Symplectic Geometry

Problem Set 10

- 1. We consider the action of U(k) on $(\mathbb{C}^k)^n = \mathbb{C}^{kn}$, where we think of an element $Z \in (\mathbb{C}^k)^n$ as a matrix with *n* columns and *k* rows and the action is by left multiplication.
 - a) Verify that this action is Hamiltonian with respect to the standard symplectic form on \mathbb{C}^{kn} with moment map $\widetilde{\mu}: (C^k)^n \to \mathfrak{u}(k)^*$ given by

$$\widetilde{\mu}(Z)(\alpha) = -\frac{i}{2}\operatorname{Tr}\overline{Z}^T \alpha Z + \frac{i}{2}\operatorname{Tr}(\alpha).$$

b) Prove that $0 \in \mathfrak{u}(k)^*$ is a regular value of $\widetilde{\mu}$, and that

$$\widetilde{\mu}^{-1}(0) = \{ Z \in (\mathbb{C}^k)^n : Z\overline{Z}^T = \mathrm{id}_k \}.$$

In other words, $Z \in \tilde{\mu}^{-1}(0)$ if and only if the rows of Z form a unitary basis of the k-dimensional subspace of \mathbb{C}^n which they span. In particular, U(k)acts freely on $\tilde{\mu}^{-1}(0)$.

Hint: It might be helpful to recall that the identity $\operatorname{Tr} AB = \operatorname{Tr} BA$ holds for arbitrary (composable) matrices, not just square ones.

- c) Conclude that the Marsden-Weinstein quotient exists and is diffeomorphic to $G^{\mathbb{C}}(k,n)$, the Grassmannian of complex k-dimensional linear subspaces of \mathbb{C}^n .
- **2.** We fix $n \geq 2$ and consider the subgroup $L \subseteq SL(n, \mathbb{R})$ of lower triangular matrices with determinant 1.
 - **a)** Prove that the Lie algebra \mathfrak{l} of L is given by lower triangular matrices of trace 0.
 - **b)** Let $U \subseteq Mat(n, \mathbb{R})$ be the subset of *upper* triangular matrix f. Prove that the map

$$U \to \mathfrak{l}^*$$

 $u \mapsto f_u$ where $f_u(\xi) = \operatorname{Tr}(\xi u)$

is surjective and identify its kernel.

c) Prove that the coadjoint action of L on l^* has the form

$$\operatorname{Ad}_{L}^{*}(f_{u}) = f_{\pi(LuL^{-1})},$$

where $\pi : \operatorname{Mat}(n, \mathbb{C}) \to U$ is the projection to the upper triangular part.

- d) Determine the fundamental vector field X_{ξ} on \mathfrak{l}^* associated to an element $\xi \in \mathfrak{l}$.
- e) Prove that the coadjoint orbit of the element $f_{u_0} \in \mathfrak{l}^*$, where

$$u_0 = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & & & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix},$$

is the set of elements $f_v \in \mathfrak{l}^*$ associated with matrices of the form

$$v = \begin{pmatrix} b_1 & a_1 & 0 & 0 & \cdots & 0 \\ 0 & b_2 & a_2 & 0 & \cdots & 0 \\ 0 & 0 & \ddots & \ddots & \ddots & 0 \\ 0 & 0 & \ddots & b_{n-2} & a_{n-2} & 0 \\ 0 & 0 & \cdots & 0 & b_{n-1} & a_{n-1} \\ 0 & 0 & \cdots & 0 & 0 & b_n \end{pmatrix}$$

with $\sum b_k = 0$ and $\prod a_k \neq 0$.

- **3.** We consider the adjoint and coadjoint actions of the connected Lie group G on its Lie algebra \mathfrak{g} and its dual \mathfrak{g}^* .
 - a) Prove that the value at $\eta \in \mathfrak{g}$ of the fundamental vector field $\mathfrak{g}X_{\xi}$ associated to the element $\xi \in \mathfrak{g}$ via the adjoint action is $\mathfrak{g}X_{\xi}(\eta) = \mathrm{ad}_{\xi}(\eta)$, where $\mathrm{ad}_{\xi}(\eta) = [\xi, \eta]$ is the action of \mathfrak{g} on itself induced by the action of G on \mathfrak{g} .
 - **b)** Prove that the value at $f \in \mathfrak{g}^*$ of the fundamental vector field \mathfrak{g}^*X_{ξ} associated to the element $\xi \in \mathfrak{g}$ via the coadjoint action is $\mathfrak{g}^*X_{\xi}(f) = -\operatorname{ad}_{\xi}^*f$, where $\operatorname{ad}_{\xi}^*(f)(\eta) = f(\operatorname{ad}_{\xi}(\eta)) = f([\xi, \eta]).$

By construction, the values of the vector fields \mathfrak{g}^*X_{ξ} at some $f \in \mathfrak{g}^*$ generate the tangent space of the orbit $\mathcal{O}_f \subseteq \mathfrak{g}^*$ of f under the coadjoint action.

c) Prove that

$$\omega_f(\mathrm{ad}^*_{\xi}(f), \mathrm{ad}^*_{\xi'}(f)) := f([\xi, \xi'])$$

is a well-defined non-degenerate skew-symmetric 2-form on $T_f \mathcal{O}_f$.

d) Prove that the resulting 2-form ω on \mathcal{O}_f is closed, so that (\mathcal{O}_f, ω) is a symplectic manifold.