Towards a better understanding of the moduli space of projective special real manifolds

David Lindemann

Aarhus University
Department of Mathematics
29. November 2021

1 Introduction \& motivation

2 Known results

3 Topology of the moduli space of projective special real manifolds

Main reference:
"Limit geometry of complete projective special real manifolds" (DL, 2020), arxiv:2009.12956

Hyperbolic homogeneous polynomials

Definition

A homogeneous polynomial $h: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$ is called hyperbolic if $\exists p \in\{h>0\}$, such that $-\partial^{2} h_{p}$ has Minkowski signature. Such a point p is called hyperbolic point of h.

- two homogeneous hyperbolic polynomials h, \widetilde{h} equivalent $: \Leftrightarrow$ $\exists A \in \mathrm{GL}(n+1)$, such that $A^{*} \widetilde{h}=h$
- there is precisely one equivalence class of quadratic homogeneous hyperbolic polynomials in each dimension
- there is no general classification for higher degree $\operatorname{deg}(h) \geq 3$

Example: $h=x^{4}-x^{2}\left(y^{2}+z^{2}\right)-\frac{2 \sqrt{2}}{3 \sqrt{3}} x y^{3}$

Projective special real manifolds

Definition

A projective special real (PSR) manifold is a hypersurface \mathcal{H} contained in the level set $\{h=1\}$ of a cubic homogeneous hyperbolic polynomial, such that \mathcal{H} consists only of hyperbolic points of h.

- two PSR manifolds $\mathcal{H}, \widetilde{\mathcal{H}}$ equivalent $: \Leftrightarrow \exists A \in \mathrm{GL}(n+1)$, such that $A(\mathcal{H})=\widetilde{\mathcal{H}}$
- $\mathcal{H} \subset\{h=1\}, \widetilde{\mathcal{H}} \subset\{\widetilde{h}=1\}$ equivalent $\Rightarrow h, \widetilde{h}$ equivalent, the converse is in general not true
- PSR manifolds have Riemannian centro-affine fundamental form $g=-\left.\partial^{2} h\right|_{T \mathcal{H} \times T \mathcal{H}}$, defined by c.-a. Gauß eqn. $D_{X} Y=\nabla_{X}^{\text {ca }} Y+g(X, Y) \xi$ $\forall X, Y \in \mathfrak{X}(\mathcal{H})$, where ξ is the position vector field
Example: $h=x y z$

Why study PSR manifolds?

Geometry of Kähler cones [DP'04, W'04, TW'11]:

- for X a compact Kähler 3-fold, the cubic homogeneous polynomial

$$
h: H^{1,1}(X ; \mathbb{R}) \rightarrow \mathbb{R}, \quad[\omega] \mapsto \int_{X} \omega^{3}
$$

is hyperbolic since every point in the Kähler cone $\mathcal{K} \subset H^{1,1}(X ; \mathbb{R})$ is hyperbolic by the Hodge-Riemann bilinear relations

- $\mathcal{H}:=\{h=1\} \cap \mathcal{K}$ is a PSR manifold
- in general, \mathcal{H} is not a connected component of $\{h=1\} \cap\{$ hyp. points of $h\}$

Why study PSR manifolds?

Explicit constructions of special Kähler and quaternionic Kähler manifolds:

- supergravity r-map constructs from given PSR manifold \mathcal{H} a projective special Kähler (PSK) manifold $M \cong \mathbb{R}^{n+1}+i \mathbb{R}_{>0} \cdot \mathcal{H}$ [DV'92, CHM'12]
- supergravity c-map constructs from given PSK manifold M a (non-compact) quaternionic Kähler manifold $N \cong M \times \mathbb{R}^{2 n+5} \times \mathbb{R}_{>0}$ [FS'90]
- above constructions preserve geodesic completeness

Why is it difficult to classify PSR manifolds?

- set of hyperbolic polynomials is open in $\operatorname{Sym}^{3}\left(\mathbb{R}^{n+1}\right)^{*}$
- $\operatorname{dim}\left(\operatorname{Sym}^{3}\left(\mathbb{R}^{n+1}\right)^{*}\right)$ growth cubically in n while $\operatorname{dim}(\mathrm{GL}(n+1))$ growth only quadratically in n
- GL($n+1$), acting via linear change of coordinates, is non-compact
- in general polynomial equivalence \Rightarrow PSR equivalence:

Example

$\left\{h=x\left(y^{2}-z^{2}\right)+y^{3}=1\right\}$ has four hyperbolic connected components, two of which are equivalent [CDL'14, Thm. 2,5)].

Known classification results

By restricting considered polynomials, obtain following classifications:

- homogeneous PSR manifolds in all dimensions [DV'92]
- PSR curves \& surfaces [CHM'12, CDL'14]
- PSR manifolds with reducible defining polynomial [CDJL'17]

Question: What is a realistic approach to better understand the moduli space $\operatorname{Sym}_{\text {hyp }}^{3}\left(\mathbb{R}^{n+1}\right)^{*} / \operatorname{GL}(n+1)$ for arbitrary n ?

Idea:

- instead of $\operatorname{Sym}_{\text {hyp }}^{3}\left(\mathbb{R}^{n+1}\right)^{*} / \mathrm{GL}(n+1)$, consider classes of maximal connected PSR manifolds, i.e. connected components of $\{h=1\} \cap\{$ hyp. points of $h\}$
- further split up their study in closed and not closed (in the ambient space) PSR manifolds

Why "closed / not closed"?

Theorem [CNS'16]

A PSR manifold is closed in its ambient space iff it is complete wrt. its centro-affine fundamental form.
[Wu'74, L'19] $\sim \mathcal{H}$ closed \Leftrightarrow intersection of cone $\mathbb{R}_{>0} \cdot \mathcal{H}$ with any $p+T_{p} \mathcal{H}$ precompact

Technical results

We define a convenient standard form for PSR manifolds. Denote $y=\left(y_{1}, \ldots, y_{n}\right)$.

Proposition [L'19]

For $\mathcal{H} \subset\{h=1\}$ a PSR manifold $\& p \in \mathcal{H}$ arbitrary, $\exists A(p) \in \operatorname{GL}(n+1)$, s.t.

- $A(p) \cdot(1,0, \ldots, 0)^{T}=p$,
- $A(p)^{*} h=x^{3}-x\langle y, y\rangle+P_{3}(y)$.
- $A: \mathcal{H} \rightarrow \mathrm{GL}(n+1)$ can be chosen to be smooth
- explicit description of A known, not "too bad"
- $P_{3}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is some cubic homogeneous polynomial
- P_{3} is never uniquely determined by \mathcal{H}
- if \mathcal{H} is connected, in standard form, $\&(1,0) \in \mathcal{H}$, the point $(x, y)=(1,0)$ minimizes the Euclidean distance of \mathcal{H} and $0 \in \mathbb{R}^{n+1}$

A generating set for moduli space of closed connected PSRs

Let $\|\cdot\|$ denote the norm $\|P\|:=\max _{\langle y, y\rangle=1}|P(y)|$ on $\operatorname{Sym}^{3}\left(\mathbb{R}^{n}\right)^{*}$.

Theorem [L'19]

The connected component of $\mathcal{H} \subset\left\{x^{3}-x\langle y, y\rangle+P_{3}(y)=1\right\}$ containing $(x, y)=(1,0)$ is a closed PSR manifold iff $\left\|P_{3}\right\| \leq \frac{2}{3 \sqrt{3}}$.

Proof: \leadsto reduce problem to $\left\|P_{3}\right\|=\frac{2}{3 \sqrt{3}}+$ "starshape" property \leadsto further reduce to dimension $2 \leadsto$ can use [CDL'14] and check by hand

Corollary

$\mathcal{C}_{n}:=\left\{x^{3}-x\langle y, y\rangle+P_{3}(y) \left\lvert\,\left\|P_{3}\right\| \leq \frac{2}{3 \sqrt{3}}\right.\right\} \subset \operatorname{Sym}^{3}\left(\mathbb{R}^{n+1}\right)^{*}$ is a compact convex generating set of the moduli space of closed connected PSR manifolds in dimension $n \geq 1$.

Consequences for the GL $(n+1)$-orbits

For a given closed connected PSR manifold in standard form $\mathcal{H} \subset\{h=1\}$, let $\mathrm{GL}_{\mathscr{H}}(n+1)$ denote the transformations preserving the standard form.

Corollary

The set $\mathrm{GL}_{\mathcal{H}}(n+1) \cdot h \subset \mathcal{C}_{n}$ is precompact in $\operatorname{Sym}^{3}\left(\mathbb{R}^{n+1}\right)^{*}$.
Questions: What are the possible boundary points $\partial\left(\mathrm{GL}_{\mathcal{H}}(n+1) \cdot h\right)$? What information for \mathcal{H} do they give us? How can we calculate them?

Definition

Closed connected PSR manifolds $\overline{\mathcal{H}} \subset\{\bar{h}=1\}$ in standard form with $\bar{h} \in \partial\left(\operatorname{GL}_{\mathcal{H}}(n+1) \cdot h\right)$ are called limit geometries of $\mathcal{H} \subset\{h=1\}$.

Finding limit geometries

Motivation from geometry of Kähler cones:

- view $c_{1}(X)$ as constant vector field in $H^{1,1}(X ; \mathbb{R})$
- project $c_{1}(X)$ centrally to $\mathcal{H} \subset\left\{h=\int_{x} \omega^{3}=1\right\}$
- calculate standard form of h along integral curve

In general setting:

- instead of $c_{1}(X)$, allow any constant vector field in ambient space \mathbb{R}^{n+1}
- renormalize if necessary for integral curve to leave every compact subset of \mathcal{H}
- limit geometry for choice of vector field corresponds to limit of standard forms \bar{h} of defining polynomial h along integral curve

Possible limit geometries \& the generic case

Theorem [L'20]

Limit geometries are indeed well defined and the space of all possible limit geometries grows only quadratically in n.

In the generic case we have the following result:

Proposition [L'20]

Let $\mathcal{H} \subset\{h=1\}$ be a closed connected PSR manifold in standard form with $h \in \operatorname{int}\left(\complement_{n}\right)$. Then every limit geometry of \mathcal{H} is equivalent to the homogeneous space $\mathbb{R}^{n-1} \ltimes \mathbb{R}_{>0}$ corresponding to the defining polynomial

$$
\bar{h}=x^{3}-x\left(\langle v, v\rangle+w^{2}\right)+\frac{1}{\sqrt{3}}\langle v, v\rangle w+\frac{2}{3 \sqrt{3}} w^{3}, \quad v=\left(v_{1}, \ldots, v_{n-1}\right) .
$$

$\left(\mathbb{R}_{>0} \cdot \overline{\mathcal{H}}\right) \cap\left((1,0)+T_{(1,0)} \overline{\mathcal{H}}\right):$

Limit geometries of non-closed maximal PSR manifolds

Question: Which properties can we expect of the boundary of orbits $\mathrm{GL}_{\mathcal{H}}(n+1) \cdot h$ for \mathcal{H} non-closed, but still a connected component of $\{h=1\} \cap\{$ hyp. points of $h\}$?

Conjecture

With \mathscr{H} as above, $\partial\left(\operatorname{GL}_{\mathcal{H}}(n+1) \cdot h\right) \cap \mathfrak{C}_{n} \neq \varnothing$.

Outlook \& open questions

- apply results to geometry of manifolds in images of \mathbf{r} - \& q=cor-map
- find possible applications to the theory of the (volume-normalized) Kähler-Ricci flow
- "chain" limit geometries, obtain invariant for PSR manifolds of minimal no. of chained limit geometries to get to homogeneous space [in dim. 2, every limit geometry is a homogeneous space]
- for a better understanding of moduli space without restricting to specific connected components of $\{h=1\}$, need method to count hyperbolic components of $\{h=1\}$

Thank you for your attention!

R－V．Cortés，M．Dyckmanns，and D．Lindemann，Classification of complete projective special real surfaces，Proc．London Math．Soc． 109 （2014），no． 2，423－445．
圊 V．Cortés，M．Dyckmanns，M．Jüngling，and D．Lindemann，A class of cubic hypersurfaces and quaternionic Kähler manifolds of co－homogeneity one（2017），arxiv：1701．07882．
盏 V．Cortés，X．Han，and T．Mohaupt，Completeness in supergravity constructions，Commun．Math．Phys． 311 （2012），no．1，191－213．
E．V．Cortés，M．Nardmann，and S．Suhr，Completeness of hyperbolic centroaffine hypersurfaces，Comm．Anal．Geom．，Vol．24，no． 1 （2016）， 59－92．
氯 J．－P．Demailly and M．Paun，Numerical characterization of the Kähler cone of a compact Kähler manifold，Annals of Mathematics 159 （2004）， 1247－1274．
目
B．de Wit，A．Van Proeyen，Special geometry，cubic polynomials and homogeneous quaternionic spaces，Comm．Math．Phys． 149 （1992），no．2， 307－333．

R
S．Ferrara and S．Sabharwal，Quaternionic manifolds for type II superstring vacua of Calabi－Yau spaces，Nucl．Phys．B332（1990），no．2，317－332．
D. Lindemann, Properties of the moduli set of complete connected projective special real manifolds (2019), arxiv:1907.06791.
显
D. Lindemann, Limit geometry of complete projective special real manifolds (2020), arxiv:2009.12956.

T. Trenner, P.M.H. Wilson, Asymptotic Curvature of Moduli Spaces for Calabi-Yau Threefolds, J. Geometric Analysis 21 (2011), no. 2, 409-428.
P. P.H. Wilson, Sectional curvatures of Kähler moduli, Math. Ann. 330 (2004) 631-664.

目 H. Wu, The spherical images of convex hypersurfaces, J. Differential Geometry 9 (1974), 279-290.

