of X. Since
j(cof(κ̄)) = cof(κ̄), we can use elementarity to conclude that

j(c)[cof(κ̄)] = c[cof(κ̄)] ⊆ κ̄

is a cofinal subset of κ, a contradiction. Now, assume that κ is not weakly Mahlo. By
elementarity, there exists a closed unbounded subset C of κ̄ in X that consists of singular
ordinals. But then κ̄ ∈ j(C) implies that κ̄ is singular and elementarity implies that κ̄ is
singular in X, contradicting the above computations. �

Proposition 3.4. If κ is a weakly shrewd cardinal with κ = κ<κ, then κ is a Mahlo cardinal.

Proof. Pick a cardinal κ̄ and an elementary embedding j : X −→ H(κ+) with the property
that κ̄ + 1 ⊆ X ≺ H(κ̄+), j � κ̄ = idκ̄ and j(κ̄) = κ > κ̄. Assume, towards a contradiction,
that κ is not Mahlo. By Proposition 3.3, this implies that κ is not a strong limit cardinal
and hence our assumptions show that 2α = κ holds for some α < κ. In this situation,
elementarity yields an α < κ̄ with X |= “2α = κ̄”. Another application of elementarity now
shows that κ̄ = 2α = κ holds, a contradiction. �
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We are now ready to provide the desired characterization of weakly shrewd cardinals that
are not shrewd. This results and its proof should be compared with [20, Theorem 1.3] that
provides an analogous statement for weakly remarkable cardinals that are not remarkable.

Lemma 3.5. The following statements are equivalent for every weakly shrewd cardinal κ:

(i) κ is not a shrewd cardinal.
(ii) κ is not a Σ2-reflecting cardinal.

(iii) There exists a cardinal δ > κ with the property that the set {δ} is definable by a
Σ2-formula with parameters in H(κ).

Proof. First, the implication from (ii) to (i) is given by Corollary 2.3.
Next, assume that (iii) holds and κ is an inaccessible cardinal. Fix a Σ2-formula ϕ(v0, v1),

a cardinal δ > κ and z ∈ H(κ) with the property that

∀x [ϕ(x, z) ←→ x = δ]

holds. Then the statement ∃x ϕ(x, z) holds in V and, since κ is inaccessible, Σ1-absoluteness
implies that it fails in Vκ. In particular, we know that (ii) holds in this situation.

Now, assume that (ii) holds. If κ is not inaccessible, then Proposition 3.4 yields an α < κ
with 2α > κ and, since the set {2α} is definable by a Σ2-formula with parameter α, we can
conclude that (iii) holds in this case. We may therefore assume that κ is an inaccessible
cardinal that is not Σ2-reflecting. By standard arguments, this shows that there is an L∈-
formula ϕ(v) and z ∈ Vκ with the property that there is a cardinal δ such that z ∈ Vδ and
ϕ(z) holds in Vδ, and there is no cardinal α ≤ κ such that z ∈ Vα and ϕ(z) holds in Vα.
Let δ denote the least cardinal such that z ∈ Vδ and ϕ(z) holds in Vδ. Then δ > κ and the
set {δ} is definable by a Σ2-formula with parameter z. This shows that (iii) also holds in
this case.

Finally, assume, towards a contradiction, that (i) holds and (ii) fails. By Lemma 2.1,
there is a cardinal θ > κ with the property that for all cardinals µ < ν < κ, there is no
elementary embedding j : X −→ H(θ) with µ + 1 ⊆ X ≺ H(ν), j � µ = idµ and j(µ) = κ.
Let θ be minimal with this property and pick a strong limit cardinal ϑ > θ with the property
that H(ϑ) is sufficiently elementary in V. Using the weak shrewdness of κ, we find cardinals
κ̄ < θ̄ < ϑ̄ and an elementary embedding j : X −→ H(ϑ) with κ̄ ∪ {κ̄, θ̄} ⊆ X ≺ H(ϑ̄),
j � κ̄ = idκ̄, j(κ̄) = κ > κ̄ and j(θ̄) = θ. Since j � (X ∩H(θ̄)) : X ∩H(θ̄) −→ H(θ) is
an elementary embedding with κ̄ + 1 ⊆ X ∩ H(θ̄) ≺ H(θ̄), j � κ̄ = idκ̄ and j(κ̄) = κ, we
know that θ̄ ≥ κ and hence we can conclude that ϑ̄ > κ. Elementarity now shows that, in
H(ϑ̄), there is a cardinal ρ > κ̄ with the property that, for all cardinals µ < ν < κ̄, there
is no elementary embedding k : Y −→ H(ρ) with µ + 1 ⊆ Y ≺ H(ν), k � µ = idµ and
k(µ) = κ̄. Since this statement can be expressed by a Σ2-formula with parameter κ̄ ∈ Vκ,
Σ1-absoluteness implies that it holds in V and hence the fact that κ is Σ2-reflecting causes
the statement to also hold in Vκ. Therefore, we can find κ̄ < ρ < κ with the property that,
in Vκ, for all cardinals µ < ν < κ̄, there is no elementary embedding k : Y −→ H(ρ) with
µ + 1 ⊆ Y ≺ H(ν), k � µ = idµ and k(µ) = κ̄. Since this statement can be expressed in
Vκ by a Π1-formula with parameters κ̄ and ρ, Σ1-absoluteness implies that it also holds in
H(ϑ̄). By the above computations, we have θ̄ ∈ X ∩ [κ, ϑ̄) 6= ∅ and this allows us to define
λ = min(X ∩ [κ, ϑ̄)). We then know that, in H(ϑ̄), there exists a cardinal κ̄ < τ < λ such
that for all cardinals µ < ν < κ̄, there is no elementary embedding k : Y −→ H(τ) with
µ+ 1 ⊆ Y ≺ H(ν), k � µ = idµ and k(µ) = κ̄. By elementarity, we can find such a cardinal
τ in X and, by the above setup, it follows that τ < κ. But then elementarity implies that,
in H(ϑ), the cardinal j(τ) has the property that for all cardinals µ < ν < κ, there is no
elementary embedding k : Y −→ H(j(τ)) with µ+ 1 ⊆ Y ≺ H(ν), k � µ = idµ and k(µ) = κ.
Since H(ϑ) was chosen to be sufficiently elementary in V, this statement also holds in V.
But this contradicts the minimality of θ, because τ < κ ≤ θ̄ implies that j(τ) < θ. These
computations show that (i) implies (ii). �

We now use the above characterization to show that, over the theory ZFC, the existence
of a shrewd cardinal is equiconsistent with the existence of an inaccessible weakly shrewd
cardinal. The proof of this equiconsistency will make use of the following notion that will
also be central for the proofs of Theorems 1.9 and 1.10.
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Definition 3.6. Given infinite cardinals κ < δ, the cardinal κ is δ-hyper-shrewd if for all
sufficiently large cardinals θ > δ and all z ∈ H(θ), there exist cardinals κ̄ < κ < δ < θ̄,
an elementary submodel X of H(θ̄) and an elementary embedding j : X −→ H(θ) with
κ̄ ∪ {κ̄, δ} ⊆ X, j � κ̄ = idκ̄, j(κ̄) = κ, j(δ) = δ and z ∈ ran(j).

Note that the second item in Lemma 3.1 implies that all hyper-shrewd cardinals are
weakly shrewd. The following lemma provides us with typical examples of hyper-shrewd
cardinals:

Lemma 3.7. Let κ be a weakly shrewd cardinal that is not shrewd.

(i) There exists δ > κ with the property that the set {δ} is definable by a Σ2-formula
with parameters in H(κ).

(ii) If δ > κ is a cardinal with the property that the set {δ} is definable by a Σ2-formula
with parameters in H(κ), then κ is δ-hyper-shrewd.

Proof. The first statement follows directly from Lemma 3.5. In the following, fix y ∈ H(κ),
a cardinal δ > κ and a Σ2-formula ϕ(v0, v1) with the property that δ is the unique element
satisfying ϕ(δ, y). Pick a cardinal θ > δ with the property that ϕ(δ, y) holds in H(θ) and
fix an element z of H(θ). Using Lemma 3.1, we find cardinals κ̄ < θ̄ and an elementary
embedding j : X −→ H(θ) with the property that κ̄ + 1 ⊆ X ≺ H(θ̄), j � κ̄ = idκ̄,
j(κ̄) = κ > κ̄ and y, z ∈ ran(j). Then j � (H(κ̄)∩X) = idH(κ̄)∩X and this shows that y ∈ X
and j(y) = y. In this situation, elementarity yields a cardinal δ̄ in X such that j(δ̄) = δ
and ϕ(δ̄, y) holds in H(θ̄). But then Σ1-absoluteness implies that the statements ϕ(δ, y) and
ϕ(δ̄, y) both hold in V. By our assumptions on the formula ϕ, this allows us to conclude
that δ̄ = δ = j(δ̄) = j(δ). These computations show that κ is δ-hyper-shrewd with respect
to θ and z. �

We are now ready to show that shrewd and inaccessible weakly shrewd cardinals possess
the same consistency strength.

Lemma 3.8. If κ is an inaccessible cardinal that is δ-hyper-shrewd for some cardinal δ > κ,
then the interval (κ, δ) contains an inaccessible cardinal and, if ε is the least inaccessible
cardinal above κ, then κ is a shrewd cardinal in Vε.

Proof. Pick a sufficiently large cardinal ϑ, cardinals κ̄ < κ < δ < ϑ̄ and an elementary
embedding j : X −→ H(ϑ) with κ̄ ∪ {κ̄, δ} ⊆ X ≺ H(ϑ̄), j � κ̄ = idκ̄, j(κ̄) = κ and
j(δ) = δ. By elementarity, there is exists an inaccessible cardinal in the interval (κ̄, δ) that
is an element of X. This directly implies that there exists an inaccessible cardinal in the
interval (κ, δ).

Now, let ε denote the least inaccessible cardinal above κ and assume, towards a con-
tradiction, that κ is not a shrewd cardinal in Vε. By Lemma 2.1, there exists a cardinal
κ < θ < ε such that for all cardinals µ < ν < κ, there is no elementary embedding
k : Y −→ H(θ) in Vε such that κ̄ + 1 ⊆ Y ≺ H(ν), k � µ = idµ and k(µ) = κ. Let θ
denote the least cardinal with this property. Since ε and θ are both definable in H(ϑ) by
L∈-formulas that only use the parameter κ, we can find cardinals ε̄ and θ̄ in X with j(ε̄) = ε
and j(θ̄) = θ. Then ε̄ is the least inaccessible cardinal above κ̄ and, since Proposition 3.3
shows that κ is a Mahlo cardinal, it follows that θ̄ < ε̄ < κ. But this yields a contradic-
tion, because the map j � (H(θ̄) ∩X) : H(θ̄) ∩X −→ H(θ) is an elementary embedding with
κ̄+ 1 ⊆ H(θ̄) ∩X ≺ H(θ̄), j � κ̄ = idκ̄ and j(κ̄) = κ > κ̄, and the inaccessibility of ε implies
that this map is an element of Vε. �

We now use a small variation of a standard argument, commonly attributed to Kunen,
to show that both weak shrewdness and hyper-shrewdness are downwards absolute to L.

Proposition 3.9. Let M be an inner model, let κ < ϑ and κ̄ < ϑ̄ be M -cardinals, and let
j : Y −→ H(ϑ)M be an elementary embedding with κ̄ + 1 ⊆ Y ≺ H(ϑ̄)M , j � κ̄ = idκ̄ and
j(κ̄) = κ > κ̄. If κ̄ < θ̄ < ϑ̄ is an M -cardinal in Y with H(θ̄)M ∈ H(ϑ̄)M , then there exists
an elementary submodel X ∈ Y of H(θ̄)M with κ̄ + 1 ⊆ X ⊆ Y and the property that the
embedding j � X is an element of M .
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Proof. Our assumptions ensure that Y contains an elementary submodel X of H(θ̄)M of
cardinality κ̄ with κ̄ + 1 ⊆ X. By elementarity, there exists a bijection b : κ̄ −→ X in Y .
Since we have κ̄ ∪ {b} ⊆ Y ≺ H(ϑ̄)M , we know that X is a subset of Y . Given x ∈ X,
we have j(b−1(x)) = b−1(x) and hence we know that j(x) = (j(b) ◦ b−1)(x) holds. Since
b ∈ H(ϑ̄)M and j(b) ∈ H(ϑ)M , this shows that j � X is an element of M . �

Corollary 3.10. (i) Every weakly shrewd cardinal is a weakly shrewd cardinal in L.
(ii) Given a cardinal δ, every δ-hyper-shrewd cardinal is a δ-hyper-shrewd cardinal in

L.

Proof. (i) Assume that κ is a weakly shrewd cardinal. Fix an L-cardinal θ > κ and a regular
cardinal ϑ > θ. By Lemma 3.1, there exists cardinals κ̄ < ϑ̄ and an elementary embedding
k : Y −→ H(ϑ) with κ̄ + 1 ⊆ Y ≺ H(ϑ), k � κ̄ = idκ̄, k(κ̄) = κ > κ̄ and θ ∈ ran(k). Pick
θ̄ ∈ Y with k(θ̄) = θ. Since θ̄ ∈ Lϑ̄ ∩ Y ≺ Lϑ̄, we can apply Proposition 3.9 to find an
elementary submodel X ∈ Lϑ̄ ∩ Y of Lθ̄ with |X|L = κ̄, κ̄+ 1 ⊆ X and j = k � X ∈ L. But
then j : X −→ Lθ is an elementary embedding in L with j � κ̄ = idκ̄ and j(κ̄) = κ > κ̄.
These computations show that κ is weakly shrewd in L.

(ii) Now, assume that κ is δ-hyper-shrewd for some cardinal δ > κ. Fix an L-cardinal
θ > δ, z ∈ Lθ and a sufficiently large regular cardinal ϑ > θ. Pick cardinals κ̄ < ϑ̄ and
an elementary embedding k : Y −→ H(ϑ) with κ̄ ∪ {κ̄, δ} ⊆ Y ≺ H(ϑ), k � κ̄ = idκ̄,
k(κ̄) = κ > κ̄, k(δ) = δ and θ, z ∈ ran(k). In addition, fix θ̄, z̄ ∈ Y with j(θ̄) = θ and
j(z̄) = z. Now, use Proposition 3.9 to find an elementary submodel X ∈ Lϑ̄ ∩ Y of Lθ̄ with
|X|L = κ̄, κ̄ ∪ {κ̄, δ, z̄} ⊆ X and j = k � X ∈ L. Then j witnesses that κ is δ-hyper-shrewd
with respect to θ and z in L. In particular, we have shown that κ is a δ-hyper-shrewd
cardinal in L. �

Corollary 3.11. The following statements are equiconsistent over ZFC:

(i) There exists a shrewd cardinal.
(ii) There exists an inaccessible weakly shrewd cardinal.

(iii) There exists a weakly shrewd cardinal.

Proof. Let κ be a weakly shrewd cardinal. Then Corollary 3.10 shows that κ is a weakly
shrewd cardinal in L and Proposition 3.4 implies that κ is inaccessible in L. If κ is not a
shrewd cardinal in L, then a combination of Lemma 3.7 with Lemma 3.8 yields an ordinal
ε > κ that is inaccessible in L and has the property that κ is a shrewd cardinal in Lε. This
shows that, over ZFC, the consistency of (iii) implies the consistency of (i). Since all shrewd
cardinals are inaccessible weakly shrewd cardinals, this implication yields the statement of
the corollary. �

We now show that the existence of weakly shrewd cardinals that are not shrewd is con-
sistent by proving that subtle cardinals provide a proper upper bound for the consistency
strength of the existence of hyper-shrewd cardinals. Remember that a cardinal δ is subtle
if for every sequence 〈dα | α < δ〉 with dα ⊆ α for all α < δ and every closed unbounded
subset C of δ, there exist α, β ∈ C with α < β and dα = dβ ∩ α (see [13]).

Lemma 3.12. If δ is a subtle cardinal, then the set of all inaccessible δ-hyper-shrewd car-
dinals is stationary in δ.

Proof. Let δ be a subtle cardinal and assume, towards a contradiction, that the set of
inaccessible δ-hyper-shrewd cardinals is not stationary in δ. Since δ is an inaccessible limit
of inaccessible cardinals, there is a closed unbounded subset C of δ consisting of cardinals
that are not δ-hyper-shrew and are limits of inaccessible cardinals. Given an element κ of
C that is inaccessible, our assumptions yield a cardinal θκ > δ and an element zκ of H(θκ)
with the property that for all cardinals κ̄ < κ < δ < θ̄ there is no elementary embedding
j : X −→ H(θκ) satisfying κ̄ ∪ {κ̄, δ} ⊆ X ≺ H(θ̄), j � κ̄ = idκ̄, j(κ̄) = κ, j(δ) = δ and
zκ ∈ ran(j). For each inaccessible cardinal κ in C, fix an elementary submodel Xκ of H(θκ)
of cardinality κ with κ ∪ {κ, δ, zκ} ⊆ Xκ, and a bijection bκ : κ −→ Xκ with b(0) = κ,
b(1) = δ, b(2) = 〈zκ, κ〉 and b(ω · (1 + α)) = α for all α < κ. Next, if λ is an element of C
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that is not inaccessible, then λ is a singular cardinal and we fix a strictly increasing cofinal
function cλ : cof(λ) −→ λ with cλ(0) = 0.

Fix an enumeration 〈al | l < ω〉 of Fml and pick a sequence 〈dα | α < δ〉 such that the
following statements hold for all α < κ:

• dα is a subset of α.
• If α is an inaccessible cardinal in C, then the set dα consists of all ordinals of the

form ≺l, α0, . . . , αn−1� such that l < ω, α0, . . . , αn−1 < α, al codes a formula with
n free variables and Sat(Xα, 〈b(α0), . . . , b(αn−1)〉, al) holds.
• If α is a singular cardinal in C, then the set dα consists of all ordinals of the form
≺cof(α), cα(ξ)� with ξ < cof(α).

The subtlety of δ now yields α, β ∈ C with α < β and dα = dβ ∩ α.

Claim. The ordinals α and β are both inaccessible.

Proof of the Claim. Assume, towards a contradcition, that either α or β is not inaccessible.
If α is not inaccessible, then ≺cof(α), 0� ∈ dα ⊆ dβ and hence cof(α) = cof(β) < α < β.
In the other case, if β is not inaccessible, then the fact that dβ ∩ α = dα 6= ∅ yields a
ξ < cof(β) with ≺cof(β), cβ(ξ)� ∈ dα and this shows that cof(α) = cof(β) < α < β also
holds in this case. Let ζ0 be the minimal element of cof(α) with cβ(ζ0) ≥ α. Then there
exists ζ0 < ζ1 < cof(α) such that cβ(ξ) < cα(ζ1) holds for all ξ < ζ0. Since our setup ensures
that ≺cof(α), cα(ζ1)� ∈ dα ⊆ dβ , there exists ξ < cof(α) with cα(ζ1) = cβ(ξ). Moreover,
since cβ is strictly increasing, the fact that cβ(ξ) = cα(ζ1) < α ≤ cβ(ζ0) implies that ξ < ζ0
and hence we can conclude that cβ(ξ) < cα(ζ1) = cβ(ξ), a contradiction. �

By the definition of the sequence 〈dα | α < δ〉, we now know that

Xα |= ϕ(bα(α0), . . . , bα(αn−1)) ⇐⇒ H(θβ) |= ϕ(bβ(α0), . . . , bβ(αn−1))

holds for every L∈-formula ϕ(v0, . . . , vn−1) and all α0, . . . , αn−1 < α. In particular, if we
define

j = bβ ◦ b−1
α : Xα −→ H(θβ),

then j is an elementary embedding with α ∪ {α, δ} ⊆ Xα ≺ H(θα), j � α = idα, j(α) = β,
j(δ) = δ and 〈zβ , β〉 ∈ ran(j). But then elementarity ensures that zβ is also an element of
ran(j), contradicting the above assumptions. �

We continue by showing that weakly shrewd cardinals can exist below the cardinality of
the continuum:

Lemma 3.13. If κ is a cardinal that is δ-hyper-shrewd for some cardinal δ > κ and G is
Add(ω, δ)-generic over V, then κ is δ-hyper-shrewd in V[G].

Proof. Work in V and pick a sufficiently large cardinal θ > 2δ and an Add(ω, δ)-name ż in
H(θ). By our assumptions, there are cardinals κ̄ < κ < δ < θ̄ and an elementary embedding
k : Y −→ H(θ) with κ̄ ∪ {κ̄, δ} ⊆ Y ≺ H(θ̄), k � κ̄ = idκ̄, k(κ̄) = κ, k(δ) = δ and
ż ∈ ran(k). Let X be an elementary submodel of Y of cardinality κ̄ with the property that
κ̄ ∪ {κ̄, δ} ⊆ X and ż ∈ k[X]. Then the map j = k � X : X −→ H(θ) is an elementary
embedding with j � κ̄ = idκ̄, j(κ̄) = κ, j(δ) = δ and ż ∈ ran(j). Since |X| = κ̄ < δ,
there exists a permutation σ of δ that extends the injection j � (X ∩ δ). Let τ denote
the automorphism of the partial order Add(ω, δ) that is induced by the action of σ on the
supports of conditions, i.e. given a condition p in Add(ω, δ), we have supp(τ(p)) = σ[supp(p)]
and τ(p)(σ(α)) = p(α) for all α ∈ supp(p). Then it is easy to see that τ(p) = j(p) holds for
every condition in Add(ω, δ) that is an element of X. Moreover, since elementarity implies
that 2δ < θ̄, we also know that the automorphism τ is an element of H(θ̄).

Now, work in V[G] and set Ḡ = τ−1[G]. Then j[Ḡ ∩ X] ⊆ G and we can therefore
construct a canonical lifting

j∗ : X[Ḡ ∩X] −→ H(θ)V[G]; ẋḠ∩X 7−→ j(ẋ)G

of j. Then H(θ)V[G] = H(θ)V[G] and, since τ ∈ H(θ̄)V, we also have

H(θ̄)V[G] = H(θ̄)V[Ḡ] = H(θ̄)V[G].
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In particular, we know that the set X[Ḡ ∩X] is an elementary submodels of H(θ̄)V[G] and
we can conclude that the embedding j∗ witnesses the δ-hyper-shrewdness of κ with respect
to θ and żG in V[G]. �

The next lemma will allow us to show that the existence of a hyper-shrewd cardinal is
equiconsistent to the existence of a weakly shrewd cardinal that is not shrewd.

Lemma 3.14. Assume that V = L. If κ is a cardinal that is δ-hyper-shrewd for some
cardinal δ > κ and G is Add(δ+, 1)-generic over V, then, in V[G], the set {δ} is definable
by a Σ2-formula without parameters and the cardinal κ is inaccessible, weakly shrewd and
not shrewd.

Proof. Work in V and fix an L∈-formula ϕ(v0, v1), a cardinal θ > κ and a subset A of κ with
the property that the statement ϕ(A, κ) holds in H(θ)V[G]. Pick a sufficiently large cardinal
ϑ > max{δ+, θ}, cardinals κ̄ < κ < δ+ < ϑ̄, and an elementary embedding j : X −→ H(ϑ+)
with the property that κ̄ ∪ {κ̄, δ, ϑ̄} ⊆ X ≺ H(ϑ̄+), j � κ̄ = idκ̄, j(κ̄) = κ, j(δ) = δ and
A ∈ ran(j). Since Proposition 3.4 implies that κ is an inaccessible cardinal, we know that
κ̄ is also inaccessible, Vκ̄ is a subset of X and j � Vκ̄ = idVκ̄ . In particular, the fact that
A is an element of ran(j) implies that A ∩ κ̄ ∈ X and j(A ∩ κ̄) = A. Using the weak
homogeneity of Add(δ+, 1) and the fact that H(ϑ+)V[G] = H(ϑ+)V[G], our assumptions now
imply that, in H(ϑ+), every condition in the partial order Add(δ+, 1) forces the statement
ϕ(A, κ) to hold in the H(θ) of the generic extension of H(ϑ+). Pick a cardinal θ̄ in X with
j(θ̄) = θ. Since δ is a fixed point of j, elementarity implies that, in H(ϑ̄+), every condition
in Add(δ+, 1) forces the statement ϕ(A ∩ κ̄, κ̄) to hold in the H(θ̄) of the generic extension
of H(ϑ̄+).

Next, observe that we have H(ϑ̄+)V[G] = H(ϑ̄+)V[G] and therefore the fact that θ̄+ < ϑ̄+

holds in V implies that

H(θ̄)H(ϑ̄+)V[G]

= H(θ̄)V[G].

This allows us to conclude that ϕ(A ∩ κ̄, κ̄) holds in H(θ̄)V[G]. Using the fact that, in V,
the partial order Add(δ+, 1) is <δ+-closed and satisfies the δ++-chain condition, the above
computations allow us conclude that κ is weakly shrewd in V[G].

Now, work in V[G]. Then δ+ is the least ordinal containing a non-constructible subset
and hence the set {δ} is definable by a Σ2-formula without parameters. By Lemma 3.5, this
allows us to conclude that κ is an inaccessible weakly shrewd cardinal that is not a shrewd
cardinal. �

We are now ready to determine the position of accessible weakly shrewd cardinals in the
large cardinal hierarchy.

Proof of Theorem 1.9. (i) Let κ be a weakly shrewd cardinal that is not shrewd. Then
Lemma 3.7 shows that κ is δ-hyper-shrewd for some cardinal δ > κ and Corollary 3.10
implies that κ is a δ-hyper-shrewd cardinal in L. Since Proposition 3.4 ensures that κ is
an inaccessible cardinal in L, Lemma 3.8 now allows us to find an ordinal ε > κ that is
inaccessible in L and has the property that κ is a shrewd cardinal in Lε.

(ii) Let δ be the least subtle cardinal and let C be a closed unbounded subset of δ. By
Lemma 3.12, there is an inaccessible weakly shrewd cardinal κ in C. Since the statement “µ
is subtle” is absolute between H(µ+) and V for every infinite cardinal µ, the minimality of
δ implies that the set {δ} is definable by a Σ2-formula without parameters. An application
of Lemma 3.5 now allows us to conclude that κ is not a shrewd cardinal.

(iii) First, assume that κ is a weakly shrewd cardinal that is not shrewd. Using Lemma
3.7, we find a cardinal δ > κ such that κ is δ-hyper-shrewd. Let G be Add(ω, δ)-generic
over V. Then Lemma 3.13 implies that κ is a weakly shrewd cardinal smaller than 2ℵ0 in
V[G]. These arguments show that, over the theory ZFC, the consistency of the statement
(a) listed in the theorem implies the consistency of the statement (c) listed in the theorem.

Now, assume that κ is a weakly shrewd cardinal that is not inaccessible. Then κ is not
a shrewd cardinal and hence Lemma 3.7 shows that κ is δ-hyper-shrewd for some cardinal
δ > κ. In this situation, Corollary 3.10 implies that κ is a δ-hyper-shrewd cardinal in L.
Let G be Add(δ+, 1)L-generic over L. Then Lemma 3.14 shows that, in L[G], the cardinal κ
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inaccessible, weakly shrewd and not shrewd. These arguments show that the consistency of
the statement (b) listed in the theorem implies the consistency of the statement (a) listed
in the theorem. �

We end this section by showing that weak shrewdness is also a direct consequence of large
cardinal notions introduced by Schindler in [18] and Wilson in [20]. Note that the results
of [4] show that the below definition of remarkability is equivalent to Schindler’s original
definition.

Definition 3.15. (i) (Schindler) A cardinal κ is remarkable if for every ordinal α > κ,
there is an ordinal β < κ and a generic elementary embedding j : Vβ −→ Vα with
j(crit (j)) = κ.

(ii) (Wilson) A cardinal κ is weakly remarkable if for every ordinal α > κ, there is an
ordinal β and a generic elementary embedding j : Vβ −→ Vα with j(crit (j)) = κ.

Results of Wilson in [20] now allow us to find additional natural examples of hyper-shrewd
cardinals.

Lemma 3.16. Every weakly remarkable cardinal is weakly shrewd.

Proof. Let κ be a weakly remarkable cardinal. Assume, towards a contradiction, that κ is
not weakly shrewd and let θ > κ denote the least cardinal with the property that for all
cardinals κ̄ < θ̄, there is no elementary embedding j : X −→ H(θ) with κ̄+ 1 ⊆ X ≺ H(θ),
j � κ̄ = idκ̄ and j(κ̄) = κ > κ̄. Pick a strong limit cardinal ϑ > θ with the property
that H(ϑ) = Vϑ is sufficiently elementary in V. We then know that θ is definable in Vϑ

by a formula with parameter κ. By our assumptions, we can now find ordinals κ̄ < ϑ̄
and a generic elementary embedding j : Vϑ̄ −→ Vϑ with crit (j) = κ̄ and j(κ̄) = κ. Then
elementarity implies that κ̄ is a cardinal in V and ϑ̄ is a strong limit cardinal in V. Moreover,
the definability of θ yields a V-cardinal θ̄ with j(θ̄) = θ. An application of Proposition 3.9
in the given generic extension of V now yields an elementary submodel X of H(θ̄)V in V
with κ̄ + 1 ⊆ X and the property that the embedding j � X : X −→ H(θ) is an element of
V. Since j � κ̄ = idκ̄ and j(κ̄) = κ > κ̄, the existence of such an embedding contradicts our
assumptions on θ. �

Corollary 3.17. A weakly remarkable cardinal is remarkable if and only if it is shrewd.

Proof. By [20, Theorem 1.3], a weakly remarkable cardinal is remarkable if and only if it is
Σ2-reflecting. In combination with Lemmas 3.5 and 3.16, this result directly provides the
desired equivalence. �

Note that [20, Theorem 1.4] shows that every ω-Erdős cardinal is a limit of weakly
remarkable cardinals that are not remarkable. By the above results, all of these cardinals
are weakly shrewd and not shrewd.

4. Structural reflection

We now connect weak shrewdness with principles of structural reflection.

Lemma 4.1. If κ is weakly shrewd and C is a class of structures of the same type that is
definable by a Σ2-formula with parameters in H(κ), then SR−κ (C) holds.

Proof. Fix a Σ2-formula ϕ(v0, v1) and z in H(κ) with C = {A | ϕ(A, z)}. Pick a structure
B in C of cardinality κ. Then there exists a cardinal θ > κ with the property that B ∈ H(θ)
and ϕ(B, z) holds in H(θ). Using Lemma 3.1, we find cardinals κ̄ < θ̄ and an elementary
embedding j : X −→ H(θ) satisfying κ̄ + 1 ⊆ X ≺ H(θ̄), j � κ̄ = idκ̄, j(κ̄) = κ > κ̄ and
B, z ∈ ran(j). Then we have j � (H(κ̄) ∩X) = idH(κ̄)∩X , and hence we know that z ∈ H(κ̄)
and j(z) = z. Pick A ∈ X with j(A) = B. Then elementarity and Σ1-absoluteness implies
that ϕ(A, z) holds and hence A is a structure in C. Since the structure B has cardinality κ
in H(θ), we know that the structure A has cardinality κ̄, and the fact that κ̄ is a subset of
X allows us to conclude that j induces an elementary embedding of A into B. �
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By combining the above lemma with the results of the previous sections, we can now prove
the desired characterization of weak shrewdness through the principle SR− for Σ2-definable
classes of structures.

Proof of Theorem 1.7. Fix an infinite cardinal κ.
First, assume that κ is the least cardinal with the property that SR−W(κ) holds. Fix a

cardinal ϑ > κ with the property that H(ϑ) is sufficiently elementary in V and an elementary
submodel Y of H(ϑ) of cardinality κ with κ + 1 ⊆ Y . Then ϑ witnesses that the structure
〈Y,∈, κ〉 is an element of the class W. By our assumption, we can find an elementary
embedding j of a structure 〈X,∈, κ̄〉 of cardinality smaller than κ in W into 〈Y,∈, κ〉. Fix
a cardinal ϑ̄ witnessing that 〈X,∈, κ̄〉 is an element of W. Then we know that κ̄ < ϑ̄
are cardinals, X is an elementary submodel of H(ϑ̄) and j : X −→ H(ϑ) is an elementary
embedding with κ̄+ 1 ⊆ X and j(κ̄) = κ > κ̄.

Claim. j � κ̄ = idκ̄.

Proof of the Claim. Let µ ≤ κ̄ be the minimal ordinal with j(µ) > µ. Assume, towards a
contradiction, that µ < κ̄. Since µ+1 ⊆ κ̄+1 ⊆ X, elementarity implies that µ is a cardinal.
Moreover, since H(ϑ) was chosen to be sufficiently elementary in V, the minimality of κ and
the fact that j(µ) < κ allow us to use elementarity to find a cardinal µ < θ < ϑ̄ in X and an
elementary submodel Z of H(θ) in X with the property that the cardinal j(θ) witnesses that
the structure 〈j(Z),∈, j(µ)〉 is an element of W and there is no elementary embedding from
an element ofW of cardinality less than j(µ) into 〈j(Z),∈, j(µ)〉. In this situation, we know
that the structure 〈Z,∈, µ〉 is an element of W of cardinality µ and, since µ ⊆ X implies
that Z ⊆ X, the map j induces an elementary embedding from 〈Z,∈, θ〉 into 〈j(Z),∈, j(µ)〉,
a contradiction. �

By Lemma 3.1, the above claim shows that κ is weakly shrewd in this case. By Lemma
4.1, the minimality of κ implies that there are no weakly shrewd cardinals smaller than κ.
In particular, we know that (ii) implies (i).

Now, assume that κ is the least cardinal with the property that SR−C (κ) holds for every
class C of structures of the same type that is definable by a Σ2-formula with parameters
in H(κ). Then SR−W(κ) holds and we can define µ ≤ κ to be the least cardinal such that

SR−W(µ) holds. By the above computations, we know that µ is a weakly shrewd cardinal

and therefore Lemma 4.1 implies that SR−C (µ) holds for every class C of structures of the
same type that is definable by a Σ2-formula with parameters in H(µ). The minimality of
κ then implies that κ = µ and hence κ is a weakly shrewd cardinal. Moreover, another
application of Lemma 4.1 shows that the minimality of κ implies that there are no weakly
shrewd cardinals below κ. These arguments show that (iii) also implies (i).

Now, assume that κ is the least weakly shrewd cardinal. Then Lemma 4.1 and the above
computations show that SR−C (κ) holds for every class C of structures of the same type that is

definable by a Σ2-formula with parameters in H(κ), and that SR−W(µ) fails for all cardinals
µ smaller than κ. In combination, this shows that κ is both the least cardinal with the
property that SR−W(κ) holds and the least cardinal with the property that SR−C (κ) holds for
every class C of structures of the same type that is definable by a Σ2-formula with parameters
in H(κ). This shows that (i) implies that both (ii) and (iii) hold. �

Next, we determine the consistency strength of structural reflection for Σ2-definable
classes of structures.

Proof of Theorem 1.5. By Corollary 3.2 and Lemma 4.1, it suffices to show that, over the
theory ZFC, the consistency of statement (ii) implies the consistency of the statement (i).
Hence, assume that there exists a cardinal κ with the property that SR−C (κ) holds for every
class C of structures of the same type that is definable by a Σ1(Cd)-formula without param-
eters. Moreover, we may assume that 0# does not exist, because otherwise a combination of
[18, Lemma 1.3] with Lemma 3.16 and Corollary 3.17 ensures the existence of many shrewd
cardinals in L. In the following, we let L denote the first-order language extending of L∈ by
two constant symbols and let K denote the class of all L-structures 〈X,∈, δ, θ〉 such that δ
is an infinite cardinal, θ is an ordinal greater than δ and there exists a cardinal ϑ > θ with
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the property that X is an elementary submodel of Lϑ with δ ∪ {δ, θ} ⊆ X. It is easy to see
that the class K is definable by Σ1(Cd)-formula without parameters.

Now, pick an L-cardinal θ > κ, a cardinal ϑ > θ and an elementary submodel Y of Lϑ
of cardinality κ with κ ∪ {κ, θ} ⊆ Y . Then the L-structure 〈Y,∈, κ, θ〉 is an element of K
and therefore our assumptions yield an elementary embedding j of a structure 〈X,∈, κ̄, θ̄〉
of cardinality less than κ in K into 〈Y,∈, κ, θ〉. Pick a cardinal ϑ̄ witnessing that 〈X,∈, κ̄, θ̄〉
is contained in K. Then we know that κ̄ is a cardinal smaller than κ with j(κ̄) = κ, θ̄ is an
L-cardinal with j(θ̄) = θ and X is an elementary submodel of Lϑ̄ with κ̄ ∪ {κ̄, θ̄} ⊆ X.

Claim. j � κ̄ = idκ̄.

Proof of the Claim. Let µ ≤ κ̄ be the minimal ordinal in X with j(µ) > µ. Assume, towards
a contradiction that µ < κ̄ holds. Note that, since j(κ̄) = κ holds and κ̄ + 1 ⊆ X implies
Lκ̄ ∪ {Lκ̄} ⊆ X, we know that the map j � Lκ̄ : Lκ̄ −→ Lκ is an elementary embedding
between transitive structures. In this situation, our assumption implies that this embedding
has a critical point. But then the fact that κ̄ is a cardinal implies that |crit (j � Lκ̄)| ≤ µ < κ̄
and hence [11, Theorem 18.27] shows that 0# exists, a contradiction. �

Since the above claim shows that j : Y −→ Lϑ is an elementary embedding with κ̄ ∪
{κ̄, θ̄} ⊆ Y ≺ Lϑ̄, j � κ̄ = idκ̄ and j(κ̄) = κ, we can apply Proposition 3.9 to find an
elementary submodel X of Lθ in L with X ⊆ Y and the property that the map j � X is also
an element of L. These computations now allow us to conclude that κ is a weakly shrewd
cardinal in L. By Corollary 3.11, this argument shows that, over ZFC, the consistency of
the second statement listed in the theorem implies the consistency of the first statement
listed there. �

Using ideas from the above proofs, we can show that a failure of the converse implication
of Lemma 4.1 has non-trivial consistency strength. This argument again makes use of the
class W defined in Section 1.

Lemma 4.2. If SR−W(κ) holds for some infinite cardinal κ that is not a weakly shrewd
cardinal, then 0# exists.

Proof. By Lemma 3.1, our assumptions yield a cardinal θ > κ with the property that for all
cardinals κ̄ < θ̄, there is no elementary embedding j : X −→ H(θ) with κ̄+ 1 ⊆ X ≺ H(θ̄),
j � κ̄ = idκ̄ and j(κ̄) = κ > κ̄. As in the proof of Theorem 1.7, we can use these assumption
to find cardinals κ̄ < θ̄ and an elementary embedding j : X −→ H(θ) with κ̄+1 ⊆ X ≺ H(θ̄)
and j(κ̄) = κ. By our assumptions, we know that j � κ̄ 6= idκ̄. Since Lκ̄ ∪ {Lκ̄} ⊆ X, we
now know that j � Lκ̄ : Lκ̄ −→ Lκ is an elementary embedding between transitive structures
that has a critical point. As in the proof of Theorem 1.5, the fact that κ̄ is a cardinal and
|crit (j � Lκ̄)| < κ̄ now allows us to apply [11, Theorem 18.27] to conclude that 0# exists. �

By combining the above observation with Lemma 4.1, we can now conclude that, in the
constructible universe L, weak shrewdness is equivalent to the validity of the principle SR−

for Σ2-definable classes.

Corollary 4.3. If V = L holds, then the following statements are equivalent for every
infinite cardinal κ:

(i) κ is a weakly shrewd cardinal.
(ii) SR−W(κ) holds.

(iii) SR−C (κ) holds for every class C of structures of the same type that is definable by a
Σ2-formula with parameters in H(κ). �

In addition, we can also use the above lemma to motivate the statement of Theorem 1.10
by showing that the existence of a weakly shrewd cardinal does not imply the existence
of a reflection point for classes of structures defined by Σ3-formulas. Note that the above
results show that, over ZFC, the consistency of the existence of a shrewd cardinal implies
the consistency of the assumptions of the following corollary.

Corollary 4.4. If V = L holds and there exists a single weakly shrewd cardinal, then there
is no cardinal ρ with the property that SR−C (ρ) holds for every class C of structures of the
same type that is definable by a Σ3-formula without parameters.
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Proof. Let κ denote the unique weakly shrewd cardinal. Then it is easy to see that the set
{κ} is definable by a Σ3-formula without parameters. Therefore, there is a non-empty class
C of structures of the same type that is definable by a Σ3-formula without parameters and
consists of structures of cardinality κ. In particular, we know that SR−C (κ) fails.

Now, assume, towards a contradiction, that there is a cardinal ρ with the property that
SR−C (ρ) holds for every class C of structures of the same type that is definable by a Σ3-
formula without parameters. An application of Corollary 4.3 then directly shows that ρ is
a weakly shrewd cardinal and hence we can conclude that κ = ρ holds. Since SR−C (κ) fails,
this yields a contradiction. �

In the remainder of this section, we show that hyper-shrewd cardinals imply the existence
of cardinals with strong structural reflection properties.

Proof of Theorem 1.10. Let κ be a weakly shrewd cardinal that is not shrewd. Then Lemma
3.5 already shows that there is a cardinal δ > κ with the property that the set {δ} is definable
by a Σ2-formula with parameters in H(κ). For the remainder of this proof, fix such a cardinal
δ.

(ii) Given a natural number n > 0 and an ordinal α < κ, assume, towards a contradiction,
that for every cardinal α < ρ < δ, there exists a class C of structures of the same type that
is definable by a Σn-formula with parameters in H(ρ) such that SR−C (ρ) fails.15 Now, let
ε denote the least strong limit cardinal above δ with the property that, in H(ε), for every
cardinal α < ρ < δ, there exists a class C of structures of the same type that is definable
by a Σn-formula with parameters in H(ρ) such that SR−C (ρ) fails. Then the definability of
δ ensures that the set {ε} is also definable by a Σ2-formula with parameters in H(κ). In
this situation, in H(ε), there is a class C of structures of the same type and a structure
B of cardinality κ in C such that C is definable by a Σn-formula ϕ(v0, v1) with parameter
z ∈ H(κ) and there is no elementary embedding of a structure of cardinality less than κ in C
into B. Since Lemma 3.7 shows that κ is ε-hyper-shrewd, there are cardinals κ̄ < κ < ε < θ̄
and an elementary embedding j : X −→ H(θ) with κ̄ ∪ {κ̄, ε} ⊆ X ≺ H(θ̄), j � κ̄ = idκ̄,
j(κ̄) = κ, j(ε) = ε and B, z ∈ ran(j). Moreover, since j � (H(κ̄) ∩X) = idH(κ̄)∩X , we know

that z ∈ H(κ̄) ∩X and j(z) = z. Pick A ∈ H(θ̄) ∩X with j(A) = B. Then A ∈ H(ε) and,
since both ε and z are fixed points of j, we know that ϕ(A, z) holds in H(ε). In particular,
we can conclude that A is a structure of cardinality κ̄ in C and, since κ̄ is a subset of X,
the embedding j induces an elementary embedding of A into B. But now, the fact A and
B are both contained in H(ε) implies that this embedding is also an element of H(ε), a
contradiction.

(iii) Assume that κ is inaccessible and 0# does not exist. Using Lemma 3.7, we find a
cardinal θ > 2δ, cardinals κ̄ < κ < δ < θ̄ and an elementary embedding j : X −→ H(θ)
with κ̄ ∪ {κ̄, δ} ⊆ X ≺ H(θ̄), j � κ̄ = idκ̄, j(κ̄) = κ and j(δ) = δ. Let ε denote the minimal
element in X ∩ [κ̄, δ] satisfying j(ε) = ε.

Claim. ε is an inaccessible cardinal.

Proof of the Claim. First, assume, towards a contradiction, that ε is singular. Since we
have |ε| = |ε|H(θ) = |ε|H(θ̄) ∈ X, it follows that j(|ε|) = |ε| ≥ κ̄ and hence the minimality
of ε implies that ε is a cardinal. Then the non-existence of 0# implies that ε is a singular

cardinal in L. Set λ = cof(ε)
L
< ε ≤ δ and let c : λ −→ ε be the <L-least cofinal map from

λ to ε in L. Since Lδ ⊆ H(θ) ∩ H(θ̄), we now know that λ, c ∈ X, j(λ) = λ and j(c) = c.
But this implies that λ < κ̄ and hence λ ⊆ X. Pick ξ < λ with c(ξ) > κ̄. Then

κ̄ < κ = j(κ̄) < j(c(ξ)) = j(c)(j(ξ)) = c(ξ) < ε,

contradicting the minimality of ε. This shows that ε is a regular cardinal.
Now, assume, towards a contradiction, that ε is not a strong limit cardinal and let µ < ε

be the least cardinal satisfying 2µ ≥ ε. Then the inaccessibility of κ implies that µ ≥ κ.
Since elementarity implies that 2δ ∈ H(θ) ∩H(θ̄), we know that µ is the least cardinal with

15Note that, by using an universal Σn-formula, this statement can be expressed by a single L∈-formula

with parameters α and δ.
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2µ ≥ ε in both H(θ) and H(θ̄). But this implies that µ ∈ X ∩ [κ, ε) with j(µ) = µ, a
contradiction. �

Now, assume, towards a contradiction, that there exists C ⊆ Vε, a ∈ Fml and z ∈ H(κ)
such that C = {A ∈ Vε | Sat(Vε, 〈A, z〉, a)} and, in Vε,

16 the class C consists of structures
of the same type and SR−C (κ) fails. By elementarity, we find C ∈ Vε+1 ∩X, a ∈ Fml ⊆ X
and z ∈ H(κ̄) ∩X such that the elements j(C), j(a) and j(z) witness the above statement.
Since we have j(a) = a and j(z) = z, we also know that j(C) = C. Another application
of elementarity now yields B ∈ C ∩X such that Sat(Vε, 〈j(B), z〉, a) holds and, in Vε, the
structure j(B) witnesses the failure of SR−C (κ). We then know that Sat(Vε, 〈B, z〉, a) holds
and hence B is also an element of C. Since B is a structure of cardinality κ̄ in Vε, it follows
that the domain of B is a subset of X and, by the inaccessibility of ε, the restriction of j to
this domain is an element of Vε. But this restricted map is an elementary embedding from
B into j(B) in Vε, a contradiction. The above arguments show that, in Vε, the principle
SR−C (κ) holds for every class C that is defined by a formula using parameters from H(κ). �

We now use Theorems 1.9 and 1.10 to show that the consistency strength of the existence
of cardinals with maximal local structural reflection properties is strictly smaller than the
existence of a weakly shrewd cardinal that is not shrewd. Moreover, by combining Theorem
1.10 with the compactness theorem, we can prove that the principle SR− cannot be used to
characterize large cardinal properties that imply strong inaccessibility.

Proof of Theorem 1.11. (i) Let κ be a weakly shrewd cardinal that is not shrewd. Then
Lemma 3.7 shows that κ is δ-hyper-shrewd for some cardinal δ > κ and we can apply
Corollary 3.10 to conclude that κ is δ-hyper-shrewd in L. Let G be Add(δ+, 1)L-generic over
L. Then Lemma 3.14 shows that, in L[G], the set {δ} is definable by a Σ2-formula without
parameters and κ is an inaccessible weakly shrewd cardinal that is not shrewd. Since 0#

does not exist in L[G] and the partial order Add(δ+, 1)L is <δ-closed in L, we can apply
the last part of Theorem 1.10 in L[G] to find κ < ε < δ with the property that 〈Lε,∈, κ〉
is a transitive model of the formalized Lċ-theory ZFC + {SR−n | 0 < n < ω} with respect to
some canonical formalized satisfaction predicate. Since such a satisfaction predicate can be

defined by a ∆ZFC−

1 -formula, the model 〈Lε,∈, κ〉 also has these properties in both L and
V. These computations prove the first part of the theorem.

(ii) Assume that the existence of a weakly shrewd cardinal that is not shrewd is consistent
with the axioms of ZFC. By Theorem 1.9, this assumption implies that the existence of a
weakly shrewd cardinal smaller than 2ℵ0 is consistent with ZFC. Since the set {2ℵ0} is always
definable by a Σ2-formula without parameters, we can now apply Theorem 1.10 to show that
for all 0 < n < ω, the Lċ-theory ZFC +SR−n + “ κ̇ < 2ℵ0 ” is consistent. By the Compactness
Theorem, this allows us to conclude that our assumption implies the consistency of the
Lċ-theory

ZFC + {SR−n | 0 < n < ω} + “ κ̇ < 2ℵ0 ”.

Now, assume that the above Lċ-theory is consistent. By Theorem 1.7, this implies that
ZFC is consistent with the existence of a weakly shrewd cardinal smaller than 2ℵ0 and
therefore ZFC is consistent with the existence of a weakly shrewd cardinal that is not
shrewd. �

5. Fragments of weak shrewdness

Motivated by Rathjen’s definition of A-η-shrewd cardinals (see [17, Definition 2.2]), we
now study restrictions of weak shrewdness and derive embedding characterizations for the
resulting large cardinal notions. Together with the concept of local Σn(R)-classes, this
analysis will allow us to characterize several classical notions from the lower part of the large
cardinal hierarchy through the principle SR− in the next section. Moreover, our results will
allow us to show that Hamkins’ weakly compact embedding property is equivalent to Lévy’s
notion of weak Π1

1-indescribability.

16This statement about the structure 〈Vε,∈〉 is again stated using the formalized satisfaction relation

Sat.
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Remember that LȦ denotes the first-order language that extends L∈ by a unary predicate

symbol Ȧ.

Definition 5.1. Given a class R, a natural number n > 0 and a cardinal θ, an infinite
cardinal κ < θ is weakly (Σn, R, θ)-shrewd if for every Σn-formula Φ(v0, v1) in LȦ and every
A ⊆ κ with the property that Φ(A, κ) holds in 〈H(θ),∈, R〉, there exist cardinals κ̄ < θ̄ such
that κ̄ < κ and Φ(A ∩ κ̄, κ̄) holds in 〈H(θ̄),∈, R〉.

It is easy to see that a cardinal κ is weakly shrewd if and only if it is weakly (Σn, R, θ)-
shrewd for all cardinals θ > κ, all 0 < n < ω and all classes R that are definable by
Π1-formulas with parameters in H(κ). The following variation of Lemma 3.1 provides a
characterization of restricted weak shrewdness in terms of elementary embeddings between
set-sized structures:

Lemma 5.2. The following statements are equivalent for all classes R, all natural numbers
n > 0 and all infinite cardinals κ < θ:

(i) κ is weakly (Σn, R, θ)-shrewd.
(ii) For every A ⊆ κ, there exist cardinals κ̄ < θ̄ and a Σn-elementary embedding

j : 〈X,∈, R〉 −→ 〈H(θ),∈, R〉 satisfying 〈X,∈, R〉 ≺Σn−1
〈H(θ̄),∈, R〉,17 κ̄+ 1 ⊆ X,

j � κ̄ = idκ̄, j(κ̄) = κ > κ̄ and A ∈ ran(j).
(iii) For every z ∈ H(θ), there exist cardinals κ̄ < θ̄ and an elementary embedding

j : 〈X,∈, R〉 −→ 〈H(θ),∈, R〉 satisfying 〈X,∈, R〉 ≺Σn−1 〈H(θ̄),∈, R〉, κ̄ + 1 ⊆ X,
j � κ̄ = idκ̄, j(κ̄) = κ > κ̄ and z ∈ ran(j).

Proof. First, assume that (ii) holds. Fix a Σn-formula Φ(v0, v1) in LȦ and a subset A
of κ such that Φ(A, κ) holds in 〈H(θ),∈, R〉. Pick cardinals κ̄ < θ̄ and a Σn-elementary
embedding j : 〈X,∈, R〉 −→ 〈H(θ),∈, R〉 such that 〈X,∈, R〉 ≺Σn−1

〈H(θ̄),∈, R〉, κ̄+ 1 ⊆ X,
j � κ̄ = idκ̄, j(κ̄) = κ > κ̄ and A ∈ ran(j). Then A ∩ κ̄ ∈ X and j(A ∩ κ̄) = A. Therefore
elementarity implies that the Σn-statement Φ(A ∩ κ̄, κ̄) holds in 〈X,∈, R〉 and, since our
assumptions ensure that Σn-statements are upwards-absolute from 〈X,∈, R〉 to 〈H(θ̄),∈, R〉,
we can conclude that this statement also holds in 〈H(θ̄),∈, R〉. These computations show
that (i) holds in this case.

Now, assume that (i) holds and fix an element z of H(θ). Pick an elementary submodel
〈Y,∈, R〉 of 〈H(θ),∈, R〉 of cardinality κ with κ ∪ {κ, z} ⊆ Y , and a bijection b : κ −→ Y
with b(0) = κ, b(1) = 〈z, κ〉 and b(ω · (1 +α)) = α for all α < κ. Let Fml∗ denote the class of
all formalized LȦ-formulas and let Sat∗ denote the formalized satisfaction relation for LȦ-
structures. Then the classes Fml∗ and Sat∗ are both defined by Σ1-formulas in L∈. Fix a
recursive enumeration 〈al | l < ω〉 of the class Fml∗ and let A be the subset of κ consisting of
all ordinals of the form ≺l, α0, . . . , αm−1� with the property that l < ω, α0, . . . , αm−1 < κ,
al codes a formula with m free variables and Sat∗(Y,R ∩ Y, 〈b(α0), . . . , b(αm−1)〉, al) holds.
Let ψ(v0, v1) be a universal Πn-formula in LȦ (as constructed in [12, Section 1]).18 Now, pick
a Σn-formula19 Φ(v0, v1) in LȦ such that Φ(B, δ) holds in structures of the form 〈H(ϑ),∈, R〉
if and only if δ < ϑ is a limit ordinal and, in H(ϑ), there exists a set X and a bijection
b : δ −→ X such that the following statements hold:

(i) If x ∈ X and k < ω such that ψ(k, x) holds in 〈H(ϑ),∈, R〉, then ψ(k, x) holds in
〈X,∈, R〉.

17In the setting of this lemma, the notions of Σn-elementary embeddings and submodels are defined

through the absoluteness of Σn-formulas in the extended language LȦ.
18Note that for every infinite cardinal ϑ and every class R, the structure 〈H(ϑ),∈, R〉 is closed under

functions which are rudimentary in R . This shows that for every Πn-formula ϕ(v) in LȦ, we can find k < ω

such that
〈X,∈, R〉 |= ∀x [ϕ(x)←→ ψ(k, x)]

holds for every class R, every infinite cardinal ϑ and every elementary submodel 〈X,∈, R〉 of 〈H(ϑ),∈, R〉.
19Note that, given 0 < n < ω, a standard induction shows that the class of all LȦ-formulas

ϕ(v0, . . . , vm−1) with the property that there exists a Σn-formula ψ(v0, . . . , vm−1) in LȦ such that ZFC
proves that

〈H(ϑ),∈, R〉 |= ∀x0, . . . , xm−1 [ϕ(x0, . . . , xm−1)←→ ψ(x0, . . . , xm−1)]

holds for every class R and every infinite cardinal ϑ is closed under conjunctions, disjunctions, bounded

universal quantification and unbounded existential quantification.
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(ii) δ + 1 ⊆ X, b(0) = δ and b(ω · (1 + α)) = α for all α < δ.
(iii) Given α0, . . . , αm−1 < δ and l < ω such that al codes a formula with m free

variables, we have

≺l, α0, . . . , αm−1� ∈ B ⇐⇒ Sat∗(X,R ∩X, 〈b(α0), . . . , b(αm−1)〉, al).
Then Φ(A, κ) holds in 〈H(θ),∈, R〉 and hence we can find cardinals κ̄ < θ̄ such that κ̄ < κ

and Φ(A ∩ κ̄, κ̄) holds in 〈H(θ̄),∈, R〉. Pick a set X ∈ H(θ̄) and a bijection b̄ : κ̄ −→ X
witnessing this. Then the definition of the formula Φ ensures that all Πn-formulas in LȦ are
downwards-absolute from 〈H(θ̄),∈, R〉 to 〈X,∈, R〉 and this directly allows us to conclude
that 〈X,∈, R〉 ≺Σn−1

〈H(θ̄),∈, R〉. Define

j = b ◦ b̄ : X −→ H(θ).

Then we know that j is an elementary embedding of 〈X,∈, R〉 into 〈H(θ),∈, R〉 satisfying
j � κ̄ = idκ̄, j(κ̄) = κ and z ∈ ran(j). This shows that (iii) holds in this case. �

We now derive some easy consequences of the equivalences established above.

Corollary 5.3. Given infinite cardinals κ < θ, if κ is weakly (Σ1, ∅, θ)-shrewd, then κ is
weakly inaccessible.

Proof. Assume, towards a contradiction, that κ is not weakly inaccessible. Since Lemma 5.2
directly implies that all weakly (Σ1, ∅, θ)-shrewd cardinals are uncountable limit cardinals,
this assumption allows us to find a cofinal subset A of κ of order-type λ < κ. By Lemma
5.2, there exist cardinals κ̄ < θ̄ and an elementary embedding j : X −→ H(θ) satisfying
X ≺Σ0 H(θ̄), κ̄ + 1 ⊆ X, j � κ̄ = idκ̄, j(κ̄) = κ > κ̄ and A, λ ∈ ran(j). But then we have
λ ∪ {λ,A ∩ κ̄} ⊆ X, j � (λ + 1) = idλ+1 and j(A ∩ κ̄) = A. By elementarity, this implies
that otp (A) = λ = otp (A ∩ κ̄) and hence A ⊆ κ̄, a contradiction. �

Next, we observe that, in the case θ = κ+, the Lemma 5.2 yields non-trivial elementary
embeddings between transitive structures. Note that the same argument as for Σ0-formulas
in L∈ shows that 〈M,∈, R〉 ≺Σ0

〈N,∈, R〉 holds for every class R and all transitive classes
M and N with M ⊆ N .

Corollary 5.4. Let R be a class, let n > 0 be a natural number, let κ be a weakly (Σn, R, κ
+)-

shrewd cardinal and let z ∈ H(κ+). Then there exists a transitive set N and a non-trivial
elementary embedding j : 〈N,∈, R〉 −→ 〈H(κ+),∈, R〉 with the property that crit (j) is a

cardinal, 〈N,∈, R〉 ≺Σn−1 〈H(crit (j)
+

),∈, R〉, j(crit (j)) = κ and z ∈ ran(j).

Proof. With the help of Lemma 5.2, we can find cardinals κ̄ < θ̄ and an elementary em-
bedding j : 〈N,∈, R〉 −→ 〈H(κ+),∈, R〉 with 〈N,∈, R〉 ≺Σn−1

〈H(θ̄),∈, R〉, κ̄ + 1 ⊆ N ,
j � κ̄ = idκ̄, j(κ̄) = κ > κ̄ and z ∈ ran(j). In this situation, elementarity implies that
N = H(κ̄+)N = H(κ̄+) ∩N ⊆ H(κ̄+) and, since κ̄ ⊆ N , this shows that N is transitive. In
particular, we know that 〈N,∈, R〉 ≺Σ0 〈H(κ̄+),∈, R〉 and this completes the proof in the
case n = 1. Next, if n > 2, then elementarity directly implies that θ̄ = κ̄+ and this shows
that N also possesses the desired properties in this case. Finally, if n = 2, then we have
〈N,∈, R〉 ≺Σ1

〈H(θ̄),∈, R〉, transitivity implies that all Σ1-formulas are upwards-absolute
from 〈N,∈, R〉 to 〈H(κ̄+),∈, R〉 and from 〈H(κ̄+),∈, R〉 to 〈H(θ̄),∈, R〉, and therefore we
can conclude that 〈N,∈, R〉 ≺Σ1 〈H(κ̄+),∈, R〉 holds in this case. �

The next lemma will allow us to show that both weak inaccessibility and weak Mahloness
are equivalent to certain restrictions of weak shrewdness.

Lemma 5.5. Given a class R of cardinals, the following statements are equivalent for every
cardinal κ in R:

(i) κ is regular and the set R ∩ κ is stationary in κ.
(ii) κ is weakly (Σ1, R, κ

+)-shrewd.

Proof. First, assume that (i) holds and fix z ∈ H(κ+). With the help of an elementary chain
of submodels, we can use the stationarity of R ∩ κ in κ to find a cardinal κ̄ ∈ R ∩ κ and
an elementary substructure 〈X,∈, R〉 of 〈H(κ+),∈, R〉 of cardinality κ̄ such that X ∩ κ = κ̄
and tc({z}) ⊆ X. Let π : X −→ N denote the corresponding transitive collapse.
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Claim. π[R ∩X] = N ∩R.

Proof of the Claim. In one direction, if δ ∈ R ∩ X ⊆ κ+, then the fact that R consists of
cardinals implies that either δ = κ and π(δ) = κ̄ ∈ R, or δ ∈ X ∩ κ = κ̄ and π(δ) = δ ∈ R.
In the other direction, if α ∈ N with π−1(α) /∈ R, then either α < κ̄ and α = π−1(α) /∈ R,
or α > κ̄, α has cardinality κ̄ in N and we can again make use of the fact that R consists of
cardinals to conclude that α /∈ R. �

The above claim now shows that π : 〈N,∈, R〉 −→ 〈X,∈, R〉 is an isomorphism and this
directly implies that π−1 : 〈N,∈, R〉 −→ 〈H(κ+),∈, R〉 is an elementary embedding with
crit

(
π−1

)
= κ̄, π−1(κ̄) = κ and z ∈ ran(π−1). Moreover, we know that N is a transitive set

of cardinality κ̄ and hence 〈N,∈, R〉 ≺Σ0 〈H(κ̄+),∈, R〉. By Lemma 5.2, this shows that (ii)
holds in this case.

Now, assume that (ii) holds. Then Corollary 5.3 shows that κ is regular. Fix a closed
unbounded subset C of κ and use Corollary 5.4 to find a transitive set N and a non-
trivial elementary embedding j : 〈N,∈, R〉 −→ 〈H(κ+),∈, R〉 such that j(crit (j)) = κ and
C ∈ ran(j). Then C ∩ crit (j) ∈ N , j(C ∩ crit (j)) = C and hence crit (j) ∈ Lim(C) ⊆ C.
Since elementarity implies that crit (j) ∈ R, we can now conclude that C ∩ R 6= ∅. This
shows that (i) holds in this case. �

Corollary 5.6. (i) A cardinal κ is weakly inaccessible if and only if it is weakly
(Σ1, Cd, κ

+)-shrewd.
(ii) A cardinal κ is weakly Mahlo if and only if it is weakly (Σ1, Rg, κ

+)-shrewd.

Proof. Note that a regular cardinal is weakly inaccessible if and only if it is a stationary
limit of cardinals. Moreover, a regular cardinal is defined to be weakly Mahlo if and only
it is a stationary limit of regular cardinals. Therefore both statement follow directly from
Lemma 5.5. �

Next, we show that weak Π1
n-indescribability also corresponds to a certain canonical

restrictions of weak shrewdness.

Lemma 5.7. The following statements are equivalent for every cardinal κ and every natural
number n > 0:

(i) κ is weakly Π1
n-indescribable.

(ii) κ is weakly (Σn+1, ∅, κ+)-shrewd.

Proof. First, assume that (ii) holds, A0, . . . , Am−1 are relations on κ and Φ is a Π1
n-sentence

that holds in 〈κ,∈, A0, . . . , Am−1〉. Using Corollary 5.4, we find a transitive set N and
a non-trivial elementary embedding j : N −→ H(κ+) with the property that crit (j) is a

cardinal, N ≺Σn H(crit (j)
+

), j(crit (j)) = κ and A0, . . . , Am−1 ∈ ran(j). Given i < m, if Ai
is a ki-ary relation on κ, then have A ∩ crit (j)

ki ∈ N with j(A ∩ crit (j)
ki) = A. Therefore,

elementarity implies that, in N , the sentence Φ holds in the structure

〈crit (j),∈, A0 ∩ crit (j)
k0 , . . . , Am−1 ∩ crit (j)

km−1〉.
Since this statement can be expressed by a Πn-formula with parameters in N , our as-
sumptions imply that it also holds in H(crit (j)

+
) and therefore it holds in V too. These

computations show that (i) holds in this case.
Now, assume that (i) holds. In order to derive the desired conclusion, we introduce a

canonical translation of Πn-statements over H(κ+) into Π1
n-statements over some expansions

of the structure 〈κ,∈〉 by finitely-many relation symbols. First, we set

P = {〈α, β,≺α, β�〉 | α, β ∈ Ord}.
For each infinite cardinal δ, we now define C(δ) to consists of all subsets B of δ with the
property that

EB = {〈α, β〉 | α, β < δ, ≺α, β� ∈ B}
is an extensional and well-founded relation on δ. Note that with the help of rank functions,
it is easy to see that there is a Σ1

1-formula that uniformly defines C(δ) in 〈δ,∈, P ∩δ3〉. Given
B ∈ C(δ), we let πB : 〈δ, EB〉 −→ 〈zB ,∈〉 denote the corresponding transitive collapse and
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set xB = πB(0). Then xB , zB ∈ H(δ+) for all B ∈ C(δ) and it is also easy to see that every
element of H(δ+) is of the form xB for some B ∈ C(δ). Now, given an infinite cardinal δ
and subsets A,B0, . . . , Bm−1 of δ with B0, . . . , Bm−1 ∈ C(δ), we say that B ∈ C(δ) codes a
model containing A, xB0

, . . . , xBm−1
if the following statements hold:

• xB = κ, πB(1) = A and π−1
B (α) = ω · (1 + α) for all α < κ.

• For every i < m, the transposition τi = (0, i + 2)20 is an isomorphism of 〈κ,EB〉
and 〈κ,EBi〉.

Note that, in the above situation, an easy induction shows that for all i < m, we have
πB = πBi ◦ τi, zB = zBi and xBi = πB(i + 2). Moreover, it is easy to see that for every
m < ω, there is a Σ1

1-formula Ψ(v0, . . . , vm+1) with second-order variables v0, . . . , vm+1 and
the property that for every infinite cardinal δ and all A,B,B0, . . . , Bm−1 ⊆ δ, the statement
Ψ(A,B,B0, . . . , Bm−1) holds in 〈δ,∈, P ∩ δ3〉 if and only if B,B0, . . . , Bm−1 ∈ C(δ) and B
codes a model containing A, xB0

, . . . , xBm−1
. Given some Σ1-formula ϕ(v0, . . . , vm) in L∈,

we can now use the fact that a Σ1-formula in L∈ holds true if and only if it holds true
in a transitive set containing all of its parameters to find a Σ1

1-formula Φ(v0, . . . , vm) with
second-order variables v1 . . . , vm and the property that for every infinite cardinal δ, all A ⊆ δ
and all B0, . . . , Bm−1 ∈ C(δ), we have

H(δ+) |= ϕ(A, xB0 , . . . , xBm−1) ⇐⇒ 〈δ,∈, P ∩ δ3〉 |= Φ(A,B0, . . . , Bm−1).

Now, fix a Πn-formula ϕ(v0, v1, v2) and a subset A of κ with the property that the
statement ∃x ϕ(x,A, κ) holds in H(κ+). With the help of the above constructions, we can
now find a Π1

n-sentence Φ with the property that

H(δ+) |= ∃x ϕ(x,B, δ) ⇐⇒ ∃X ⊆ δ 〈δ, P ∩ δ3, B,X〉 |= Φ

holds for every infinite cardinal δ and every subset B of δ. Then there exists X ⊆ κ with
〈κ, P ∩κ3, A,X〉 |= Φ and hence we can apply [15, Theorem 6] to find a cardinal κ̄ < κ such
that Φ holds in 〈κ̄, P ∩ κ̄3, A∩ κ̄, X〉. But this shows that ∃x ϕ(x,A∩ κ̄, κ̄) holds in H(κ̄+).
These computations allow us to conclude that (ii) holds in this case. �

We end this section by using the embedding characterization for weakly Π1
1-indescribable

cardinals provided by Corollary 5.4 and Lemma 5.7 to show that this large cardinal property
is equivalent to Hamkins’ weakly compact embedding property. Remember that a cardinal κ
has the weakly compact embedding property if for every transitive set M of cardinality κ
with κ ∈ M , there is a transitive set N and an elementary embedding j : M −→ N with
crit (j) = κ.

Corollary 5.8. The following statements are equivalent for every infinite cardinal κ:

(i) κ has the weakly compact embedding property.
(ii) κ is weakly Π1

1-indescribable.
(iii) There is a transitive set N and a non-trivial elementary embedding j : N −→ H(κ+)

with the property that crit (j) is a cardinal, j(crit (j)) = κ and N ≺Σ1
H(crit (j)

+
).

(iv) For every cardinal θ > κ and all z ∈ H(θ), there is a transitive set N and a non-
trivial elementary embedding j : N −→ H(θ) with the property that crit (j) is a

cardinal, j(crit (j)) = κ, H(crit (j)
+

)N ≺Σ1
H(crit (j)

+
) and z ∈ ran(j).

Proof. First, assume that (i) holds. Fix a cardinal θ > κ and z ∈ H(θ). Pick an elementary
submodel X of H(θ) of cardinality κ with κ ∪ {κ, z} ⊆ X and let π : 〈X,∈〉 −→ 〈B,∈〉
denote the corresponding transitive collapse. Note that elementarity directly implies that
π−1 � H(κ+)B = idH(κ+)B . Pick an elementary submodel M of H(κ+) of cardinality κ with
κ ∪ {B} ⊆ M and fix a bijection b : κ −→ B in M . Since M is transitive, we can use the
weakly compact embedding property to find a transitive set N and an elementary embedding
j : M −→ N with crit (j) = κ. Define

D = {≺α, β� | b(α) ∈ b(β)} ∈ M

and let E ∈ M be the binary relation on κ coded by D. Then 〈κ,E〉 is well-founded
and extensional, and b : 〈κ,E〉 −→ 〈B,∈〉 is the corresponding transitive collapse. Now,

20I.e. τi is the unique permutation of κ with supp(τi) = {0, 1 + 2}, τi(0) = i+ 2 and τi(i+ 2) = 0.
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since D = j(D) ∩ κ ∈ N implies that E is contained in N and N is a transitive model
of ZFC−, the above observations show that B and b are also elements of N . Moreover,
since j � κ = idκ, we have j(x) = (j(b) ◦ b−1)(x) for all x ∈ B and therefore we know
that the elementary embedding j � B : B −→ j(B) is an element of N . In addition, since
we have H(κ+)B ⊆ H(κ+)N ⊆ H(κ+) and our setup ensures that H(κ+)B = H(κ+)X is an
elementary submodel of H(κ+), we know that H(κ+)B ≺Σ1 H(κ+)N . Using elementarity,
these computations yield a transitive set A of cardinality less than κ and an elementary
embedding k : A −→ B with the property that crit (k) is a cardinal with k(crit (k)) = κ,

π(z) ∈ ran(k) and H(crit (k)
+

)A ≺Σ1
H(crit (k)

+
). Finally, using the fact that π−1(κ) = κ,

we can conclude that the elementary embedding π−1 ◦ k : A −→ H(θ) possesses all of the
properties listed in (iv). Therefore, these arguments show that (iv) holds in this case.

Next, a combination of Lemma 5.2 with Lemma 5.7 directly shows that (iv) implies (ii)
and (ii) implies (iii).

Finally, assume, towards a contradiction, that (iii) holds and (i) fails. By elementarity, we
know that, in N , there is a transitive set M of cardinality crit (j) with crit (j) ∈M and the
property that for every transitive set B, there is no elementary embedding k : M −→ B with
crit (k) = crit (j). Since this statement can be formalized by a Π1-formula with parameters

M and crit (j), our assumptions imply that it holds in H(crit (j)
+

) and, by Σ1-absoluteness,
it also holds in V. But this yields a contradiction, because the map j �M : M −→ j(M) is
an elementary embedding with these properties. �

Note that the above result also shows that one has to add inaccessibility to the assump-
tions of the statements in [10, Section 4] to obtain correct results.

6. Characterizations of small large cardinals

In this section, we will complete the proof of Theorem 1.13. We start by showing that all
local Σn(R)-classes considered in this section are in fact Σ2-definable.

Proposition 6.1. Let R be a class, let n > 0 be a natural number and let S be a class that
is uniformly locally Σn(R)-definable in some parameter z.

(i) If n = 1, then the class S is Σ1(R)-definable in the parameter z.
(ii) If the class PwSet is Σ1(R)-definable in the parameter z, then the class S is defin-

able in the same way.
(iii) If the class R is definable by a Π1-formula with parameter z, then the class S is

definable by a Σ2-formula with parameter z.

Proof. Let ϕ(v0, v1) be a Σn-formula in LȦ witnessing that S is uniformly locally Σn(R)-
definable.

(i) If n = 1, then the absoluteness of Σ0-formulas between transitive structures implies
that S consists of all sets x with the property that there exists a transitive set N such
that x, z ∈ N and ϕ(x, z) holds in 〈N,∈, R〉. This equality then directly provides a Σ1(R)-
definition of S in the parameter z.

(ii) If the class PwSet is Σ1(R)-definable in parameter z, then the class Cd of all cardinals
and the function that sends a cardinal δ to the set H(δ+) are definable in the same way.
It now follows that S consists of all sets x such that there exists a cardinal δ such that
x, z ∈ H(δ+) and ϕ(x, z) holds in 〈H(δ+),∈, R〉. This again provides a Σ1(R)-definition of
S in the parameter z.

(iii) Assume that there is a Π1-formula ψ(v0, v1) in L∈ that witnesses that the class R is
Π1-definable in the parameter z. By Σ1-absoluteness, the class S consists of all sets x with
the property that there exists a cardinal δ and a set Q such that x, z ∈ H(δ+), ϕ(x, z) holds
in 〈H(δ+),∈, Q〉 and

Q = {y ∈ H(δ+) | H(δ+) |= ψ(y, z)}.
Since the function that sends a cardinal δ to the set H(δ+) is definable by a Σ2-formula
without parameters, we can conclude that S is Σ2-definable in the parameter z. �

We now show how the restricted forms of weak shrewdness introduced above are connected
to principles of structural reflection for local Σn(R)-classes.
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Lemma 6.2. Let R be a class, let n > 0 be a natural number and let κ̄ < κ be infinite
cardinals. If there exists a transitive set N and an elementary embedding j : 〈N,∈, R〉 −→
〈H(κ+),∈, R〉 with κ̄ ∈ N , 〈N,∈, R〉 ≺Σn−1

〈H(κ̄+),∈, R〉 and j(κ̄) = κ, then j(crit (j))

is a regular cardinal and SR−C (j(crit (j))) holds for every local Σn(R)-class over the set
{x ∈ N | j(x) = x}.

Proof. Set µ = j(crit (j)). First, assume, towards a contradiction, that µ is singular. Then
crit (j) is singular in N , and, since N is a transitive model of ZFC−, this shows that N
contains a cofinal function c : λ −→ crit (j) for some ordinal λ < crit (j). Then elementarity
implies that the range of the function j(c) : λ −→ µ is cofinal in µ and this yields a
contradiction, because elementarity also implies that

ran(j(c)) = ran(c) ⊆ crit (j) < µ.

Now, let C be a local Σn(R)-class over the set F = {x ∈ N | j(x) = x}. Pick a Σn(R)-
formula ϕ(v0, v1) and z ∈ F witnessing that the class C is uniformly locally Σn(R)-definable.
Assume, towards a contradiction, that C contains a structure A of cardinality µ with the
property that for every structure B in C of cardinality less than µ, there is no elementary
embedding from B into A. Since C is closed under isomorphic copies, this implies that, in
〈H(κ+),∈, R〉, there is a structure A of the given type of cardinality µ such that ϕ(A, z)
holds and for all structures B of the given type of cardinality less than µ, if ϕ(B, z) holds,
then there is no elementary embedding of B into A. By our assumptions, elementarity allows
us to find a structure A with these properties that is contained in ran(j). Pick B ∈ N with
j(B) = A. Then elementarity ensures that ϕ(B, z) holds in 〈N,∈, R〉. Since Σn-formulas in
LȦ are upwards-absolute from 〈N,∈, R〉 to 〈H(κ̄+),∈, R〉, this shows that ϕ(B, z) holds in
〈H(κ̄+),∈, R〉 and therefore B is contained in C. Next, since N is transitive, the embedding
j induces an elementary embedding of B into A. Finally, since B has cardinality less than µ,
we can pick an isomorphic copy C of B that is an element of H(κ+). Then the structure C is
contained in C and therefore ϕ(C, z) holds in 〈H(κ+),∈, R〉. But then the above arguments
yield an elementary embedding from C into A and this map is also contained in H(κ+),
contradicting the properties of A. �

Corollary 6.3. Let κ be an infinite cardinal, let R be a class and let n > 0 be a natural
number. If κ is weakly (Σn, R, κ

+)-shrewd, then SR−C (κ) holds for every local Σn(R)-class C
over H(κ).

Proof. Let C be a local Σn(R)-class over H(κ). Pick z ∈ H(κ) witnessing that the class C is
uniformly locally Σn(R)-definable. Using Corollary 5.4, our assumptions allow us to find a
transitive set N and a non-trivial elementary embedding j : 〈N,∈, R〉 −→ 〈H(κ+),∈, R〉 with

the property that crit (j) is a cardinal, 〈N,∈, R〉 ≺Σn−1
〈H(crit (j)

+
),∈, R〉, j(crit (j)) = κ

and z ∈ ran(j). Since we now have z ∈ H(crit (j)) ∩ N and j(z) = z, Lemma 6.2 directly
implies that SR−C (κ) holds. �

The following partial converse of Lemma 6.2 is the last ingredient needed for our charac-
terization of small large cardinals through principles of structural reflection:

Lemma 6.4. Let n > 0 be a natural number, let R be a class and let z be a set such that
the class Cd of all cardinals is uniformly locally Σn(R)-definable in the parameter z. Then
there is a local Σn(R)-class C over {z} with the property that whenever SR−C (κ) holds for
some infinite cardinal κ with z ∈ H(κ), then for every y ∈ H(κ+), there exists a cardinal
κ̄ < κ, a transitive set N and an elementary embedding j : 〈N,∈, R〉 −→ 〈H(κ+),∈, R〉 such
that κ̄, z ∈ N , 〈N,∈, R〉 ≺Σn−1 〈H(κ̄+),∈, R〉, y ∈ ran(j), j(κ̄) = κ and j(z) = z.

Proof. Let L denote the first-order language that extends LȦ by three constant symbols.
Define C to be the class of all L-structures that are isomorphic to an L-structure of the
form 〈N,∈, Q, δ, y, z〉 with the property that δ is an infinite cardinal, N is a transitive set
of cardinality δ, Q = N ∩R and 〈N,∈, R〉 ≺Σn−1

〈H(δ+),∈, R〉.

Claim. C is a local Σn(R)-class over {z}.
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Proof. By definition, the class C is closed under isomorphic copies. Note that, given an
infinite cardinal ν with z ∈ H(ν), an L-structure A in H(ν+) is contained in C if and only
if there exists a cardinal µ ≤ ν, a transitive set N of cardinality µ and y ∈ N such that
z ∈ N , 〈N,∈, R〉 ≺Σn−1

〈H(µ+),∈, R〉 and H(ν+) contains an isomorphism between A and
the resulting L-structure 〈N,∈, N ∩ R,µ, y, z〉. In the case n = 1, our assumptions on R
together with the fact that 〈N,∈, R〉 ≺Σ0 〈H(|N |+),∈, R〉 holds for every infinite transitive
set N directly yield a Σ1(R)-formula witnessing that C is uniformly locally Σ1(R)-definable
in the parameter z. Now, assume that n > 1. Since the classes H(µ+) are uniformly Σ1-
definable in the parameter µ and the relativization of a Σn-formula in LȦ to a Σ1-class again
yields a Σn-formula in LȦ, we can use a universal Σn−1-formula in LȦ to find a Σn-formula
ψ(v0, v1) in LȦ with the property that for all infinite cardinals µ ≤ ν and all N ∈ H(ν+),
the statement ψ(µ,N) holds in 〈H(ν+),∈, R〉 if and only if N ∈ H(µ+), N is transitive and
〈N,∈, R〉 ≺Σn−1

〈H(µ+),∈, R〉. Together with the above observations and our assumptions
on R, we can again conclude that there is a Σn-formula in LȦ that witnesses that the class
C is uniformly locally Σn(R)-definable in the parameter z. �

Now, let κ be a cardinal with the property that z ∈ H(κ) and SR−C (κ) holds. Fix
y ∈ H(κ) and pick an elementary submodel 〈X,∈, R〉 of 〈H(κ+),∈, R〉 of cardinality κ such
that κ∪{κ, y, z} ⊆ X. Then the resulting L-structure 〈X,∈, R∩X,κ, y, z〉 is an element of C
of cardinality κ. By the definition of C and our assumptions on κ, there exists an elementary
embedding j of a structure 〈N,∈, Q, κ̄, x, z〉 in C of cardinality less than κ with the property
that κ̄ is a cardinal, N is a transitive set, Q = N ∩R and 〈N,∈, R〉 ≺Σn−1

〈H(κ̄+),∈, R〉. In
particular, we can conclude that j : 〈N,∈, R〉 −→ 〈H(κ+),∈, R〉 is an elementary embedding
with y ∈ ran(j), j(κ̄) = κ and j(z) = z. �

Corollary 6.5. Let n > 0 be a natural number and let R be a class with the property that the
class Cd is uniformly locally Σn(R)-definable without parameters. If κ is the least cardinal
with the property that SR−C (κ) holds for all local Σn(R)-classes over ∅, then κ is weakly
(Σn, R, κ

+)-shrewd.

Proof. Fix z ∈ H(κ+). By Lemma 6.4, there exists a cardinal κ̄ < κ, a transitive set N and
an elementary embedding j : 〈N,∈, R〉 −→ 〈H(κ+),∈, R〉 with the property that κ̄ ∈ N ,
〈N,∈, R〉 ≺Σn−1 〈H(κ̄+),∈, R〉, j(κ̄) = κ and z ∈ ran(j). An application of Lemma 6.2 now
shows that the minimality of κ implies that crit (j) = κ̄. By Lemma 5.2, these computations
show that κ is weakly (Σn, R, κ

+)-shrewd. �

Corollary 6.6. Let n > 0 be a natural number and let R be a class with the property that
the class Cd is uniformly locally Σn(R)-definable without parameters. Then the following
statements are equivalent for every cardinal κ:

(i) κ is the least regular cardinal with the property that κ is weakly (Σn, R, κ
+)-shrewd.

(ii) κ is the least cardinal with the property that SR−C (κ) holds for every local Σn(R)-
class over ∅.

(iii) κ is the least cardinal with the property that SR−C (κ) holds for every local Σn(R)-
class over H(κ).

Proof. First, assume that (i) holds. Then we can use Corollary 6.3 to conclude that SR−C (κ)
holds for every local Σn(R)-class C over H(κ). Moreover, the minimality of κ allows us to
apply Corollary 6.5 to show that κ is the least cardinal with the property that SR−C (κ) holds
for all local Σn(R)-classes over ∅. But this also shows that κ is the least cardinal with the
property that SR−C (κ) holds for all local Σn(R)-classes over H(κ).

Now, assume that (ii) holds. An application of Corollary 6.5 then shows that κ is weakly
(Σn, R, κ

+)-shrewd. Moreover, we can use Corollary 6.3 to conclude that κ is the least
cardinal with this property.

Finally, assume that (iii) holds and let ν ≤ κ be the least cardinal with the property that
SR−C (ν) holds for every local Σn(R)-class over ∅. Then the above computations show that

ν is weakly (Σn, R, ν
+)-shrewd and Corollary 6.3 implies that SR−C (ν) holds for every local

Σn(R)-class over H(ν). This allows us to conclude that ν = κ. �
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Proof of Theorem 1.13. (i) The desired equivalence is a direct consequence of a combination
of Corollary 5.6 with Corollary 6.6.

(ii) Note that the class Cd is uniformly locally Σ1(Rg)-definable without parameters,
because a limit ordinal is a cardinal if and only if it is either regular or a limit of regular
cardinals. Therefore, we can again combine Corollary 5.6 with Corollary 6.6 to derive the
desired equivalence.

(iii) Since the class Cd is uniformly locally Σ2-definable without parameters, the desired
equivalence for weakly Π1

n-indescribable cardinals is a direct consequence of Lemma 5.7 and
Corollary 6.6. �

We end this paper by studying restrictions on the reflection properties of various cardinals.
These results are motivated by unpublished work of Brent Cody, Sean Cox, Joel Hamkins
and Thomas Johnstone that shows that various cardinal invariants of the continuum do not
possess the weakly compact embedding property (see [9]). The following results place this
implication into the general framework developed above.

Proposition 6.7. Given a class I of infinite cardinals, there exists a class C of structures
of the same type such that SR−C (min(I)) fails and the following statements hold for every
natural number n > 0, every class R and every set z:

(i) If I is Σn(R)-definable in the parameter z, then C is definable in the same way.
(ii) If I is uniformly locally Σn(R)-definable in the parameter z, then C is a local Σn(R)-

class over {z}.

Proof. Let L denote the trivial first-order language and define C to be the class of L-
structures whose cardinality is an element of I. Then SR−C (min(I)) fails and both definability
statements are immediate. �

The next proposition provides examples of cardinal invariants of the continuum (the
cardinality 2ℵ0 of the continuum, bounding number b and the dominating number d) that can
be represented as minima of universally locally Σ2-definable classes of cardinals. It should
be noted that a combination of Lemma 5.6, Corollary 6.3 and Proposition 6.7 shows that, by
starting with a Mahlo cardinal κ and forcing Martin’s Axiom together with 2ℵ0 = κ to hold in
a generic extension, it is possible to obtain a model in which the set {2ℵ0} = [b, 2ℵ0 ] = [d, 2ℵ0 ]
is not uniformly locally Σ1(Rg)-definable with parameters in H(κ).

Proposition 6.8. The sets {2ℵ0}, [b, 2ℵ0 ] and [d, 2ℵ0 ] are all uniformly locally Σ2-definable
without parameters.

Proof. First, let ϕ(v) be the canonical Σ2-formula stating that v is a cardinal and there exists
a bijection between v and P(ω). Fix an infinite cardinal ν. In one direction, if 2ℵ0 ≤ ν, then
H(ν+) contains a bijection between 2ℵ0 and the reals, and hence ϕ(2ℵ0) holds in H(ν+).
In the other direction, if ϕ(µ) holds in H(ν+), then the fact that H(ν+) contains all reals
implies that 2ℵ0 = µ. This shows that ϕ(v) witnesses that the set {2ℵ0} is uniformly locally
Σ2-definable without parameters.

Next, let ϕ(v) be the canonical Σ2-formula stating that v is a cardinal and there exists an
unbounded family of cardinality v in 〈ωω,<∗〉. Fix an infinite cardinal ν. Given a cardinal
b ≤ µ ≤ min(ν, 2ℵ0), the set H(ν+) contains a bijection between µ and an unbounded family
in 〈ωω,<∗〉, and hence we know that ϕ(µ) holds in H(ν+). In the other direction, if ϕ(µ)
holds in H(ν+), then there exists an unbounded family in 〈ωω,<∗〉 of cardinality µ and
hence b ≤ µ ≤ 2ℵ0 , because ωω is a subset of H(ν+). Therefore the formula ϕ(v) witnesses
the desired definability of the set [b, 2ℵ0 ].

Finally, if ϕ(v) denotes the canonical Σ2-formula stating that v is a cardinal and there
exists a dominating family of cardinality v in 〈ωω,<∗〉, then we may argue as above to show
that ϕ(v) witnesses the desired definability of the set [d, 2ℵ0 ]. �

In combination with Lemma 5.7, Corollary 5.8 and Corollary 6.3, the above propositions
provide a general reason for the fact that the cardinals 2ℵ0 , b and d do not have the weakly
compact embedding property. In contrast, as discussed in the introduction, Hamkins ob-
served that a cardinal with the weakly compact embedding property can be the predecessor
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of 2ℵ0 . Now, note that if I is a class of cardinals that is definable by a Σ2-formula with pa-
rameter z and β is an ordinal, then the class of all cardinals of the form ℵα with the property
that the cardinal ℵα+β is an element of I is definable by a Σ2-formula with parameters β
and z. In particular, the above propositions show that if κ is a weakly shrewd cardinal and
α < κ, then κ+α /∈ {2ℵ0 , b, d}. Finally, note that a combination of Theorem 1.10, Lemma
3.12 and Lemma 3.13 shows that, if δ is a subtle cardinal and G is Add(ω, δ)-generic over
V, then, in V[G], the interval (b, d)21 contains unboundedly many weakly shrewd cardinals.
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