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Empirical research in philosophy of mathematics is rare. Possibly, this
can be traced back to the (Kantian) conviction that mathematics does
not depend on human experience, but is accessible to the reine Vernunft.
According to this conviction, the truth of mathematical statements and
the status of mathematical knowledge should not depend on contingent
facts about humans or human society. This view has not only left traces
in philosophy of mathematics, but can also be seen in the practice of
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sociology: Compared to sociological research dealing with other sciences,
sociology of mathematics is severely underrepresented.1

On the other hand, some of the central questions of philosophy of
mathematics have an empirical core, and some of the statements that
one finds in philosophical texts about mathematics are empirical claims.

For instance, consider the question of the connection between philo-
sophical views and mathematical achievements. According to main-
stream philosophical belief, many working mathematicians are Platon-
ists believing in the actual existence of mathematical objects. It is part
of this mainstream belief that these mathematicians interpret their own
work as mental manipulation of abstract objects or of mental repre-
sentations of abstract objects. This last claim is without any doubt
an empirical claim about mathematicians. It is an interesting question
whether there is a correlation between philosophical attitudes and math-
ematical success, or—to put it more bluntly—whether you have to be a
Platonist in order to be a great mathematician. This statement can be
true or false; the reasons for its truth or falsity need not be empirical;
but the statement itself is an empirical statement, and the most natural
way to find out whether it is true or false is to test it. Very few philoso-
phers of mathematics take this last step, and, as mentioned before, it is
not an easy step to take, as data on these questions is not abundant.

Philosophy of mathematics, like other areas of philosophy, relates
phenomena (in this case, mathematics) to a philosophical theory.
Whether the philosophical theory is correct/adequate or not is not inde-
pendent of the phenomena. In analytic philosophy and in particular in
philosophical logic, the analysis of phenomena is often done by a tech-
nique that one could call conceptual modelling, philosophical modelling,
or logical modelling, in analogy to the well-known applied mathemat-
ics technique of mathematical modelling. This technique consists of a
number of natural steps, one of which is to confront the philosophical
model with the phenomena. We claim that in many areas of philosophy,
especially in the case of philosophy of mathematics, this step is under-

1Cf. Heintz [2000]: 9, “Die Soziologie [begegnet] der Mathematik mit einer eigen-
tümlichen Mischung aus Devotion und Desinteresse” (sociology meets mathematics
with a queer mixture of devotion and lack of interest). Her study thus reconfirms
the earlier assessment of Latour ([1987]: 245f).
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developed, and we propose to consider collecting data that allow us to
identify stable philosophical phenomena in mathematical practice.

This paper is a case study that should be seen as a part of a much
larger research agenda of the first two authors: the development of an
empirical study of philosophy of mathematics. Such an approach could
be called “naturalistic” (as in Maddy [1997]) or a “Second Philosophy
of Mathematics” (as in Maddy [2007]). We will use the label “Empiri-
cal Philosophy of Mathematics” in order to stress the fact that there is
actual empirical work to be done in this field. The project Empirical
Philosophy of Mathematics consists of a theoretical foundation and an
unlimited number of questions and practical projects. Some first steps
towards Empirical Philosophy of Mathematics have been documented in
Löwe and Müller [2008]; Müller-Hill [2009]; Löwe [2007]. The theoretical
foundation should contain a sustained argument for the methodology
of conceptual modelling as pointed to above, especially an argument
for the necessity of empirical checks on the philosophical theories es-
tablished via this method. This argument is not meant to operate on
the (probably hopeless) level of generality of “giving a methodological
basis for philosophy,” but rather should address the specific method-
ological issues of one particular argumentation scheme in philosophy, in
our case, exemplified in philosophy of mathematics. Practical projects in
Empirical Philosophy of Mathematics might, e.g., address a single philo-
sophically interesting question about mathematics and employ empirical
methods from psychology, cognitive science, linguistics, textual analy-
sis, and quantitative or qualitative sociology, to provide an empirically
well-founded answer to the given question.

In accord with what has been said above, this paper has two parts: a
discussion of the method of Empirical Philosophy of Mathematics, and
a case study addressing one specific aspect of the analysis of knowledge
ascriptions in mathematics. In the first part, we shall mostly proceed de-
scriptively, with few examples and no arguments.2 Section 1 gives some
background on the practice of mathematical modelling, and Section 2
draws parallels to the case of philosophical, or conceptual, modelling.

2For a further discussion of the motivation for a new approach to philosophy
of mathematics, we refer the reader to the introductory paper Buldt, Löwe, and
Müller [2008] in the special issue of the journal Erkenntnis entitled “Towards a New
Epistemology of Mathematics.”
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However, the proper development of the main tenets of the theoreti-
cal foundations for Empirical Philosophy of Mathematics has to be left
for future work. In the second part (Section 3), we use data procured
by the third author, described in more detail in the paper Müller-Hill
[2009], to answer a specific question in the epistemology of mathemat-
ics. This part is meant to exemplify how the practical side of Empirical
Philosophy of Mathematics would be carried out. We trust that this
will provide enough detail to get an impression of the interplay between
philosophical work and empirical studies.

1 Mathematical Modelling
The notion of a model has acquired a prominent place in contemporary
philosophy of science. A great variety of uses of the term “model” has
been studied (cf. Frigg and Hartmann [2006] for an overview). There
is widespread agreement that models play a crucial role in scientific
practice, and that a fair amount of that practice consists in modelling.
In Section 2 we will suggest that the modelling paradigm also provides
a good framework for certain philosophical investigations, and we will
propose a modelling paradigm, which could be called philosophical mod-
elling or conceptual modelling, as an approach to philosophy of mathe-
matics.

In order to have some basis for drawing an analogy, in this section
we will describe the practice of mathematical modelling, as exemplified
in the sciences. The aim of this exposition is not to give an in-depth
account of mathematical modelling, but to show its features relevant for
the discussion in Section 2.

Following the Galilean conviction that the book of nature è scritto
in lingua matematica, in science it is customary to employ mathematical
methods to describe, explain, or predict phenomena wherever possible.
Kepler’s work on planetary motion illustrates important aspects of such
mathematical modelling. Kepler first proposed a model of the solar sys-
tem in which a number of spheres containing the planets were arranged
in an intricate manner determined by the five Platonic solids. This
model was inspired by the conviction that God’s universe must exhibit
a high degree of mathematical harmony, and it did fit the then avail-
able data reasonably well. Later on, when Tycho Brahe’s more accurate
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data became available to him, Kepler proposed different mathematical
models containing what we now call Kepler’s three laws of planetary
motion, describing elliptical instead of spherical orbits of the planets.

With hindsight, one might describe this episode in the history of
science as follows:
(1) Kepler started with a view of what a model of the solar system

should look like. His view was that God must have arranged the
(then known) six planets in such a way that their spatial layout is
determined by some order of the five Platonic solids.

(2) Guided by the available (Copernican) data, he found the best
model from the mentioned class, i.e., a particular ordering of the
solids.

(3) A confrontation with Brahe’s data afterwards showed that the
model was inadequate. Kepler began to look for a new class of
models, still believing that there must be mathematical harmony
in the motion of the planets.

(4) Thus Kepler went through a new cycle of modelling. He tried out
a number of algebraic descriptions of planetary motion and finally
arrived at his celebrated laws.

Abstracting from the historical setting, one can formulate an iterative
method of mathematical modelling exhibited in this, but also in many
other episodes from science:
Step 1 One starts with a class of models that appear as reasonable can-

didates. This class may be determined by pre-theoretical insight,
or by earlier steps in the iteration.

Step 2 One collects data and tries to achieve a best fit within the avail-
able class of models.

Step 3 One determines the goodness of fit and will either be satisfied or
revert to Step 1, having chosen a different class of models.

This basic scheme is at work in many areas of science, both historically
and at present. Statistical tools have been developed for assessing the
“goodness of fit” of models and data. There is usually an additional layer
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of modelling for the data themselves (in order to handle measurement
errors), and the determination of best-fit models is usually carried out on
a computer (cf., e.g., Gershenfeld [1999]). But the underlying structure
appears to be preserved.

In mathematical modelling, the step of confronting the selected mod-
el with the observed phenomena is absolutely crucial. As every scientist
will be proud to say, honesty with respect to that step is the mark
of good science: A beautiful mathematical theory is worth nothing if
it doesn’t fit the phenomena in question. Whether this ideal is always
achieved in practice is, of course, another question, but the overall meth-
odology is clear: Modelling is an iterative procedure, and unless one has
achieved a good fit, one cannot leave the circle.

2 Conceptual Modelling
Viewed abstractly, the aim of establishing a “philosophy of X” is quite
similar to finding a “model for Y ” in the sciences: One wishes to gain
theoretical insight into (some) aspects of a certain phenomenon by rep-
resenting them in a specific way.3 In epistemology, to give just one
example, one of the key questions is what knowledge consists in. Vari-
ous models of knowledge are on the market; a time-honored conception,
dating back to Plato’s Meno, takes knowledge to be justified true belief.

In an episode resembling Kepler’s confrontation of his Platonic model
of the heavens with Brahe’s observational data, the Platonic conception
of knowledge was also challenged by data taking the form of counterex-
amples: Gettier ([1963]) constructed plausible scenarios in which per-
sons have justified true belief, but not knowledge. (E.g., someone might
believe in a true disjunction, but her justification supports the false dis-
junct, while the other is, unbeknownst to her, in fact true.) The ensuing
debate led to a repertoire of test cases that serves as a benchmark for
theories of knowledge: One way or another, any respectable analytic
model of knowledge has to answer the challenges posed by Gettier- and
post-Gettier-examples.

As in the scientific case described in the previous section, the actual

3The question whether that is what’s behind the demand for an “explanation” of
the phenomenon must be left open at this point.
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details of the story are of course more complicated. Surely everybody
agrees that if Gettier cases are cases of justified true belief without
knowledge, then knowledge cannot be justified true belief. But how do
we know? It may be reasonably simple to determine whether a person
has a justified true belief (depending on one’s account of justification)—
but how to judge the presence or absence of knowledge in a given sce-
nario? People certainly have their intuitions and gut feelings, and in
many cases that may be sufficient. But in the epistemological case at
hand, intuition confronts intuition.

It is for such cases that we propose to mirror the method of math-
ematical modelling in the sciences more closely in a philosophical con-
text.4 Thus, conceptual modelling of X also takes the form of an itera-
tive process:

Step 1. Theory formation Guided by either a pretheoretic understand-
ing of X or the earlier steps in the iteration, one develops a struc-
tural philosophical account of X, including, e.g., considerations of
ontology and epistemology.

Step 2. Phenomenology With a view towards Step 3, one collects data
about X and extracts stable phenomena from them that are able
either to corroborate or to question the current theory.

Step 3. Reflection In a circle between the philosophical theory, the philo-
sophical theory formation process and the phenomenology, one
assesses the adequacy of the theory and potentially revises the
theory by reverting to Step 1.

In many debates of contemporary epistemology, Step 2 consists of a
presentation of the author’s intuitions about the case at hand, possibly
supported by anecdotal evidence. While this may be enough if there is
widespread consensus about the analysis, a different solution needs to
be found if one has to decide between competing models. The obvious
solution, in view of the scientific modelling practice, is to supply more
data from a more varied range of sources, including data established
via accepted empirical methods. On this view, the key to successful
conceptual modelling lies in strengthening Step 2 of the above iterative

4For more details, cf. Löwe and Müller [to appear].
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scheme.5 In epistemology, the necessary data might, e.g., be supplied
from empirical linguistics or from cognitive science. In the recent episte-
mological debate the need for such an empirical component is felt rather
strongly, and a number of authors have discussed the philosophical rel-
evance of “going empirical.”6

Similarly, philosophers of mind might in their investigations refer
to results from cognitive science or neuroscience, while philosophers of
language might refer to corpora from linguistics. Stich ([2001]) has
argued that quite generally, it is time for philosophy to stop relying on
intuitions, i.e., translated into our terminology: to look for an empirical
basis for Step 2. In the philosophy of a science X, the relevant data
might come from a description of the scientific practice, e.g., as provided
by an empirically founded sociology of X. Since the 1980s, such an
approach to philosophy of physics and biology has proved fruitful, even
though there is no universal consensus about all of the results (Hacking
[1999]; Harding [1986]; Knorr Cetina [1999]; Latour and Woolgar [1979];
and Pickering [1984]).

In a similar vein, many authors emphasize the social embedding of
mathematics as an important factor for philosophy of mathematics, for
instance, the late Wittgenstein, Philip Kitcher ([1984]), Paul Ernest
([1998]), or David Bloor ([1996] and [2004]). Yet, there has hardly been
done any empirical research about actual mathematical research prac-
tice. As mentioned in the introduction, sociology of science has, with
few exceptions, shunned away from taking mathematics as an object
of study—mainly just because preconceived philosophical convictions
made such studies appear senseless or impossible (cf. Footnote 1). The
first large-scale socio-empirical study published was Bettina Heintz’s

5In this vein it is easier to reach a negative verdict (stop at Step 3) than to es-
tablish a positive result (start afresh at Step 1 and complete the cycle successfully).
This may explain the affinity of analytic philosophy to producing more negative than
positive results. Cf. also Löwe and Müller [to appear]: §5.3. This affinity is connected
to Gian-Carlo Rota’s ([1991]) sharp criticism of what he calls “mathematical philos-
ophy.”

6For a still rather traditional example of employing linguistic data in epistemol-
ogy, cf. Stanley [2004]. More decidedly experimental views are discussed in Wein-
berg, Nichols, and Stich [2001]; Alexander and Weinberg [2006]; Nagel [2007]; Swain,
Alexander, and Weinberg [2008]. For a detailed discussion of this debate in the
framework of conceptual modelling, cf. Löwe and Müller [to appear]: §4.3.
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([2000]) work about the culture and practice of mathematics as a scien-
tific discipline mentioned in the introduction.7

In philosophy of mathematics, conceptual modelling according to the
above scheme is therefore hampered by the fact that there is little empir-
ical data available; accordingly, one has to work on Step 2 and Step 3 of
the modelling cycle: Acquire data and develop instruments to interpret
these data. The objective of Empirical Philosophy of Mathematics is to
integrate these two objectives, working hand in hand with sociologists,
cognitive scientists, psychologists, and experts in mathematics educa-
tion in order to gain access to the necessary empirical data. This is not
an easy task, and it is only too tempting to oversteer: While trying to
emphasize the importance of Step 2, one could forget the original philo-
sophical agenda and transform Empirical Philosophy of Mathematics
into pure sociology of mathematics. The philosopher has to ask herself
what the philosophical content of empirical facts such as “the majority of
mathematicians accepts that X knows that p” is. How do we transcend
the mere description of what mathematicians are doing and enter the
study of understanding what mathematics is? In some cases, the em-
pirical findings, or even the experience of collecting the empirical data,
will be philosophically relevant for the argumentation for or against the
particular methodology employed. This emphasizes the close relation-
ship of the modelling cycle of conceptual modelling as described above
and the hermeneutic circle.

Since giving an exhaustive description of and argument for the meth-
odology of conceptual modelling is impossible, we will illustrate this
approach in Section 3 via a case study that employed methods from
quantitative sociology to generate the data. We think that this ex-
plains the methodology (and its difficulties) more than any attempt of
a theoretical description. In our case study, the aim is to incorporate
empirical data about actual mathematical practice in order to elucidate
the knowledge concept used in mathematical practice. This should pro-
vide input for a philosophical theory of mathematical knowledge and the
epistemological role of formalizability in mathematics. In terms of our
modelling scheme, the study proceeds from Step 1 to Step 3, reaching a

7Before Heintz ([2000]), Markowitsch used qualitative sociological studies (inter-
views with mathematicians) in his [1997].
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negative conclusion about the model chosen in Step 1.

3 Case Study: The Role of Formal Proofs
in Mathematical Epistemology

3.1 THE PHILOSOPHICAL ISSUE AND THE EMPIRICAL TEST
QUESTIONS

Mathematical knowledge is generally assumed to be absolute and un-
deniably firm. The main reason for that special status lies in the fact
that mathematicians prove their theorems: Mathematical knowledge is
proven knowledge (“more geometrico demonstrata”). Thus, mathemat-
ical knowledge stands out as knowledge with a uniform witness, the
notion of proof, which since the end of the 19th century has been con-
nected to the ideal of formal proof. Mathematical certainty seems to
come from the fact that we believe that it is possible to formalize all
informal proofs.

Even though this standard view of knowledge in mathematics is cen-
tral in philosophical debates, neither formal proof nor the formalizations
of informal proofs play a big role in actual mathematical practice. The
philosopher of mathematics, at least if she wishes to develop a phi-
losophy of mathematics that reflects to a certain extent mathematical
practice, should try to explain this discrepancy and answer the question:
What is essential about formalizability for a philosophical understand-
ing of mathematical knowledge?

The traditional view could for example be presented as follows: For
a mathematician X and a mathematical statement ϕ, “X knows that
ϕ” holds if and only if X has access to an informal proof of ϕ that can
be rendered into a formal derivation.

Note that such a characterization of mathematical knowledge is not
a precise philosophical position since various notions (“has access to,”
“can be rendered”) are vague and need explication.8 However, even from
this imprecise characterization, one can deduce a number of features
of mathematical knowledge (under very mild assumptions about the
vague terms in the characterization). For instance, unless there is an

8This is discussed in more detail in Löwe and Müller [2008]: §3.
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inconsistency in our basic axioms of mathematics, it would be impossible
for X to know ϕ at time t and to know ¬ϕ at time t′, even if t ≠ t′: If X
had access to an informal proof at time t that can be transformed into
a derivation D of ϕ and had access to an informal proof at time t′ that
can be transformed into a derivation D′ of ¬ϕ, then the derivations D
and D′ witness that there must be an inconsistency in our underlying
base axiom system.9

In the naturalistic spirit of Empirical Philosophy of Mathematics, we
can test the above traditional view of mathematical knowledge: If the
usage of mathematicians allows for conflicting knowledge ascriptions,
then the traditional view must be abandoned.

It should be emphasized that it is an interesting question whether
the results of our investigation are specific for mathematics at all. Our
report here focuses on one particular aspect of the questionnaire study
that was conducted, and could give the impression that the only thing
that we are interested in is the question “Is the actual usage of mathe-
matical knowledge attributions compatible with facticity of knowledge?”
(or, more specifically, “Can you adequately/truthfully say ‘I knew it
this morning, but now I don’t know it anymore’?”). Reduced to this
question, you might wonder whether our investigation would not yield
exactly the same results if you told a story about biologists, physicists,
or just ordinary people talking about red cars or clocks. And it actually
might. We think that this is an interesting empirical research question
for linguists with relevance for epistemology. If anything, such an empir-

9As one referee pointed out, this is assuming that there are no “different ac-
ceptable axiomatizations at different times.” This description can refer to several
phenomena in mathematics, related to the subtle gradation of the use of axiomatics:
On one end of the spectrum, axioms serve as part of the definition of a concept,
on the other end, they are self-evident truths about mathematics. In the first case,
“different acceptable axiomatizations” might refer to historical examples of changes
in the meaning of basic concepts (cf. Buldt, Löwe, and Müller [2008]: §2 for a dis-
cussion of the notion of continuity); in the second case, we would be talking about
something that Maddy ([1997]: 208) would call a failure of the maxim unify. Both
phenomena are interesting and worthy of study within our paradigm of Empirical
Philosophy of Mathematics, but for the current investigation we will disregard the
possibility of such a situation—in the example employed in our case study, a change
in axiomatization is not an issue.
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ical finding would only corroborate our belief that the idea of a special
epistemic status of mathematics is highly problematic.

3.2 OUR TEST

In order to test the traditional view that mathematical knowledge is
special because it is based on formalizable proof, we set up a quanti-
tative experiment. It is difficult to get access to large enough numbers
of test subjects for questions like this10; for this study, we used an on-
line questionnaire that was advertised via scientific newsgroups. This
guaranteed a relatively large number of test subjects, but limited the
study to mathematicians who read newsgroups. Yet, we do not regard
this as a serious limitation of the representativity of the sample, as a
significant correlation between the habit of reading newsgroups and a
certain attitude towards formalization is not very likely.

Our questionnaire contained mostly multiple choice questions, but
also left some space for qualitative comments. It was posted on a web-
page from August 2006 to October 2006 and announced via postings
in three different scientific newsgroups, with about 100 valid responses
out of 250 responses in total. A response was considered as valid if the
personal data part and at least one question of the questionnaire was
completed.11

The personal data part served to decide whether a participant be-
longed to the target group of participants who have been involved in
research or university-level teaching. We got 76 valid responses from
the target group. Most of these responses came from the US, Germany,
and the Netherlands. 46.1% of the target group participants hold a
Ph.D. (or an equivalent degree), 19.7% an M.Sc. (or an equivalent de-
gree), and 13.2% a B.Sc. (or an equivalent degree) in mathematics.

3.3 SELECTED RESULTS

The questionnaire had 74 questions in total, but we will only present
some questions and results that are significant for the interpretation

10Together with Francesco Lanzillotti and Henrik Nordmark, the first author has
attempted to access research mathematicians via the organizers of international con-
ferences with extremely limited success.

11In the presentation of the results in Section 3.3 we will give the total count of
valid answers for each reported multiple choice question.
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regarding the test question.12

In one part of the questionnaire, participants were led through four
scenarios. Each screen of the online questionnaire contained a piece
of the scenario, and at the end of each screen the participants were
asked whether they would ascribe knowledge to the protagonist of the
scenario or not. In the following, we will give excerpts from one of these
scenarios.

John is a graduate student, and Jane Jones, a world fa-
mous expert on holomorphic functions, is his supervisor.
One evening, John is working on the Jones conjecture
and seems to have made a break-through. He produces
scribbled notes on yellow sheets of paper and convinces
himself that these notes constitute a proof of his theorem.

Does John know that the Jones conjecture is true?
◻ Yes
◻ Almost surely yes
◻ Almost surely no
◻ No
◻ Can’t tell

Screenshot 1: First screen of the “Jones Conjecture” scenario

On the following screens, the story continues: John presents the
proof sketch to his professor, she discovers a gap and fixes it, they
jointly write a paper that they submit to a mathematical journal of
high reputation. After a thorough refereeing process of 18 months, the
paper is accepted on the basis of a positive referee report. At the end
of each screen the participants are asked the same question, “Does John
know that the Jones conjecture is true?” Finally, the scenario ends with
Screenshot 2.

Table 1 contains the results for three of the questions for the Jones
scenario. Q1 is the question whether John knows that the Jones conjec-
ture is true after the paper was published, Q2 is the question whether
John knows that the Jones conjecture is false after he discovers the coun-

12Cf. Müller-Hill [2009] for a more detailed exposition of the results of the survey.
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After his Ph.D., John continues his mathematical career.
Five years after the paper was published, he listens to a
talk on anti-Jones functions. That evening, he discovers
that based on these functions, one can construct a coun-
terexample to the Jones conjecture. He is shocked, and
so is professor Jones.

Does John know that the Jones conjecture is false?
◻ Yes
◻ Almost surely yes
◻ Almost surely no
◻ No
◻ Can’t tell

Did John know that the Jones conjecture was true on the
morning before the talk?
◻ Yes
◻ Almost surely yes
◻ Almost surely no
◻ No
◻ Can’t tell

Screenshot 2: Final screen of the “Jones Conjecture” scenario

terexample, and Q3 is the question whether he knew that the conjecture
was true on the morning before the talk. Note that Q2 and Q3 are on
the same screen (see above), so participants are aware of their answer to
Q2 when answering Q3 and vice versa. After finishing the scenario, the
participants were given the opportunity to write down comments on the
scenario in a free-text field. Here are some selected quotes, emphasizing
different factors that influenced the answers in the Jones scenario:

– “How important is the Jones conjecture? How large is the com-
munity?”

– “My answers would have been very different with different time
frames mentioned.”



Mathematical Knowledge · 199

Y
es

A
lm

os
t

A
lm

os
t

N
o

C
an

’t
te
ll

su
re
ly

ye
s

su
re
ly

no

Q
1

C
ou

nt
Σ
=

66
19

37
2

3
5

Fr
eq
ue
nc

y
28
.8

%
56
.1

%
3.

0%
4.

5%
7.

6%

Q
2

C
ou

nt
Σ
=

62
9

29
4

5
15

Fr
eq
ue
nc

y
14
.5

%
46
.8

%
6.

4%
8.

1%
24
.2

%

Q
3

C
ou

nt
Σ
=

62
15

29
3

9
6

Fr
eq
ue
nc

y
24
.2

%
46
.8

%
4.

8%
14
.5

%
9.

7%

T
ab

le
1:

R
es
ul
ts

fo
r
th
e
Jo

ne
s
sc
en
ar
io



200 · Benedikt Löwe, Thomas Müller, and Eva Müller-Hill

– “I don’t know John . . . , so I don’t have a good feel for how
rigorously [he] . . . work[s].”

3.4 INTERPRETATION

The results from the Jones scenario are to a certain extent as one would
expect. After thorough refereeing and publication of the result in a
respected journal, John is taken to know that the Jones conjecture is
true—the great majority (84.9%) of the participants gave a positive
answer (“yes” or “almost surely yes”) to Q1. After discovery of the
counterexample, a majority ascribes to John knowledge that the Jones
conjecture is false—61.3% of the participants gave a positive answer
to Q2, and only 14.6% deny his knowledge (“no” or “almost surely
no”). The answers to Q3, however, might be surprising: In a situation
in which the storyline has revealed that there is a counterexample to
the conjecture, still a majority of 71% gave a positive answer to that
question, i.e., would ascribe knowledge of the conjecture on the morning
before he learned about the counterexample.

In order to appreciate this phenomenon, let us look at the correlation
figures. Of the 38 participants who agreed to Q2, 27 also agreed to Q3
(71.1%). With this empirical result, we can now move to Step 3 of the
modelling cycle: As argued in Section 3.1, a philosopher endorsing the
traditional view of epistemology of mathematics is not able to accept
the statement “John knows ϕ at time t and John knows ¬ϕ at time
t′.” However, a large number of our test subjects did exactly that, and
so we either have to accept a notion of mathematical knowledge that
ignores the usage of this large portion of the community, or give up
the traditional view. Based on our methodological position, we discard
the former option and choose the latter. The free text comments given
in the survey further support the view that mathematical knowledge is
highly context-sensitive.

Our socio-empirical analysis gives a negative result; it is now our task
as philosophers of mathematics to turn it into a philosophical insight:
In the modelling cycle, we are now returning to Step 1. Based on the
quantitative data, the free text comments, and further results from a
qualitative interview study with mathematicians (planned by the third
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author), we should now develop a new understanding of knowledge that
replaces the one that we called the “traditional view.”
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