Summer 2020

Universität Hamburg Janko Latschev Pavel Hájek

FLOER THEORY

Problem Set 3

- 1. In the last lecture on Morse theory I mentioned a construction of operations, which is based on metric trees, i.e. trees with *external vertices* of valency 1 (numbered 1 through k), all other vertices of valency at least 3, and a length $\ell \in (0, \infty)$ for each edge connecting two internal vertices. For a given number k of external vertices, these form a topological space \mathcal{T}_k with trees whose internal vertices are all trivalent forming an open dense subset, and the other trees appearing as limits where the length(s) of some internal edge(s) go to 0.
 - a) Find all combinatorial types of trees with low numbers ($k \leq 5$, or 6 if you feel adventurous) of external vertices.
 - b) The stratification by combinatorial type gives \mathcal{T}_k a decomposition into disjoint open cells. Sketch the resulting "cell complex" (there will still be missing boundary) for $k \leq 5$.
 - c) One can compactify \mathcal{T}_k by adding *broken trees*, where the length(s) of some internal edge(s) become ∞ , and this is interpreted as the tree splitting into subtrees. Complete your sketch from (b) by adding the combinatorial types of the trees in the resulting boundary cells.
- **2.** a) Let $\Psi: [0,1] \to Sp(2n)$ be a path of symplectic matrices. Prove that

$$S: [0,1] \to \operatorname{Mat}(2n,\mathbb{R})$$
$$t \mapsto -J_0 \dot{\Psi}(t) \Psi(t)^{-1}$$

is a path of symmetric matrices.

b) Conversely, show that given a path $S : [0,1] \to \text{Sym}(2n)$ of symmetric matrices, the path $\Psi_S : [0,1] \to \text{Mat}(2n,\mathbb{R})$ solving

$$\Psi_S(t) = J_0 S(t) \Psi_S(t), \qquad \Psi_S(0) = \mathbb{1}$$

is in Sp(2n).

- **3.** Prove as many of the properties (A)-(H) of the Conley-Zehnder index formulated in the lecture as you can.
- **4.** Suppose $H: M \to \mathbb{R}$ is an autonomous (i.e. time-independent) Hamiltonian.
 - a) Prove that if a fixpoint of the Hamiltonian flow which corresponds to a critical point of H is nondegenerate in the sense defined in the lecture then it is nondegenerate as a critical point of H. Under what additional condition is the converse true?
 - **b)** We now consider the symplectic manifold $(\mathbb{R}^{2n}, \omega_{can})$. Suppose that $0 \in \mathbb{R}^{2n}$ is a nondegenerate critical point of $H : \mathbb{R}^{2n} \to \mathbb{R}$ and show that if all eigenvalues of $\text{Hess}_0(H)$ have absolute value $< 2\pi$, then there is a neighborhood of 0 in which the only 1-periodic orbit of the Hamiltonian flow is the constant orbit at 0.
 - c) Use this to show that on a closed symplectic manifold (M, ω) , the fixpoints of a Hamiltonian diffeomorphism generated by a sufficiently C^2 -small autonomous Hamiltonian $H: M \to \mathbb{R}$ are precisely the critical points of H.
 - **d)** Consider the functions $H_c : \mathbb{R}^2 \to \mathbb{R}$, given by $H_c(x, y) = c(x^2 + y^2)$. For which values of $c \in \mathbb{R}$ is $0 \in \mathbb{R}^2$ a nondegenerate orbit of the Hamiltonian flow φ_t^c of H_c ? Compute the Conley-Zehnder index of the path $t \mapsto (d\varphi_t^c)_0$ for these values of c (the answer will depend on c).