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Hyperbolic homogeneous polynomials

Definition
A homogeneous polynomial h ∶ Rn+1 → R is called hyperbolic if ∃p ∈ {h > 0},
such that −∂2hp has Minkowski signature. Such a point p is called hyperbolic
point of h.

● two homogeneous hyperbolic polynomials h, h̃ equivalent ∶⇔
∃A ∈ GL(n + 1), such that A∗h̃ = h

● there is precisely one equivalence class of quadratic homogeneous
hyperbolic polynomials in each dimension

● there is no general classification for higher degree deg(h) ≥ 3
Example: h = x4 − x2(y2 + z2) − 2
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Projective special real manifolds

Definition
A projective special real (PSR) manifold is a hypersurface H contained in the
level set {h = 1} of a cubic homogeneous hyperbolic polynomial, such that H
consists only of hyperbolic points of h.

● two PSR manifolds H, H̃ equivalent ∶⇔ ∃A ∈ GL(n + 1), such that
A(H) = H̃

● H ⊂ {h = 1}, H̃ ⊂ {h̃ = 1} equivalent ⇒ h, h̃ equivalent, the converse is in
general not true

● PSR manifolds have Riemannian centro-affine fundamental form
g = −∂2h∣TH×TH, defined by c.-a. Gauß eqn. DXY = ∇ca

XY + g(X,Y )ξ
∀X,Y ∈ X(H), where ξ is the position vector field

Example: h = xyz
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Why study PSR manifolds?
Geometry of Kähler cones [DP’04, W’04, TW’11]:
● for X a compact Kähler 3-fold, the cubic homogeneous polynomial

h ∶H1,1
(X;R) → R, [ω] ↦ ∫

X
ω3,

is hyperbolic since every point in the Kähler cone K ⊂H1,1(X;R) is
hyperbolic by the Hodge-Riemann bilinear relations

● H ∶= {h = 1} ∩K is a PSR manifold
● in general, H is not a connected component of

{h = 1} ∩ {hyp. points of h}
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Why study PSR manifolds?

Explicit constructions of special Kähler and quaternionic Kähler manifolds:

● supergravity r-map constructs from given PSR manifold H a projective
special Kähler (PSK) manifold M ≅ Rn+1 + iR>0 ⋅H [DV’92, CHM’12]

● supergravity c-map constructs from given PSK manifold M a
(non-compact) quaternionic Kähler manifold N ≅M ×R2n+5 ×R>0
[FS’90]

● above constructions preserve geodesic completeness

M̃
rigid c-map

//

ASK/PSK

��

Ñ

HK/QK
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H

??

sugra r-map
// M sugra c-map

// N
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Why is it difficult to classify PSR manifolds?
● set of hyperbolic polynomials is open in Sym3(Rn+1)∗

● dim(Sym3(Rn+1)∗) growth cubically in n while dim(GL(n + 1)) growth
only quadratically in n

● GL(n + 1), acting via linear change of coordinates, is non-compact
● in general polynomial equivalence ⇏ PSR equivalence:

Example
{h = x(y2 − z2) + y3 = 1} has four hyperbolic connected components, two of
which are equivalent [CDL’14, Thm. 2,5)].
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Known classification results
By restricting considered polynomials, obtain following classifications:
● homogeneous PSR manifolds in all dimensions [DV’92]
● PSR curves & surfaces [CHM’12, CDL’14]
● PSR manifolds with reducible defining polynomial [CDJL’17]

Question: What is a realistic approach to better understand the moduli space
Sym3

hyp(R
n+1)∗/GL(n + 1) for arbitrary n?

Idea:
● instead of Sym3

hyp(R
n+1)∗/GL(n + 1), consider classes of maximal

connected PSR manifolds, i.e. connected components of
{h = 1} ∩ {hyp. points of h}

● further split up their study in closed and not closed (in the ambient
space) PSR manifolds
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Why “closed / not closed”?

Theorem [CNS’16]
A PSR manifold is closed in its ambient space iff it is complete wrt. its
centro-affine fundamental form.

[Wu’74, L’19] ↝ H closed ⇔ intersection of cone R>0 ⋅H with any p + TpH

precompact
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Technical results
We define a convenient standard form for PSR manifolds. Denote
y = (y1, . . . , yn).

Proposition [L’19]
For H ⊂ {h = 1} a PSR manifold & p ∈H arbitrary, ∃A(p) ∈ GL(n + 1), s.t.
● A(p) ⋅ (1,0, . . . ,0)T = p,
● A(p)∗h = x3 − x⟨y, y⟩ + P3(y).

● A ∶H → GL(n + 1) can be chosen to be smooth
● explicit description of A known, not “too bad”
● P3 ∶ Rn → R is some cubic homogeneous polynomial
● P3 is never uniquely determined by H
● if H is connected, in standard form, & (1,0) ∈H, the point (x, y) = (1,0)
minimizes the Euclidean distance of H and 0 ∈ Rn+1
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A generating set for moduli space of closed connected PSRs

Let ∥ ⋅ ∥ denote the norm ∥P ∥ ∶= max
⟨y,y⟩=1

∣P (y)∣ on Sym3(Rn)∗.

Theorem [L’19]
The connected component of H ⊂ {x3 − x⟨y, y⟩ + P3(y) = 1} containing
(x, y) = (1,0) is a closed PSR manifold iff ∥P3∥ ≤

2
3
√

3 .

Proof: ↝ reduce problem to ∥P3∥ =
2

3
√

3 + “starshape” property ↝ further
reduce to dimension 2 ↝ can use [CDL’14] and check by hand

Corollary
Cn ∶= {x3 − x⟨y, y⟩ + P3(y) ∣ ∥P3∥ ≤

2
3
√

3} ⊂ Sym3(Rn+1)∗ is a compact
convex generating set of the moduli space of closed connected PSR manifolds
in dimension n ≥ 1.
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Consequences for the GL(n + 1)-orbits

For a given closed connected PSR manifold in standard form H ⊂ {h = 1}, let
GLH(n + 1) denote the transformations preserving the standard form.

Corollary
The set GLH(n + 1) ⋅ h ⊂ Cn is precompact in Sym3(Rn+1)∗.

Questions: What are the possible boundary points ∂ (GLH(n + 1) ⋅ h)? What
information for H do they give us? How can we calculate them?

Definition
Closed connected PSR manifolds H ⊂ {h = 1} in standard form with
h ∈ ∂ (GLH(n + 1) ⋅ h) are called limit geometries of H ⊂ {h = 1}.
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Finding limit geometries
Motivation from geometry of Kähler cones:
● view c1(X) as constant vector field in
H1,1(X;R)

● project c1(X) centrally to
H ⊂ {h = ∫x ω

3 = 1}
● calculate standard form of h along
integral curve

In general setting:
● instead of c1(X), allow any constant vector field in ambient space Rn+1

● renormalize if necessary for integral curve to leave every compact subset
of H

● limit geometry for choice of vector field corresponds to limit of standard
forms h of defining polynomial h along integral curve
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Possible limit geometries & the generic case

Theorem [L’20]
Limit geometries are indeed well defined and the space of all possible limit
geometries grows only quadratically in n.

In the generic case we have the following result:

Proposition [L’20]
Let H ⊂ {h = 1} be a closed connected PSR manifold in standard form with
h ∈ int(Cn). Then every limit geometry of H is equivalent to the
homogeneous space Rn−1 ⋉R>0 corresponding to the defining polynomial

h = x3
− x(⟨v, v⟩ +w2

) +
1

√
3
⟨v, v⟩w +

2
3
√

3
w3, v = (v1, . . . , vn−1).

(R>0 ⋅H) ∩ ((1,0) + T(1,0)H):
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Limit geometries of non-closed maximal PSR manifolds

Question: Which properties can we expect of the boundary of orbits
GLH(n + 1) ⋅ h for H non-closed, but still a connected component of
{h = 1} ∩ {hyp. points of h}?

Conjecture
With H as above, ∂(GLH(n + 1) ⋅ h) ∩ Cn≠ ∅.
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Outlook & open questions

● apply results to geometry of manifolds in images of r- & q=c○r-map
● find possible applications to the theory of the (volume-normalized)
Kähler-Ricci flow

● “chain” limit geometries, obtain invariant for PSR manifolds of minimal
no. of chained limit geometries to get to homogeneous space
[ in dim. 2, every limit geometry is a homogeneous space ]

● for a better understanding of moduli space without restricting to specific
connected components of {h = 1}, need method to count hyperbolic
components of {h = 1}
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Thank you for your attention!
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