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Hyperbolic homogeneous polynomials

Definition

A homogeneous polynomial  : R™! — R is called hyperbolic if 3p e {h >0},
such that —62hp has Minkowski signature. Such a point p is called hyperbolic
point of h.

® two homogeneous hyperbolic polynomials h,ﬁ equivalent :<
JAeGL(n+1), such that A"h =h

® there is precisely one equivalence class of quadratic homogeneous
hyperbolic polynomials in each dimension

® there is no general classification for higher degree deg(h) >3

Example: /= 2" - 2% (y” + 2°) - 22ay°
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Projective special real manifolds

Definition
A projective special real (PSR) manifold is a hypersurface J contained in the

level set {h =1} of a cubic homogeneous hyperbolic polynomial, such that H
consists only of hyperbolic points of h.

* two PSR manifolds H, H equivalent :<> 3 A ¢ GL(n + 1), such that
AH) =K

e Hc{h=1},H c {h =1} equivalent = h,h equivalent, the converse is in
general not true

® PSR manifolds have Riemannian centro-affine fundamental form
g = —0?h|r3cxrsc, defined by c.-a. GauB eqn. DxY = VY + g(X,Y)¢
VX,Y € X(H), where £ is the position vector field

Example: h = zyz
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Why study PSR manifolds?

Geometry of Kahler cones [DP'04, W04, TW'11]:
® for X a compact Kahler 3-fold, the cubic homogeneous polynomial

hiHY (OGR) SR, [w]e [ o
X

is hyperbolic since every point in the Kahler cone X c H"'(X;R) is
hyperbolic by the Hodge-Riemann bilinear relations

® H:={h=1}nX is a PSR manifold

® in general, H is not a connected component of
{h =1} n{hyp. points of h}

H™(XR)
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Why study PSR manifolds?

Explicit constructions of special Kahler and manifolds:

® supergravity r-map constructs from given PSR manifold H a projective
special Kahler (PSK) manifold M = R™! + iR, - 3 [DV'92, CHM'12]

® supergravity c-map constructs from given PSK manifold M a
(non-compact) = M x R*™*5 x Ry
[FS'90]

® above constructions preserve geodesic completeness

M

7 rigid c-map

ASK/PSK HK/QK

sugra r-map sugra c-map
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Why is it difficult to classify PSR manifolds?

® set of hyperbolic polynomials is open in Sym®(R"**)*

* dim(Sym?®(R™"")*) growth cubically in n while dim(GL(n + 1)) growth
only quadratically in n

® GL(n +1), acting via linear change of coordinates, is non-compact
® in general polynomial equivalence # PSR equivalence:

Example

{h=x(y? - 2*) + y® = 1} has four hyperbolic connected components, two of
which are equivalent [CDL'14, Thm. 2,5)].
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Known classification results

By restricting considered polynomials, obtain following classifications:
* homogeneous PSR manifolds in all dimensions [DV'92]
® PSR curves & surfaces [CHM'12, CDL'14]
® PSR manifolds with reducible defining polynomial [CDJL'17]
Question: What is a realistic approach to better understand the moduli space
Symg ,(R™*1)*/GL(n + 1) for arbitrary n?
Idea:
® instead of Symﬁyp(R"*l)*/GL(n + 1), consider classes of maximal
connected PSR manifolds, i.e. connected components of
{h =1} n {hyp. points of h}
e further split up their study in closed and not closed (in the ambient
space) PSR manifolds
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Why “closed / not closed”?

Theorem [CNS’16]
A PSR manifold is closed in its ambient space iff it is complete wrt. its
centro-affine fundamental form.

[Wu'74, L'19] ~ H closed <> intersection of cone R,o - H with any p+ T, H
precompact
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Technical results

We define a convenient standard form for PSR manifolds. Denote
y = (yla"'7y7’b)-

Proposition [L’19]

For 3 c {h =1} a PSR manifold & p € 3 arbitrary, 3 A(p) e GL(n + 1), s.t.
* A(p)-(1,0,...,0)" = p,
* A(p)*h=1"-x{y,y) + Ps(y).

A:H - GL(n+1) can be chosen to be smooth

explicit description of A known, not “too bad”

P; :R"™ - R is some cubic homogeneous polynomial

Ps is never uniquely determined by H

if 3 is connected, in standard form, & (1,0) € H, the point (z,y) = (1,0)
minimizes the Euclidean distance of H and 0 ¢ R™*!
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A generating set for moduli space of closed connected PSRs
Let | - | denote the norm | P| := (ma)xl |P(y)| on Sym®(R™)*.
Y,y)r=

Theorem [L’19]

The connected component of 3 c {z® — z(y, y) + P3(y) = 1} containing
(z,) = (1,0) is a closed PSR manifold iff | P3| < 2~

Proof: ~ reduce problem to | Ps| = %ﬁ + “starshape” property ~ further
reduce to dimension 2 ~ can use [CDL'14] and check by hand O

Corollary

€ = {2° ~ 2{y,y) + Pa(y) | [Ps] < 325} « Sym®(R™*")* is a compact
convex generating set of the moduli space of closed connected PSR manifolds
in dimension n > 1.
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Consequences for the GL(n + 1)-orbits

For a given closed connected PSR manifold in standard form H c {h =1}, let
GLsg¢(n + 1) denote the transformations preserving the standard form.

Corollary
The set GLgc(n +1)-h c C, is precompact in Sym®(R™*)*.

Questions: What are the possible boundary points 9 (GLg¢(n + 1) - h)? What
information for H do they give us? How can we calculate them?

Definition

Closed connected PSR manifolds F c {h =1} in standard form with
hed(GLy(n+1)-h) are called limit geometries of H c {h =1}.
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Finding limit geometries
Motivation from geometry of Kahler cones:

® view c1(X) as constant vector field in
H"'(X;R)

® project ¢1(X) centrally to
He{h=[ w’ =1}

® calculate standard form of h along
integral curve

In general setting:
® instead of ¢;(X), allow any constant vector field in ambient space R™**
® renormalize if necessary for integral curve to leave every compact subset
of H
® |imit geometry for choice of vector field corresponds to limit of standard
forms h of defining polynomial h along integral curve

L
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Possible limit geometries & the generic case

Theorem [L’20]

Limit geometries are indeed well defined and the space of all possible limit
geometries grows only quadratically in n.

In the generic case we have the following result:

Proposition [L’20]

Let H c {h =1} be a closed connected PSR manifold in standard form with
h €int(Cy). Then every limit geometry of J is equivalent to the
homogeneous space R™ ! x R.q corresponding to the defining polynomial

2
(v,0)w+ —=w®, v=(v1,...,0n1).

3v3
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h =2’ -z((v,0) +w’) +
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Limit geometries of non-closed maximal PSR manifolds

Question: Which properties can we expect of the boundary of orbits
GLg¢(n+1) - h for H non-closed, but still a connected component of
{h =1} n {hyp. points of h}?

Conjecture
With K as above, 9(GLy(n+1)-h)nCr+ @.
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Outlook & open questions

® apply results to geometry of manifolds in images of r- & g=cor-map

® find possible applications to the theory of the (volume-normalized)
Kahler-Ricci flow

® “chain” limit geometries, obtain invariant for PSR manifolds of minimal

no. of chained limit geometries to get to homogeneous space
[ in dim. 2, every limit geometry is a homogeneous space ]

¢ for a better understanding of moduli space without restricting to specific
connected components of {h =1}, need method to count hyperbolic
components of {h =1}
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Thank you for your attention!
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