Summer 2020

Universität Hamburg Janko Latschev Pavel Hájek

FLOER THEORY

Problem Set 2

1. Let $m \geq 1$ be an integer, and consider the function $f_m : \mathbb{C}P^1 \to \mathbb{R}$ given as

$$f_m([z_0:z_1]) = \frac{|z_0^m + z_1^m|^2}{(|z_0|^2 + |z_1|^2)^m} = \frac{|z^m + 1|^2}{(|z|^2 + 1)^m}$$

in homogeneous coordinates and in the inhomogeneous coordinate $z = \frac{z_1}{z_0}$ on the open subset $U_0 := \{z_0 \neq 0\} \cong \mathbb{C}$, respectively.

- a) Find the critical points of f_m and prove that for $m \ge 2$ it is a Morse function. Compute the indices of the critical points. What happens for m = 1?
- b) Give a qualitative picture of the gradient flow of f_m (for low values of $m \ge 2$) with respect to the usual (Fubini-Study) metric on $\mathbb{C}P^1$ in the open subset U_0 .
- c) Determine the boundary operator in the Morse complex of f_m and compute the Morse homology.
- 2. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a function with a Morse critical point of index $k \in (0, n)$ at p = 0, and let g be any metric on \mathbb{R}^n . For sufficiently small r > 0 the stable manifold $W^s(p)$ and the unstable manifold $W^u(p)$ will intersect the sphere $S_r(0)$ of radius r around 0 in smoothly embedded spheres S and U of dimensions n k 1 and k 1, respectively. There is also a subset $T \subset S_r(0)$ where the gradient of f with respect to g is tangent to $S_r(0)$ (for the standard metric, T would be diffeomorphic to $S \times U$).

Find elementary proofs of the following statements:

- a) For every $\tau > 0$ there is some $\delta > 0$ such that the flow line of any point $x \in S_r(0)$ of distance less than δ to S stays in the ball $B_r(0)$ for at least time τ .
- **b)** For every $\epsilon > 0$ there is a $\delta > 0$ such that if $x \in S_r(0)$ has distance less than δ to S, then the point $y \in S_r(0)$ where the flow line of x exits the ball $B_r(0)$ has distance less than ϵ to U.

3. Let $f: M \to \mathbb{R}$ be a Morse function and g a metric such that (f, g) is a Morse-Smale pair, and so the Morse complex is defined. For $a \in \mathbb{R}$ we set

$$M^{\le a} := \{ x \in M : f(x) \le a \}.$$

- a) Prove that if the interval [a, b] contains no critical values, then $M^{\leq a}$ and $M^{\leq b}$ are diffeomorphic.
- b) Let b be a regular value of f. Observe that the critical points $p \in \operatorname{Crit}(f)$ with f(p) < b form a subcomplex $CM^{\leq b}(f,g)$ of the Morse complex. What does the homology of this subcomplex compute?
- c) Now given regular values a < b, one can form the quotient complex

$$CM^{[a,b]} := CM^{\le b}/CM^{\le a}.$$

What does its homology compute?

Remark: The answers to these questions use more than what we have discussed in class. If you have difficulties getting started, look at simple examples first. Also, once you have tried a few things and have a conjecture for the answers, feel free to look at the literature for clues/proofs.