Towards a better understanding of the moduli space of projective special real manifolds

David Lindemann

Aarhus University Department of Mathematics

29. November 2021

1 Introduction & motivation

2 Known results

3 Topology of the moduli space of projective special real manifolds

Main reference:

"Limit geometry of complete projective special real manifolds" (DL, 2020), arxiv:2009.12956

Hyperbolic homogeneous polynomials

Definition

A homogeneous polynomial $h : \mathbb{R}^{n+1} \to \mathbb{R}$ is called **hyperbolic** if $\exists p \in \{h > 0\}$, such that $-\partial^2 h_p$ has **Minkowski signature**. Such a point p is called **hyperbolic** point of h.

- two homogeneous hyperbolic polynomials h, \tilde{h} equivalent : $\Leftrightarrow \exists A \in GL(n+1)$, such that $A^*\tilde{h} = h$
- there is precisely **one** equivalence class of **quadratic** homogeneous hyperbolic polynomials in each dimension
- there is no general classification for higher degree $deg(h) \ge 3$

Example: $h = x^4 - x^2(y^2 + z^2) - \frac{2\sqrt{2}}{3\sqrt{3}}xy^3$

Projective special real manifolds

Definition

A projective special real (PSR) manifold is a hypersurface \mathcal{H} contained in the level set $\{h = 1\}$ of a cubic homogeneous hyperbolic polynomial, such that \mathcal{H} consists only of hyperbolic points of h.

- two PSR manifolds $\mathcal{H}, \widetilde{\mathcal{H}}$ equivalent : $\Leftrightarrow \exists A \in GL(n+1)$, such that $A(\mathcal{H}) = \widetilde{\mathcal{H}}$
- $\mathcal{H} \subset \{h = 1\}, \widetilde{\mathcal{H}} \subset \{\widetilde{h} = 1\}$ equivalent $\Rightarrow h, \widetilde{h}$ equivalent, the converse is in general not true
- PSR manifolds have Riemannian centro-affine fundamental form $g = -\partial^2 h|_{T\mathcal{H} \times T\mathcal{H}}$, defined by c.-a. Gauß eqn. $D_X Y = \nabla_X^{ca} Y + g(X, Y) \xi$ $\forall X, Y \in \mathfrak{X}(\mathcal{H})$, where ξ is the position vector field

Example: h = xyz

Why study PSR manifolds?

Geometry of Kähler cones [DP'04, W'04, TW'11]:

• for X a compact Kähler 3-fold, the cubic homogeneous polynomial

$$h: H^{1,1}(X; \mathbb{R}) \to \mathbb{R}, \quad [\omega] \mapsto \int_X \omega^3,$$

is hyperbolic since every point in the Kähler cone $\mathcal{K} \subset H^{1,1}(X;\mathbb{R})$ is hyperbolic by the Hodge-Riemann bilinear relations

- $\mathcal{H} \coloneqq \{h = 1\} \cap \mathcal{K} \text{ is a } \mathbf{PSR } \mathbf{manifold}$
- in general, \mathcal{H} is not a **connected component** of $\{h = 1\} \cap \{\text{hyp. points of } h\}$

Why study PSR manifolds?

Explicit constructions of special Kähler and quaternionic Kähler manifolds:

- supergravity r-map constructs from given PSR manifold \mathcal{H} a projective special Kähler (PSK) manifold $M \cong \mathbb{R}^{n+1} + i \mathbb{R}_{>0} \cdot \mathcal{H}$ [DV'92, CHM'12]
- supergravity c-map constructs from given PSK manifold M a (non-compact) quaternionic Kähler manifold N ≅ M × ℝ²ⁿ⁺⁵ × ℝ_{>0} [FS'90]
- above constructions preserve geodesic completeness

Why is it difficult to classify PSR manifolds?

- set of hyperbolic polynomials is open in $\operatorname{Sym}^3(\mathbb{R}^{n+1})^*$
- dim $(Sym^3(\mathbb{R}^{n+1})^*)$ growth cubically in n while dim(GL(n+1)) growth only quadratically in n
- GL(n+1), acting via linear change of coordinates, is **non-compact**
- in general polynomial equivalence \Rightarrow PSR equivalence:

Example

 ${h = x(y^2 - z^2) + y^3 = 1}$ has four hyperbolic connected components, two of which are equivalent [CDL'14, Thm. 2,5)].

Known classification results

By restricting considered polynomials, obtain following classifications:

- homogeneous PSR manifolds in all dimensions [DV'92]
- PSR curves & surfaces [CHM'12, CDL'14]
- PSR manifolds with reducible defining polynomial [CDJL'17]

Question: What is a realistic approach to better understand the moduli space $\operatorname{Sym}^3_{\text{hyp}}(\mathbb{R}^{n+1})^*/\operatorname{GL}(n+1)$ for arbitrary *n*? Idea:

- instead of Sym³_{hyp}(ℝⁿ⁺¹)*/GL(n + 1), consider classes of maximal connected PSR manifolds, i.e. connected components of {h = 1} ∩ {hyp. points of h}
- further split up their study in **closed** and **not closed** (in the ambient space) PSR manifolds

Why "closed / not closed"?

Theorem [CNS'16]

A PSR manifold is **closed** in its ambient space iff it is **complete** wrt. its centro-affine fundamental form.

 $[\mathsf{Wu'74, L'19}] \rightsquigarrow \mathcal{H} \textbf{ closed} \Leftrightarrow \text{intersection of cone } \mathbb{R}_{>0} \cdot \mathcal{H} \text{ with any } p + T_p \mathcal{H} \textbf{ precompact}$

Technical results

We define a convenient standard form for PSR manifolds. Denote $y = (y_1, \ldots, y_n)$.

Proposition [L'19]

For $\mathcal{H} \subset \{h = 1\}$ a PSR manifold & $p \in \mathcal{H}$ arbitrary, $\exists A(p) \in GL(n+1)$, s.t.

•
$$A(p) \cdot (1, 0, \dots, 0)^T = p$$
,

•
$$A(p)^*h = x^3 - x\langle y, y \rangle + P_3(y).$$

- $A: \mathcal{H} \to \operatorname{GL}(n+1)$ can be chosen to be smooth
- explicit description of A known, not "too bad"
- $P_3 : \mathbb{R}^n \to \mathbb{R}$ is some cubic homogeneous polynomial
- P_3 is **never** uniquely determined by ${\mathcal H}$
- if \mathcal{H} is connected, in standard form, & $(1,0) \in \mathcal{H}$, the point (x,y) = (1,0)minimizes the Euclidean distance of \mathcal{H} and $0 \in \mathbb{R}^{n+1}$

A generating set for moduli space of closed connected PSRs

Let
$$\|\cdot\|$$
 denote the norm $\|P\| \coloneqq \max_{(y,y)=1} |P(y)|$ on $\operatorname{Sym}^3(\mathbb{R}^n)^*$.

Theorem [L'19]

The connected component of $\mathcal{H} \subset \{x^3 - x\langle y, y\rangle + P_3(y) = 1\}$ containing (x, y) = (1, 0) is a closed PSR manifold iff $||P_3|| \leq \frac{2}{3\sqrt{3}}$.

Proof: \rightsquigarrow reduce problem to $||P_3|| = \frac{2}{3\sqrt{3}} + \text{"starshape" property } \rightsquigarrow$ further reduce to dimension 2 \rightsquigarrow can use [CDL'14] and check by hand

Corollary

 $C_n := \{x^3 - x\langle y, y \rangle + P_3(y) \mid ||P_3|| \le \frac{2}{3\sqrt{3}}\} \subset \text{Sym}^3(\mathbb{R}^{n+1})^* \text{ is a compact}$ convex generating set of the moduli space of closed connected PSR manifolds in dimension $n \ge 1$.

Consequences for the GL(n + 1)-orbits

For a given closed connected PSR manifold in standard form $\mathcal{H} \subset \{h = 1\}$, let $\operatorname{GL}_{\mathcal{H}}(n+1)$ denote the transformations preserving the standard form.

Corollary

The set $\operatorname{GL}_{\mathcal{H}}(n+1) \cdot h \subset \mathcal{C}_n$ is precompact in $\operatorname{Sym}^3(\mathbb{R}^{n+1})^*$.

Questions: What are the possible boundary points $\partial (GL_{\mathcal{H}}(n+1) \cdot h)$? What information for \mathcal{H} do they give us? How can we calculate them?

Definition

Closed connected PSR manifolds $\overline{\mathcal{H}} \subset \{\overline{h} = 1\}$ in standard form with $\overline{h} \in \partial (\operatorname{GL}_{\mathcal{H}}(n+1) \cdot h)$ are called **limit geometries** of $\mathcal{H} \subset \{h = 1\}$.

Finding limit geometries

Motivation from geometry of Kähler cones:

- view $c_1(X)$ as constant vector field in $H^{1,1}(X;\mathbb{R})$
- project $c_1(X)$ centrally to $\mathcal{H} \subset \{h = \int_x \omega^3 = 1\}$
- calculate **standard form** of *h* along integral curve

7 ~ (X)

In general setting:

- instead of $c_1(X)$, allow any constant vector field in ambient space \mathbb{R}^{n+1}
- renormalize if necessary for integral curve to leave every compact subset of ${\mathcal H}$
- limit geometry for choice of vector field corresponds to limit of standard forms \overline{h} of defining polynomial h along integral curve

Possible limit geometries & the generic case

Theorem [L'20]

Limit geometries are indeed well defined and the space of all possible limit geometries grows only quadratically in n.

In the generic case we have the following result:

Proposition [L'20]

Let $\mathcal{H} \subset \{h = 1\}$ be a closed connected PSR manifold in standard form with $h \in \operatorname{int}(\mathcal{C}_n)$. Then every limit geometry of \mathcal{H} is equivalent to the homogeneous space $\mathbb{R}^{n-1} \ltimes \mathbb{R}_{>0}$ corresponding to the defining polynomial

$$\overline{h} = x^3 - x(\langle v, v \rangle + w^2) + \frac{1}{\sqrt{3}} \langle v, v \rangle w + \frac{2}{3\sqrt{3}} w^3, \quad v = (v_1, \dots, v_{n-1}).$$

 $(\mathbb{R}_{>0} \cdot \overline{\mathcal{H}}) \cap ((1,0) + T_{(1,0)}\overline{\mathcal{H}}):$

Limit geometries of non-closed maximal PSR manifolds

Question: Which properties can we expect of the boundary of orbits $GL_{\mathcal{H}}(n+1) \cdot h$ for \mathcal{H} **non-closed**, but still a **connected component** of $\{h = 1\} \cap \{\text{hyp. points of } h\}$?

Conjecture

With \mathcal{H} as above, $\partial(\operatorname{GL}_{\mathcal{H}}(n+1) \cdot h) \cap \mathcal{C}_n \neq \emptyset$.

Outlook & open questions

- apply results to geometry of manifolds in images of r- & q=cor-map
- find possible applications to the theory of the (volume-normalized) Kähler-Ricci flow
- "chain" limit geometries, obtain invariant for PSR manifolds of minimal no. of chained limit geometries to get to homogeneous space [in dim. 2, every limit geometry is a homogeneous space]
- for a better understanding of moduli space without restricting to specific connected components of {h = 1}, need method to count hyperbolic components of {h = 1}

Thank you for your attention!

- V. Cortés, M. Dyckmanns, and D. Lindemann, Classification of complete projective special real surfaces, Proc. London Math. Soc. 109 (2014), no. 2, 423–445.
- V. Cortés, M. Dyckmanns, M. Jüngling, and D. Lindemann, A class of cubic hypersurfaces and quaternionic Kähler manifolds of co-homogeneity one (2017), arxiv:1701.07882.
- V. Cortés, X. Han, and T. Mohaupt, *Completeness in supergravity constructions*, Commun. Math. Phys. **311** (2012), no. 1, 191–213.
- V. Cortés, M. Nardmann, and S. Suhr, Completeness of hyperbolic centroaffine hypersurfaces, Comm. Anal. Geom., Vol. 24, no. 1 (2016), 59–92.
- J.-P. Demailly and M. Paun, Numerical characterization of the Kähler cone of a compact Kähler manifold, Annals of Mathematics 159 (2004), 1247–1274.
- B. de Wit, A. Van Proeyen, Special geometry, cubic polynomials and homogeneous quaternionic spaces, Comm. Math. Phys. 149 (1992), no. 2, 307–333.
- S. Ferrara and S. Sabharwal, Quaternionic manifolds for type II superstring vacua of Calabi-Yau spaces, Nucl. Phys. B332 (1990), no. 2, 317–332.

- D. Lindemann, Properties of the moduli set of complete connected projective special real manifolds (2019), arxiv:1907.06791.
- D. Lindemann, Limit geometry of complete projective special real manifolds (2020), arxiv:2009.12956.
- T. Trenner, P.M.H. Wilson, Asymptotic Curvature of Moduli Spaces for Calabi–Yau Threefolds, J. Geometric Analysis 21 (2011), no. 2, 409–428.
- P.M.H. Wilson, Sectional curvatures of Kähler moduli, Math. Ann. 330 (2004) 631–664.
 - H. Wu, *The spherical images of convex hypersurfaces*, J. Differential Geometry **9** (1974), 279–290.