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Abstract

We show that on any smooth compact connected manifold of dimension m ≥ 2 admit-

ting a smooth non-trivial circle action S = {St}t∈R, St+1 = St, the set of weakly mixing

C∞-di�eomorphisms which preserve both a smooth volume ν and a measurable Rieman-

nian metric is dense in Aα (M) = {h ◦ Sα ◦ h−1 : h ∈ Di�∞ (M,ν)}
C∞

for every Liouvillean

number α. The proof is based on a quantitative version of the approximation by conjugation-

method with explicitly constructed conjugation maps and partitions.
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1 Introduction

To begin, recall that a dynamical system (X,T, ν) is ergodic if and only if every measurable
complex-valued function h on (X, ν) which is invariant (i.e. such that h (Tx) = h (x) for every
x ∈ X) must necessarily be constant. We de�ne (X,T, ν) to be weakly mixing if it satis�es
the stronger condition that there is no non-constant measurable complex valued function h on
(X, ν) such that h (Tx) = λ · h (x) for some λ ∈ C. Equivalently there is an increasing sequence
(mn)n∈N of natural numbers such that limn→∞ |ν (B ∩ T−mn (A))− ν (A) · ν (B)| = 0 for every
pair of measurable sets A,B ⊆ X (see [Skl67] or [AK70, Theorem 5.1]). We call a circle action
{St}t∈R on a manifold M non-trivial if there exists t ∈ R and x ∈ M with St(x) 6= x; in other
words, not all orbits are �xed points (even though some may be).
Until 1970 it was an open question if there exists an ergodic area-preserving smooth di�eomor-
phism on the disc D2. This problem was solved by the so-called �approximation by conjugation�-
method developed by D. Anosov and A. Katok in [AK70]. In fact, on every smooth compact
connected manifold M of dimension m ≥ 2 admitting a non-trivial circle action S = {St}t∈S1
preserving a smooth volume ν this method enables the construction of smooth di�eomorphisms
with speci�c ergodic properties (e. g. weakly mixing ones in [AK70, section 5]) or non-standard



Introduction 2

smooth realizations of measure-preserving systems (e. g. [AK70, section 6], [Be13] and [FSW07]).
These di�eomorphisms are constructed as limits of conjugates fn = Hn ◦ Sαn+1

◦ H−1
n , where

αn+1 = pn+1

qn+1
= αn + 1

kn·ln·q2n
∈ Q, where Hn = Hn−1 ◦ hn and where hn are measure-

preserving di�eomorphisms satisfying S 1
qn
◦ hn = hn ◦ S 1

qn
. In each step the conjugation

map hn and the parameter kn are chosen such that the di�eomorphism fn imitates the de-
sired property with a certain precision. In a �nal step of the construction, the parameter
ln is chosen large enough to guarantee closeness of fn to fn−1 in the C∞-topology, and so
the convergence of the sequence (fn)n∈N to a limit di�eomorphism is provided. It is even
possible to keep this limit di�eomorphism within any given C∞-neighbourhood of the initial
element Sα1

or, by applying a �xed di�eomorphism g �rst, of g ◦ Sα1
◦ g−1. So the con-

struction can be carried out in a neighbourhood of any di�eomorphism conjugate to an el-

ement of the action. Thus, A (M) = {h ◦ St ◦ h−1 : t ∈ S1, h ∈ Di�∞ (M,ν)}C
∞

is a natu-
ral space for the produced di�eomorphisms. Moreover, we will consider the restricted space

Aα (M) = {h ◦ Sα ◦ h−1 : h ∈ Di�∞ (M,ν)}C
∞

for α ∈ S1.
In the following let M be a smooth compact connected manifold of dimension m ≥ 2 admitting
a non-trivial circle action S = {St}t∈R, St+1 = St. Note that any such action possesses a smooth
invariant volume: Every smooth manifold carries a Riemannian metric and hence a smooth Rie-
mannian volume form ν̂. Any smooth volume form is given by f · ν̂, where f is a positive scalar
function. If f̄ is the �berwise average of f , then f̄ · ν̂ is a smooth volume form which is invariant
under S. In case of a manifold with boundary by a smooth di�eomorphism we mean in�nitely
di�erentiable in the interior and such that all the derivatives can be extended to the boundary
continuously.
In their in�uential paper [AK70] Anosov and Katok proved amongst others that in A (M) the set
of weakly mixing di�eomorphisms is generic (i. e. it is a dense Gδ-set) in the C∞ (M)-topology.
For this they used the �approximation by conjugation�-method. In [GK00] the conjugation maps
are constructed more explicitly such that they can be equipped with the additional structure of
being locally very close to an isometry, thus showing that there exists a weakly mixing smooth
di�eomorphism preserving a smooth measure and a measurable Riemannian metric on any mani-
fold with non-trivial circle action. Actually, it follows from the respective proofs that both results
are true in Aα (M) for a Gδ-set of α ∈ R. However, both proofs do not give a full description of
the set of α ∈ R for which the particular result holds in Aα (M). Such an investigation is started
in [FS05]: B. Fayad and M. Saprykina showed in case of dimension 2 that if α ∈ S1 is Liouville,
the set of weakly mixing di�eomorphisms is generic in the C∞ (M)-topology in Aα (M). Here
an irrational number α is called Liouville if and only if for every C ∈ R>0 and for every n ∈ N
there are in�nitely many pairs of coprime integers p, q such that

∣∣∣α− p
q

∣∣∣ < C
qn .

In this article we prove the following theorem generalizing the results of [GK00] as well as [FS05]:

Theorem 1. Let M be a smooth compact and connected manifold of dimension m ≥ 2 with

a non-trivial circle action S = {St}t∈R, St+1 = St. For any S-invariant smooth volume ν the

following is true: If α ∈ R is Liouville, then the set of volume-preserving di�eomorphisms, that

are weakly mixing and preserve a measurable Riemannian metric, is dense in the C∞-topology
in Aα (M).

See [GK00, section 3] for a comprehensive consideration of IM-di�eomorphisms (i. e. di�eo-
morphisms preserving an absolutely continuous probability measure and a measurable Rieman-
nian metric) and IM-group actions. In particular, the existence of a measurable invariant metric
for a di�eomorphism is equivalent to the existence of an invariant measure for the projectivized
derivative extension which is absolutely continuous in the �bers. It is a natural question to ask
about the ergodic properties of the derivative extension with respect to such a measure. While
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in our construction the projectivized derivative extension is as non-ergodic as possible (in fact,
the derivative cocycle is cohomologous to the identity), it is work in progress to realize ergodic
behaviour. Recently, it has been proven that for every ρ > 0 and m ≥ 2 there exists a weakly
mixing real-analytic di�eomorphism f ∈ Di�ωρ (Tm, µ) preserving a measurable Riemannian met-
ric ([Ku]).
We want to point out that Theorem 1 is in some sense the best we can obtain:

• By [FS05, corollary 1.4], whose proof uses Herman's last geometric result ([FKr09]), we
have the following dichotomy in case ofM = S1× [0, 1]: A number α ∈ R\Q is Diophantine
if and only if there is no ergodic di�eomorphism of M whose rotation number (on at least
one of the boundaries) is equal to α. Since weakly mixing di�eomorphisms are ergodic,
there cannot be a weakly mixing f ∈ Aα

(
S1 × [0, 1]

)
for α ∈ R \Q Diophantine.

• By a result of A. Furman (appendix to [GK00]) a weakly mixing di�eomorphism cannot
preserve a Riemannian metric with L2-distortion (i.e. both the norm and its inverse are
L2-functions). Moreover, it is conjectured that a weakly mixing di�eomorphism cannot
preserve a Riemannian metric with L1-distortion (see [GK00, Conjecture 3.7.]).

Using the standard techniques to prove genericity of the weak mixing-property and Theorem
1 we conclude in subsection 2.2:

Corollary 1. Let M be a smooth compact and connected manifold of dimension m ≥ 2 with a

non-trivial circle action S = {St}t∈R, St+1 = St, preserving a smooth volume ν. If α ∈ R is

Liouville, the set of volume-preserving weakly mixing di�eomorphisms is a dense Gδ-set in the

C∞-topology in Aα (M).

Hereby, we clear up some points in [FS05] by generalizing their 2-dimensional constructions
to arbitrary higher dimension.

2 Preliminaries

2.1 De�nitions and notations

In this chapter we want to introduce advantageous de�nitions and notations. Initially we discuss
topologies on the space of smooth di�eomorphisms on the manifold M = S1 × [0, 1]

m−1. Note
that for di�eomorphisms f = (f1, ..., fm) : S1× [0, 1]

m−1 → S1× [0, 1]
m−1 the coordinate function

f1 understood as a map R× [0, 1]
m−1 → R has to satisfy the condition f1 (θ + n, r1, ..., rm−1) =

f1 (θ, r1, ..., rm−1) + l for n ∈ Z, where either l = n or l = −n. Moreover, for i ∈ {2, ...,m} the
coordinate function fi has to be Z-periodic in the �rst component, i.e. fi (θ + n, r1, ..., rm−1) =
fi (θ, r1, ..., rm−1) for every n ∈ Z.
To de�ne explicit metrics on Di�k

(
S1 × [0, 1]

m−1
)
and in the following, the subsequent notations

will be useful:

De�nition 2.1. 1. For a su�ciently di�erentiable function f : Rm → R and a multi-index
~a = (a1, ..., am) ∈ Nm0

D~af :=
∂|~a|

∂xa11 ...∂xamm
f,

where |~a| = ∑m
i=1 ai is the order of ~a.
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2. For a continuous function F : (0, 1)
m → R

‖F‖0 := sup
z∈(0,1)m

|F (z)| .

Di�eomorphisms on S1× [0, 1]
m−1 can be regarded as maps from [0, 1]

m to Rm. In this spirit
the expressions ‖fi‖0 as well as ‖D~afi‖0 for any multi-index ~a with |~a| ≤ k have to be understood
for f = (f1, ..., fm) ∈ Di�k

(
S1 × [0, 1]

m−1
)
. Since such a di�eomorphism is a continuous map on

the compact manifold and every partial derivative can be extended continuously to the boundary,
all these expressions are �nite. Thus the subsequent de�nition makes sense:

De�nition 2.2. 1. For f, g ∈ Di�k
(
S1 × [0, 1]

m−1
)
with coordinate functions fi resp. gi we

de�ne

d̃0 (f, g) = max
i=1,..,m

{
inf
p∈Z
‖(f − g)i + p‖

0

}
as well as

d̃k (f, g) = max
{
d̃0 (f, g) , ‖D~a (f − g)i‖0 : i = 1, ...,m , 1 ≤ |~a| ≤ k

}
.

2. Using the de�nitions from 1. we de�ne for f, g ∈ Di�k
(
S1 × [0, 1]

m−1
)
:

dk (f, g) = max
{
d̃k (f, g) , d̃k

(
f−1, g−1

)}
.

Obviously dk describes a metric on Di�k
(
S1 × [0, 1]

m−1
)
measuring the distance between

the di�eomorphisms as well as their inverses. As in the case of a general compact manifold the
following de�nition connects to it:

De�nition 2.3. 1. A sequence of Di�∞
(
S1 × [0, 1]

m−1
)
-di�eomorphisms is called conver-

gent in Di�∞
(
S1 × [0, 1]

m−1
)
if it converges in Di�k

(
S1 × [0, 1]

m−1
)
for every k ∈ N.

2. On Di�∞
(
S1 × [0, 1]

m−1
)
we declare the following metric

d∞ (f, g) =

∞∑
k=1

dk (f, g)

2k · (1 + dk (f, g))
.

It is a general fact that Di�∞
(
S1 × [0, 1]

m−1
)
is a complete metric space with respect to this

metric d∞.
Again considering di�eomorphisms on S1 × [0, 1]

m−1 as maps from [0, 1]
m to Rm we add the

adjacent notation:

De�nition 2.4. Let f ∈ Di�k
(
S1 × [0, 1]

m−1
)
with coordinate functions fi be given. Then

‖Df‖0 := max
i,j∈{1,...,m}

‖Djfi‖0

and

|||f |||k := max
{
‖D~afi‖0 ,

∥∥D~a (f−1
i

)∥∥
0

: i = 1, ...,m, ~a multi-index with 0 ≤ |~a| ≤ k
}
.
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Remark 2.5. By the above-mentioned observations for every multi-index ~a with |~a| ≥ 1 and
every i ∈ {1, ...,m} the derivative D~ahi is Z-periodic in the �rst variable. Since in case of a
di�eomorphism g = (g1, ..., gm) on S1× [0, 1]

m−1 regarded as a map [0, 1]
m → Rm the coordinate

functions gj for j ∈ {2, ...,m} satisfy gj ([0, 1]
m

) ⊆ [0, 1], it holds:

sup
z∈(0,1)m

|(D~ahi) (g (z))| ≤ |||h||||~a|.

Furthermore, we introduce the notion of a partial partition of a compact manifold M , which
is a pairwise disjoint countable collection of measurable subsets of M .

De�nition 2.6. • A sequence of partial partitions νn converges to the decomposition into
points if and only if for a given measurable set A and for every n ∈ N there exists a
measurable set An, which is a union of elements of νn, such that limn→∞ µ (A∆An) = 0.
We often denote this by νn → ε.

• A partial partition ν is the image under a di�eomorphism F : M →M of a partial partition
η if and only if ν = {F (I) : I ∈ η}. We write this as ν = F (η).

2.2 First steps of the proof

First of all we show how constructions on S1 × [0, 1]
m−1 can be transfered to a general compact

connected smooth manifold M with a non-trivial circle action S = {St}t∈R, St+1 = St. By [AK70,
Proposition 2.1.], we can assume that 1 is the smallest positive number satisfying St = id. Hence,
we can assume S to be e�ective. We denote the set of �xed points of S by F and for q ∈ N Fq
is the set of �xed points of the map S 1

q
.

On the other hand, we consider S1 × [0, 1]
m−1 with Lebesgue measure µ. Furthermore, let

R = {Rα}α∈S1 be the standard action of S1 on S1 × [0, 1]
m−1, where the map Rα is given by

Rα (θ, r1, ..., rm−1) = (θ + α, r1, ..., rm−1). Hereby, we can formulate the following result (see
[FSW07, Proposition 1]):

Proposition 2.7. LetM be a m-dimensional smooth, compact and connected manifold admitting

an e�ective circle action S = {St}t∈R, St+1 = St, preserving a smooth volume ν. Let B :=

∂M ∪F ∪
(⋃

q≥1 Fq

)
. There exists a continuous surjective map G : S1× [0, 1]

m−1 →M with the

following properties:

1. The restriction of G to S1 × (0, 1)
m−1

is a C∞-di�eomorphic embedding.

2. ν
(
G
(
∂
(
S1 × [0, 1]

m−1
)))

= 0

3. G
(
∂
(
S1 × [0, 1]

m−1
))
⊇ B

4. G∗ (µ) = ν

5. S ◦G = G ◦ R

By the same reasoning as in [FSW07, section 2.2.], this proposition allows us to carry a

construction from
(
S1 × [0, 1]

m−1
,R, µ

)
to the general case (M,S, ν):

Suppose f : S1 × [0, 1]
m−1 → S1 × [0, 1]

m−1 is a weakly mixing di�eomorphism su�ciently
close to Rα in the C∞-topology with f -invariant measurable Riemannian metric ω obtained
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by f = limn→∞ fn with fn = Hn ◦ Rαn+1 ◦H−1
n , where fn = Rαn+1 in a neighbourhood of the

boundary (in Proposition 2.8 we will see that these conditions can be satis�ed in the constructions
of this article). Then we de�ne a sequence of di�eomorphisms:

f̃n : M →M f̃n (x) =

G ◦ fn ◦G
−1 (x) if x ∈ G

(
S1 × (0, 1)

m−1
)

Sαn+1 (x) if x ∈ G
(
∂
(
S1 × (0, 1)

m−1
))

Constituted in [FK04, section 5.1.], this sequence is convergent in the C∞-topology to the dif-
feomorphism

f̃ : M →M f̃ (x) =

G ◦ f ◦G
−1 (x) if x ∈ G

(
S1 × (0, 1)

m−1
)

Sα (x) if x ∈ G
(
∂
(
S1 × (0, 1)

m−1
))

provided the closeness from f to Rα in the C∞-topology.
We observe that f and f̃ are measure-theoretically isomorphic. Then f̃ is weakly mixing because
the weak mixing-property is invariant under isomorphisms.
Moreover, we want to show how we can construct a f̃ -invariant measurable Riemannian met-
ric ω̃ out of the f -invariant metric ω. Since ω̃ only needs to be a measurable metric and

ν
(
G
(
∂
(
S1 × [0, 1]

m−1
)))

= 0, we only have to construct it on G
(
S1 × (0, 1)

m−1
)
. Using

the di�eomorphic embedding G we consider ω̃|G(S1×(0,1)m−1) :=
(
G−1

)∗
ω|G(S1×(0,1)m−1) and

show that it is f̃ -invariant: On G
(
S1 × (0, 1)

m−1
)
we have f̃ = G ◦ f ◦ G−1 and thus we can

compute:

f̃∗ω̃ =
(
G ◦ f ◦G−1

)∗ ((
G−1

)∗
ω
)

=
(
G−1

)∗◦f∗◦G∗◦(G−1
)∗
ω =

(
G−1

)∗◦f∗ω =
(
G−1

)∗
ω = ω̃

Altogether the construction done in the case of
(
S1 × [0, 1]

m−1
,R, µ

)
is transfered to (M,S, ν).

Hence, it su�ces to consider constructions on M = S1 × [0, 1]
m−1 with circle action R subse-

quently. In this case we will prove the following result:

Proposition 2.8. For every Liouvillean number α there is a sequence (αn)n∈N of rational

numbers αn = pn
qn

satisfying limn→∞ |α− αn| = 0 monotonically, and there are sequences

(gn)n∈N, (φn)n∈N of measure-preserving di�eomorphisms satisfying gn ◦ R 1
qn

= R 1
qn
◦ gn as

well as φn ◦ R 1
qn

= R 1
qn
◦ φn such that the di�eomorphisms fn = Hn ◦ Rαn+1

◦ H−1
n with

Hn := h1 ◦ h2 ◦ ... ◦ hn, where hn := gn ◦ φn, coincide with Rαn+1 in a neighbourhood of the

boundary, converge in the Di�∞ (M)-topology, and the di�eomorphism f = limn→∞ fn is weakly

mixing, has an invariant measurable Riemannian metric, and satis�es f ∈ Aα (M).
Furthermore, for every ε > 0 the parameters in the construction can be chosen in such a way

that d∞ (f,Rα) < ε.

By this Proposition weakly mixing di�eomorphisms preserving a measurable Riemannian
metric are dense in Aα (M):

Because of Aα (M) = {h ◦Rα ◦ h−1 : h ∈ Di�∞ (M,µ)}C
∞

it is enough to show that for every
di�eomorphism h ∈ Di�∞ (M,µ) and every ε > 0 there is a weakly mixing di�eomorphism

f̃ preserving a measurable Riemannian metric such that d∞
(
f̃ , h ◦Rα ◦ h−1

)
< ε. For this

purpose, let h ∈ Di�∞ (M,µ) and ε > 0 be arbitrary. By [Om74, p. 3] and [KM97, Theorem
43.1.], Di�∞ (M) is a Lie group. In particular, the conjugating map g 7→ h◦g ◦h−1 is continuous
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with respect to the metric d∞. Continuity in the point Rα yields the existence of δ > 0, such
that d∞ (g,Rα) < δ implies d∞

(
h ◦ g ◦ h−1, h ◦Rα ◦ h−1

)
< ε. By Proposition 2.8 we can

�nd a weakly mixing di�eomorphism f with f -invariant measurable Riemannian metric ω and

d∞(f,Rα) < δ. Hence f̃ := h ◦ f ◦ h−1 satis�es d∞
(
f̃ , h ◦Rα ◦ h−1

)
< ε. Note that f̃ is weakly

mixing and preserves the measurable Riemannian metric ω̃ :=
(
h−1

)∗
ω.

Hence, Theorem 1 is deduced from Proposition 2.8.

Remark 2.9. Moreover we can show that the set of weakly mixing di�eomorphisms is generic
in Aα (M) (i.e. it is a dense Gδ-set) using Proposition 2.8 and the same technique as in [Ha56],
section Category.
Using Proposition 2.8 we can show that the set of weakly mixing di�eomorphisms is generic
in Aα (M) (i.e. it is a dense Gδ-set). Thereby, we consider a countable dense set {ϕn}n∈N in
L2 (M,µ), which is a separable space, and de�ne the sets:

O (i, j, k, n) =

{
T ∈ Aα (M) : |(UnTϕi, ϕj)− (ϕi, 1) · (1, ϕj)| <

1

k

}
Since (UTϕ,ψ) depends continuously on T , each O (i, j, k, n) is open. Hence,

K :=
⋂
i∈N

⋂
j∈N

⋂
k∈N

⋃
n∈N

O (i, j, k, n)

is a Gδ-set.
By another equivalent characterisation a measure-preserving transformation T is weakly mixing
if and only if for every ϕ,ψ ∈ L2 (M,µ) there is a sequence (mn)n∈N of density one such that
limn→∞ (UmnT ϕ,ψ) = (ϕ, 1)·(1, ψ). Thus, every weakly mixing di�eomorphism is contained inK.
On the other hand, we show that a transformation, that is not weakly mixing, does not belong
to K: If T is not weakly mixing, UT has a non-trivial eigenfunction. W.l.o.g. we can assume the
existence of f ∈ L2 (M,µ) and c ∈ C of absolute value 1 satisfying UT f = c · f , ‖f‖L2 = 1 and
(1, f) = 0. Since {ϕn}n∈N is dense in L2 (M,µ), there is an index i such that ‖f − ϕi‖L2 < 0.1.
Obviously ‖ϕi‖L2 ≤ ‖f‖L2 + ‖f − ϕi‖L2 < 1.1 and |(UnT f, f)− (f, 1) · (1, f)| = |(cn · f, f)| =

|cn| · ‖f‖2L2 = 1. Consequently we can estimate:

1 = |(UnT f, f)− (f, 1) · (1, f)|
≤ |(UnT f, f)− (UnT f, ϕi)|+ |(UnT f, ϕi)− (UnTϕi, ϕi)|+ |(UnTϕi, ϕi)− (ϕi, 1) · (1, ϕi)|

+ |(ϕi, 1) · (1, ϕi)− (ϕi, 1) · (1, f)|+ |(ϕi, 1) · (1, f)− (f, 1) · (1, f)|
≤ |c|n · ‖f‖L2 · ‖f − ϕi‖L2 + ‖f − ϕi‖L2 · ‖ϕi‖L2 + |(UnTϕi, ϕi)− (ϕi, 1) · (1, ϕi)|

+ ‖ϕi‖L2 · ‖f − ϕi‖L2

≤ 0.1 + 0.11 + |(UnTϕi, ϕi)− (ϕi, 1) · (1, ϕi)|+ 0.11

< |(UnTϕi, ϕi)− (ϕi, 1) · (1, ϕi)|+ 0.5

Thus |(UnTϕi, ϕi)− (ϕi, 1) · (1, ϕi)| has to be larger than 1
2 . Hence T does not belong toO (i, i, 2, n)

for any value of n and accordingly does not belong to K. So K coincides with the set of weakly
mixing di�eomorphisms in Aα (M). By the observations above we know that this set is dense. In
conclusion the set of weakly mixing di�eomorphisms is a dense Gδ-set in Aα (M). Thus Corollary
1 is proven.

2.3 Outline of the proof

The constructions are based on the �approximation by conjugation�-method developed by D.V.
Anosov and A. Katok in [AK70]. As indicated in the introduction, one constructs successively a
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sequence of measure preserving di�eomorphisms fn = Hn ◦Rαn+1 ◦H−1
n , where the conjugation

maps Hn = h1 ◦ ... ◦ hn and the rational numbers αn = pn
qn

are chosen in such a way that the
functions fn converge to a di�eomorphism f with the desired properties.
First of all we will de�ne two sequences of partial partitions, which converge to the decomposition
into points in each case. The �rst type of partial partition, called ηn, will satisfy the requirements
in the proof of the weak mixing-property. On the partition elements of the even more re�ned
second type, called ζn, the conjugation map hn will act as an isometry, and this will enable us
to construct an invariant measurable Riemannian metric. Afterwards we will construct these
conjugating di�eomorphisms hn = gn ◦ φn, which are composed of two step-by-step de�ned
smooth measure-preserving di�eomorphisms. In this construction the map gn should introduce
shear in the θ-direction as in [FS05]. So g̃[nqσn] (θ, r1, ..., rm−1) = (θ + [n · qσn] · r1, r1, ..., rm−1)
might seem an obvious candidate. Unfortunately, that map is not an isometry. Therefore, the
map gn will be constructed in such a way that gn is an isometry on the image under φn of any

partition element Ǐn ∈ ζn, and gn
(
În

)
= g̃[nqσn]

(
În

)
as well as gn

(
Φn

(
În

))
= g̃[nqσn]

(
Φn

(
În

))
for every În ∈ ηn, where Φn = φn ◦ Rmnαn+1

◦ φ−1
n with a speci�c sequence (mn)n∈N of natural

numbers (see section 4) is important in the proof of the weak mixing property. Likewise the
conjugation map φn will be built such that it acts on the elements of ζn as an isometry and on
the elements of ηn in such a way that it satis�es the requirements of a criterion for weak mixing
similar to the one in [FS05] but modi�ed in many places because of the new conjugation map
gn and the new type of partitions. In particular, Φn has to map each element of the partial
partition ηn on a set of almost full length in the r1, ..., rm−1-coordinates in an almost uniform
way (see De�nition 4.1 for the precise requirement).
In the 2-dimensional constructions of [FS05] such a behaviour is obtained by putting φn equal

to the identity on one half of the fundamental domain
[
0, 1

qn

]
× [0, 1] and φn = φ̃2qn on the

other one, where φ̃λ = C−1
λ ◦ ϕ ◦ Cλ with Cλ being a stretching by λ in the �rst coordinate and

ϕ a �quasi-rotation�, i. e. a rotation by π
2 on large part of the domain. So, such a map ϕ̃λ as

well as its inverse map a horizontal interval of length about λ−1 to a vertical interval of almost
full length 1. Since Rmnαn+1

induces a permutation of the sections by choice of the number mn,
Φn = φn ◦Rmnαn+1

◦ φ−1
n maps small horizontal to long vertical intervals. This procedure relies on

the 2-dimensional setting. Modi�cations of that approach by known quantitative Anosov-Katok-
constructions in higher dimensions like in [FSW07] and [Be13] do not work. We had to modify
the notion of uniform distribution and our corresponding maps φ̃(j)

λj ,µj
constructed in subsection

3.3 will always involve the θ-coordinate. Additionally, we introduce �inner rotations� in order to
guarantee that φn acts as an isometry on the partition elements Ǐn ∈ ζn: A map of the form
C−1
λ ◦ ϕ ◦ Cλ would cause an expansion by λ in one coordinate and by λ−1 in another, so far

away from being an isometry. The �inner rotations� will cause that Cλ and C−1
λ act on the

same coordinate on the elements Ǐn ∈ ζn. Unfortunately, this requires a fairly elaborate and
slightly technical construction. With the aid of these maps φ̃(j)

λj ,µj
we de�ne the conjugation map

φn = φ̃
(m)
2qn,qn

◦ φ̃(m−1)
2q2n,qn

◦ ... ◦ φ̃(2)

2qm−1
n ,qn

on the �rst half of the fundamental domain. On the second

one, φn is the identity.
In section 5 we will show convergence of the sequence (fn)n∈N in Aα (M) for a given Liouville
number α by the same approach as in [FS05]. To do so, we have to estimate the norms |||Hn|||k
very carefully. In section 6 we verify that the obtained di�eomorphism f = limn→∞ fn is weakly
mixing. Finally, we will construct the desired f -invariant measurable Riemannian metric in
section 7 exploiting the fact that hn acts as an isometry on large parts of the manifold.
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3 Explicit constructions

3.1 Sequences of partial partitions

In this subsection we de�ne the two announced sequences of partial partitions (ηn)n∈N and

(ζn)n∈N of M = S1 × [0, 1]
m−1.

3.1.1 Partial partition ηn

Remark 3.1. For convenience we will use the notation
∏m
i=2 [ai, bi] for [a2, b2]× ...× [am, bm].

Initially, ηn will be constructed on the fundamental sector
[
0, 1

qn

]
×[0, 1]

m−1. For this purpose

we divide the fundamental sector into 2 sections:

• On
[
0, 1

2·qn

]
× [0, 1]

m−1 the partial partition ηn consists of all multidimensional intervals

of the following form:[
1

52n4 · qn
,

1

2qn
− 1

52n4 · qn

]
×

m∏
i=2

[
ji
qn

+
1

26n4 · qn
,
ji + 1

qn
− 1

26n4 · qn

]
,

where ji ∈ Z and
⌈
qn

10n4

⌉
≤ ji ≤ qn −

⌈
qn

10n4

⌉
− 1 for i = 2, ...,m. We will call these sets

partition elements of the �rst kind.

• On
[

1
2·qn ,

1
qn

]
× [0, 1]

m−1 the partial partition ηn consists of all sets of the following form:

⋃[
1

2qn
+
j

(1)
1

2q2
n

+ · · ·+ j
(m−1)
1

2qmn
+

1

20n4 · qmn
,

1

2qn
+
j

(1)
1

2q2
n

+ · · ·+ j
(m−1)
1 + 1

2qmn
− 1

20n4 · qmn

]

×
m∏
i=2

[
ji
qn

+
1

10n4 · qn
,
ji + 1

qn
− 1

10n4 · qn

]
,

where ji ∈ Z,
⌈
qn

10n4

⌉
≤ ji ≤ qn −

⌈
qn

10n4

⌉
− 1, for i = 2, ...,m and the union is taken over

all j(l)
1 ∈ Z,

⌈
qn

10n4

⌉
≤ j

(l)
1 ≤ qn −

⌈
qn

10n4

⌉
− 1, for l = 1, ...,m − 1. We will call these sets

partition elements of the second kind.

By applying the map Rl/qn with l ∈ Z, this partial partition of
[
0, 1

qn

]
× [0, 1]

m−1 is extended

to a partial partition of S1 × [0, 1]
m−1.

Remark 3.2. By construction this sequence of partial partitions converges to the decomposition
into points.

Remark 3.3. Due to our choice of allowed values for the occurring indices j(l)
i the partition

elements are positioned in such a way that the requirements in Proposition 3.11 are satis�ed.
This will be used in Lemma 4.5 in order to show that the map Φn = φn ◦Rmnαn+1

◦φ−1
n maps each

partition element almost uniformly in the r1, . . . , rm−1-coordinates.



Explicit constructions 10

3.1.2 Partial partition ζn

The partial partition ζn consists of all multidimensional intervals of the following form:[
k

2qn
+
j

(1)
1

2q2
n

+ · · ·+ j
(m−1)
1

2qmn
+

1

n4 · 2qmn
,
k

2qn
+
j

(1)
1

2q2
n

+ · · ·+ j
(m−1)
1 + 1

2qmn
− 1

n4 · 2qmn

]

×
[
j

(1)
2

qn
+ · · ·+ j

(m)
2

qmn
+

j
(m+1)
2

16n4 · qmn · [nqσn]
+

1

16n8 · qmn · [nqσn]
,

j
(1)
2

qn
+ · · ·+ j

(m)
2

qmn
+

j
(m+1)
2 + 1

16n4 · qmn · [nqσn]
− 1

16n8 · qmn · [nqσn]

]

×
m∏
i=3

[
ji
qn

+
1

n4 · qn
,
ji + 1

qn
− 1

n4 · qn

]
,

where k ∈ Z, j(l)
1 ∈ Z,

⌈
qn
n4

⌉
≤ j

(l)
1 ≤ qn −

⌈
qn
n4

⌉
− 1, for l = 1, ...,m − 1 as well as j(l)

2 ∈ Z,⌈
qn
n4

⌉
≤ j

(l)
2 ≤ qn −

⌈
qn
n4

⌉
− 1 for l = 1, ...,m as well as j(m+1)

2 ∈ Z, 16 · [n · qσn] ≤ j
(m+1)
2 ≤

16n4 · [n · qσn]− 16 · [n · qσn]− 1, as well as ji ∈ Z,
⌈
qn
n4

⌉
≤ ji ≤ qn −

⌈
qn
n4

⌉
− 1, for i = 3, ...,m..

Remark 3.4. For every n ≥ 3 the partial partition ζn consists of disjoint sets, covers a set of
measure at least 1− 4·m

n2 , and the sequence (ζn)n∈N converges to the decomposition into points.

Remark 3.5. Due to the allowed values of the indices j(l)
i each partition element is positioned

such that the conjugation maps act as isometries on it (see the requirements in Propositions 3.8,
3., and 3.11, 3.).

3.2 The conjugation map gn

Let σ ∈ (0, 1). As mentioned in the sketch of the proof we aim for a smooth measure-preserving

di�eomorphism gn which satis�es gn
(
În

)
= g̃[nqσn]

(
În

)
as well as gn

(
Φn

(
În

))
= g̃[nqσn]

(
Φn

(
În

))
for every În ∈ ηn and is an isometry on the image under φn of any partition element Ǐn ∈ ζn.
Let a, b ∈ Z and ε ∈

(
0, 1

16

]
such that 1

ε ∈ Z. Moreover, we consider δ > 0 such that 1
δ ∈ Z and

a·b·δ
ε ∈ Z. We denote [0, 1]

2 by ∆ and [ε, 1− ε]2 by ∆ (ε).

Lemma 3.6. For every ε ∈
(
0, 1

16

]
there exists a smooth measure-preserving di�eomorphism

gε : [0, 1]
2 → {(x+ ε · y, y) : x, y ∈ [0, 1]} that is the identity on ∆ (4ε) and coincides with the

map (x, y) 7→ (x+ ε · y, y) on ∆ \∆ (ε).

Proof. First of all let ψε : R2 → R2 be a smooth di�eomorphism satisfying

ψε (x, y) =

{
(x, y) on R2 \∆ (2ε)(

1
2 + 1

5 ·
(
x− 1

2

)
, 1

2 + 1
5 ·
(
y − 1

2

))
on ∆ (4ε)

Furthermore, let τε be a smooth di�eomorphism with the following properties

τε (x, y) =

(x+ ε · y, y) on
{(
x− 1

2

)2
+
(
y − 1

2

)2 ≥ ( 5
16

)2}
(x, y) on

{(
x− 1

2

)2
+
(
y − 1

2

)2 ≤ 1
50

}
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Figure 1: The action of the map gε.

We de�ne ḡε := ψ−1
ε ◦ τε ◦ ψε. Then the di�eomorphism ḡε coincides with the identity on ∆ (4ε)

and with the map (x, y) 7→ (x+ ε · y, y) on R2 \∆ (ε). From this we conclude that det (Dḡε) > 0.
Moreover, ḡε is measure-preserving on Uε :=

(
R2 \∆ (ε)

)
∪∆ (4ε).

With the aid of �Moser's trick� we want to construct a di�eomorphism gε which is measure-
preserving on the whole R2 and agrees with ḡε on Uε. To do so, we consider the canonical volume
form Ω0 on R2: Ω0 = dx∧dy; in other words, Ω0 = dω0 using the 1-form ω0 = 1

2 ·(x · dy − y · dx).
Additionally we introduce the volume form Ω1 := ḡ∗εΩ0.
At �rst we note that ḡε preserves the 1-form ω0 on Uε: Clearly this holds on ∆ (4ε), where ḡε is
the identity. On R2 \∆ (ε) we have Dḡε (x, y) = (x+ εy, y), and thus we get

ḡ∗εω0 = ω0 (x+ ε · y, y) =
1

2
· ((x+ ε · y) dy − y · d (x+ ε · y)) =

1

2
· (x · dy − y · dx) = ω0 (x, y) .

Furthermore, we introduce Ω′ := Ω1−Ω0. Since the exterior derivative commutes with the pull-
back, it holds that Ω′ = d (ḡ∗εω0 − ω0). In addition we consider the volume form Ωt := Ω0 + t ·Ω′
and note that Ωt is non-degenerate for t ∈ [0, 1]. Thus, we get a uniquely de�ned vector �eld
Xt such that Ωt (Xt, ·) = (ω0 − ḡ∗εω0) (·). Since ∆ is a compact manifold, the non-autonomous
di�erential equation d

dtu(t) = Xt (u(t)) with initial values in ∆ has a solution de�ned on R.
Hence, we get a one-parameter family of di�eomorphisms {νt}t∈[0,1] on ∆ satisfying ν̇t = Xt (νt),
ν0 = id.
Referring to [Ber98, Lemma 2.2], it holds that

d

dt
ν∗t Ωt = d (ν∗t (i (Xt) Ωt)) + ν∗t

(
d

dt
Ωt + i (Xt) dΩt

)
.

Because of d (ν∗t (i (Xt) Ωt)) = ν∗t (d (i (Xt) Ωt)) and dΩt = d (dω0 + t · (d (ḡ∗εω0)− dω0)) = 0 we
compute:

d

dt
ν∗t Ωt = ν∗t (d (i (Xt) Ωt)) + ν∗t

(
d

dt
Ωt

)
= ν∗t d (Ωt (Xt, ·)) + ν∗t Ω′

= ν∗t d (ω0 − ḡ∗εω0) + ν∗t Ω′ = ν∗t (Ω0 − Ω1) + ν∗t (Ω1 − Ω0) = 0.

Consequently ν∗1Ω1 = ν∗0Ω0 = Ω0 (using ν0 = id in the last step). As we have seen, it holds that
ḡ∗εω0 = ω0 on Uε. Therefore, on Uε it holds that Ωt (Xt, ·) = 0. Since Ωt is non-degenerate, we
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conclude that Xt = 0 on Uε and hence ν1 = ν0 = id on Uε ∩∆. Now we can extend ν1 smoothly
to R2 as the identity.
Denote gε := ḡε ◦ν1. Because of ν1 = id on Uε, the map gε coincides with ḡε on Uε as announced.
Furthermore we have

g∗εΩ0 = (ḡε ◦ ν1)
∗

Ω0 = ν∗1 (ḡ∗εΩ0) = ν∗1Ω1 = Ω0.

Using the transformation formula we compute for an arbitrary measurable set A ⊆ R2:

µ (gε (A)) =

∫
gε(A)

Ω0 =

∫
A

|det (Dgε)| · Ω0.

We know det (Dν1) > 0 (because ν0 = id and all the maps νt are di�eomorphisms) as well as
det (Dḡε) > 0, and thus |det (Dgε)| = det (Dgε). Since g∗εΩ0 = (det (Dgε)) · Ω0 (compare with
[HK95, proposition 5.1.3.]) we �nally conclude:

µ (gε (A)) =

∫
A

(det (Dgε)) · Ω0 =

∫
A

g∗εΩ0 =

∫
A

Ω0 = µ (A) .

Consequently gε is a measure-preserving di�eomorphism on R2 satisfying the desired properties.

Let g̃b : S1 × [0, 1]
m−1 → S1 × [0, 1]

m−1 be the smooth measure-preserving di�eomorphism
g̃b (θ, r1, ..., rm−1) = (θ + b · r1, r1, ..., rm−1) and denote

[
0, 1

a

]
×
[
0, ε

b·a
]
×[δ, 1− δ]m−2 by ∆a,b,ε,δ.

Using the map Da,b,ε : Rm → Rm, (θ, r1, ..., rm−1) 7→
(
a · θ, b·aε · r1, r2, ..., rm−1

)
and gε from

Lemma 3.6 we de�ne the measure-preserving di�eomorphism ga,b,ε,δ : ∆a,b,ε,δ → g̃b (∆a,b,ε,δ)
by setting ga,b,ε,δ = D−1

a,b,ε ◦ (gε, idRm−2) ◦ Da,b,ε. Using the fact that a·b·δ
ε ∈ Z we extend it

to a smooth di�eomorphism ga,b,ε,δ :
[
0, 1

a

]
× [δ, 1− δ]m−1 → g̃b

([
0, 1

a

]
× [δ, 1− δ]m−1

)
by the

description:

ga,b,ε,δ

(
θ, r1 + l · ε

b · a, r2, ..., rm−1

)
=
(
l · ε
a
, l · ε

b · a,
~0
)

+ ga,b,ε,δ (θ, r1, ..., rm−1)

for r1 ∈
[
0, ε

b·a
]
and some l ∈ Z satisfying b·a·δ

ε ≤ l ≤ b·a
ε − b·a·δ

ε − 1. Since this map coincides
with the map g̃b in a neighbourhood of the boundary we can extend it to a map ga,b,ε,δ :

[
0, 1

a

]
×

[0, 1]
m−1 → g̃b

([
0, 1

a

]
× [0, 1]

m−1
)
by setting it equal to g̃b on

[
0, 1

a

]
×
(

[0, 1]
m−1 \ [δ, 1− δ]m−1

)
.

We summarize the properties of this map as follows:

Lemma 3.7. The constructed map ga,b,ε,δ :
[
0, 1

a

]
× [0, 1]

m−1 → g̃b

([
0, 1

a

]
× [0, 1]

m−1
)
satis�es

1. For any set V ⊂
[
0, 1

a

]
× [δ, 1− δ]m−1

with
[
ε
a ,

1−ε
a

]
⊂ πθ(V ) and

[
lε+ε2

b·a , (l+1)ε−ε2
b·a

]
⊂

πr1(V ) ⊂
[
lε
b·a ,

(l+1)ε
b·a

]
we have ga,b,ε,δ(V ) = g̃b(V ). πθ and πr1 denote the projection to the

particular coordinate.

2. On any set V ⊂
[
0, 1

a

]
×[δ, 1− δ]m−1

with πθ(V ) ⊂
[

4ε
a ,

1−4ε
a

]
and πr1(V ) ⊂

[
lε+4ε2

b·a , (l+1)ε−4ε2

b·a

]
the map ga,b,ε,δ acts as the translation by

(
l · εa , l · ε

b·a ,
~0
)
.

3. ga,b,ε,δ coincides with g̃b on
[
0, 1

a

]
×
(

[0, 1]
m−1 \ [δ, 1− δ]m−1

)
.
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Figure 2: The action of the map ga,b,ε.

We initially construct the smooth measure-preserving di�eomorphism gn on the fundamental
sector:

gn = g2qmn ,[n·qσn], 1
8n4 ,

1
32n4

.

Since gn coincides with the map g̃[n·qσn] in a neighbourhood of the boundary, we can extend it to

a smooth measure-preserving di�eomorphism on S1× [0, 1]
m−1 using the description gn ◦R l

qn
=

R l
qn
◦ gn for l ∈ Z. Furthermore, we note that the subsequent constructions are done in such a

way that 260n4 divides qn (see Lemma 5.9) and so the assumption a·b·δ
ε = a·b

4 ∈ Z is satis�ed.
Indeed, this map gn satis�es the following useful properties:

Proposition 3.8. The constructed map gn satis�es:

1. For any set V ⊂ S1 ×
[

1
32n4 , 1− 1

32n4

]m−1
with[

l1 + 1
8n4

2qmn
,
l1 + 1− 1

8n4

2qmn

]
⊂ πθ(V ) ⊂

[
l1

2qmn
,
l1 + 1

2qmn

]
and

[
l2 + 1

8n4

16n4 · qmn · [nqσn]
,

l2 + 1− 1
8n4

16n4 · qmn · [nqσn]

]
⊂ πr1(V ) ⊂

[
l2

16n4 · qmn · [nqσn]
,

l2 + 1

16n4 · qmn · [nqσn]

]
,

where l1, l2 ∈ Z, we have gn(V ) = g̃[nqσn](V ).

2. For every element În ∈ ηn we have gn

(
În

)
= g̃[nqσn]

(
În

)
.

3. On any set V ⊂ S1 ×
[

1
32n4 , 1− 1

32n4

]m−1
with

πθ(V ) ⊂
[
l1 + 1

2n4

2qmn
,
l1 + 1− 1

2n4

2qmn

]
and πr1(V ) ⊂

[
l2 + 1

2n4

16n4 · qmn · [nqσn]
,

l2 + 1− 1
2n4

16n4 · qmn · [nqσn]

]
,

where l1, l2 ∈ Z, the map gn acts as an isometry.
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The �rst property will be used in Lemma 4.6 to show that gn
(

Φn

(
În

))
= g̃[nqσn]

(
Φn

(
În

))
for every În ∈ ηn. The third one will guarantee in Lemma 7.1 that gn acts as an isometry on
φn
(
Ǐn
)
for every Ǐn ∈ ζn.

Proof. The �rst property is an immediate consequence of Lemma 3.7, 1., since we have gn =
g2qmn ,[n·qσn], 1

8n4 ,
1

32n4
on the domain under consideration. This de�nition of gn gives us also the

third property due to Lemma 3.7, 2.

In order to prove the second part we initially consider a partition element În ∈ ηn on
[
0, 1

2qn

]
×

[0, 1]
m−1 and want to examine the e�ect of gn = g2qmn ,[n·qσn], 1

8n4 ,
1

32n4
on it. In the r1-coordinate

we use the fact that there is u1 ∈ Z such that

1

26n4qn
= u1 ·

ε

b · a = u1 ·
1

8n4 · [nqσn] · 2qmn
,

where we use the fact that 260n4 divides qn (Lemma 5.9). Also, with respect to the θ-coordinate
there is u2 ∈ Z such that

1

52n4qn
= u2 ·

1

a
= u2 ·

1

2qmn
.

This implies the second property with the aid of Lemma 3.7, 1. Next, we want to prove the

statement for partition elements În ∈ ηn on
[

1
2qn

, 1
qn

]
× [0, 1]

m−1. With regard to the r1-

coordinate there is u2 ∈ Z such that

1

10n4qn
= u2 ·

ε

b · a = u2 ·
1

8n4 · [nqσn] · 2qmn
since 260n4 divides qn. Considering the θ-coordinate we exploit 1

20n4·qmn
< ε

a = 1
16n4·qmn

. Then
the claim follows from Lemma 3.7, 1.

3.3 The conjugation map φn

The conjugation map φn will be composed of maps φ̃λ,ε,i,j,µ,δ,ε2 , where j ∈ {2, ...,m}, ε, ε2 ∈(
0, 1

4

)
and λ, µ ∈ N. Moreover, δ ∈ (0, 1) such that 1

δ ∈ N and 1
δ divides µ. In the construction

of the map φ̃λ,ε,1,j,µ,δ,ε2 we will use maps Cλ causing a stretch by λ in the �rst coordinate and
so-called �quasi-rotations� ϕε,1,j constructed in Lemma 3.9 with the aid of �Moser's trick� similar
to [FS05, Lemma 5.3.]. With these maps we will also de�ne a family of �inner rotations� ψµ,δ,1,j,ε2
in order to get that φ̃λ,ε,1,j,µ,δ,ε2 acts as an isometry on speci�c cuboids (see Proposition 3.11,
3.): A map of the form C−1

λ ◦ ϕε,1,j ◦ Cλ as in [FS05] and [FSW07] would cause an expansion
by λ in one coordinate and by λ−1 in another, so far away from being an isometry. The �inner
rotations� will cause that Cλ and C−1

λ act on the same coordinate on the elements Ǐn ∈ ζn.
Lemma 3.9. For every ε ∈

(
0, 1

4

)
and every i, j ∈ {1, ...,m} there exists a smooth measure-

preserving di�eomorphism ϕε,i,j on Rm which is the rotation in the xi − xj-plane by π/2 about

the point
(

1
2 , ...,

1
2

)
∈ Rm on [2ε, 1− 2ε]

m
and coincides with the identity outside of [ε, 1− ε]m.

Proof. The proof is similar to the proof of Lemma 3.6. (See also [GK00, section 4.6] for a
geometrical argument of the proof.)

Furthermore, for λ ∈ N we de�ne the maps Cλ (x1, x2, ..., xm) = (λ · x1, x2, ..., xm) and
Dλ (x1, ..., xm) = (λ · x1, λ · x2, ..., λ · xm). Let µ ∈ N, 1

δ ∈ N and assume 1
δ divides µ. We

construct a di�eomorphism ψµ,δ,i,j,ε2 in the following way:
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• Consider [0, 1− 2 · δ]m: Since 1
δ divides µ, we can divide [0, 1− 2 · δ]m into cubes of side

length 1
µ .

• Under the map Dµ any of these cubes of the form
∏m
i=1

[
li
µ ,

li+1
µ

]
with li ∈ N is mapped

onto
∏m
i=1 [li, li + 1].

• On [0, 1]
m we will use the di�eomorphism ϕ−1

ε2,i,j
constructed in Lemma 3.9 . Since this is

the identity outside of ∆ (ε2), we can extend it to a di�eomorphism ϕ̄−1
ε2,i,j

on Rm using
the instruction ϕ̄−1

ε2,i,j
(x1 + k1, x2 + k2, ..., xm + km) = (k1, ..., km) +ϕ−1

ε2,i,j
(x1, x2, ..., xm),

where ki ∈ Z and xi ∈ [0, 1].

• Now we de�ne the smooth measure-preserving di�eomorphism

ψ̃µ,δ,i,j,ε2 = D−1
µ ◦ ϕ̄−1

ε2,i,j
◦Dµ : [0, 1− 2δ]

m → [0, 1− 2δ]
m

• With this we de�ne

ψµ,δ,i,j,ε2 (x1, ..., xm) ={([
ψ̃µ,δ,i,j,ε2 (x1 − δ, ..., xm − δ)

]
1

+ δ, ...,
[
ψ̃µ,δ,i,j,ε2 (x1 − δ, ..., xm − δ)

]
m

+ δ
)

on [δ, 1− δ]m

(x1, ..., xm) otherwise

This is a smooth map because ψ̃µ,δ,i,j,ε2 is the identity in a neighbourhood of the boundary
by the construction.

Remark 3.10. For every set W =
∏m
i=1

[
li
µ + ri,

li+1
µ − ri

]
where li ∈ Z and ri ∈ R satis�es

|ri · µ| ≤ ε2 we have ψµ,δ,i,j,ε2 (W ) = W .

Using these maps we build the following smooth measure-preserving di�eomorphism:

φ̃λ,ε,i,j,µ,δ,ε2 :

[
0,

1

λ

]
× [0, 1]

m−1 →
[
0,

1

λ

]
× [0, 1]

m−1
, φ̃λ,ε,i,j,µ,δ,ε2 = C−1

λ ◦ψµ,δ,i,j,ε2 ◦ϕε,i,j ◦Cλ

Afterwards, φ̃λ,ε,i,j,µ,δ,ε2 is extended to a di�eomorphism on S1 × [0, 1]
m−1 by the description

φ̃λ,ε,i,j,µ,δ,ε2
(
x1 + 1

λ , x2, ..., xm
)

=
(

1
λ , 0, ..., 0

)
+ φ̃λ,ε,i,j,µ,δ,ε2 (x1, x2, ..., xm). This map satis�es

the following properties:

Proposition 3.11. Let j ∈ {2, ...,m}, ε, ε2 ∈
(
0, 1

4

)
, 2ε < ε2, and λ, µ ∈ N. Moreover, let

δ ∈ (0, 1) such that 2ε2 < δ, 1
δ ∈ N and 1

δ divides µ. Then there is a smooth measure-preserving
1
λ -equivariant di�eomorphism φ̃λ,ε,1,j,µ,δ,ε2 : S1 × [0, 1]m−1 → S1 × [0, 1]m−1 such that

1. Let ts ∈ Z, d2εµe ≤ ts ≤ µ − d2εµe − 1, for s = 1, ...,m and |us| ≤ ε2 for s = 0, ...,m.

Then we have

φ̃−1
λ,ε,1,j,µ,δ,ε2

([
t1 + u0

λµ
,

1

λ
− t1 + u1

λµ

]
×

m∏
s=2

[
ts + us
µ

,
ts + 1− us

µ

])

=

[
tj + uj
λµ

,
tj + 1− uj

λµ

]
×
j−1∏
s=2

[
ts + us
µ

,
ts + 1− us

µ

]

×
[
t1 + u1

µ
, 1− t1 + u0

µ

]
×

m∏
s=j+1

[
ts + us
µ

,
ts + 1− us

µ

]
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2. Let ts ∈ Z, dδµe ≤ ts ≤ µ− dδµe − 1 for s = 1, ...,m and V be contained in[
t1 + 2ε2

λµ
,
t1 + 1− 2ε2

λµ

]
×

m∏
i=2

[
ti + 2ε2

µ
,
ti + 1− 2ε2

µ

]
.

When applying φ̃λ,ε,1,j,µ,δ,ε2 on V the occurring maps ϕε,1,j and ϕ
−1
ε2,1,j

act as the respective

rotations.

3. φ̃λ,ε,1,j,µ,δ,ε2 acts as an isometry on each cuboid[
t1 + 2ε2

λµ
,
t1 + 1− 2ε2

λµ

]
×

m∏
s=2

[
ts + 2ε2

µ
,
ts + 1− 2ε2

µ

]
,

where ts ∈ Z, d2εµe ≤ ts ≤ µ− d2εµe − 1, for s = 1, ...,m.

For convenience we will use the notation φ̃(j)
λ,µ = φ̃λ, 1

60n4 ,1,j,µ,
1

10n4 ,
1

22n4
. With this we de�ne

the di�eomorphism φn on the fundamental sector:

• On
[
0, 1

2·qn

]
× [0, 1]

m−1 we put

φn = φ̃
(m)
2qn,qn

◦ φ̃(m−1)
2q2n,qn

◦ ... ◦ φ̃(2)

2qm−1
n ,qn

.

• On
[

1
2·qn ,

1
qn

]
× [0, 1]

m−1 we put

φn = id

This is a smooth map because φn coincides with the identity in a neighbourhood of the di�erent
sections.
Now we extend φn to a di�eomorphism on S1×[0, 1]

m−1 using the description φn◦R 1
qn

= R 1
qn
◦φn.

ψµ

Figure 3: The map ψµ has the useful property of rotating several small cuboids individually
while being the identity outside of a neighborhood of them.

We summarize the useful properties of the constructed map φn in the subsequent Proposition.

Proposition 3.12. The smooth measure-preserving di�eomorphism φn satis�es:

1. By applying φ−1
n on any partition element În ∈ ηn of the form[
1

52n4 · qn
,

1

2qn
− 1

52n4 · qn

]
×

m∏
i=2

[
ji
qn

+
1

26n4 · qn
,
ji + 1

qn
− 1

26n4 · qn

]
,
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Cλ C−1
λψµϕ

Figure 4: The map φn is constructed as concatenation of a stretch map Cλ, a rotation ϕ, the map
ψµ mentioned before, and C−1

λ (the inverse of the stretch map). The map thus constructed has
the very useful property of stretching a cuboid (illustrated here by the underlying grey rectangle)
in one direction (similar to what a hyperbolic map would do), yet it is almost an isometry on all
of the smaller cuboids (illustrated here by black squares with letters). In particular, a partition
element Î ∈ ηn (the leftmost grey rectangle) is mapped to a set that has size almost 1 in one of
its coordinates.

we get[
jm
2q2
n

+
jm−1

2q3
n

+ · · ·+ j2
2qmn

+
1

52n4 · qmn
,
jm
2q2
n

+
jm−1

2q3
n

+ · · ·+ j2 + 1

2qmn
− 1

52n4 · qmn

]
×
[

1

26n4
, 1− 1

26n4

]m−1

.

2. Let ji ∈ Z,
⌈
qn

10n4

⌉
≤ ji ≤ qn −

⌈
qn

10n4

⌉
− 1, for i = 2, ...,m and j

(l)
1 ∈ Z,

⌈
qn

10n4

⌉
≤ j

(l)
1 ≤

qn −
⌈
qn

10n4

⌉
− 1, for l = 1, ...,m− 1 and u0, u1 ≥ 1

11n4 . Then φn maps[
j

(1)
1

2q2
n

+ · · ·+ j
(m−1)
1

2qmn
+

u0

2qmn
,
j

(1)
1

2q2
n

+ · · ·+ j
(m−1)
1 + 1

2qmn
− u1

2qmn

]

×
m∏
i=2

[
ji
qn

+
1

10n4 · qn
,
ji + 1

qn
− 1

10n4 · qn

]
,

to [
1

2qn
− jm

2q2
n

− · · · − j3

2qm−1
n

− j2 + 1

2qmn
+

1

20n4 · qmn
+ an,

1

2qn
− jm

2q2
n

− · · · − j3

2qm−1
n

− j2
2qmn

− 1

20n4 · qmn
+ an

]

×
m∏
i=2

[
j

(m+1−i)
1

qn
+

1

10n4 · qn
,
j

(m+1−i)
1 + 1

qn
− 1

10n4 · qn

]
.

3. φn acts as an isometry on every Ǐn ∈ ζn.

Proof. All these properties are immediate consequences of the corresponding statements in
Proposition 3.11, the choice of parameters in the de�nition of φn and the positions of the partition
elements.
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The �rst two properties will enable us to prove in Lemma 4.5 that Φn = φn ◦ Rmnαn+1
◦ φ−1

n

maps partition elements În ∈ ηn almost uniformly in the r1, . . . , rm−1-coordinates. With the aid
of the third statement we will show in Lemma 7.1 that hn acts as an isometry on any element
of ζn.

4 (γ, ε)-distribution

We introduce the central notion for the proof of the weak mixing-property in section 6:

De�nition 4.1. Let Φ : M → M be a di�eomorphism and J ⊂ [0, 1]
m−1. We say that an

element Î of a partial partition is (γ, ε)-distributed on J under Φ if the following properties are
satis�ed:

• Φ
(
Î
)
is contained in a set of the form [c, c+ γ]× [0, 1]

m−1 for some c ∈ S1.

• π~r
(

Φ
(
Î
))
⊃ J . Here π~r denotes the projection on the (r1, ..., rm−1)-coordinates (i.e., the

last m− 1 coordinates; the �rst one is the θ-coordinate).

• For every (m− 1)-dimensional interval J̃ ⊆ J it holds:∣∣∣∣∣∣
µ
(
Î ∩ Φ−1

(
S1 × J̃

))
µ
(
Î
) −

µ(m−1)
(
J̃
)

µ(m−1) (J)

∣∣∣∣∣∣ ≤ ε ·
µ(m−1)

(
J̃
)

µ(m−1) (J)
,

where µ(m−1) is the Lebesgue measure on [0, 1]
m−1.

Remark 4.2. Analogous to [FS05] we will call the third property �almost uniform distribution�
of Î in the r1, .., rm−1-coordinates. In the following we will often write it in the form∣∣∣µ(Î ∩ Φ−1

(
S1 × J̃

))
· µ(m−1) (J)− µ

(
Î
)
· µ(m−1)

(
J̃
)∣∣∣ ≤ ε · µ(Î) · µ(m−1)

(
J̃
)
.

In the next step we de�ne the sequence of natural numbers (mn)n∈N:

mn = min

{
m ≤ qn+1 : m ∈ N, inf

k∈Z

∣∣∣∣m · pn+1

qn+1
− 1

2 · qn
+

k

qn

∣∣∣∣ ≤ 260 · (n+ 1)4

qn+1

}
= min

{
m ≤ qn+1 : m ∈ N, inf

k∈Z

∣∣∣∣m · qn · pn+1

qn+1
− 1

2
+ k

∣∣∣∣ ≤ 260 · (n+ 1)4 · qn
qn+1

}
Lemma 4.3. The set

{
m ≤ qn+1 : m ∈ N, infk∈Z

∣∣∣m · qn·pn+1

qn+1
− 1

2 + k
∣∣∣ ≤ 260(n+1)4·qn

qn+1

}
is

nonempty for every n ∈ N, i.e., mn exists.

Proof. In Lemma 5.9 we will construct the sequence αn = pn
qn

in such a way that qn = 260n4 · q̃n
and pn = 260n4 ·p̃n with p̃n, q̃n relatively prime. Therefore, the set

{
j · qn·pn+1

qn+1
: j = 1, ..., qn+1

}
contains qn+1

260(n+1)4·gcd(qn,q̃n+1) di�erent equally distributed points on S1. Hence there are at least
qn+1

260(n+1)4·qn di�erent such points and so for every x ∈ S1 there is a j ∈ {1, ..., qn+1} such that

infk∈Z

∣∣∣x− j · qn·pn+1

qn+1
+ k
∣∣∣ ≤ 260(n+1)4·qn

qn+1
. In particular, this is true for x = 1

2 .
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Remark 4.4. We de�ne

an =

(
mn ·

pn+1

qn+1
− 1

2 · qn

)
mod

1

qn

By the above construction of mn it holds that |an| ≤ 260·(n+1)4

qn+1
. In Lemma 5.9 we will see that

it is possible to choose qn+1 ≥ 80 · 260 · (n+ 1)
4 · n4 · qmn . Thus, we get:

|an| ≤
1

80 · n4 · qmn
.

By this choice of the number mn, Rmnαn+1
causes a translation to the di�erent domain of

de�nition of the map φn. In order to deal with partition elements of the second kind we introduce
the so-called �good set� Jn ⊂ [0, 1]

m−1 in the ~r-coordinates:

(1) Jn =
⋃m−1∏

i=1

[
ti
qn

+
1

10n4 · qn
,
ti + 1

qn
− 1

10n4 · qn

]
,

where the union is taken over all ti ∈ Z,
⌈
qn

10n4

⌉
≤ ti ≤ qn −

⌈
qn

10n4

⌉
− 1, for i = 1, ...,m − 1.

Altogether, the following property is satis�ed by our constructions:

Lemma 4.5. We consider the map Φn := φn ◦Rmnαn+1
◦φ−1

n with the conjugating maps φn de�ned

in section 3.3.

1. Under Φn the elements of the partition ηn of the �rst kind are
(

1
2qmn

, 1
n

)
-distributed on

J =
∏m
i=2

[
1

26n4 , 1− 1
26n4

]
.

2. The elements of the partition ηn of the second kind are
(

1
2qmn

, 1
n

)
-distributed on Jn under

Φn.

Proof. We consider a partition element În,1 on
[
0, 1

2qn

]
×[0, 1]

m−1. Then we compute φ−1
n

(
În,1

)
with the aid of Proposition 3.12, 1.:[
jm
2q2
n

+
jm−1

2q3
n

+ · · ·+ j2
2qmn

+
1

52n4 · qmn
,
jm
2q2
n

+
jm−1

2q3
n

+ · · ·+ j2 + 1

2qmn
− 1

52n4 · qmn

]
×

m∏
i=2

[
1

26n4
, 1− 1

26n4

]
.

By our choice of the number mn the subsequent application of Rmnαn+1
yields a translation by

1
2qn

modulo 1
qn

except for the �error term� an introduced in Remark 4.4. In particular, Rmnαn+1
◦

φ−1
n

(
În,1

)
is positioned in another domain of de�nition of the map φn, namely we have φn = id.

Hence, Φn

(
În,1

)
is equal to[

1

2qn
+
jm
2q2
n

+
jm−1

2q3
n

+ · · ·+ j2
2qmn

+
1

52n4 · qmn
+ an,

1

2qn
+
jm
2q2
n

+
jm−1

2q3
n

+ · · ·+ j2 + 1

2qmn
− 1

52n4 · qmn
+ an

]
×

m∏
i=2

[
1

26n4
, 1− 1

26n4

]
.

Thus, such a set Φn

(
În,1

)
has a θ-width of at most 1

2qmn
. Moreover, we see π~r

(
Φn

(
În,1

))
=∏m

i=2

[
1

26n4 , 1− 1
26n4

]
= J . With the notation Aθ := πθ

(
Φn

(
În,1

))
we have Φn

(
În,1

)
= Aθ×J
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and so for every (m− 1)-dimensional interval J̃ ⊆ J :

µ
(
În,1 ∩ Φ−1

n

(
S1 × J̃

))
µ
(
În,1

) =
µ
(

Φn

(
În,1

)
∩ S1 × J̃

)
µ
(

Φn

(
În,1

)) =
λ̃ (Aθ) · µ(m−1)

(
J̃
)

λ̃ (Aθ) · µ(m−1) (J)
=
µ(m−1)

(
J̃
)

µ(m−1) (J)

because Φn is measure-preserving. Hence, we can choose ε = 0 in the de�nition of a (γ, ε)-
distribution.

In order to prove the second statement, we consider a partition element În,2 on
[

1
2qn

, 1
qn

]
×

[0, 1]
m−1. Since φ−1

n acts as the identity on it and Rmnαn+1
yields a translation by 1

2qn
modulo 1

qn

except for the �error term� an, we can compute the image of În,2 under Rmnαn+1
◦ φ−1

n :

⋃[
j

(1)
1

2q2
n

+ · · ·+ j
(m−1)
1

2qmn
+

1

20n4 · qmn
+ an,

j
(1)
1

2q2
n

+ · · ·+ j
(m−1)
1 + 1

2qmn
− 1

20n4 · qmn
+ an

]

×
m∏
i=2

[
ji
qn

+
1

10n4 · qn
,
ji + 1

qn
− 1

10n4 · qn

]
.

Applying φn = φ̃
(m)
2qn,qn

◦ φ̃(m−1)
2q2n,qn

◦ ...◦ φ̃(2)

2qm−1
n ,qn

yields due to Proposition 3.12, 2., and the bounds
on an in Remark 4.4:⋃[

1

2qn
− jm

2q2
n

− · · · − j3

2qm−1
n

− j2 + 1

2qmn
+

1

20n4 · qmn
+ an,

1

2qn
− jm

2q2
n

− · · · − j2
2qmn

− 1

20n4 · qmn
+ an

]
×

m∏
i=2

[
j

(m+1−i)
1

qn
+

1

10n4 · qn
,
j

(m+1−i)
1 + 1

qn
− 1

10n4 · qn

]
.

Obviously, π~r
(

Φn

(
În,1

))
= Jn. By the same calculations as above we can choose ε = 0 in the

de�nition of a (γ, ε)-distribution .

Furthermore, we show the next property concerning the conjugating map gn constructed in
section 3.2:

Lemma 4.6. For every În ∈ ηn we have: gn

(
Φn

(
În

))
= g̃[nqσn]

(
Φn

(
În

))
.

Proof. In the proof of the precedent Lemma 4.5 we computed Φn

(
În,k

)
for partition elements

În,k of both kinds. Now we have to examine the e�ect of gn = g2qmn ,[n·qσn], 1
8n4 ,

1
32n4

on it.

Since 260n4 divides qn by Lemma 5.9, there is u1 ∈ Z such that

1

26n4
= u1 ·

ε

b · a = u1 ·
1

8n4 · [nqσn] · 2qmn
.

By the bound on an we have

1

52n4qmn
+ an <

ε

a
=

1

16n4 · qmn

and so the boundary of Φn

(
În,1

)
lies in the domain where g2qmn ,[n·qσn], 1

8n4 ,
1

32n4
= g̃[nqσn] according

to Proposition 3.8, 1.
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Similarly, we examine the action of gn on Φn

(
În,2

)
. Since 260n4 divides qn by Lemma 5.9, there

is u2 ∈ Z such that
1

10n4 · qn
= u2 ·

ε

b · a = u2 ·
1

8n4 · [nqσn] · 2qmn
.

By the bound on an the boundary of Φn

(
În,2

)
lies in the domain where g2qmn ,[n·qσn], 1

8n4 ,
1

32n4
=

g̃[nqσn] according to Proposition 3.8, 1, once again.
Additionally we observe

(2) µ
(

Φn

(
În,k

))
≥ 1

a
·
(

1− 1

5n4

)2m−1

.

5 Convergence of (fn)n∈N in Di�∞ (M)

In the following we show that the sequence of constructed measure-preserving smooth di�eo-
morphisms fn = Hn ◦ Rαn+1 ◦ H−1

n converges. For this purpose, we need a couple of results
concerning the conjugation maps.

5.1 Properties of the conjugation maps φn and Hn

In order to �nd estimates on the norms |‖Hn‖|k we will need the next technical result which is
an application of the chain rule:

Lemma 5.1. Let φ := φ̃
(m)
λm,µm

◦ ...◦ φ̃(2)
λ2,µ2

, j ∈ {1, ...,m} and k ∈ N. For any multi-index ~a with

|~a| = k the partial derivative D~a [φ]j consists of a sum of products of at most (m − 1) · k terms

of the form

D~b

([
φ̃

(i)
λi,µi

]
l

)
◦ φ̃(i−1)

λi−1,µi−1
◦ ... ◦ φ̃(2)

λ2,µ2
,

where l ∈ {1, ...,m}, i ∈ {2, ...,m} and ~b is a multi-index with
∣∣∣~b∣∣∣ ≤ k.

In the same way we obtain a similar statement holding for the inverses:

Lemma 5.2. Let ψ :=
(
φ̃

(2)
λ2,µ2

)−1

◦ ... ◦
(
φ̃

(m)
λm,µm

)−1

, j ∈ {1, ...,m} and k ∈ N. For any

multi-index ~a with |~a| = k the partial derivative D~a [ψ]j consists of a sum of products of at most

(m− 1) · k terms of the following form

D~b

([(
φ̃

(i)
λi,µi

)−1
]
l

)
◦
(
φ̃

(i+1)
λi+1,µi+1

)−1

◦ ... ◦
(
φ̃

(m)
λm,µm

)−1

,

where l ∈ {1, ...,m}, i ∈ {2, ...,m} and ~b is a multi-index with
∣∣∣~b∣∣∣ ≤ k.

Remark 5.3. In the proof of the following lemmas we will use the formula of Faà di Bruno
in several variables. It can be found in the paper �A multivariate Faà di Bruno formula with

applications� ([CS96]) for example.
For this we introduce an ordering on Nd0: For multiindices ~µ = (µ1, ..., µd) and ~ν = (ν1, ..., νd) in
Nd0 we will write ~µ ≺ ~ν, if one of the following properties is satis�ed:

1. |~µ| < |~ν|, where |~µ| = ∑d
i=1 µi.
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2. |~µ| = |~ν| and µ1 < ν1.

3. |~µ| = |~ν|, µi = νi for 1 ≤ i ≤ k and µk+1 < νk+1 for some 1 ≤ k < d.

In other words, we compare by order and then lexicographically. Additionally we will use these
notations:

• For ~ν = (ν1, ..., νd) ∈ Nd0:

~ν! =

d∏
i=1

νi!

• For ~ν = (ν1, ..., νd) ∈ Nd0 and ~z = (z1, ..., zd) ∈ Rd:

~z ~ν =

d∏
i=1

zνii

Then we get for the composition h (x1, ..., xd) := f
(
g(1) (x1, ..., xd) , ..., g

(m) (x1, ..., xd)
)
with

su�ciently di�erentiable functions f : Rm → R, g(i) : Rd → R and a multi-index ~ν ∈ Nd0 with
|~ν| = n:

D~νh =
∑

~λ∈Nm0 with 1≤|~λ|≤n
D~λf ·

n∑
s=1

∑
ps(~ν,~λ)

~ν! ·
s∏
j=1

[
D~lj~g

]~kj
~kj ! ·

(
~lj !
)|~kj|

Here
[
D~lj~g

]
denotes

(
D~ljg

(1), ..., D~ljg
(m)
)
and

ps

(
~ν,~λ

)
:={(

~k1, ...,~ks,~l1, ...,~ls

)
: ~ki ∈ Nm0 ,

∣∣∣~ki∣∣∣ > 0,~li ∈ Nd0, 0 ≺ ~l1 ≺ ... ≺ ~ls,
s∑
i=1

~ki = ~λ and
s∑
i=1

∣∣∣~ki∣∣∣ ·~li = ~ν

}

With the aid of these technical results we can prove an estimate on the norms of the map φn:

Lemma 5.4. For every k ∈ N it holds that

|||φn|||k ≤ C · qm
2·k

n ,

where C is a constant depending on m, k and n, but is independent of qn.

Proof. First of all we consider the map φ̃λ,µ := φ̃λ,ε,i,j,µ,δ,ε2 = C−1
λ ◦ ψµ,δ,i,j,ε2 ◦ ϕε,i,j ◦ Cλ

introduced in subsection 3.3:

φ̃λ,µ (x1, ..., xm) =(
1

λ
[ψµ ◦ ϕε]1 (λx1, x2, ..., xm) , [ψµ ◦ ϕε]2 (λx1, x2, ..., xm) , ..., [ψµ ◦ ϕε]m (λx1, x2, ..., xm)

)
.

Let k ∈ N. We compute for a multi-index ~a with 0 ≤ |~a| ≤ k:
∥∥∥D~a [φ̃λ,µ]

1

∥∥∥
0
≤ λk−1 · |||ψµ◦ϕε|||k

and for r ∈ {2, ...,m}:
∥∥∥D~a [φ̃λ,µ]

r

∥∥∥
0
≤ λk · |||ψµ ◦ ϕε|||k.

Therefore, we examine the map ψµ. For any multi-index ~a with 0 ≤ |~a| ≤ k and r ∈ {1, ...,m} we
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obtain:
∥∥D~a [ψµ]r

∥∥
0
≤ µk−1·|||ϕε2 |||k = Ck,ε2 ·µk−1 and analogously

∥∥∥D~a [ψ−1
µ

]
r

∥∥∥
0
≤ Ck,ε2 ·µk−1.

Hence: |||ψµ|||k ≤ C · µk−1.
In the next step we use the formula of Faà di Bruno mentioned in remark 5.3. With it we
compute for any multi-index ~ν with |~ν| = k:∥∥∥D~ν [(ψµ ◦ ϕε)−1

]
r

∥∥∥
0

=
∥∥∥D~ν [ϕ−1

ε ◦ ψ−1
µ

]
r

∥∥∥
0

=

∥∥∥∥∥∥∥∥
∑

~λ∈Nm0 ,1≤|~λ|≤k
D~λ
[
ϕ−1
ε

]
r

k∑
s=1

∑
(~k1,...,~ks,~l1,...,~ls)∈ps(~ν,~λ)

~ν!

s∏
j=1

[
D~ljψ

−1
µ

]~kj
~kj ! ·

(
~lj !
)|~kj|

∥∥∥∥∥∥∥∥
0

=

∥∥∥∥∥∥∥∥
∑

~λ∈Nm0 ,1≤|~λ|≤k
D~λ
[
ϕ−1
ε

]
r
·
k∑
s=1

∑
ps(~ν,~λ)

~ν! ·
s∏
j=1

∏m
t=1

(
D~lj

[
ψ−1
µ

]
t

)~kjt
~kj ! ·

(
~lj !
)|~kj|

∥∥∥∥∥∥∥∥
0

≤
∑

~λ∈Nm0 ,1≤|~λ|≤k

∥∥D~λ [ϕ−1
ε

]
r

∥∥
0
·
k∑
s=1

∑
ps(~ν,~λ)

~ν! ·
s∏
j=1

∏m
t=1

∥∥∥D~lj [ψ−1
µ

]
t

∥∥∥~kjt
0

~kj ! ·
(
~lj !
)|~kj|

≤
∑

~λ∈Nm0 with 1≤|~λ|≤k

∥∥D~λ [ϕ−1
ε

]
r

∥∥
0
·
k∑
s=1

∑
ps(~ν,~λ)

~ν! ·
s∏
j=1

|||ψ−1
µ |||

∑m
t=1

~kjt

|~lj|
~kj ! ·

(
~lj !
)|~kj|

=
∑

~λ∈Nm0 with 1≤|~λ|≤k

∥∥D~λ [ϕ−1
ε

]
r

∥∥
0
·
k∑
s=1

∑
ps(~ν,~λ)

~ν! ·
s∏
j=1

|||ψ−1
µ |||
|~kj|
|~lj|

~kj ! ·
(
~lj !
)|~kj|

As seen above: |||ψ−1
µ |||
|~kj|
|~lj| ≤ C · µ|~kj|·|~lj|. Hereby: ∏s

j=1 |||ψ−1
µ |||
|~kj|
|~lj| ≤ Ĉ · µ

∑s
j=1|~lj|·|~kj|, where

Ĉ is independent of µ. By de�nition of the set ps
(
~ν,~λ

)
we have

∑s
i=1

∣∣∣~ki∣∣∣ ·~li = ~ν. Hence:

k = |~ν| =
∣∣∣∣∣
s∑
i=1

∣∣∣~ki∣∣∣ ·~li
∣∣∣∣∣ =

m∑
t=1

(
s∑
i=1

∣∣∣~ki∣∣∣ ·~li)
t

=

m∑
t=1

s∑
i=1

∣∣∣~ki∣∣∣ ·~lit =

s∑
i=1

∣∣∣~ki∣∣∣ ·( m∑
t=1

~lit

)
=

s∑
i=1

∣∣∣~ki∣∣∣ · ∣∣∣~li∣∣∣
This shows

∏s
j=1 |||ψ−1

µ |||
|~kj|
|~lj| ≤ Ĉ ·µ

k and �nally
∥∥∥D~ν [(ψµ ◦ ϕε)−1

]
r

∥∥∥
0
≤ C ·µk. Analogously we

compute
∥∥D~ν [ψµ ◦ ϕε]r

∥∥
0
≤ C · |||ψµ|||k ≤ C ·µk−1. Altogether, we obtain |||ψµ ◦ϕε|||k ≤ C ·µk.

Hereby, we estimate
∥∥∥D~a [φ̃λ,µ]

r

∥∥∥
0
≤ C ·λk ·µk and analogously

∥∥∥D~a [φ̃−1
λ,µ

]
r

∥∥∥
0
≤ C ·λk ·µk. In

conclusion this yields |||φ̃λ,µ|||k ≤ C · µk · λk.
In the next step we consider φ := φ̃

(m)
λm,µm

◦ ... ◦ φ̃(2)
λ2,µ2

. Let λmax := max {λ2, ..., λm} as well as
µmax := max {µ2, ..., µm}. Inductively we will show |||φ|||k ≤ C̃ · λ(m−1)·k

max · µ(m−1)·k
max for every

k ∈ N, where C̃ is a constant independent of λi and µi.
Start: k = 1
Let l ∈ {1, ...,m} be arbitrary. By Lemma 5.1 a partial derivative of [φ]l of �rst order consists of

a sum of products of at most m− 1 �rst order partial derivatives of functions φ̃(j)
λj ,µj

. Therewith,
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we obtain using |||φ̃(j)
λj ,µj
|||1 ≤ C ·λmax ·µmax the estimate ‖Di [φ]l‖0 ≤ C1 ·λm−1

max ·µm−1
max for every

i ∈ {1, ...,m}, where C1 is a constant independent of λ and µ.

With the aid of Lemma 5.2 we obtain the same statement for φ−1 =
(
φ̃

(2)
λ2,µ2

)−1

◦...◦
(
φ̃

(m)
λm,µm

)−1

.

Hence, we conclude: |||φ|||1 ≤ C̃1 · λm−1
max · µm−1

max .
Assumption: The claim is true for k ∈ N.
Induction step k → k + 1:
In the proof of Lemma 5.1 one observes that at the transition k → k + 1 in the product of

at most (m − 1) · k terms of the form D~b

([
φ̃

(i)
λi,µi

]
l

)
◦ φ̃(i−1)

λi−1,µi−1
◦ ... ◦ φ̃(2)

λ2,µ2
one is replaced

by a product of a term
(
DjD~b

[
φ̃

(i)
λi,µi

]
l

)
◦ φ̃(i−1)

λi−1,µi−1
◦ ... ◦ φ̃(2)

λ2,µ2
with j ∈ {1, ...,m} and at

most m − 2 partial derivatives of �rst order. Because of |||φ̃(i)
λi,µi
|||k+1 ≤ C · λk+1

max · µk+1
max and

|||φ̃(j)
λj ,µj
|||1 ≤ C ·λmax ·µmax the λmax-exponent as well as the µmax-exponent increase by at most

1 + (m− 2) · 1 = m− 1.
In the same spirit one uses the proof of Lemma 5.2 to show that also in case of φ−1 the λmax-
exponent as well as the µmax-exponent increase by at most m− 1.
Using the assumption we conclude

|||φ|||k+1 ≤ Ĉ · λk·(m−1)+m−1
max · µk·(m−1)+m−1

max = Ĉ · λ(k+1)·(m−1)
max · µ(k+1)·(m−1)

max .

So the proof by induction is completed.

In the setting of our explicit construction of the map φn in section 3.3 we have ε1 = 1
60·n4 ,

ε2 = 1
22·n4 , λmax = 2qm−1

n and µmax = qn. Thus:

|||φn|||k ≤ C̃ (m, k, n) ·
(
2qm−1
n

)(m−1)·k · q(m−1)·k
n

≤ C (m, k, n) · qm2·k
n ,

where C (m, k, n) is a constant independent of qn.

In the next step we consider the map hn = gn ◦ φn, where gn is constructed in section 3.2:

Lemma 5.5. For every k ∈ N it holds:

|||hn|||k ≤ C̄ · q2·m2·k
n ,

where C̄ is a constant depending on m, k and n, but is independent of qn.

Proof. Outside of S1 × [δ, 1− δ]m−1, i.e. gn = g̃[nqσn], we have:

hn (x1, ..., xm) = gn ◦ φn (x1, ..., xm)

= ([φn (x1, ..., xm)]1 + [n · qσn] · [φn (x1, ..., xm)]2 , [φn (x1, ..., xm)]2 , ..., [φn (x1, ..., xm)]m)

and

h−1
n (x1, ..., xm) = φ−1

n ◦ g−1
n (x1, ..., xm)

=
([
φ−1
n (x1 − [n · qσn] · x2, x2, ..., xm)

]
1
, ..., [φn (x1 − [n · qσn] · x2, x2, ..., xm)]m

)
.

Since σ < 1 we can estimate:

|||hn|||k ≤ 2 · [n · qσn]
k · |||φn|||k ≤ C̄ (m, k, n) · qσ·kn · qm2·k

n ≤ C̄ (m, k, n) · q2·m2·k
n
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with a constant C̄ (m, k, n) independent of qn.
In the other case we have

gn ◦ φn (x1, ..., xm) =
(
[ga,b,ε ([φn]1 , [φn]2)]

1
, [ga,b,ε ([φn]1 , [φn]2)]

2
, [φn]3 , ..., [φn]m

)
.

We will use the formula of Faà di Bruno as above for any multi-index ~ν with |~ν| = k and
r ∈ {1, ...,m}:

‖D~ν [hn]r‖0 =
∥∥D~ν [ga,b,ε ◦ φn]r

∥∥
0

≤
∑

~λ∈Nm0 with 1≤|~λ|≤k

∥∥D~λ [ga,b,ε]r
∥∥

0
·
k∑
s=1

∑
ps(~ν,~λ)

~ν! ·
s∏
j=1

|||φn||||
~kj|
|~lj|

~kj ! ·
(
~lj !
)|~kj|

By Lemma 5.4 we have |||φn|||k ≤ C · qm
2·k

n , where C is a constant independent of qn. As above

we show
∏s
j=1 |||φn|||

|~kj|
|~lj| ≤ Ĉ · q

(
∑s
j=1|~lj|·|~kj|)·m2

n = Ĉ · qm2·k
n , where Ĉ is a constant independent

of qn.
Furthermore, we examine the map ga,b,ε,δ = D−1

a,b,ε ◦ gε ◦Da,b,ε for a, b ∈ Z and obtain

|||ga,b,ε,δ|||k ≤
(
b · a
ε

)k
· |||gε|||k = Cε,k · bk · ak.

By our constructions in section 3.2 we have b = [n · qσn] ≤ n · qσn, a = 2qmn and ε = 1
8n4 .

Hence: |||gn|||k ≤ Cn,k · qσ·kn · qk·mn ≤ Cn,k · qk·(m+1)
n . Finally, we conclude: ‖D~ν [hn]r‖0 ≤

C · qk·(m+1)
n · qk·m2

n ≤ C · q2·k·m2

n .
In the next step we consider h−1

n = φ−1
n ◦ g−1

a,b,ε. For r ∈ {1, ...,m} and any multi-index ~ν with
|~ν| = k we obtain using the formula of Faà di Bruno again:∥∥D~ν [h−1

n

]
r

∥∥
0

=
∥∥D~ν [φ−1

n ◦ g−1
n

]
r

∥∥
0

≤
∑

~λ∈Nm0 with 1≤|~λ|≤k

∥∥D~λ [φ−1
n

]
r

∥∥
0
·
k∑
s=1

∑
ps(~ν,~λ)

~ν! ·
s∏
j=1

|||gn||||
~kj|
|~lj|

~kj ! ·
(
~lj !
)|~kj|

As above we show
∏s
j=1 |||gn|||

|~kj|
|~lj| ≤ Ĉ ·q

k·(m+1)
n , where Ĉ is a constant independent of qn. Since

|||φn|||k ≤ C · qk·m
2

n we get∥∥D~ν [h−1
n

]
r

∥∥
0
≤ Č · qk·(m+1)

n · qk·m2

n ≤ Č · q2·k·m2

n ,

where Č is a constant independent of qn.
Thus, we �nally obtain |||hn|||k ≤ C(n, k,m) · q2·m2·k

n .

Finally, we are able to prove an estimate on the norms of the map Hn:

Lemma 5.6. For every k ∈ N we get:

|||Hn|||k ≤ C̆ · q2·m2·k
n ,

where C̆ is a constant depending solely on m, k, n and Hn−1. Since Hn−1 is independent of qn
in particular, the same is true for C̆.
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Proof. Let k ∈ N, r ∈ {1, ...,m} and ~ν ∈ Nm0 be a multi-index with |~ν| = k. As above we
estimate:

‖D~ν [Hn]r‖0 = ‖D~ν [Hn−1 ◦ hn]r‖0

≤
∑

~λ∈Nm0 with 1≤|~λ|≤k

∥∥D~λ [Hn−1]r
∥∥

0
·
k∑
s=1

∑
ps(~ν,~λ)

~ν! ·
s∏
j=1

|||hn||||
~kj|
|~lj|

~kj ! ·
(
~lj !
)|~kj|

and compute using Lemma 5.5:
∏s
j=1 |||hn|||

|~kj|
|~lj| ≤ Ĉ ·q

2·m2·k
n , where Ĉ is a constant independent

of qn. Since Hn−1 is independent of qn we conclude:

‖D~ν [Hn]r‖0 ≤ Č · q2·m2·k
n ,

where Č is a constant independent of qn.
In the same way we prove an analogous estimate of

∥∥D~ν [H−1
n

]
r

∥∥
0
and verify the claim.

In particular, we see that this norm can be estimated by a power of qn.

5.2 Proof of convergence

For the proof of the convergence of the sequence (fn)n∈N in the Di�∞ (M)-topology the next
result, that can be found in [FSW07, Lemma 4], is very useful.

Lemma 5.7. Let k ∈ N0 and h be a C∞-di�eomorphism on M . Then we get for every α, β ∈ R:

dk
(
h ◦Rα ◦ h−1, h ◦Rβ ◦ h−1

)
≤ Ck · |||h|||k+1

k+1 · |α− β| ,

where the constant Ck depends solely on k and m. In particular C0 = 1.

In the following Lemma we show that under some assumptions on the sequence (αn)n∈N the
sequence (fn)n∈N converges to f ∈ Aα (M) in the Di�∞ (M)-topology. Afterwards, we will show
that we can ful�l these conditions (see Lemma 5.9).

Lemma 5.8 (Criterion for Di�∞-Convergence). Let ε > 0 be arbitrary and (kn)n∈N be a strictly

increasing sequence of natural numbers satisfying
∑∞
n=1

1
kn

< ε. Furthermore, we assume that

in our constructions the following conditions are ful�lled:

|α− α1| < ε and |α− αn| ≤
1

2 · kn · Ckn · |||Hn|||kn+1
kn+1

for every n ∈ N,

where Ckn are the constants from Lemma 5.7.

1. Then the sequence of di�eomorphisms fn = Hn ◦Rαn+1
◦H−1

n converges in the Di�∞(M)-
topology to a measure-preserving smooth di�eomorphism f , for which d∞ (f,Rα) < 3 · ε
holds.

2. Also the sequence of di�eomorphisms f̂n = Hn ◦Rα ◦H−1
n ∈ Aα (M) converges to f in the

Di�∞(M)-topology. Hence f ∈ Aα (M).
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Proof. 1. According to our construction it holds hn ◦Rαn = Rαn ◦ hn and hence

fn−1 = Hn−1 ◦Rαn ◦H−1
n−1 = Hn−1 ◦Rαn ◦ hn ◦ h−1

n ◦H−1
n−1

= Hn−1 ◦ hn ◦Rαn ◦ h−1
n ◦H−1

n−1 = Hn ◦Rαn ◦H−1
n .

Applying Lemma 5.7 we obtain for every k, n ∈ N:
(3)
dk (fn, fn−1) = dk

(
Hn ◦Rαn+1 ◦H−1

n , Hn ◦Rαn ◦H−1
n

)
≤ Ck · |||Hn|||k+1

k+1 · |αn+1 − αn|

In section 2.2 we assumed |α− αn| n→∞−→ 0 monotonically. Using the triangle inequality
we obtain |αn+1 − αn| ≤ |αn+1 − α| + |α− αn| ≤ 2 · |α− αn| and therefore equation (3)
becomes:

dk (fn, fn−1) ≤ Ck · |||Hn|||k+1
k+1 · 2 · |αn − α| .

By the assumptions of this Lemma it follows for every k ≤ kn:

(4) dk (fn, fn−1) ≤ dkn (fn, fn−1) ≤ Ckn · |||Hn|||kn+1
kn+1 · 2 ·

1

2 · kn · Ckn · |||Hn|||kn+1
kn+1

≤ 1

kn

In the next step we show that for arbitrary k ∈ N (fn)n∈N is a Cauchy sequence in Di�k (M),
i.e. limn,m→∞ dk (fn, fm) = 0. For this purpose, we calculate:

(5) lim
n→∞

dk (fn, fm) ≤ lim
n→∞

n∑
i=m+1

dk (fi, fi−1) =

∞∑
i=m+1

dk (fi, fi−1) .

We consider the limit process m → ∞, i.e. we can assume k ≤ km and obtain from
equations (4) and (5):

lim
n,m→∞

dk (fn, fm) ≤ lim
m→∞

∞∑
i=m+1

1

ki
= 0.

Since Di�k (M) is complete, the sequence (fn)n∈N converges consequently in Di�k (M) for
every k ∈ N. Thus, the sequence converges in Di�∞ (M) by de�nition.

Furthermore, we estimate:

(6) d∞ (Rα, f) = d∞

(
Rα, lim

n→∞
fn

)
≤ d∞ (Rα, Rα1

) +

∞∑
n=1

d∞ (fn, fn−1) ,

where we used the notation f0 = Rα1
.

By explicit calculations we obtain dk (Rα, Rα1
) = d0 (Rα, Rα1

) = |α− α1| for every k ∈ N,
hence

d∞ (Rα, Rα1
) =

∞∑
k=1

|α− α1|
2k · (1 + dk (Rα, Rα1))

≤ |α− α1| ·
∞∑
k=1

1

2k
= |α− α1| .

Additionally it holds:
∞∑
n=1

d∞ (fn, fn−1) =

∞∑
n=1

∞∑
k=1

dk (fn, fn−1)

2k · (1 + dk (fn, fn−1))

=

∞∑
n=1

(
kn∑
k=1

dk (fn, fn−1)

2k · (1 + dk (fn, fn−1))
+

∞∑
k=kn+1

dk (fn, fn−1)

2k · (1 + dk (fn, fn−1))

)
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As seen above dk (fn, fn−1) ≤ 1
kn

for every k ≤ kn. Hereby, it follows further:

∞∑
n=1

d∞ (fn, fn−1) ≤
∞∑
n=1

(
1

kn
·
kn∑
k=1

1

2k
+

∞∑
k=kn+1

dk (fn, fn−1)

2k · (1 + dk (fn, fn−1))

)

≤
∞∑
n=1

1

kn
+

∞∑
n=1

∞∑
k=kn+1

1

2k
.

Because of
∑∞
k=kn+1

1
2k

= 2−∑kn
k=0

1
2k

=
(

1
2

)kn ≤ 1
kn

we conclude:

∞∑
n=1

d∞ (fn, fn−1) ≤
∞∑
n=1

1

kn
+

∞∑
n=1

1

kn
< 2 · ε.

Hence, using equation (6) we obtain the desired estimate d∞ (f,Rα) < 3 · ε.

2. We have to show: f̂n → f in Di�∞ (M).
For it we compute with the aid of Lemma 5.7 for every n ∈ N and k ≤ kn:

dk

(
fn, f̂n

)
≤ dkn

(
Hn ◦Rαn+1 ◦H−1

n , Hn ◦Rα ◦H−1
n

)
≤ Ckn · |||Hn|||kn+1

kn+1 · |αn+1 − α| ≤ Ckn · |||Hn|||kn+1
kn+1 · |αn − α|

≤ Ckn · |||Hn|||kn+1
kn+1 ·

1

2 · kn · Ckn · |||Hn|||kn+1
kn+1

=
1

2 · kn
≤ 1

kn
.

Fix some k ∈ N.
Claim: ∀δ > 0 ∃N ∀n ≥ N : dk

(
f, f̂n

)
< δ, i.e. f̂n → f in Di�k (M).

Proof: Let δ > 0 be given. Since fn → f in Di�∞ (M) we have fn → f in Di�k (M) in
particular. Hence, there is n1 ∈ N, such that dk (f, fn) < δ

2 for every n ≥ n1. Because of
kn → ∞ we conclude the existence of n2 ∈ N, such that 1

kn
< δ

2 for every n ≥ n2, as well
as the existence of n3 ∈ N, such that kn ≥ k for every n ≥ n3. Then we obtain for every
n ≥ max {n1, n2, n3}:

dk

(
f, f̂n

)
≤ dk (f, fn) + dk

(
fn, f̂n

)
<
δ

2
+ dkn

(
fn, f̂n

)
≤ δ

2
+

1

kn
<
δ

2
+
δ

2
= δ.

Hence, the claim is proven.

In the next step we show: limn→∞ d∞

(
f̂n, f

)
= 0. For this purpose, we examine:

d∞

(
fn, f̂n

)
=

kn∑
k=1

dk

(
fn, f̂n

)
2k ·

(
1 + dk

(
fn, f̂n

)) +

∞∑
k=kn+1

dk

(
fn, f̂n

)
2k ·

(
1 + dk

(
fn, f̂n

))
≤ 1

kn
·
kn∑
k=1

1

2k
+

∞∑
k=kn+1

1

2k
≤ 1

kn
+

(
1

2

)kn
.
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Consequently limn→∞ d∞

(
fn, f̂n

)
= 0. With it we compute:

lim
n→∞

d∞

(
f, f̂n

)
= lim
n→∞

d∞

(
lim
m→∞

fm, f̂n

)
= lim
n→∞

lim
m→∞

d∞

(
fm, f̂n

)
≤ lim
n→∞

lim
m→∞

(
m∑

i=n+1

d∞ (fi, fi−1) + d∞

(
fn, f̂n

))

= lim
n→∞

∞∑
i=n+1

d∞ (fi, fi−1) + lim
n→∞

d∞

(
fn, f̂n

)
= 0.

As asserted we obtain: limn→∞ d∞

(
f̂n, f

)
= 0.

As announced we show that we can satisfy the conditions from Lemma 5.8 in our construc-
tions:

Lemma 5.9. Let (kn)n∈N be a strictly increasing sequence of natural numbers with
∑∞
n=1

1
kn

<∞
and Ckn be the constants from Lemma 5.7. For any Liouvillean number α there exists a sequence

αn = pn
qn

of rational numbers with the property that 260n4 divides qn, such that our conjugation

maps Hn constructed in section 3.2 and 3.3 ful�l the following conditions:

1. For every n ∈ N:
|α− αn| <

1

2 · kn · Ckn · |||Hn|||kn+1
kn+1

.

2. For every n ∈ N:
|α− αn| <

1

2n+1 · qn · |||Hn|||1
.

3. For every n ∈ N:

‖DHn−1‖0 <
ln (qn)

n
.

Proof. In Lemma 5.6 we saw |||Hn|||kn+1 ≤ C̆n · q2·m2·(kn+1)
n , where the constant C̆n was

independent of qn. Thus, we can choose qn ≥ C̆n for every n ∈ N. Hence, we obtain:

|||Hn|||kn+1 ≤ q3·m2·(kn+1)
n .

Besides qn ≥ C̆n we keep the mentioned condition qn ≥ 80 · 260 · n4 · (n − 1)4 · qmn−1 in mind.

Furthermore, we can demand ‖DHn−1‖0 <
ln(qn)
n from qn because Hn−1 is independent of qn.

Since α is a Liouvillean number, we �nd a sequence of rational numbers α̃n = p̃n
q̃n
, p̃n, q̃n relatively

prime, under the above restrictions (formulated for q̃n) satisfying:

|α− α̃n| =
∣∣∣∣α− p̃n

q̃n

∣∣∣∣ < |α− αn−1|
2n+1 · kn · Ckn · (260n4)

1+3·m2·(kn+1)2 · q̃1+3·m2·(kn+1)2

n

Put qn := 260n4 · q̃n and pn := 260n4 · p̃n. Then we obtain:

|α− αn| <
|α− αn−1|

2n+1 · kn · Ckn · q1+3·m2·(kn+1)2

n

.
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So we have |α− αn| n→∞−→ 0 monotonically. Because of |||Hn|||kn+1
kn+1 ≤ q3·m2·(kn+1)2 this yields:

|α− αn| < 1

2n+1·qn·kn·Ckn ·|||Hn|||
kn+1
kn+1

. Thus, the �rst property of this Lemma is ful�lled.

Furthermore, we note kn ≥ 1 and Ckn ≥ 1 by Lemma 5.7. Thus, qn · kn · Ckn ≥ qn. Moreover,
|||Hn|||1 ≥ ‖Hn‖0 = 1, because Hn : S1× [0, 1]

m−1 → S1× [0, 1]
m−1 is a di�eomorphism. Hence,

|||Hn|||kn+1
kn+1 ≥ |||Hn|||1. Altogether, we conclude 2n+1·qn·kn·Ckn ·|||Hn|||kn+1

kn+1 ≥ 2n+1·qn·|||Hn|||1
and so:

(7) |α− αn| <
1

2n+1 · qn · kn · Ckn · |||Hn|||kn+1
kn+1

≤ 1

2n+1 · qn · |||Hn|||1
,

i.e. we veri�ed the second property.

Remark 5.10. Lemma 5.9 shows that the conditions of Lemma 5.8 are satis�ed. Therefore, our
sequence of constructed di�eomorphisms fn converges in the Di�∞(M)-topology to a di�eomor-
phism f ∈ Aα(M). In addition, for every ε > 0 we can choose the parameters by Lemma 5.8 in
such a way, that d∞ (f,Rα) < ε holds.

To apply Proposition 6.6 we need another result:

Lemma 5.11. Let (αn)n∈N be constructed as in Lemma 5.9. Then it holds for every n ∈ N and

for every m̃ ≤ qn+1:

d0

(
f m̃, f m̃n

)
≤ 1

2n
.

Proof. In the proof of Lemma 5.8 we observed fi−1 = Hi ◦ Rαi ◦H−1
i for every i ∈ N. Hereby

and with the help of Lemma 5.7 we compute:

d0

(
f m̃i , f

m̃
i−1

)
= d0

(
Hi ◦Rm̃·αi+1

◦H−1
i , Hi ◦Rm̃·αi ◦H−1

i

)
≤ |||Hi|||1 · m̃ · 2 · |α− αi| .

Since m̃ ≤ qn+1 ≤ qi we conclude for every i > n using equation (7) :

d0

(
f m̃i , f

m̃
i−1

)
≤ |||Hi|||1 · m̃ · 2 · |α− αi| ≤ |||Hi|||1 · m̃ · 2 ·

1

2i+1 · qi · |||Hi|||1
≤ m̃

qi
· 1

2i
≤ 1

2i
.

Thus, for every m̃ ≤ qn+1 we get the claimed result:

d0

(
f m̃, f m̃n

)
= lim
k→∞

d0

(
f m̃k , f

m̃
n

)
≤ lim
k→∞

k∑
i=n+1

d0

(
f m̃i , f

m̃
i−1

)
≤

∞∑
i=n+1

1

2i
=

(
1

2

)n
.

Remark 5.12. Note that the sequence (mn)n∈N de�ned in section 4 meets the mentioned con-
dition mn ≤ qn+1 and hence Lemma 5.11 can be applied to it.

6 Proof of weak mixing

In this section we will prove that our constructed di�eomorphisms on M = S1 × [0, 1]
m−1 are

weakly mixing. For the derivation we need a couple of lemmas. The �rst one expresses the weak
mixing property on the elements of a partial partition νn generally:
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Lemma 6.1. Let f ∈ Di�∞ (M,µ), (mn)n∈N be a sequence of natural numbers and (νn)n∈N be a

sequence of partial partitions satisfying νn → ε the following property: For every m-dimensional

cube A ⊆ S1 × (0, 1)
m−1

and for every ε > 0 there exists N ∈ N such that for every n ≥ N and

for every Γn ∈ νn we have

(8)
∣∣µ (Γn ∩ f−mn (A)

)
− µ (Γn) · µ (A)

∣∣ ≤ 3 · ε · µ (Γn) · µ (A) .

Then f is weakly mixing.

In our case the partial partition νn will be the image of ηn from section 3.1.1 under the
measure-preserving map Hn−1 ◦ gn.

Proof. A di�eomorphism f is weakly mixing if for all measurable sets A,B ⊆M it holds:

lim
n→∞

∣∣µ (B ∩ f−mn (A)
)
− µ (B) · µ (A)

∣∣ = 0.

Since every measurable set in M = S1 × [0, 1]
m−1 can be approximated by a countable disjoint

union of m-dimensional cubes in S1× (0, 1)
m−1 in arbitrary precision, we only have to prove the

statement in case that A is a m-dimensional cube in S1 × (0, 1)
m−1.

Hence, we consider an arbitrary m-dimensional cube A ⊂ S1 × (0, 1)
m−1. Moreover, let B ⊆M

be a measurable set. Since νn → ε for every ε ∈ (0, 1] there are n ∈ N and a set B̂ =
⋃
i∈Λ Γin,

where Γin ∈ νn and Λ is a countable set of indices, such that µ
(
B4B̂

)
< ε · µ (B) · µ (A). We

obtain for su�ciently large n:∣∣µ (B ∩ f−mn (A)
)
− µ (B) · µ (A)

∣∣
≤
∣∣∣µ (B ∩ f−mn (A)

)
− µ

(
B̂ ∩ f−mn (A)

)∣∣∣+
∣∣∣µ(B̂ ∩ f−mn (A)

)
− µ

(
B̂
)
· µ (A)

∣∣∣
+
∣∣∣µ(B̂) · µ (A)− µ (B) · µ (A)

∣∣∣
=
∣∣∣µ (B ∩ f−mn (A)

)
− µ

(
B̂ ∩ f−mn (A)

)∣∣∣
+

∣∣∣∣∣µ
(⋃
i∈Λ

(
Γin ∩ f−mn (A)

))
− µ

(⋃
i∈Λ

Γin

)
· µ (A)

∣∣∣∣∣+ µ (A) ·
∣∣∣µ(B̂)− µ (B)

∣∣∣
≤ µ

(
B̂4B

)
+

∣∣∣∣∣∑
i∈Λ

µ
(
Γin ∩ f−mn (A)

)
− µ

(
Γin
)
· µ (A)

∣∣∣∣∣+ µ (A) · µ
(
B̂4B

)
≤ ε · µ(B) · µ(A) +

∑
i∈Λ

(∣∣µ (Γin ∩ f−mn(A)
)
− µ

(
Γin
)
· µ(A)

∣∣)+ ε · µ(A)2 · µ(B)

≤
∑
i∈Λ

(
3 · ε · µ

(
Γin
)
· µ(A)

)
+ 2 · ε · µ(A) · µ(B) = 3 · ε · µ(A) · µ

(⋃
i∈Λ

Îin

)
+ 2 · ε · µ(A) · µ(B)

= 3 · ε · µ(A) · µ
(
B̂
)

+ 2 · ε · µ(A) · µ(B) ≤ 3 · ε · µ(A) ·
(
µ(B) + µ

(
B̂4B

))
+ 2 · ε · µ(A) · µ(B)

≤ 5 · ε · µ(A) · µ(B) + 3 · ε2 · µ(A)2 · µ(B).

This estimate shows limn→∞ |µ (B ∩ f−mn (A))− µ (B) · µ (A)| = 0, because ε can be chosen
arbitrarily small.

In property (8) we want to replace f by fn:
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Lemma 6.2. Let f = limn→∞ fn be a di�eomorphism obtained by the constructions in the

preceding sections and (mn)n∈N be a sequence of natural numbers ful�lling d0 (fmn , fmnn ) < 1
2n .

Furthermore, let (νn)n∈N be a sequence of partial partitions satisfying νn → ε and the following

property: For every m-dimensional cube A ⊆ S1 × (0, 1)
m−1

and for every ε ∈ (0, 1] there exists

N ∈ N such that for every n ≥ N and for every Γn ∈ νn we have

(9)
∣∣µ (Γn ∩ f−mnn (A)

)
− µ (Γn) · µ (A)

∣∣ ≤ ε · µ (Γn) · µ (A) .

Then f is weakly mixing.

Proof. We want to show that the requirements of Lemma 6.1 are ful�lled. This implies that f
is weakly mixing.
For it let A ⊆ S1 × (0, 1)

m−1 be an arbitrary m-dimensional cube and ε ∈ (0, 1].
We consider two m-dimensional cubes A1, A2 ⊂ S1 × (0, 1)

m−1 with A1 ⊂ A ⊂ A2 as well as
µ (A4Ai) < ε · µ (A) and for su�ciently large n: dist(∂A, ∂Ai) > 1

2n for i = 1, 2.
If n is su�ciently large, we obtain for Γn ∈ νn and for i = 1, 2 by the assumptions of this

Lemma: ∣∣µ (Γn ∩ f−mnn (Ai)
)
− µ (Γn) · µ (Ai)

∣∣ ≤ ε · µ (Γn) · µ (Ai) .

Herefrom we conclude (1− ε) · µ (Γn) · µ (A1) ≤ µ (Γn ∩ f−mnn (A1)) on the one hand and
µ (Γn ∩ f−mnn (A2)) ≤ (1 + ε) · µ (Γn) · µ (A2) on the other hand. Because of d0 (fmn , fmnn ) < 1

2n

the following relations are true:

fmnn (x) ∈ A1 =⇒ fmn(x) ∈ A,
fmn(x) ∈ A =⇒ fmnn (x) ∈ A2.

Thus: µ (Γn ∩ f−mnn (A1)) ≤ µ (Γn ∩ f−mn (A)) ≤ µ (Γn ∩ f−mnn (A2)).
Altogether, it holds: (1− ε) · µ (Γn) · µ (A1) ≤ µ (Γn ∩ f−mn (A)) ≤ (1 + ε) · µ (Γn) · µ (A2).
Therewith, we obtain the following estimate from above:

µ
(
Γn ∩ f−mn (A)

)
− µ (Γn) · µ (A)

≤ (1 + ε) · µ (Γn) · µ (A2)− µ (Γn) · µ (A2) + µ (Γn) · (µ (A2)− µ (A))

≤ ε · µ (Γn) · µ (A2) + µ (Γn) · µ (A24A) ≤ ε · µ (Γn) · (µ(A) + µ (A24A)) + ε · µ (Γn) · µ (A)

≤ 2 · ε · µ (Γn) · µ (A) + ε2 · µ (Γn) · µ (A) ≤ 3 · ε · µ (Γn) · µ (A)

Furthermore, we deduce the following estimate from below in an analogous way:

µ
(
Γn ∩ f−mn (A)

)
− µ (Γn) · µ (A) ≥ −3 · ε · µ (Γn) · µ (A)

Hence, we get: |µ (Γn ∩ f−mn (A))− µ (Γn) · µ (A)| ≤ 3 ·ε ·µ (Γn) ·µ (A), i.e. the requirements
of Lemma 6.1 are met.

Now we concentrate on the setting of our explicit constructions:

Lemma 6.3. Consider the sequence of partial partitions (ηn)n∈N constructed in section 3.1.1 and

the di�eomorphisms gn from chapter 3.2. Furthermore, let (Hn)n∈N be a sequence of measure-

preserving smooth di�eomorphisms satisfying ‖DHn−1‖ ≤ ln(qn)
n for every n ∈ N and de�ne the

partial partitions νn =
{

Γn = Hn−1 ◦ gn
(
În

)
: În ∈ ηn

}
.

Then we get νn → ε.
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Proof. By construction ηn =
{
Îin : i ∈ Λn

}
, where Λn is a countable set of indices. Because of

ηn → ε it holds limn→∞ µ
(⋃

i∈Λn
Îin

)
= 1. Since Hn−1 ◦ gn is measure-preserving, we conclude:

lim
n→∞

µ

( ⋃
i∈Λn

Γin

)
= lim
n→∞

µ

( ⋃
i∈Λn

Hn−1 ◦ gn
(
Îin

))
= lim
n→∞

µ

(
Hn−1 ◦ gn

( ⋃
i∈Λn

Îin

))
= 1.

For any m-dimensional cube with side length ln it holds: diam(Wn) =
√
m · ln. Because every

element of the partition ηn is contained in a cube of side length 1
qn

it follows for every i ∈ Λn:

diam
(
Îin

)
≤ √m · 1

qn
. Furthermore, we saw in Proposition 3.8: gn

(
Îin

)
= g̃[nqσn]

(
Îin

)
for every

i ∈ Λn. Hence, for every Γin = Hn−1 ◦ g̃[nqσn]

(
Iin
)
:

diam
(
Γin
)
≤ ‖DHn−1‖0 ·

∥∥Dg̃[nqσn]

∥∥
0
· diam

(
Îin

)
≤ ln (qn)

n
· [n · qσn] ·

√
m

qn
≤ √m · qσ−1

n · ln (qn) .

Because of σ < 1 we conclude limn→∞diam
(
Γin
)

= 0 and consequently νn → ε.

In the following the Lebesgue measures on S1, [0, 1]
m−2, [0, 1]

m−1 are denoted by λ̃, µ(m−2)

and µ̃ respectively. The next technical result is needed in the proof of Lemma 6.5.

Lemma 6.4. Given an interval on the r1-axis of the form K =
[
k1·ε
b·a ,

k2·ε
b·a
]
, where k1, k2 ∈ Z

with b·a
ε · δ ≤ k1 < k2 ≤ b·a

ε − b·a
ε · δ, and a (m− 2)-dimensional interval Z in (r2, ..., rm−1), let

Kc,γ denote the cuboid [c, c+ γ]×K×Z for some γ > 0. We consider the di�eomorphism ga,b,ε,δ
constructed in subsection 3.2 and an interval L = [l1, l2] of S1 satisfying λ̃ (L) ≥ 4 · 1−2ε

a − γ.
If b · λ(K) > 2, then for the set Q := π~r

(
Kc,γ ∩ g−1

a,b,ε,δ (L×K × Z)
)
we have:∣∣∣µ̃ (Q)− λ (K) · λ̃ (L) · µ(m−2) (Z)

∣∣∣
≤
(

2

b
· λ̃ (L) +

2 · γ
b

+ γ · λ (K) + 4 · 1− 2ε

a
· λ(K) + 8 · 1− 2ε

b · a

)
· µ(m−2) (Z) .

Proof. We consider the di�eomorphism g̃b : M →M , (θ, r1, ..., rm−1) 7→ (θ + b · r1, r1, ..., rm−1)
and the set:

Qb := π~r
(
Kc,γ ∩ g̃−1

b (L×K × Z)
)

= {(r1, r2, ..., rm−1) ∈ K × Z : (θ + b · r1, ~r) ∈ L×K × Z, θ ∈ [c, c+ γ]}
= {(r1, r2, ..., rm−1) ∈ K × Z : b · r1 ∈ [l1 − c− γ, l2 − c] mod 1} .

The interval b ·K seen as an interval in R does not intersect more than b · λ(K) + 2 and not less
than b · λ (K) − 2 intervals of the form [i, i+ 1] with i ∈ Z. By construction of the map ga,b,ε,δ
it holds for ∆l :=

[
l·ε
b·a ,

(l+1)·ε
b·a

]
in consideration: π~r (ga,b,ε,δ ([c, c+ γ]×∆l × Z)) = ∆l × Z.

Claim: A resulting interval on the r1-axis of Kc,γ ∩ g̃−1
b (L×K × Z) and the corresponding

r1-projection of Kc,γ ∩ g−1
a,b,ε (L×K × Z) can di�er by a length of at most 4 · 1−2ε

b·a .
Proof: If {c}×∆l×Z (resp. {c+ γ}×∆l×Z) are contained in the domain, where ga,b,ε = g̃b, the
left (resp. the right) boundaries of πθ (ga,b,ε,δ ([c, c+ γ]×∆l × Z)) and πθ (g̃b ([c, c+ γ]×∆l × Z))
coincide. Otherwise, i.e. c ∈

(
k
a + ε, k+1

a − ε
)
(resp. c + γ ∈

(
k
a + ε, k+1

a − ε
)
) the sets

πθ (ga,b,ε,δ ({c} ×∆l × Z)) and πθ (g̃b ({c} ×∆l × Z)) (resp. πθ (ga,b,ε,δ ({c+ γ} ×∆l × Z)) and
πθ (g̃b ({c+ γ} ×∆l × Z))) di�er by a length of at most 1−2ε

a . Since πθ (g̃b ({u} ×∆l × Z)) for
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arbitrary u ∈ S1 has a length of ε
a on the θ-axis, this discrepancy will be equalised after at

most 1−2ε
a : ε

a = 1−2ε
ε blocks ∆l on the r1-axis. Thus, the resulting interval on the r1-axis of

Kc,γ ∩ g̃−1
b (L×K × Z) and the corresponding r1-projection of Kc,γ ∩ g−1

a,b,ε (L×K × Z) can
di�er by a length of at most 4 · 1−2ε

ε · ε
b·a = 4 · (1− 2ε) 1

b·a .
Therefore, we compute on the one side:

µ̃ (Q) ≤ (b · λ (K) + 2) ·
(
l2 − (l1 − γ)

b
+ 4 · 1− 2ε

b · a

)
· µ(m−2) (Z)

=

(
λ (K) · λ̃ (L) + 2 · λ̃ (L)

b
+ λ (K) · γ +

2 · γ
b

+ 4 · λ(K) · 1− 2ε

a
+ 8 · 1− 2ε

b · a

)
· µ(m−2) (Z)

and on the other side

µ̃ (Q) ≥ (b · λ (K)− 2) ·
(
l2 − (l1 − γ)

b
− 4 · 1− 2ε

b · a

)
· µ(m−2) (Z)

=

(
λ (K) · λ̃ (L)− 2 · λ̃ (L)

b
+ λ (K) · γ − 2 · γ

b
− 4 · λ(K) · 1− 2ε

a
+ 8 · 1− 2ε

b · a

)
· µ(m−2) (Z) .

Both equations together yield:∣∣∣∣µ̃ (Q)− λ (K) · λ̃ (L) · µ(m−2) (Z)− γ · λ (K) · µ(m−2) (Z)− 8 · 1− 2ε

b · a · µ
(m−2) (Z)

∣∣∣∣
≤
(

2

b
· λ̃ (L) +

2 · γ
b

+ 4 · λ(K) · 1− 2ε

a

)
· µ(m−2) (Z) .

The claim follows because∣∣∣µ̃ (Q)− λ (K) · λ̃ (L) · µ(m−2) (Z)
∣∣∣− γ · λ (K) · µ(m−2) (Z)− 8 · 1− 2ε

b · a · µ
(m−2) (Z)

≤
∣∣∣∣µ̃ (Q)− λ (K) · λ̃ (L) · µ(m−2) (Z)− γ · λ (K) · µ(m−2) (Z)− 8 · 1− 2ε

b · a · µ
(m−2) (Z)

∣∣∣∣ .

Lemma 6.5. Let n be su�ciently large, gn as in section 3.2 and În ∈ ηn, where ηn is the partial

partition constructed in section 3.1.1. For the di�eomorphism φn constructed in section 3.3 and

mn as in chapter 4 we consider Φn = φn ◦Rmnαn+1
◦ φ−1

n .

Then for every m-dimensional cube S of side length q−σn lying in S1 ×
[

1
10n4 , 1− 1

10n4

]m−1
we

get

(10)
∣∣∣µ(Î ∩ Φ−1

n ◦ g−1
n (S)

)
− µ

(
Î
)
· µ (S)

∣∣∣ ≤ 42 + 2m

n
· µ
(
Î
)
· µ (S) .

In other words this Lemma tells us that a partition element is �almost uniformly distributed�
under gn ◦ Φn on the whole manifold M = S1 × [0, 1]

m−1.

Proof. Let S be a m-dimensional cube with side length q−σn lying in S1 ×
[

1
10n4 , 1− 1

10n4

]m−1
.

Furthermore, we denote:

Sθ = πθ (S) Sr1 = πr1 (S) S~̃r = π(r2,...,rm−1) (S) Sr = Sr1 × S~̃r = π~r (S)
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Obviously: λ̃ (Sθ) = λ (Sr1) = q−σn and λ̃ (Sθ) · λ (Sr1) · µ(m−2)
(
S~̃r
)

= µ (S) = q−mσn .

Recalling the parameters in the de�nition of gn = ga,b,ε,δ we introduce the set ∆l =
[
lε
ba ,

(l+1)ε
ba

]
for l ∈ Z, 0 ≤ l ≤ b·a

ε − 1.

• In case of a partition element În ∈ ηn of the �rst kind we de�ne

S̃r1 :=
⋃

∆l⊆Sr1

∆l; S̃r :=
⋃

∆l⊆Sr1

∆l × S~̃r as well as S̃ := Sθ × S̃r ⊆ S.

Here
∣∣∣µ(S̃)− µ (S)

∣∣∣ = µ
(
S \ S̃

)
≤ 2 · εb·a · λ̃ (Sθ) ·µ(m−2)

(
S~̃r
)
≤ 2 · εa ·µ (S), where we used

b = [n · qσn] ≥ qσn in case of n > 4. Since Φn and gn are measure-preserving, we additionally

obtain:
∣∣∣µ(Î ∩ Φ−1

n

(
g−1
n (S)

))
− µ

(
Î ∩ Φ−1

n

(
g−1
n

(
S̃
)))∣∣∣ ≤ µ

(
S \ S̃

)
≤ 2 · εa · µ (S). In

equation 2 in the proof of Lemma 4.6 we observed µ
(

Φn

(
Î
))
≥ 1

a ·
(
1− 1

5n4

)2m−1
. Hence:∣∣∣µ(Î ∩ Φ−1

n

(
g−1
n (S)

))
− µ

(
Î ∩ Φ−1

n

(
g−1
n

(
S̃
)))∣∣∣ ≤ 2 · ε

a
· µ (S)

≤ 2 · ε(
1− 1

5n4

)2m−1 · µ (S) · µ
(

Φn

(
Î
))
≤ 4 · ε · µ (S) · µ

(
Î
)
.

• In case of a partition element În ∈ ηn of the second kind we de�ne

S̃r1 :=
⋃

∆l⊆Sr1

∆l; S̃r :=

 ⋃
∆l⊆Sr1

∆l × S~̃r

 ∩ Jn as well as S̃ := Sθ × S̃r ⊆ S

Once again, we want to estimate µ
(
S \ S̃

)
. As seen above we have λ

(
Sr1 \ S̃r1

)
≤ 2 · εb·a .

Since the cube of side length q−σn in the ~r-coordinates contains at least qn
qσn
− 2 and at most

qn
qσn

+2 intervals of the form
[
l
qn
, l+1
qn

]
for some l ∈ Z in each of those coordinates, we estimate

µ
(
S \ S̃

)
≤ 1

n · µ (S) for n su�ciently large. Moreover, we observed π~r
(

Φn

(
În

))
⊂ Jn

in the proof of Lemma 4.5. Hereby, we get∣∣∣µ(Î ∩ Φ−1
n

(
g−1
n (S)

))
− µ

(
Î ∩ Φ−1

n

(
g−1
n

(
S̃
)))∣∣∣ ≤ λ̃ (Sθ)·2·

ε

ba
·µ(m−2)

(
S~̃r
)
≤ 2· ε

a
·µ (S) .

Then we continue as in the previous case.

For partition elements of both kinds Φn

(
1

2·qmn
, 1
n

)
-distributes the partition element În ∈ ηn

on a set J according to Lemma 4.5, in particular Φn

(
În

)
⊆ [c, c+ γ]× [0, 1]

m−1 for some c ∈ S1

and some γ ≤ 1
2·qmn

. On the other hand, we saw γ ≥ 1−2ε
a in the proof of Lemma 4.6.

Using the triangle inequality we obtain∣∣∣µ(Î ∩ Φ−1
n

(
g−1
n (S)

))
− µ

(
Î
)
· µ (S)

∣∣∣
≤
∣∣∣µ(Î ∩ Φ−1

n

(
g−1
n (S)

))
− µ

(
Î ∩ Φ−1

n

(
g−1
n

(
S̃
)))∣∣∣+

1

µ̃(J)

∣∣∣µ(Î ∩ Φ−1
n

(
g−1
n

(
S̃
)))

µ̃ (J)− µ
(
Î
)
µ
(
S̃
)∣∣∣

+
µ
(
Î
)

µ̃(J)
·
∣∣∣µ(S̃)− µ (S)

∣∣∣+
1− µ̃(J)

µ̃(J)
· µ
(
Î
)
· µ (S) .
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In both cases, Bernoulli's inequality yields: µ̃(J) ≥
(
1− 1

n

)m−1 ≥ 1 + (m− 1) ·
(
− 1
n

)
=

1−m−1
n . Hence we obtain for n > 2·(m−1): µ̃ (J) ≥ 1

2 and so: 1−µ̃(J)
µ̃(J) ≤ 2·(1− µ̃ (J)) ≤ 2·(m−1)

n .
Thus, we obtain:∣∣∣µ(Î ∩ Φ−1

n

(
g−1
n (S)

))
− µ

(
Î
)
· µ (S)

∣∣∣
≤ 2 ·

∣∣∣µ(Î ∩ Φ−1
n

(
g−1
n

(
S̃
)))

µ̃ (J)− µ
(
Î
)
µ
(
S̃
)∣∣∣+ 4ε · µ (S)µ

(
Î
)

+
2m

n
µ (S)µ

(
Î
)(11)

Next, we want to estimate the �rst summand. By construction of the map gn = ga,b,ε,δ and the

de�nition of S̃ it holds: Φn

(
Î
)
∩ g−1

n

(
S̃
)
⊆ [c, c+ γ] × S̃r =: Kc,γ . Considering the proof of

Lemma 4.6 again, we obtain gn (Kc,γ) = g̃[nqσn] (Kc,γ) (since c and c+ γ are in the domain where
gn = g̃[nqσn] holds).

Because of Lemma 4.5 2γ ≤ 2
2·qmn

< q−σn for n > 2. So we can de�ne a cuboid S1 ⊆ S̃, where

S1 := [s1 + γ, s2 − γ]× S̃r using the notation Sθ = [s1, s2]. We examine the two sets

Q := π~r

(
Kc,γ ∩ g−1

n

(
Sθ × S̃r

))
Q1 := π~r

(
Kc,γ ∩ g−1

n

(
[s1 + γ, s2 − γ]× S̃r

))
As seen above Φn

(
Î
)
∩ g−1

n

(
S̃
)
⊆ Kc,γ . Hence Φn

(
Î
)
∩ g−1

n

(
S̃
)
⊆ Φn

(
Î
)
∩ g−1

n

(
S̃
)
∩Kc,γ ,

which implies Φn

(
Î
)
∩ g−1

n

(
S̃
)
⊆ Φn

(
Î
)
∩
(
S1 ×Q

)
.

Claim: On the other hand: Φn

(
Î
)
∩
(
S1 ×Q1

)
⊆ Φn

(
Î
)
∩ g−1

n

(
S̃
)
.

Proof of the claim: For (θ, ~r) ∈ Φn

(
Î
)
∩
(
S1 ×Q1

)
arbitrary it holds (θ, ~r) ∈ Φn

(
Î
)
,

i.e. θ ∈ [c, c+ γ], and ~r ∈ π~r

(
Kc,γ ∩ g−1

n

(
[s1 + γ, s2 − γ]× S̃r

))
, i.e. in particular ~r ∈ S̃r.

This implies the existence of θ̄ ∈ [c, c+ γ] satisfying
(
θ̄, ~r
)
∈ Kc,γ ∩ g−1

n (S1). Hence, there
are β ∈ [s1 + γ, s2 − γ] and ~r1 ∈ S̃r, such that gn

(
θ̄, ~r
)

= (β,~r1). Because of θ̄ ∈ [c, c+ γ]

and ~r ∈ S̃r the point
(
θ̄, ~r
)
is contained in one cuboid of the form ∆a,b,ε. Since θ ∈ [c, c+ γ],

(θ, ~r) is contained in the same ∆a,b,ε. Thus, π~r (gn (θ, ~r)) ∈ S̃r. Furthermore, gn (θ, ~r) and
gn
(
θ̄, ~r
)
are in a distance of at most γ on the θ-axis, because θ, θ̄ ∈ [c, c+ γ], i.e.

∣∣θ − θ̄∣∣ ≤ γ,
gn (Kc,γ) = g̃[nqσn] (Kc,γ) and the map g̃[nqσn] preserves the distances on the θ-axis. Thus, there

are β̄ ∈ [s1, s2] and ~r2 ∈ S̃r such that gn (θ, ~r) =
(
β̄, ~r2

)
. So (θ, ~r) ∈ Φn

(
Î
)
∩ g−1

n

(
S̃
)
.

Altogether, the following inclusions are true:

Φn

(
Î
)
∩
(
S1 ×Q1

)
⊆ Φn

(
Î
)
∩ g−1

n

(
S̃
)
⊆ Φn

(
Î
)
∩
(
S1 ×Q

)
.

Thus, we obtain: ∣∣∣µ(Î ∩ Φ−1
n

(
g−1
n (S̃)

))
· µ̃ (J)− µ

(
Î
)
· µ
(
S̃
)∣∣∣

≤ max

(∣∣∣µ(Î ∩ Φ−1
n

(
S1 ×Q

))
· µ̃ (J)− µ

(
Î
)
· µ
(
S̃
)∣∣∣ ,

∣∣∣µ(Î ∩ Φ−1
n

(
S1 ×Q1

))
· µ̃ (J)− µ

(
Î
)
· µ
(
S̃
)∣∣∣)

(12)

We want to apply Lemma 6.4 for K = S̃r1 , L = Sθ, Z = S~̃r and b = [n · qσn] (note that
4 · 1−2ε

a − γ ≤ 3 · 1−2ε
a ≤ 3

2·qmn
< 1

qσn
= λ̃ (L) because of the mentioned relation γ ≥ 1−2ε

a and for
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n > 4: b · λ(K) = [nqσn] · q−σn ≥ 1
2nq

σ
n · q−σn > 2):∣∣∣µ̃ (Q)− µ

(
S̃
)∣∣∣

≤
(

2

[n · qσn]
· λ̃ (Sθ) +

2γ

[n · qσn]
+ γ · λ

(
S̃r1

)
+ 4 · 1− 2ε

a
λ
(
S̃r1

)
+ 8 · 1− 2ε

[nqσn] · a

)
· µ(m−2)

(
S~̃r
)

≤
(

4

n · qσn
λ̃ (Sθ) +

4

n · qσn · qσn
+

1

n · qσn
λ (Sr1) + 4 · 1− 2ε

2 · qmn
λ (Sr1) +

16 · (1− 2ε)

n · qσn · 2 · qmn

)
· µ(m−2)

(
S~̃r
)

≤ 14

n
· µ (S) .

In particular, we receive from this estimate: 14
n · µ (S) ≥ µ̃ (Q)− µ

(
S̃
)
≥ µ̃ (Q)− µ (S), hence:

µ̃ (Q) ≤
(
1 + 14

n

)
· µ (S) ≤ 4 · µ (S).

Analogously, we obtain: µ̃ (Q1) ≤ 4 · µ (S) as well as
∣∣∣µ̃ (Q1)− µ

(
S̃1

)∣∣∣ ≤ 14
n · µ (S).

Since Q as well as Q1 are a �nite union of disjoint (m− 1)-dimensional intervals contained in J

and Φn

(
1

2qmn
, 1
n

)
-distributes the interval Î on J , we get:∣∣∣µ(Î ∩ Φ−1

n

(
S1 ×Q

))
· µ̃ (J)− µ

(
Î
)
· µ̃ (Q)

∣∣∣ ≤ 1

n
· µ
(
Î
)
· µ̃ (Q) ≤ 4

n
· µ
(
Î
)
· µ (S)

as well as∣∣∣µ(Î ∩ Φ−1
n

(
S1 ×Q1

))
· µ̃ (J)− µ

(
Î
)
· µ̃ (Q1)

∣∣∣ ≤ 1

n
· µ
(
Î
)
· µ̃ (Q1) ≤ 4

n
· µ
(
Î
)
· µ (S) .

Now we can proceed∣∣∣µ(Î ∩ Φ−1
n

(
S1 ×Q

))
· µ̃ (J)− µ

(
Î
)
· µ
(
S̃
)∣∣∣

≤
∣∣∣µ(Î ∩ Φ−1

n

(
S1 ×Q

))
· µ̃ (J)− µ

(
Î
)
· µ̃ (Q)

∣∣∣+ µ
(
Î
)
·
∣∣∣µ̃ (Q)− µ

(
S̃
)∣∣∣

≤ 4

n
· µ
(
Î
)
· µ (S) + µ

(
Î
)
· 14

n
· µ (S) =

18

n
· µ
(
Î
)
· µ (S) .

Noting that µ (S1) = µ
(
S̃
)
− 2γ · µ̃

(
S̃r

)
and so µ

(
S̃
)
− µ (S1) ≤ 2 · 1

n·qσn
· µ̃
(
S̃r

)
≤ 2

n · µ (S)

we obtain in the same way as above:∣∣∣µ(Î ∩ Φ−1
n

(
S1 ×Q1

))
· µ̃ (J)− µ

(
Î
)
· µ
(
S̃
)∣∣∣ ≤ 20

n
· µ
(
Î
)
· µ (S) .

Using equation (12) this yields:∣∣∣µ(Î ∩ Φ−1
n

(
g−1
n

(
S̃
)))

· µ̃ (J)− µ
(
Î
)
· µ
(
S̃
)∣∣∣ ≤ 20

n
· µ
(
Î
)
· µ (S) .

Finally, we conclude with the aid of equation (11) because of ε = 1
8n4 :∣∣∣µ(Î ∩ Φ−1

n

(
g−1
n (S)

))
− µ

(
Î
)
· µ (S)

∣∣∣ ≤ 42 + 2m

n
· µ
(
Î
)
· µ (S) .

Now we are able to prove the desired weak mixing-property.
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Proposition 6.6 (Proof of weak mixing). Let fn = Hn ◦Rαn+1 ◦H−1
n and the sequence (mn)n∈N

be constructed as in the previous sections. Then f = limn→∞ fn is weakly mixing.

Proof. By Lemma 5.11 we have d0 (fmn , fmnn ) < 1
2n for every n ∈ N. To apply Lemma 6.2

we consider the partial partitions νn := Hn−1 ◦ gn (ηn). As proven in Lemma 6.3 these partial
partitions satisfy νn → ε. We have to establish equation (9). To do so, let ε > 0 and a
m-dimensional cube A ⊆ S1 × (0, 1)

m−1 be given. There exists N ∈ N such that A ⊆ S1 ×[
1
n4 , 1− 1

n4

]m−1
for every n ≥ N . Furthermore, we note that fmnn = Hn ◦ Rmnαn+1

◦ H−1
n =

Hn−1 ◦ gn ◦ Φn ◦ g−1
n ◦H−1

n−1.

Let Sn be a m-dimensional cube of side length q−σn contained in S1 ×
[

1
n4 , 1− 1

n4

]m−1
. We look

at Cn := Hn−1 (Sn), Γn ∈ νn, and compute (since gn and Hn−1 are measure-preserving):∣∣µ (Γn ∩ f−mnn (Cn)
)
− µ (Γn) · µ (Cn)

∣∣ =
∣∣∣µ(În ∩ Φ−1

n ◦ g−1
n (Sn)

)
− µ

(
În

)
· µ (Sn)

∣∣∣ .
We continue by applying Lemma 6.5:∣∣µ (Γn ∩ f−mnn (Cn)

)
− µ (Γn) · µ (Cn)

∣∣ ≤ 42 + 2 ·m
n

· µ
(
În

)
· µ (Sn)

Moreover, we recall that ‖DHn−1‖0 ≤
ln(qn)
n by Lemma 5.9, 3. Then we get that diam(Cn) ≤

‖DHn−1‖0 · diam (Sn) ≤ √m · ln(qn)
qσn

, i.e. diam(Cn) → 0 as n → ∞. Thus, we can approximate

A by a countable disjoint union of sets Cn = Hn−1 (Sn) with Sn ⊆ S1 ×
[

1
n4 , 1− 1

n4

]m−1
a m-

dimensional cube of side length q−σn with given precision, assuming that n is chosen to be large
enough. Consequently for su�ciently large n there are sets A1 =

⋃̇
i∈Σ1

n
Cin and A2 =

⋃̇
i∈Σ2

n
Cin

with countable sets Σ1
n and Σ2

n of indices satisfying A1 ⊆ A ⊆ A2 as well as |µ(A)− µ(Ai)| ≤
ε
3 · µ(A) for i = 1, 2.
Additionally we choose n such that 42+2·m

n < ε
3 holds. It follows that

µ
(
Γn ∩ f−mnn (A)

)
− µ (Γn) · µ (A)

≤ µ
(
Γn ∩ f−mnn (A2)

)
− µ (Γn) · µ (A2) + µ (Γn) · (µ (A2)− µ (A))

≤
∑
i∈Σ2

n

(
µ
(
Γn ∩ f−mnn

(
Cin
))
− µ (Γn) · µ

(
Cin
))

+
ε

3
· µ (Γn) · µ (A)

≤
∑
i∈Σ2

n

(
42 + 2 ·m

n
· µ
(
În

)
· µ
(
Sin
))

+
ε

3
· µ (Γn) · µ (A)

=
42 + 2 ·m

n
· µ (Γn) · µ

 ⋃
i∈Σ2

n

Cin

+
ε

3
· µ (Γn) · µ (A) ≤ ε

3
· µ (Γn) · µ (A2) +

ε

3
· µ (Γn) · µ (A)

=
ε

3
· µ (Γn) · µ (A) +

ε

3
· µ (Γn) · (µ (A2)− µ (A)) +

ε

3
· µ (Γn) · µ (A) ≤ ε · µ (Γn) · µ (A) .

Analogously, we estimate that µ (Γn ∩ f−mnn (A)) − µ (Γn) · µ (A) ≥ −ε · µ (Γn) · µ (A). Both
estimates enable us to conclude that |µ (Γn ∩ f−mnn (A))− µ (Γn) · µ (A)| ≤ ε · µ (Γn) · µ (A).

7 Construction of the measurable f-invariant Riemannian

metric

Let ω0 denote the standard Riemannian metric on M = S1 × [0, 1]
m−1. The following Lemma

shows that the conjugation map hn = gn ◦φn constructed in section 3 is an isometry with respect
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to ω0 on the elements of the partial partition ζn.

Lemma 7.1. Let Ǐn ∈ ζn. Then hn|Ǐn is an isometry with respect to ω0.

Proof. Let Ǐn,k ∈ ζn be a partition element on
[
k

2qn
, k+1

2qn

]
× [0, 1]

m−1. In case of k even, φn acts

as an isometry on Ǐn,k by Proposition 3.12, 3., and φn
(
Ǐn,k

)
is equal to[

k

2qn
− jm

2q2
n

− · · · − j3

2qm−1
n

− j
(1)
2 + 1

2qmn
+

1

n4 · 2qmn
,
k

2qn
− jm

2q2
n

− · · · − j3

2qm−1
n

− j
(1)
2

2qmn
− 1

n4 · 2qmn

]

×
[
j

(m−1)
1

qn
+
j

(2)
2

q2
n

+ · · ·+ j
(m)
2

qmn
+

j
(m+1)
2

16n4 · qmn · [nqσn]
+

1

16n8 · qmn · [nqσn]
,

j
(m−1)
1

qn
+
j

(2)
2

q2
n

+ · · ·+ j
(m)
2

qmn
+

j
(m+1)
2 + 1

16n4 · qmn · [nqσn]
− 1

16n8 · qmn · [nqσn]

]

×
m∏
i=3

[
j

(m+1−i)
1

qn
+

1

n4 · qn
,
j

(m+1−i)
1 + 1

qn
− 1

n4 · qn

]
.

By Proposition 3.8, 3., gn = g2qmn ,[n·qσn], 1
8n4 ,

1
32n4

acts as an isometry on this set.

In case of k odd φn acts as the identity on the element Ǐn,k. By the shape of this set and
Proposition 3.8, 3., gn acts as an isometry on it.

This Lemma implies that h−1
n |hn(Ǐn) is an isometry as well.

In the following we construct the f -invariant measurable Riemannian metric. This construction
parallels the approach in [GK00, section 4.8]. For it we put ωn :=

(
H−1
n

)∗
ω0. Each ωn is a smooth

Riemannian metric because it is the pullback of a smooth metric via a C∞ (M)-di�eomorphism.
Since R∗αn+1

ω0 = ω0 the metric ωn is fn-invariant:

f∗nωn =
(
Hn ◦Rαn+1 ◦H−1

n

)∗ (
H−1
n

)∗
ω0 =

(
H−1
n

)∗
R∗αn+1

H∗n
(
H−1
n

)∗
ω0 =

(
H−1
n

)∗
R∗αn+1

ω0

=
(
H−1
n

)∗
ω0 = ωn.

With the succeeding Lemmas we show that the limit ω∞ := limn→∞ ωn exists µ-almost every-
where and is the desired f -invariant Riemannian metric.

Lemma 7.2. The sequence (ωn)n∈N converges µ-a.e. to a limit ω∞

Proof. For every N ∈ N we have for every k > 0:

ωN+k =
(
H−1
N+k

)∗
ω0 =

(
h−1
N+k ◦ ... ◦ h−1

N+1 ◦H−1
N

)∗
ω0 =

(
H−1
N

)∗ (
h−1
N+k ◦ ... ◦ h−1

N+1

)∗
ω0.

Since the elements of the partition ζn cover M except a set of measure at most 4m
n2 by Remark

3.4, Lemma 7.1 shows that ωN+k coincides with ωN =
(
H−1
N

)∗
ω0 on a set of measure at least

1−∑∞n=N+1
4m
n2 . As this measure approaches 1 for N →∞, the sequence (ωn)n∈N converges on

a set of full measure.

Lemma 7.3. The limit ω∞ is a measurable Riemannian metric.

Proof. The limit ω∞ is a measurable map because it is the pointwise limit of the smooth metrics
ωn, which in particular are measurable. By the same reasoning ω∞|p is symmetric for µ-almost
every p ∈M . Furthermore, ω∞ is positive de�nite because ωn is positive de�nite for every n ∈ N
and ω∞ coincides with ωN on T1M ⊗ T1M minus a set of measure at most

∑∞
n=N+1

4m
n2 . Since

this is true for every N ∈ N, ω∞ is positive de�nite on a set of full measure.
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Remark 7.4. In the proof of the subsequent Lemma we will need Egoro�'s theorem (for example
[Ha65, �21, Theorem A]): Let (N, d) denote a separable metric space. Given a sequence (ϕn)n∈N
of N -valued measurable functions on a measure space (X,Σ, µ) and a measurable subset A ⊆ X,
µ (A) < ∞, such that (ϕn)n∈N converges µ-a.e. on A to a limit function ϕ. Then for every
ε > 0 there exists a measurable subset B ⊂ A such that µ (B) < ε and (ϕn)n∈N converges to ϕ
uniformly on A \B.
Lemma 7.5. ω∞ is f -invariant, i.e. f∗ω∞ = ω∞ µ-a.e..

Proof. By Lemma 7.2 the sequence (ωn)n∈N converges in the C∞-topology pointwise almost
everywhere. Hence, we obtain using Egoro�'s theorem: For every δ > 0 there is a set Cδ ⊆ M
such that µ (M \ Cδ) < δ and the convergence ωn → ω∞ is uniform on Cδ.
The function f was constructed as the limit of the sequence (fn)n∈N in the C∞-topology. Thus,
f̃n := f−1

n ◦ f → id in the C∞-topology. Since M is compact, this convergence is uniform too.
Furthermore, the smoothness of f implies f∗ω∞ = f∗ limn→∞ ωn = limn→∞ f∗ωn. Therewith,

we compute on Cδ: f∗ω∞ = limn→∞

((
fnf̃n

)∗
ωn

)
= limn→∞

(
f̃∗nf

∗
nωn

)
= limn→∞ f̃∗nωn =

ω∞, where we used the uniform convergence on Cδ in the last step. As this holds on every set
Cδ with δ > 0, it also holds on the set

⋃
δ>0 Cδ. This is a set of full measure and therefore the

claim follows.

Hence, the desired f -invariant measurable Riemannian metric ω∞ is constructed and thus
Proposition 2.8 is proven.

Acknowledgement: We would like to thank the referee for very interesting remarks and
comments. In particular, these helped to improve the presentation of the paper.
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