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Abstract

We show that on any smooth compact connected manifold of dimension m > 2 admit-
ting a smooth non-trivial circle action S = {S¢},cp, St+1 = Si, the set of weakly mixing
C*°-diffeomorphisms which preserve both a smooth volume v and 2 measurable Rieman-
nian metric is dense in Ao (M) = {ho Sy 0o h~! : h € Diff*° (M, l/)}ﬂ for every Liouvillean
number «. The proof is based on a quantitative version of the approximation by conjugation-
method with explicitly constructed conjugation maps and partitions.
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1 Introduction

To begin, recall that a dynamical system (X,T,v) is ergodic if and only if every measurable
complex-valued function h on (X, ) which is invariant (i.e. such that h (Tz) = h(x) for every
x € X) must necessarily be constant. We define (X,T,v) to be weakly mixing if it satisfies
the stronger condition that there is no non-constant measurable complex valued function h on
(X,v) such that h (Txz) = A - h(x) for some A € C. Equivalently there is an increasing sequence
(M), en of natural numbers such that lim, o [v (BNT™™" (A)) — v (A) - v (B)| = 0 for every
pair of measurable sets A, B C X (see [SkI67] or [AK70, Theorem 5.1]). We call a circle action
{St};cr on a manifold M non-trivial if there exists ¢ € R and x € M with Si(z) # =; in other
words, not all orbits are fixed points (even though some may be).

Until 1970 it was an open question if there exists an ergodic area-preserving smooth diffeomor-
phism on the disc D?. This problem was solved by the so-called “approximation by conjugation’-
method developed by D. Anosov and A. Katok in [AK70]. In fact, on every smooth compact
connected manifold M of dimension m > 2 admitting a non-trivial circle action S = {S;},cq
preserving a smooth volume v this method enables the construction of smooth diffeomorphisms
with specific ergodic properties (e.g. weakly mixing ones in [AKT0, section 5]) or non-standard
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smooth realizations of measure-preserving systems (e. g. [AK70l section 6], [Bel3] and [FSW07]).

These diffeomorphisms are constructed as limits of conjugates f, = H, o Sa,,, o H, ', where

Opt1 = f;"ﬁ = a, + ﬁ € Q, where H, = H,_1 o h,, and where h, are measure-
preserving diffeomorphisms satisfying S1 o h, = h, o S1. In each step the conjugation

map h, and the parameter k, are chosen such that the dziqcfeomorphism fn imitates the de-
sired property with a certain precision. In a final step of the construction, the parameter
I, is chosen large enough to guarantee closeness of f, to f,_1 in the C*°-topology, and so
the convergence of the sequence (fy,),cy to a limit diffeomorphism is provided. It is even
possible to keep this limit diffeomorphism within any given C°°-neighbourhood of the initial
element S,, or, by applying a fixed diffeomorphism g first, of g o S,, o g7!. So the con-
struction can be carried out in a neighbourhood of any diffeomorphism conjug%;ce to an el-
ement of the action. Thus, A(M) = {hoS;oh=! : t €S h € Diff° (M,v)}  is a natu-
ral space for the produced diffeomorphisms. OoMoreover, we will consider the restricted space
Ao (M) ={hoS,oh=1 :heDiff* (M,v)} for acS'.

In the following let M be a smooth compact connected manifold of dimension m > 2 admitting
a non-trivial circle action S = {S:},.g, St41 = S¢. Note that any such action possesses a smooth
invariant volume: Every smooth manifold carries a Riemannian metric and hence a smooth Rie-
mannian volume form 2. Any smooth volume form is given by f -, where f is a positive scalar
function. If f is the fiberwise average of f, then f -7 is a smooth volume form which is invariant
under S. In case of a manifold with boundary by a smooth diffeomorphism we mean infinitely
differentiable in the interior and such that all the derivatives can be extended to the boundary
continuously.

In their influential paper [AK70] Anosov and Katok proved amongst others that in A (M) the set
of weakly mixing diffeomorphisms is generic (i.e. it is a dense Gs-set) in the C* (M )-topology.
For this they used the “approximation by conjugation”method. In [GKO0Q] the conjugation maps
are constructed more explicitly such that they can be equipped with the additional structure of
being locally very close to an isometry, thus showing that there exists a weakly mixing smooth
diffeomorphism preserving a smooth measure and a measurable Riemannian metric on any mani-
fold with non-trivial circle action. Actually, it follows from the respective proofs that both results
are true in A, (M) for a Gs-set of @ € R. However, both proofs do not give a full description of
the set of a € R for which the particular result holds in A, (M). Such an investigation is started
in [ES05]: B. Fayad and M. Saprykina showed in case of dimension 2 that if « € S' is Liouville,
the set of weakly mixing diffeomorphisms is generic in the C*° (M)-topology in A, (M). Here
an irrational number « is called Liouville if and only if for every C € R and for every n € N

there are infinitely many pairs of coprime integers p, ¢ such that ’a — g‘ < q%.

In this article we prove the following theorem generalizing the results of [GK00] as well as [FS05]:

Theorem 1. Let M be a smooth compact and connected manifold of dimension m > 2 with
a non-trivial circle action S = {St}teR7 Sir1 = S;. For any S-invariant smooth volume v the
following is true: If o € R is Liouville, then the set of volume-preserving diffeomorphisms, that
are weakly mizing and preserve a measurable Riemannian metric, is dense in the C'°°-topology

in Aq (M).

See [GKO00, section 3] for a comprehensive consideration of IM-diffeomorphisms (i.e. diffeo-
morphisms preserving an absolutely continuous probability measure and a measurable Rieman-
nian metric) and IM-group actions. In particular, the existence of a measurable invariant metric
for a diffeomorphism is equivalent to the existence of an invariant measure for the projectivized
derivative extension which is absolutely continuous in the fibers. It is a natural question to ask
about the ergodic properties of the derivative extension with respect to such a measure. While
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in our construction the projectivized derivative extension is as non-ergodic as possible (in fact,
the derivative cocycle is cohomologous to the identity), it is work in progress to realize ergodic
behaviour. Recently, it has been proven that for every p > 0 and m > 2 there exists a weakly
mixing real-analytic diffeomorphism f € Diﬂ‘; (T™, ) preserving a measurable Riemannian met-
ric ([Kul).

We want to point out that Theorem [1]is in some sense the best we can obtain:

e By [FS05, corollary 1.4], whose proof uses Herman’s last geometric result ([FKr09]), we
have the following dichotomy in case of M = S! x [0,1]: A number a € R\Q is Diophantine
if and only if there is no ergodic diffeomorphism of M whose rotation number (on at least
one of the boundaries) is equal to «. Since weakly mixing diffeomorphisms are ergodic,
there cannot be a weakly mixing f € A, (Sl x [0, 1}) for « € R\ Q Diophantine.

e By a result of A. Furman (appendix to [GK00]) a weakly mixing diffeomorphism cannot
preserve a Riemannian metric with L?-distortion (i.e. both the norm and its inverse are
L2-functions). Moreover, it is conjectured that a weakly mixing diffeomorphism cannot
preserve a Riemannian metric with L!-distortion (see [GKOQ, Conjecture 3.7.]).

Using the standard techniques to prove genericity of the weak mixing-property and Theorem
[[ we conclude in subsection 2.2

Corollary 1. Let M be a smooth compact and connected manifold of dimension m > 2 with a
non-trivial circle action S = {Si},cp, Sty1 = Si, preserving a smooth volume v. If a € R is
Liouville, the set of volume-preserving weakly mizing diffeomorphisms is a dense Gg-set in the
C>-topology in Ay (M).

Hereby, we clear up some points in [FS05]| by generalizing their 2-dimensional constructions
to arbitrary higher dimension.

2 Preliminaries

2.1 Definitions and notations

In this chapter we want to introduce advantageous definitions and notations. Initially we discuss
topologies on the space of smooth diffeomorphisms on the manifold M = S! x [0, 1]7"71. Note
that for diffeomorphisms f = (f1, ..., fm) : S x[0,1]™ " = S! x [0,1]™ " the coordinate function
f1 understood as a map R x [0, 1]7"71 — R has to satisfy the condition f1 (6 + n,71,...,7m—1) =
f10,r1,...;rm—1) + 1 for n € Z, where either [ = n or | = —n. Moreover, for i € {2,...,m} the
coordinate function f; has to be Z-periodic in the first component, i.e. f; (0 +n,r1,...,"m—1) =
fi (0,11, ...;rm_1) for every n € Z.

To define explicit metrics on Diff* (Sl x [0, 1]m_1) and in the following, the subsequent notations
will be useful:

Definition 2.1. 1. For a sufficiently differentiable function f : R™ — R and a multi-index
= (a1,...,am) € NJ

where |@| = Y"1, a; is the order of d.
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2. For a continuous function F': (0,1)™ — R

[Fllg == sup [F(2)].
z€(0,1)™

Diffeomorphisms on S x [0,1]™ " can be regarded as maps from [0,1]™ to R™. In this spirit
the expressions || f;||, as well as || Dz f;l|, for any multi-index @ with || < k have to be understood

for f = (f1,..., fm) € Diff* (Sl x [0, 1]m71). Since such a diffeomorphism is a continuous map on

the compact manifold and every partial derivative can be extended continuously to the boundary,
all these expressions are finite. Thus the subsequent definition makes sense:

Definition 2.2. 1. For f, g € Diff* (S1 x [0, l]m_l) with coordinate functions f; resp. g; we

define
i (£.9) = o {iut 107 = o).+, }

v )

as well as

di (£,9) = max {do (£,9),1Da (f = g)illy = i =1,0m . 1< Jal <k}
2. Using the definitions from 1. we define for f, g € Diff® (Sl x [0, l]m_l):

dk (fag) = max{dk (fvg) ) dk (f_lag_l)} .

Obviously dj describes a metric on Diff® (Sl x [0,1]™"") measuring the distance between

the diffeomorphisms as well as their inverses. As in the case of a general compact manifold the
following definition connects to it:

Definition 2.3. 1. A sequence of Diff* (Sl x [0, 1]m71>—diffe0m0rphisms is called conver-
gent in Diff> (Sl x [0, 1]7"71) if it converges in Diff® (Sl x [0, 1]m71> for every k € N.

2. On Diff* (Sl x [0, 1]m_1) we declare the following metric

o}

B dk(fvg)

k=1

It is a general fact that Diff> (Sl x [0, 1]m_1> is a complete metric space with respect to this
metric dyo.
Again considering diffeomorphisms on S! x [0,1]™ " as maps from [0,1]" to R™ we add the
adjacent notation:

Definition 2.4. Let f € Diff® (Sl x [0, 1]m71> with coordinate functions f; be given. Then

IDflly = ) max

D.f:
e D5 fillo

and

[ fII& := max {|| Dafilly . | Da (fi_l)HO : i=1,..,m, @ multi-index with 0 < |@| < k}.
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Remark 2.5. By the above-mentioned observations for every multi-index @ with |@| > 1 and
every i € {1,...,m} the derivative Dgzh; is Z-periodic in the first variable. Since in case of a
diffeomorphism g = (g1, ..., gm) on S* x [0,1]™ " regarded as a map [0,1]™ — R™ the coordinate
functions g; for j € {2,...,m} satisfy g; ([0,1]™) C [0, 1], it holds:

sup [(Dghi) (9 (2))| < [[Ih]l]}a)-
z€(0,1)™

Furthermore, we introduce the notion of a partial partition of a compact manifold M, which
is a pairwise disjoint countable collection of measurable subsets of M.

Definition 2.6. e A sequence of partial partitions v, converges to the decomposition into
points if and only if for a given measurable set A and for every n € N there exists a
measurable set A,, which is a union of elements of v, such that lim, . p(AAA,) = 0.
We often denote this by v, — €.

e A partial partition v is the image under a diffeomorphism F' : M — M of a partial partition
nif and only if v = {F (I) : I € n}. We write this as v = F (n).

2.2 First steps of the proof

First of all we show how constructions on St x [0, 1]7"_1 can be transfered to a general compact
connected smooth manifold M with a non-trivial circle action S = {Si},cp, St+1 = S. By [AKTO,
Proposition 2.1.], we can assume that 1 is the smallest positive number satisfying S; = id. Hence,
we can assume S to be effective. We denote the set of fixed points of S by F' and for ¢ € N F
is the set of fixed points of the map S%.

On the other hand, we consider S' x [0, 1]m71 with Lebesgue measure p. Furthermore, let
R = {Ra},cq be the standard action of S* on S* x [0, 1], where the map R, is given by
Ro (0,71, ;1) = (0 4+ a,71,...,7m—1). Hereby, we can formulate the following result (see
[FSWO07, Proposition 1]):

Proposition 2.7. Let M be a m-dimensional smooth, compact and connected manifold admitting
an effective circle action S = {Si},cp, Sty1 = St, preserving a smooth volume v. Let B =

OMUFU (Uq21 Fq>. There eists a continuous surjective map G : S* x [0,1]™ " — M with the

following properties:

1. The restriction of G to S' x (0, 1)m71 is a C*°-diffeomorphic embedding.

2. v (G (a (Sl % [0, 1]’”‘1))) -0
3. G (a (Sl % [0, 1]m‘1)) > B
4. Gi(p) =v

5 SoG=GoR
By the same reasoning as in [FSWO0T7, section 2.2.], this proposition allows us to carry a
construction from (Sl x [0,1]"7", R, ,u) to the general case (M, S, v):

Suppose f : S! x [0, 1]m*1 — St x [0, 1]m71 is a weakly mixing diffeomorphism sufficiently
close to R, in the C°°-topology with f-invariant measurable Riemannian metric w obtained
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by f =lim, o fn With f, = Hyo Ry, © H; ', where f, = R, ., in a neighbourhood of the
boundary (in Propositionwe will see that these conditions can be satisfied in the constructions

of this article). Then we define a sequence of diffeomorphisms:

GofnoG ' (z) ifzeG (S x (0 1)’"*1)

fo:M—>M  f,(z)= g
! "’ Son.r () ifzeG(o (sl x (0,1)™ 1))
Constituted in [FKO04, section 5.1.], this sequence is convergent in the C*°-topology to the dif-
feomorphism

GofoGl(z) ifreG Slx(o,n’"—l)

f:M =M f(@) S (z) ifreG a(slx(o,1)m—1))

provided the closeness from f to R, in the C*°-topology.

We observe that f and f are measure-theoretically isomorphic. Then f is weakly mixing because
the weak mixing-property is invariant under isomorphisms.

Moreover, we want to show how we can construct a f—invariant measurable Riemannian met-
ric @ out of the f-invariant metric w. Since @ only needs to be a measurable metric and

v (G (8 (Sl x [0, 1]m_1))) = 0, we only have to construct it on G (Sl x (0, l)m_l). Using

the diffeomorphic embedding G we consider &1|G(51X(0’1)m_1) = (G— )*M\G(S1X(071)7n_1) and

show that it is f-invariant: On G (Sl x (0, 1)m_1) we have f = Go foG~! and thus we can
compute:

Fo= (GofoG ) ((G7)w) = (67) of oG a(G) w = (67) ot = (G) w=d
Altogether the construction done in the case of (Sl x [0, l]m_1 , R, M) is transfered to (M, S, v).
Hence, it suffices to consider constructions on M = S! x [0,1]™" with circle action R subse-

quently. In this case we will prove the following result:

Proposition 2.8. For every Liouvillean number o there is a sequence () of rational

neN
numbers o, = Z—" satisfying lim, o |& — ap| = 0 monotonically, and there are sequences
(Gn)nens (Dn)pen of measure-preserving diffeomorphisms satisfying gn, o R 1= =R Lo gn as

well as ¢n o R L= =R L0 ¢n such that the diffeomorphisms f, = H, o Ra i1 © H L with

= hy o hg o ...0 hn, "“where hp = gn © ¢y, coincide with R, , in a neighbourhood of the
boundary, converge in the Diff>° (M ) topology, and the diffeomorphism f = lim,_ . f, is weakly
mizing, has an invariant measurable Riemannian metric, and satisfies f € A, (M).
Furthermore, for every ¢ > 0 the parameters in the construction can be chosen in such a way
that doo (f, Ra) < €

By this Proposition weakly mixing diffeomorphisms preserving a measurable Riemannian
metric are dense in A, (M):

Because of A, (M) = {ho R,oh™1:heDift** (M,n)} it is enough to show that for every
diffeomorphism h € Diff> (M, u) and every ¢ > 0 there is a weakly mixing diffeomorphism

f preserving a measurable Riemannian metric such that de ( f.hoRyo h_l) < €. For this

purpose, let h € Diff* (M, ) and € > 0 be arbitrary. By [OmT74, p. 3] and [KM97, Theorem
43.1.], Diff>** (M) is a Lie group. In particular, the conjugating map g — hogoh~! is continuous
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with respect to the metric do,. Continuity in the point R, yields the existence of § > 0, such
that doo (9, Ra) < 0 implies do (hogoh ™, ho Ryoh™!) < e. By Proposition we can
find a weakly mixing diffeomorphism f with f-invariant measurable Riemannian metric w and
doo(f, Rs) < 0. Hence f := ho foh™! satisfies dug (f,h o R, o0 h’1> < e. Note that f is weakly

mixing and preserves the measurable Riemannian metric @ = (h’l)* w.
Hence, Theorem [I]is deduced from Proposition [2.8

Remark 2.9. Moreover we can show that the set of weakly mixing diffeomorphisms is generic
in A, (M) (ie. it is a dense Gs-set) using Proposition and the same technique as in [Ha56],
section Category.

Using Proposition we can show that the set of weakly mixing diffeomorphisms is generic
in Ay (M) (ie. it is a dense Gs-set). Thereby, we consider a countable dense set {¢,}, oy in
L? (M, 11), which is a separable space, and define the sets:

. n 1
0ligkn) = {T € A (M) & (Ui - (on))- ()l < 1 }
Since (U, ) depends continuously on T', each O (i, j, k,n) is open. Hence,

K= UOoGjikmn)
€N jeN keN neN

is a Gs-set.

By another equivalent characterisation a measure-preserving transformation 7" is weakly mixing
if and only if for every ¢,¢ € L? (M, ) there is a sequence (my),,c of density one such that
lim,, 00 (U™, 90) = (¢,1)-(1,1). Thus, every weakly mixing diffeomorphism is contained in K.
On the other hand, we show that a transformation, that is not weakly mixing, does not belong
to K: If T is not weakly mixing, Ur has a non-trivial eigenfunction. W.l.o.g. we can assume the
existence of f € L? (M, p) and ¢ € C of absolute value 1 satisfying Urf = c- f, ||f|l;- = 1 and
(1, f) = 0. Since {¢n},,cy is dense in L? (M, 1), there is an index i such that ||f — ¢;| ;. < 0.1.
Obviously [l¢ill 2 < [[flle + If —@ille < 11 and (3£, F) = (£1) - (LAl = (@ £, )] =
le™] - ||f\|i2 = 1. Consequently we can estimate:

L= (U7 f, ) = (f;1) - (L, f)
< Uz f, [) = (U f, 00| + (UL f, i) — (Ui, pi)| + Uz, @i) — (@i, 1) - (1, 93)
+1(pi 1) - (1, 06) = (@i, 1) - (1, )l + (i, 1) - (L, f) = (f, 1) - (1, )]
<™ Nfllge - 1 = @ill o + 1f = ill 2 - il 2 + [(UT i, 0) — (93,1) - (1, 05)
+ lleill o - I1F = @il 2
< 014011+ |(Ufwi, p:i) — (wi, 1) - (1,9;)| + 0.11
<[(Urpi, ¢i) — (pi;1) - (1,:)| +0.5
Thus [(Ufkgi, i) — (¢i, 1) - (1, ;)| has to be larger than 1. Hence T does not belong to O (4,4, 2, n)
for any value of n and accordingly does not belong to K. So K coincides with the set of weakly
mixing diffeomorphisms in A, (M). By the observations above we know that this set is dense. In

conclusion the set of weakly mixing diffeomorphisms is a dense Gs-set in A, (M). Thus Corollary
[is proven.

2.3 Outline of the proof

The constructions are based on the “approximation by conjugation”method developed by D.V.
Anosov and A. Katok in [AK70]. As indicated in the introduction, one constructs successively a
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sequence of measure preserving diffeomorphisms f,, = H,, o Rq, ,, o H, ', where the conjugation
maps H, = hj o...oh, and the rational numbers a,, = 2= are chosen in such a way that the
functions f, converge to a diffeomorphism f with the desired properties.

First of all we will define two sequences of partial partitions, which converge to the decomposition
into points in each case. The first type of partial partition, called 7,,, will satisfy the requirements
in the proof of the weak mixing-property. On the partition elements of the even more refined
second type, called (,, the conjugation map h, will act as an isometry, and this will enable us
to construct an invariant measurable Riemannian metric. Afterwards we will construct these
conjugating diffeomorphisms h,, = g, o ¢,, which are composed of two step-by-step defined
smooth measure-preserving diffeomorphisms. In this construction the map g, should introduce
shear in the O-direction as in [FS05]. So ggs) (0,71, 7m—1) = (0 +[n-q7] 711,71, s Tm-1)
might seem an obvious candidate. Unfortunately, that map is not an isometry. Therefore, the
map g, will be constructed in such a way that g, is an isometry on the image under ¢,, of any

partition element I,, € ¢, and g, (fn) = Jlngz] (fn) as well as g, ((I)n (fn)> = Jlngz] ((I)n (fn>)

for every I, € Nn, where @, = ¢, o R!" o ¢, 1 with a specific sequence (mn),,en of natural
numbers (see section [4)) is important in the proof of the weak mixing property. Likewise the
conjugation map ¢, will be built such that it acts on the elements of (,, as an isometry and on
the elements of 7, in such a way that it satisfies the requirements of a criterion for weak mixing
similar to the one in [FS05] but modified in many places because of the new conjugation map
gn and the new type of partitions. In particular, ®, has to map each element of the partial
partition 7, on a set of almost full length in the rq, ..., 7, _1-coordinates in an almost uniform
way (see Definition [£.1] for the precise requirement).

In the 2-dimensional constructions of [FS05] such a behaviour is obtained by putting ¢, equal

to the identity on one half of the fundamental domain [O, q%] x [0,1] and ¢, = ¢, on the

other one, where ¢, = C;l oo C)y with C) being a stretching by A in the first coordinate and
© a “quasi-rotation”, i.e. a rotation by 5 on large part of the domain. So, such a map ¢y as
well as its inverse map a horizontal interval of length about A~! to a vertical interval of almost
full length 1. Since R{'" = induces a permutation of the sections by choice of the number m,,
¢, = gno Ry 00, ! maps small horizontal to long vertical intervals. This procedure relies on
the 2-dimensional setting. Modifications of that approach by known quantitative Anosov-Katok-
constructions in higher dimensions like in [FSWO07] and [Bel3] do not work. We had to modify
the notion of uniform distribution and our corresponding maps g?)gfj )) " constructed in subsection
[3.3] will always involve the f-coordinate. Additionally, we introduce “inner rotations” in order to
guarantee that ¢, acts as an isometry on the partition elements I,, € ¢,: A map of the form
C;l o ¢ o Cy would cause an expansion by ) in one coordinate and by A~! in another, so far
away from being an isometry. The “inner rotations” will cause that C) and C;l act on the
same coordinate on the elements I, € (,. Unfortunately, this requires a fairly elaborate and

slightly technical construction. With the aid of these maps ng\J] ) u, e define the conjugation map

On = Qgg;},qn o q@ézbz_ql) 0..0 qgéi)m,l 4, OB the first half of the fundamental domain. On the second

one, ¢, is the identity.

In section [5| we will show convergence of the sequence (fy), oy in Aq (M) for a given Liouville
number « by the same approach as in [ES05]. To do so, we have to estimate the norms |||H,|||x
very carefully. In section [f] we verify that the obtained diffeomorphism f = lim,_, f,, is weakly
mixing. Finally, we will construct the desired f-invariant measurable Riemannian metric in
section [7] exploiting the fact that h, acts as an isometry on large parts of the manifold.
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3 Explicit constructions

3.1 Sequences of partial partitions

In this subsection we define the two announced sequences of partial partitions (1), .y and

(Cn) e Of M =St x [0,1]™ 1.

3.1.1 Partial partition 7,

Remark 3.1. For convenience we will use the notation [];~, [a;, b;] for [az,bo] X ... X [ap., by
Initially, n,, will be constructed on the fundamental sector [0, qi} x [0, 1}m71. For this purpose

we divide the fundamental sector into 2 sections:

e On [0, ﬁ} x [0,1]™" the partial partition 7, consists of all multidimensional intervals
of the following form:

1 1 1 T 1 ji+1 1
[ — S — X —_— —
[52n4 "0 20, 5201 qn,] 11 {qn T%nT g gn 26004,

where j; € Z and (10 4] < Ji < qn — [1(m4—| 1 for ¢ = 2,...,m. We will call these sets
partition elements of the first kind.

e On [2 0 } [0,1]™" ! the partial partition 7, consists of all sets of the following form:
1 .(m—1 (1 (m—1
2n  2¢2 2qm 20nt - g’ 2q,  2¢2 2qm 20nt - gm

X J—
H { 10n4 B 10n* - qn] ’

where j; € Z, (18#] <ji <qn-— [lgﬁw — 1, for ¢ = 2,...,m and the union is taken over

all j(l) € Z, (1%4} < jil) < Gn — (1%4] 1, for ] =1,...,m — 1. We will call these sets
partition elements of the second kind.

By applying the map R;/,, with [ € Z, this partial partition of [ ] [0,1]™" ! is extended
to a partial partition of S' x [0,1]™ ",

Remark 3.2. By construction this sequence of partial partitions converges to the decomposition
into points.

Remark 3.3. Due to our choice of allowed values for the occurring indices j ¢

i ) the partition
elements are positioned in such a way that the requirements in Proposition [3.11] are satisfied.
This will be used in Lemma in order to show that the map ®,, = ¢, 0 R™" o¢! maps each

Qp41
partition element almost uniformly in the rq,...,r, _1-coordinates.
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3.1.2 Partial partition (,

The partial partition (, consists of all multidimensional intervals of the following form:

(1 .(m—1 (1 .(m—1
L ST L ST S| SR Wit SRR
20, 2¢2 2gm nt-2g 2q, 0 2q2 2q;0 nt - 2qm
i ifm j{mD 1
XN\ ==+t m 4 m o + 8 m o]’
dn dn 16n* - an" - [nq'n] 16n° - qn - [TLQn]
ﬁ—’_—’_jém) j§m+1)_’_1 B 1
an g 16n*-qp - [ng7]  16n® - g7 - [ngg]
7 [ Ji 1 i+l 1
<[] |= + : -
i];i[i |:Qn nt - dn dn nt - dn
where k € Z, ]§” € Z, H—’ﬂ < jgl) < qn — [—W -1, for I = 1,. — 1 as well as ](l) € Z,

[43] < jél) < gn— [&] —1forl =1,...,m as well as j(m+1) € Z 16 - [n-¢7] < j2m+1) <

nt

16n4~[n-qg]716~[n~qu]fl,aswellashEZ, [Z"] <ji < qn— [—Wfl for i =3,.

Remark 3.4. For every n > 3 the partial partition (,, consists of disjoint sets, covers a set of

measure at least 1 — ?, and the sequence ((,), oy converges to the decomposition into points.

Remark 3.5. Due to the allowed values of the indices j( ) each partition element is positioned
such that the conjugation maps act as isometries on it (see the requirements in Propositions

3., and [3.11] 3.).

3.2 The conjugation map g,

Let o € (0,1). As mentioned in the sketch of the proof we aim for a smooth measure-preserving
diffeomorphism g,, which satisfies g, (fn) = Gngs) ( ) as well as g, (@n (f )) = Gnge) ( (fn))
for every I, € nn and is an isometry on the image under ¢,, of any partition element I,, € ¢,,.

Let a,b € Z and € € (0, 16] such that 1 € Z. Moreover, we consider § > 0 such that 3 € Z and
abd ¢ 7, We denote [0,1]° by A and [¢,1 —¢]” by A (e).

Lemma 3.6. For every € € —6] there exists a smooth measure-preserving diffeomorphism

g 1 (0,1 = {(x+e-y,y) : x,y€[0,1]} that is the identity on A (4e) and coincides with the
map (@,y) = (z -+ -y.y) on A\ A (o).

Proof. First of all let 4. : R? — R? be a smooth diffeomorphism satisfying

T, y) = (z,9) on R?\ A (2)
Ve (7,y) {(;—l—é(x—é),é'i‘é(y_é)) on A (4e)

Furthermore, let 7. be a smooth diffeomorphism with the following properties

(x+e-y,y) on (:v—%
Te (JZ, y) = 1
(x,y) on (a? -5
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4e -

T T T T T T
£ 4e 1 & 4e

Figure 1: The action of the map g..

We define g. := ¢! o 7. 0 9. Then the diffeomorphism g. coincides with the identity on A (4e)
and with the map (z,y) — (z + ¢ - y,y) on R\ A (). From this we conclude that det (Dg.) > 0.
Moreover, g. is measure-preserving on U, := (R \ A (g)) U A (4e).

With the aid of “Moser’s trick” we want to construct a diffeomorphism g. which is measure-
preserving on the whole R? and agrees with g. on U,. To do so, we consider the canonical volume
form Qg on R?: Qg = dx Ady; in other words, Q¢ = dw, using the 1-form wy = %(1‘ ~dy —y - dx).
Additionally we introduce the volume form Q; := gQy.

At first we note that g. preserves the 1-form wy on U,: Clearly this holds on A (4¢), where g. is
the identity. On R? \ A (¢) we have Dg. (z,y) = (z + €y, y), and thus we get

(x-dy —y-dx) =wo(z,y).

N =

§ 1
§gwo=wo(w+€~y,y)=5-((w+8-y)dy—y-d($+5~y>)=

Furthermore, we introduce Q' := Q; — Qq. Since the exterior derivative commutes with the pull-
back, it holds that Q' = d (gXwo — wp). In addition we consider the volume form 2 := Q¢ +¢-
and note that ; is non-degenerate for ¢t € [0,1]. Thus, we get a uniquely defined vector field
X; such that Q; (X4, ) = (wo — giwo) (+). Since A is a compact manifold, the non-autonomous
differential equation Zu(t) = X, (u(t)) with initial values in A has a solution defined on R.
Hence, we get a one-parameter family of diffeomorphisms {l/t}te[OJ] on A satisfying v = X; (1),
vy = id.
Referring to [Ber98, Lemma 2.2], it holds that

%Vt Qt = d(l/t (Z (Xt) Qt)) +l/t aﬂt +Z(Xt) th .
Because of d (v; (i (Xt) %)) = vy (d (i (Xy) %)) and dQ = d (dwo +t - (d (gEwo) — dwp)) = 0 we
compute:

EV:Qt = V: (d (Z (Xt) Qt)) + Vy (EQt> =1 d (Qt (Xt7 )) + Vy Q/

= vid(wo — giwo) + Vi = v (R — D) + 17 (1 — Q) =0.

Consequently v{Q; = v§Qy = Qo (using vy = id in the last step). As we have seen, it holds that
J*wo = wo on U.. Therefore, on U, it holds that Q; (X¢,-) = 0. Since §; is non-degenerate, we
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conclude that X; = 0 on U, and hence v; = vy = id on U. N A. Now we can extend v; smoothly
to R? as the identity.
Denote g. := g-ovy. Because of v; = id on U,, the map g. coincides with g. on U, as announced.
Furthermore we have

92 = (ge o v1)" Qo = 17 (g2 ) = vy = Qo.

Using the transformation formula we compute for an arbitrary measurable set A C R?:
plo- ) = [ 0= [ jdet(Dg] -0
< (A) A

We know det (Dvq) > 0 (because vy = id and all the maps v, are diffeomorphisms) as well as
det (Dg.) > 0, and thus |det (Dg.)| = det (Dg.). Since g*Qy = (det (Dg.)) - Qo (compare with
[HK95, proposition 5.1.3.]) we finally conclude:

plo- () = [

”mwwymzégmzém:mm.

Consequently g, is a measure-preserving diffeomorphism on R? satisfying the desired properties.
O

Let g, : S* x [0,1]™" — S' x [0,1]™ " be the smooth measure-preserving diffeomorphism
9o (0,71, ey rm—1) = (0 + b 71,71, e 7yy—1) and denote [0, 2] x [0, =] % [5,1 — 6] by Agpcs-
Using the map Dgp. : R™ = R™, (0,71,...;rn—1) = (a-0,%% 71, rg, .., rp_1) and g. from
Lemma, we define the measure-preserving diffeomorphism g, pe5 @ Dapes — Gb (Dabes)
by setting gqp.c6 = D~} o (ge,idgm-2) o Dy ype. Using the fact that “'?b"s € Z we extend it

a,b,e
to a smooth diffeomorphism gap.s : [0, 1] x [6,1 — 8" = g ([0, 1% [6,1- 6]m_1) by the
description:

9 9

€
Jabe,8 (9,7‘1 + 1 — 19, ...,rm_l) = (l 2
b-a

a mv 6) + Ga,b,e,6 (9, T1yeey r’m—l)

for r; € [O, ﬁ] and some [ € Z satisfying @ <I< b'?a - @ — 1. Since this map coincides
with the map g in a neighbourhood of the boundary we can extend it to a map gqp.c6 : [O, %] X
0,1™" = g ([o, 11 x o, 1]’”—1) by setting it equal to g, on [0, 1] x ([o, Y™\ 0.1 — 5]“‘1).

We summarize the properties of this map as follows:
Lemma 3.7. The constructed map gape,s : [O 1] x [0, l]m_1 — G ([O, %] x [0, 1]7”_1) satisfies

’a

1. For any set V C [0,%] x (6,1 — 0™ " with (£, 1=¢] C m(V) and {%,%} -

7y (V) C [%7 (l;fi)e} we have gop...5(V) = Go(V). mg and m,, denote the projection to the
particular coordinate.

2. Onany setV C [0,2]x[6,1 — 8™ with me(V) C [4, =42 gnd 7, (V) C [M,M

4e
a’ a b-a b-a
e

the map gape,s acts as the translation by (l e 0).

)

3. Gapes coincides with G, on [0, 1] x ([O, 0™\ [6,1 - 5]m71).

a

}
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N

Figure 2: The action of the map gqp.c-

We initially construct the smooth measure-preserving diffeomorphism g,, on the fundamental
sector:

gn = nggy[n‘QZ],ﬁyﬁ'
Since g,, coincides with the map gj,.¢-] in a neighbourhood of the boundary, we can extend it to

a smooth measure-preserving diffeomorphism on St x [0, 1]™~ ! using the description g, o R L=
R L Ogn for | € Z. Furthermore, we note that the subsequent constructions are done in such a

way that 260n* divides ¢, (see Lemma and so the assumption GTM = “4b € 7 is satisfied.
Indeed, this map g, satisfies the following useful properties:

Proposition 3.8. The constructed map g, satisfies:

1. For any set V C S x [321714, 1— 321714]7”_1 with

|:l1+# Lh+1-

1
= l 1+1
o, quw]cﬁo(mc[ L h ]

2q77 2q
bitgr  b+l-ge ]cw (V)c[ l bt
16n* - g - [ngg]’ 16n* - g - [ngg] " 16n - g - [ngg]’ 16n* - ¢ - [ngg]

and [
where ly,ly € Z, we have g (V) = Gngs) (V).
2. For every element fn € ny, we have g, (fn) = g[nqg] (fn)
3. On any set V C S' X [g52,1 — 32—1”;]7”_1 with

ll + 2n4 ll + ]-
2qm 2qm

l2 + 277,4 12 + 1-— 2n4

iy V C )
o) T6nt - g7 - [nag)’ 1607 - g7 - [nag]

; W] and m,. (V) C [

where l1,lo € Z, the map g, acts as an isometry.
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The first property will be used in Lemmato show that g, (<I>n (fn)) = Jlnqz) (<I>n (fn)>
for every I, € M- The third one will guarantee in Lemma that g, acts as an isometry on
bn ([n) for every I, € (,.

Proof. The first property is an immediate consequence of Lemma [3.7] 1., since we have g, =
Joqm [n-q7], 5,1, On the domain under consideration. This definition of g,, gives us also the
n? nlgnd’32n

third property due to Lemma [3.7] 2.
In order to prove the second part we initially consider a partition element I, € Np, ON [0, ﬁ} X

1 on it. In the ri-coordinate

[0,1]™"" and want to examine the effect of g, = 92q [n-a5), 2 g

we use the fact that there is u; € Z such that

1 e 1

%niq, ' b-a ' 8nt. [ngg) - 2q’

where we use the fact that 260n* divides g, (Lemma. Also, with respect to the #-coordinate

there is uy € Z such that
1 1 1

Santg, e " agp

This implies the second property with the aid of Lemma [3.7] 1. Next, we want to prove the
statement for partition elements fn € 7N On {ﬁu%] x [0, 1]m71. With regard to the 7;-
coordinate there is ug € Z such that

1 € 1
—_— = Uy — = Uy ———————————
10n4q, *ba 2" 8nt - [ngg] - 2¢7
since 260n* divides g,,. Considering the f-coordinate we exploit W < £ = W' Then
the claim follows from Lemma[3.7] 1. ' O

3.3 The conjugation map ¢,

The conjugation map ¢, will be composed of maps @75,@]»,”75752, where j € {2,...,m}, ,e2 €
(0,4) and A, u € N. Moreover, § € (0,1) such that + € N and } divides p. In the construction
of the map ¢x . 1,5, We will use maps Cy causing a stretch by A in the first coordinate and
so-called “quasi-rotations” . 1 ; constructed in Lemma[3.9 with the aid of “Moser’s trick” similar
to [ES05), Lemma 5.3.]. With these maps we will also define a family of “inner rotations” ¥, 5.1 .,
in order to get that éxyg,lyj’u,gﬁsg acts as an isometry on specific cuboids (see Proposition
3.): A map of the form C, ' o ¢, ;0 Cy as in [FS05] and [FSW07] would cause an expansion
by A in one coordinate and by A~! in another, so far away from being an isometry. The “inner
rotations” will cause that C'y and C’/\_1 act on the same coordinate on the elements I,, € ¢,.

Lemma 3.9. For every ¢ € (0, i) and every i,j € {1,...,m} there exists a smooth measure-

preserving diffeomorphism ¢, ; ; on R™ which is the rotation in the x; — xj-plane by 7/2 about

the point (%, cny %) € R™ on [2¢,1 — 2¢]™ and coincides with the identity outside of [¢,1 — ]™".

Proof. The proof is similar to the proof of Lemma (See also [GKOO, section 4.6] for a
geometrical argument of the proof.) O

Furthermore, for A € N we define the maps Cy (z1,22,...,2m) = (A-21,29,...,2:,) and
Dy (z1,.co,xm) = (A1, A Zo, oy A Ty ). Let p € N, % € N and assume % divides p. We
construct a diffeomorphism v, 5 jc, in the following way:
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e Consider [0,1—2-6]™: Since 3 divides y, we can divide [0,1 —2-4]™ into cubes of side
length i

e Under the map D, any of these cubes of the form H:":l {%7 ZTH} with /; € N is mapped
onto [T~ [l;,1; +1].

e On [0,1]™ we will use the diffeomorphism 905_211 ; constructed in Lemma@ . Since this is
the identity outside of A (e2), we can extend it to a diffeomorphism ¢_ , ; on R™ using

the instruction @;{i’j (x1 + k1,0 + Koy ooy Ty + ki) = (K1, oo k) + (pe_zl,i)j (T1,Z2y ooy Tin)s
where k; € Z and z; € [0,1].

e Now we define the smooth measure-preserving diffeomorphism
Upsiges =Dy 0@l oDy o 0,1 =26 —[0,1—20]"
e With this we define

Vusiges (L1500 Tm) =

{ ([&u,mﬂ (21— 8, eory T — 5)} e [qzﬂ,m,gz (21— 8, orry T — 5)} + 5) on [6,1— o™

(T1, ey Tin) otherwise

m

This is a smooth map because 1/:“,57104752 is the identity in a neighbourhood of the boundary
by the construction.

Remark 3.10. For every set W = H:’;l [% + 7, ll%l - rz} where [; € Z and r; € R satisfies
|ri - p] < o we have ¢, 5 ., (W) =W.

Using these maps we build the following smooth measure-preserving diffeomorphism:

~ 1 m—
(z))\,s,i,j,u,zi,sz : |:07 ] X [07 ” ' — |:0

1 . )
A ]X[O’”m s Paesigder = O 0Vpusijes ©Peini ©Cx

D)
Afterwards, ¢xc.i sz, i5 extended to a diffeomorphism on S' x [0,1]™ " by the description
Oxerividies (T1 + %,xg, e T) = (%,O, s 0) + Orcijiudes (T1, T2, ..., ). This map satisfies
the following properties:

Proposition 3.11. Let j € {2,...,m}, e,e2 € (0,7), 26 < €2, and A\, € N. Moreover, let

0 € (0,1) such that 2e5 < 4, % € N and % divides p. Then there is a smooth measure-preserving

1 -equivariant diffeomorphism Oretjpses s ST X [0,1]m71 — S x [0,1]™! such that

1. Letts € Z, [2ep] < ts < p—[2eu] =1, for s =1,....m and |us| < g2 for s = 0,...,m.
Then we have

(571 t1 + ug l_t1+U1 Xﬁ ts +us ts+1—us
e Lggndiee VY peolop
s=2

i—1
[thruj tj+1u]} X]H {terus ts+1us]

AT A ot R p

« |:t1+uljl_t1+’u,0:| « H

K H s=j41

{ts—i—us ts—l—l—us]
wo I



Explicit constructions 16

2. Letts € Z, [6u] <ts <pu—[éu]—1 fors=1,..m and V be contained in

|:t1+2€2 t1+12€2:| i l:ti+2€2 t7;+12€2:|
0 |

A At el R I

When applying QNS)\,E,M-,H,(;,EZ on 'V the occurring maps ¢, 1,; and <pg2171_’j act as the respective
rotations.

3. Oxe 1,4 u,s,e0 GCS as an isometry on each cuboid

I:ﬁ1+252 t1+1—252:| Xﬁ |:t3+252 t5+1—2€2:|
M7 A e R I ’

where ts € Z, [2ep] <ts < p—[2eu]—1, fors=1,...,m.

For convenience we will use the notation gi;g\j L = $A7 1 _1 1. With this we define

,9,0
Gond D 10,3 22,

the diffeomorphism ¢,, on the fundamental sector:

e On [07 i} X [0,1]™ we put

—gm g gm=D 32
P = P2q,0,0 © Pagz g, O+ O Pygm—

n »dn

e On [2.;,#} x [0,1]™ " we put

d)n =id

This is a smooth map because ¢,, coincides with the identity in a neighbourhood of the different

sections.

Now we extend ¢,, to a diffeomorphism on S* x [0, 1]m_1 using the description ¢,0oR1 = R o¢y,.
an an

EREREE ¢, RERERE
x|/~ o~ P <[P K [P K

Figure 3: The map 1, has the useful property of rotating several small cuboids individually
while being the identity outside of a neighborhood of them.

We summarize the useful properties of the constructed map ¢,, in the subsequent Proposition.
Proposition 3.12. The smooth measure-preserving diffeomorphism ¢,, satisfies:

1. By applying ¢, on any partition element I, € N of the form

1 1 1 s 1 ji+1 1
52n4 - Qn’ 2qp 52n4 - dn dn 26n* - (]n7 dn 26n4 - dn
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@
@

O—l
P l< = <]

ORE Y EeEE ¥ RER
G < id~ =~ < r<FK

Figure 4: The map ¢, is constructed as concatenation of a stretch map C, a rotation ¢, the map
1, mentioned before, and C ! (the inverse of the stretch map). The map thus constructed has
the very useful property of stretching a cuboid (illustrated here by the underlying grey rectangle)
in one direction (similar to what a hyperbolic map would do), yet it is almost an isometry on all
of the smaller cuboids (illustrated here by black squares with letters). In particular, a partition
element I € 7 (the leftmost grey rectangle) is mapped to a set that has size almost 1 in one of
its coordinates.

we get

+ . —_—, _
2¢2  2q3 2gm - B52nt-qm’ 22 2¢3 2qm 52nt - g

|:jm, jm—l . j2 1 ]m + jm—l ]2+1 1

y L - L m—1
26n’ 26n4 '

2. Let j; € Z, [{325] < jis < g — [12:] = 1, fori = 2,..om and j\V € Z, [122:] < iV <

dn — {1824W —1, forl=1,....,m—1 and up,u; > 7111714. Then ¢, maps
(1 .(m—1 (1 .(m—1
N I | SN/ ot SN
2¢2 2q7  2q7 2q3 2q;7 2q;7
1 [ i 1 Ji+1 1 }
X — + ) - )
g |:QH 10n* - dn dn 10n* - dn
to
1 ]m j3 .j2 +1 1
92 T m—1 o m T gm T
RS S N N
24, 2q2 200" 27 20mt-gqp "
. m j£m+17i) N 1 j£m+17i) +1 - 1
i—o dn 10n* - Qn’ dn 10n* - dn

3. ¢, acts as an isometry on every I, € ¢,.

Proof. All these properties are immediate consequences of the corresponding statements in
Proposition the choice of parameters in the definition of ¢,, and the positions of the partition
elements. 0
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The first two properties will enable us to prove in Lemma that ®,, = ¢, o R™ o ¢,

Qn+1
maps partition elements I,, € 7, almost uniformly in the 71, ..., 7, _1-coordinates. With the aid
of the third statement we will show in Lemma that h,, acts as an isometry on any element

of ¢,.

4 (v, e¢)-distribution
We introduce the central notion for the proof of the weak mixing-property in section [6}

Definition 4.1. Let ® : M — M be a diffeomorphism and J C [O,l]m_l. We say that an
element I of a partial partition is (v, €)-distributed on J under ® if the following properties are
satisfied:

o P (f) is contained in a set of the form [¢, ¢ + 7] x [0,1]™ " for some ¢ € S'.

o T (<I> (f)) D J. Here 77 denotes the projection on the (r1,...,7,-1)-coordinates (i.e., the
last m — 1 coordinates; the first one is the 6-coordinate).

e For every (m — 1)-dimensional interval .J C .J it holds:

(1ot (@ 50) s (3)] ()

u (1) Ty | = ()

where ;(m=1) is the Lebesgue measure on [0,1]"".

Remark 4.2. Analogous to [FS05] we will call the third property “almost uniform distribution”
of I in the ry, .., 7, _1-coordinates. In the following we will often write it in the form

(1080 (059)) 7 01 (1) 0 (3) <o (1) im0 ().

In the next step we define the sequence of natural numbers (1m,,),,cy:

. . 1 k 260 - (n +1)%
mnzmlﬂ{mSQn-s—l : meN, inf m - Pl + = S(”)}
kez n+1 2:qn  Gn gn+1
. 1 260 - 1)%.
:min{mgqn+1 . meN, inf|m. I Petl 24 gl < (n+1) qn}
ez In+1 2 dn+1
. 4- .
Lemma 4.3. The set {m <gny1 : meN, infkez‘m. q%fﬁjl _ % +k’ < W} is

nonempty for every n € N, i.e., m,, exists.

n

Proof. In Lemmawe will construct the sequence a,, = ’;" in such a way that ¢, = 260n*- g,

and p,, = 260n*-p,, with p,, §, relatively prime. Therefore, the set {j . q”(']'p%“ =1, .., an}
contains Int1 different equally distributed points on S'. Hence there are at least

260(n+1)%-gcd(qn,ant1)
ey, different such points and so for every = € S' there is a j € {1,...,gn+1} such that

: . . 260(n+1)*-q, . ..
infrez ’z —J- 7‘17;:;?1 + k‘ < %. In particular, this is true for z = % O
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Remark 4.4. We define

1 1
ap = (mn a2 ) mod —
qn+1 2'Qn dn

4
By the above construction of m,, it holds that |a,| < 260+ I Lemma we will see that

dn+1

it is possible to choose ¢,11 > 80260 - (n + 1)4 -n* - ¢™. Thus, we get:
an] < g
Un| >~
80 -n* . qm

By this choice of the number m,, R{'" = causes a translation to the different domain of
definition of the map ¢,,. In order to deal with partition elements of the second kind we introduce

the so-called “good set” J,,  [0,1]™ " in the coordinates:

t; +1 1
) J—UH[ + o —1On4,qn],

an

where the union is taken over all ¢t; € Z, |—10 J <t < qgn— {10714] 1, fori = 1,. — 1.

Altogether, the following property is satlsﬁed by our constructions:

Lemma 4.5. We consider the map ®,, := ¢, 0o R}'"

ol o ¢, 1 with the conjugating maps ¢, defined
in section[T.3

1. Under ®,, the elements of the partition n, of the first kind are (# f) distributed on

2qm ' n
J =112 [zgm 1 — o]

2. The elements of the partition n, of the second kind are (2(1% l) distributed on J, under
D,,.

Proof. We consider a partition element fml on [O

1 } [0,1]™". Then we compute ¢ (An 1)
with the aid of Proposition [3.12] 1.:

7 2qn

m

. . _—_— . . . .
[]+] LRI S S L RN . N - s }xH{l—].
=2

2¢2  2¢3 2q - 52nt g 2¢2 0 2¢3 2g 52nt - g 26nt’ " 26n*

By our choice of the number m,, the subsequent application of Ry’ yields a translation by

ﬁ modulo 7 except for the “error term” a,, introduced in Remark In particular, Rj'" im0

ot (Inyl) is positioned in another domain of definition of the map ¢,,, namely we have ¢,, = id.

Hence, @, (fn1> is equal to

1 Jm | Jm—1 J2 1 1 Jm |, Jm—1 ja+1 1
[2% 22 " 23 T agm Thamdogm g, a2 T 2gd 2q7 5and g

LA 1
L
. 1;[2 [26714’ 26n4}

Thus, such a set &, ( ) has a f-width of at most 5 P Moreover, we see 77 | Dy, <fn 1)) =

)

[T, [55:7. 1 — 5552) = J. With the notation Ay =7y (<I> (fn,1)) we have ®,, ( ) ApxJ

+ an}

26n47
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and so for every (m — 1)-dimensional interval .J C J:

H (fn1 not (Sl X j)) B J (cI)n (fnl) NSt x j) - S\(A.g) - pm=1) (j) B pm=1) (j)
u(fn,l) - u(cpn (fnyl)) T XN(Ag) - pmD(J)  pmmD ()

because ®,, is measure-preserving. Hence, we can choose e = 0 in the definition of a (v, e€)-
distribution.

In order to prove the second statement, we consider a partition element fn 2 on [ﬁ, qi} X

[0,1]™". Since ¢, ! acts as the identity on it and R{ | yields a translation by 5 — modulo q—
except for the “error term” a,, we can compute the image of Img under Rgm o gb; :
(1) <(m—1) (1) ((m—1)
i’ 0 ! Z) M| St S
Ul?qﬁ* T agp Taont gy Tmag T Tagr T 2ot gy T
m . .
i 1 i+ 1 1
x H s 4 ' = - 1
s Lan 10n*-q," qn 10n? - ¢,
Applying ¢,, = ¢2qmqn (bé”; ql ¢;2)m s yields due to Proposition|3.12} 2., and the bounds
on a, in Remark [4.4}
1 Jm J3 J2+1 1 1 Jm J2 1
U [an 2q¢2 2qm—1 2qm + 20nt - g + Gn, 2q,  2¢2 2qm  20nt - g + n
y ﬁ j£m+1—i) N 1 jgm-‘rl—i) +1 ~ 1
i=2 qn 10n* - g’ dn 10n* - g

Obviously, 77 <<I>n (fn1)> = J,. By the same calculations as above we can choose ¢ = 0 in the
definition of a (v, €)-distribution . O

Furthermore, we show the next property concerning the conjugating map g, constructed in

section
Lemma 4.6. For every fn € n, we have: g, ((I>n (fn)> = g[nqﬂ ((IDn (fn)>

Proof. In the proof of the precedent Lemma we computed P, (fm;c) for partition elements

IAn’k of both kinds. Now we have to examine the effect of g, = Goqm [n-q7], <Ly, L, On it.
n? ni’8nd’32n
Since 260n* divides g, by Lemma there is u; € Z such that

1 € 1
- — = —
26n4 ""boa Y8t [ngg] - 2¢
By the bound on a,, we have
+a << !
52ntqm =% T 160 qm

mnag) sir sy = Jlnag] according

and so the boundary of ®,, ( ) lies in the domain where Yoqn
to Proposition 3.8] 1.
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Similarly, we examine the action of g, on ¢, (fn2> Since 260n* divides g, by Lemma there

is ug € 7Z such that
1 € 1

—_— = Uy = Uy
10n? - g, >boa > 8nt-[ngg] - 2¢7

By the bound on a,, the boundary of ®,, fmg) lies in the domain where g, (n-qg),<p,—r
n ni?8nd?32n

Jnqg) according to Proposition 1, once again.
Additionally we observe

@ 1o ()2 (- 5)

5 Convergence of (f,), .y in Diff>* (M)

In the following we show that the sequence of constructed measure-preserving smooth diffeo-
morphisms f, = H, o Rq, ., o H ! converges. For this purpose, we need a couple of results
concerning the conjugation maps.

5.1 Properties of the conjugation maps ¢, and H,

In order to find estimates on the norms ||| H,|||, we will need the next technical result which is
an application of the chain rule:

Lemma 5.1. Let ¢ := NS\ZL’)I% o...oég\?lw, j€{1,...,m} and k € N. For any multi-index @ with
|@| = k the partial derivative Dy [¢]; consists of a sum of products of at most (m —1) - k terms
of the form

2(0) ~(i-1) ~(2)
DI; ([qbknm}l) °© ¢)>\i—luufi—1 ©...0 ¢)\2’#2’
where l € {1,...,m}, i € {2,...,m} and b is a multi-index with ’5‘ <k.

In the same way we obtain a similar statement holding for the inverses:

- -1 - -1
Lemma 5.2. Let ¢ := <¢(2) ) 0..0 ( (m) ) , 7 €{1,...,m} and k € N. For any

)\2,”2 /\nlvum
multi-index @ with |d| = k the partial derivative Dg [1]; consists of a sum of products of at most
(m —1) - k terms of the following form

Dl; ([(~E\ii)’”i)1] l) ° (~§\Z:1),Hz‘+1)71 ©.-0 (*g\r:)’um)fl )

where l € {1,...,m}, i € {2,...,m} and b is a multi-index with ’5‘ <k.

Remark 5.3. In the proof of the following lemmas we will use the formula of Faa di Bruno
in several variables. It can be found in the paper “A multivariate Faa di Bruno formula with
applications” (JCS96]) for example.

For this we introduce an ordering on N&: For multiindices i = (y1, ..., pta) and 7 = (v1, ..., v4) in
N¢ we will write ji < 7, if one of the following properties is satisfied:

o o - d
L[| <[], where [fi] = 25y pi-
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2. || = 7] and py < vy.
3. || =17, pi =v; for 1 <i <k and pgy1 < Vg1 for some 1 < k < d.

In other words, we compare by order and then lexicographically. Additionally we will use these
notations:

e For v = (vy,...,v4) € Nd:
d
i =]]w!
=1

e For v = (vy,...,vq) € Nd and 2 = (21, ..., z4) € R%:
d
>U . Vi
IE
i=1

Then we get for the composition h(zy,...,zq) == f (¢ (21,....,2q),.... g™ (@1, ..., zq4)) with
sufficiently differentiable functions f : R — R, ¢(? : R — R and a multi-index 7 € N¢ with

|7] = n:
kj
S 1y Ped]
i Y gy XAl
s=1 P j=

o N
XeNg with 1<|X|<n «(7.X) g (lj!>| |

Here [Df_g} denotes (ijg(l),...,ijg(m)> and

—

ki| >0, €N§,0 <1y < .. <[,Y ki=Xand

{(kkll) e Np,

With the aid of these technical results we can prove an estimate on the norms of the map ¢,:

Lemma 5.4. For every k € N it holds that

2
lnllle < C- g,

where C is a constant depending on m, k and n, but is independent of q,.

Proof. First of all we consider the map ¢, = dxc,ijuses = Oy O Vpsijes © Pesivi © Ca
introduced in subsection 3.3}

QE}MM (xl, ,xm) =

1
<)\ [V 0 @]y (A1, @2,y @), [Yp © @ely (AZ1, Toy oy T ) 5 ooy [0 0 0], (A1, 202, ...,zm)> .

Let k € N. We compute for a multi-index @ with 0 < |G| < k: HDd [J)M] 1H0 < AL o e[|

oud for 7 € (2o D [a,] | - e o el
Therefore, we examine the map ¢,,. For any multi-index @ with 0 < |@| < k and r € {1, ...,m} we
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obtain: || Da [¥,], ||, < #* - I[|¢e, |l = Crep-p" " and analogously HDa W;l]THO < Gyt

Hence: [[liy][[x < C - L.
In the next step we use the formula of Faa di Bruno mentioned in remark [5.3] With it we
compute for any multi-index 7 with || = k:

|po [wuowa™] || = |0o ez 0wl
k s {Dﬁu}—lfj
_ S L 7
- Z DX[“OEl]TZ Z g - - |E7|
Seng 1<% <k = (Bl (78) =R (11)
k 1 (s [),)
_ . = j 1 t
S DS S i
XeNg 1< |X|<k s=1 p.(7.X) Jj=1 k;! (l]l)
0

c Y Iy S o P

XeNg 1<[X[<k =Uop(mX) I ij-(fj!)

< > s[> > A Il ——

RN
XeNg with 1<|X|<k s=Lp. (%) =1 Kyl (lj!)‘ d
1 |Fs
s [l
- > 1Dsfe LMl > >0 7 PN
XeNg with 1<|X|<k s=b p(7,X)  I=LE,!. (lj!)

]2]'|

As seen above: |||1/J;1H\IZJ|| <C- MWJHM Hereby: [];_, |||w;1|”|f]| < ¢ - pZi=lGHR] where

C is independent of 1. By definition of the set ps (17, X) we have > 7, k;| - I; = 7. Hence:

== [3 LI 9 SIS wlL 1RO oA RS AR
i= t = i= i

m

3(x

t=1 \i=1

Rl -l k

)

This shows [[;_, |||wﬁl|||}?|| < C-p¥ and finally HDJ {(w# o 805)71i| H < C-p*. Analogously we
J r10
compute || Dy [, 0 @], |, < C-[[[9ulllx < C-p*~". Altogether, we obtain ||y, o eIl < C-p*.
<C- Nkl In
0

Hereby, we estimate HDa {&A,“} H < C- M. uF and analogously HDa [J);H
rilo e

conclusion this yields |||y ||| < C - uF - AF.
(2)

S 106 Amax = max {2, ..., \;p } as well as

In the next step we consider ¢ = &g\’fn)“m 0..0¢

[imax = max {fiz, .., ftm }. Inductively we will show [||¢|[|x < C - A DF L DF for every
k € N, where C' is a constant independent of \; and ;.
Start: k=1

Let [ € {1,...,m} be arbitrary. By Lemma a partial derivative of [¢], of first order consists of
a sum of products of at most m — 1 first order partial derivatives of functions (;3(;7,)_ by Therewith,
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we obtain using |||(5E\jj)#]||\1 < O Amax - Hmax the estimate || D; [¢],[|, < C1- Aliad - piriay for every
i €{1,...,m}, where C is a constant independent of A and u.

- -1 - -1
With the aid of Lemmawe obtain the same statement for ¢—! = (¢(2) ) o...o( (m) ) .

A2, 2 Amsbm
Hence, we conclude: |[|¢]|]; < Cy - X7t st
Assumption: The claim is true for & € N.

Induction step k — k + 1:

In the proof of Lemma [5.1] one observes that at the transition & — k + 1 in the product of

at most (m — 1) - k terms of the form Djy ({~E\Z)M} ) o Yv‘”;  o0..o0 &&22)”2 one is replaced
i | i—15MHi—1 5

by a product of a term (Dle; [~(i) ]l> o Y 0..0 g?s‘fz{m with j € {1,...,m} and at

Aishbi Ai—15Mi—1
et < C - ARELL R ang

most m — 2 partial derivatives of first order. Because of |||é5\1) s et

|||<;~SE\jJ)HJ [ll1 < C+ Amax - fmax the Apax-exponent as well as the pnax-exponent increase by at most
1+(m—-2)-1=m-1.
In the same spirit one uses the proof of Lemma, to show that also in case of ¢! the Apax-
exponent as well as the p,,x-exponent increase by at most m — 1.
Using the assumption we conclude

H|¢|Hk+1 < Cv . )\k'(m—l)—&-m—l k-(m—1)+m—1 _ Cv . )\(k+1)~(m—1) . u(k+1)~(m—1).

max " Mmax max max

So the proof by induction is completed.

In the setting of our explicit construction of the map ¢, in section we have 1 = ﬁ,
€9 = ﬁ, Amax = 2q,’{“1 and fmax = gn. Thus:
= _1\(m—=1)k —1)-
[6allle < C (m, k,n) - (2g )"0 gfm =D
S C <m7 k’,’fl) . q;flz'k,
where C' (m, k,n) is a constant independent of ¢,,. O

In the next step we consider the map h,, = g, © ¢,, where g, is constructed in section
Lemma 5.5. For every k € N it holds:

_ 2
lhallli < C - gz ™",

where C' is a constant depending on m, k and n, but is independent of ¢, .
Proof. Outside of S' x [6,1 —48]™" ", ie. g, = inqg]> We have:
B (15 0oy Tin) = G © D (X150 Tiy)
= ([¢n ('Tla "'axm)]l + [n : QZ] " [¢n (xla --'7x7n)]2 ’ [¢n (xla ...,me)]z PREES) [¢n (.1317 7xm)]m)
and
h’;l (Ilv 71'771) = Q/);l © grjl (Ilv ,l‘m)
= ([qﬁ;l (x1 —[n-q7] - w2, 29, ..., mm)]l s ooy [ (1 — [0+ @] - T2, X2, ...,xm)]m) .
Since 0 < 1 we can estimate:

—~ . 2. —~ . 2.
Al <2 [n-a7]" - [[1gnllle < C (m, k) - g7 * - g * < O (m, kn) - g2

n n
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with a constant C' (m, k,n) independent of g,,.
In the other case we have

Gn © ¢n (xla ooy -rTn) = ([ga,b,s ([¢n]1 > [¢n}2)]1 ) [ga,b,a ([¢7z]1 ) [¢n]2)]2 > [¢vz]3 y e [¢n]m) .

We will use the formula of Faid di Bruno as above for any multi-index 7 with |/| = k and
red{l,..,m}:

HDJ [hn]r”() = HDD' [ga,b,a o (bn]rHO
kj
el

Z HDX [ga,b,e}THO‘Z Z 1:[

XeNg with 1<|X|<k s=hpe(9.5) ( )| i

IA

By Lemma we have |||q5n||| E<Cogl where C'is a constant independent of ¢,,. As above
k; ¢ k;
we show []1_ gl < 6. g{Z5=h || Dm

Gl =
of g,.
Furthermore, we examine the map gqp.c,6 = D;}) . 090Dy for a,b € Z and obtain

= (g™ where C is a constant independent

k
b-a
Maselle < (22) - llollh = Cux -
By our constructions in section we have b = [n-q¢7] < n-q¢j, a = 2¢7" and € = ghg.
Hence: |||gnl|lx < koot g™ < Cuy g mFD. Finally, we conclude: ||Dy[hy], ||, <

C.qﬁ'(m-i-l) qkm <O q2km

In the next step we consider h,! = ¢ 1o g;})’a. For r € {1,...,m} and any multi-index ¥ with
|| = k we obtain using the formula of Fad di Bruno again:

1Dz (], ]Iy = 105 [én" 0 971, ]

) 5|
. s |||gn||||l |
< X sl - X Il ——

XeNg with 1<|X|<k s=lop(2.X) =Lkl (lj!)

As above we show H;:1 H\gn\HI J|| <C-qr (m+1) , where C'is a constant independent of ¢,. Since
2

lénllls < C-qp™ we get

HD’7 [h;,l]r” < C q S(m+1) | qk:m < C q2km
where C' is a constant independent of ¢,.
Thus, we finally obtain |||h,|||x < C(n, k,m) - ¢>™ . O

Finally, we are able to prove an estimate on the norms of the map H,:
Lemma 5.6. For every k € N we get:
[[Halllx < C - 2™,

where C' is a constant depending solely on m, k, n and H,_1. Since H,_1 is independent of q,
in particular, the same is true for C.
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Proof. Let k € N, r € {1,...,m} and 7 € NJ* be a multi-index with || = k. As above we
estimate:

1D5 [Hl,llg = [|1D5 [Hn—1 © hn]

rllo

> |1 D5 [Hna], ||, - Z LR

XeNg with 1<|X|<k

o
|F; |

S SN
Rt ()

, Where C is a constant independent

IN

3
)
—~
N
>
N
<

2.m2k
n

and compute using Lemma H;Zl |th|||{llf’|| <C.q
J

of g,. Since H, _1 is independent of ¢, we conclude:

<C. q2~m2-k

n 9

1Dy [Hn], Il

where C' is a constant independent of ¢,.
In the same way we prove an analogous estimate of HD; [H;l]THO and verify the claim. O

In particular, we see that this norm can be estimated by a power of ¢,.

5.2 Proof of convergence

For the proof of the convergence of the sequence (f,),y in the Diff> (M)-topology the next
result, that can be found in [FSW07, Lemma 4], is very useful.

Lemma 5.7. Let k € Ny and h be a C*-diffeomorphism on M. Then we get for every o, f € R:
di (hoRooh™ ' hoRgoh™') < Cy - [||b||[{1] - |la— A,
where the constant Cy depends solely on k and m. In particular Cy = 1.

In the following Lemma we show that under some assumptions on the sequence (), cy the
sequence (fy ),y converges to f € A, (M) in the Diff>* (M)-topology. Afterwards, we will show
that we can fulfil these conditions (see Lemma [5.9).

Lemma 5.8 (Criterion for Diff>*-Convergence). Let ¢ > 0 be arbitrary and (k)

increasing sequence of natural numbers satisfying > -, 1%
- n

in our constructions the following conditions are fulfilled:

nen e a strictly
< e. Furthermore, we assume that

1

Ent1
2-ky-Cy, |||Hn|”kni1

o —ai] <e and |a—a,| < for every n € N,

where Cy,, are the constants from Lemma [5.7

1. Then the sequence of diffeomorphisms f, = Hy, o R, ., © H' converges in the Diff*(M)-
topology to a measure-preserving smooth diffeomorphism f, for which d (f,Ra) < 3 - ¢
holds.

2. Also the sequence of diffeomorphisms f, = H, o Ry 0 H;'e A, (M) converges to f in the
Diff>°(M)-topology. Hence f € A, (M).
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Proof. 1. According to our construction it holds h, o R,, = Ra,, © h, and hence

fnflenfloR oH ! H, 10R, /Oh Ohilo_H'fl1

n—1=—

= n_lohnoRanohn oH_lfH oR,, oH, L

Applying Lemma [5.7] we obtain for every k,n € N:

(3)
dk (fnvfnfl) = dk (Hn o Ran_H oHrjlaHn oRan ngl) S Ck : |||Hnm£ii . ‘anJrl - an|

In section we assumed |a — | 20 monotonically. Using the triangle inequality
we obtain |41 — an| < |apt1 —al + |a— a,| < 2+ |a — a,| and therefore equation
becomes:

dic (o, fa=1) < Ci - [ Hall[iT1 - 2 o — o -

By the assumptions of this Lemma, it follows for every k < k,:

1 1
4) di (fr, froe1) < dp., (frs foo1) < C, H,||[kn+L. < =
( ) k?(f f 1) kn (f f 1) kn * HI |||k +1° anCk; |||H H|]]z nt+1l — k

In the next step we show that for arbitrary k € N (f,,),, oy is a Cauchy sequence in Diff* (M),
ie. limy m—yoo di (fns fm) = 0. For this purpose, we calculate:

(5) Mim di (fa, f) < Jim Y di (fi i) = ) di (fi fimr) -
i=m-+1 1=m-+1

We consider the limit process m — oo, i.e. we can assume k < k,, and obtain from
equations and :

o0

lim  dy, (f, fm) < lim Z — =0.

,M—r00 m—00 )

i=m-+1

Since Diff* (M) is complete, the sequence (f,), oy converges consequently in Diff* (M) for
every k € N. Thus, the sequence converges in Diff* (M) by definition.

Furthermore, we estimate:
(6) doc (R, f) = dog (Ras T f1) < doc (Ray Ray) + Zldoo (Fas fn1)

where we used the notation fy = R,,-
By explicit calculations we obtain dy, (Ra, Ra,) = do (Ra, Ray) = |a — ay| for every k € N,
hence

- |Oé—a1‘ 00 1
doc By o) = <la—al- Y = = |a—a].
| 5 ;2’“~(1+dk(RQ,Ral)) o — o gzk la —a]

Additionally it holds:
SN dk (fnafnfl)
doo ny Jn—
nzl o) ;;%(Hdk(fmfn,l))
9] k )
_ - dk (fnafn 1 dk fn7fn 1)
_Z ZQk (1+dk(fn7f” 1 Z 1+dk(fnafn 1)))

n=1 \k=1 =kn,
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As seen above di, (fr, fn-1) < é for every k < k,,. Hereby, it follows further:

> 1 kin 1 > dk(fnvfn—l)
Zd (frs fr—1) Z(Mkz_:gk+ ; 2k (1 +di (fn, fa—1))

kn
Because of Y227, 1 5r =2 =20 5 = (3)

Zdoo(fnafnfl)gzki+zki<2~€.

Hence, using equation @ we obtain the desired estimate do (f, Ry) < 3 - €.

2. We have to show: f,, — f in Diff>> (M).
For it we compute with the aid of Lemma [5.7] for every n € N and k < k,:

dk (fnafn) < dkn (Hn o Ran+1 © Hn_17Hn ORG‘ OHn_l)

En+1 n
< Cr, - Hll[{7 4] - lomsr — af < Cr, - [ Ha|l[f" 11 - lan — @

1 11
< Cr, - 1Halllz = < -

2k Cry HAE Y 20k T

Fix some k € N.

Claim: ¥4 >0 3IN Vo> N: d; (f, fn) <6, ie. fo— fin Diff* (M),

Proof: Let § > 0 be given. Since f,, — f in Diff>* (M) we have f,, — f in Diff* (M) in
particular. Hence, there is ny € N, such that dy (f, fn) < g for every n > n;. Because of
k, — oo we conclude the existence of ny € N, such that 1%,, < g for every n > no, as well
as the existence of ng € N, such that k, > k for every n > n3. Then we obtain for every
n > max {ny,na,n3}:

| >

i (£ F) < i (7 f) i (Furfo) < 5 + i, (i) <

n 1
K,
Hence, the claim is proven.

In the next step we show: lim,, oo doo (fn, f) = 0. For this purpose, we examine:

. B kn, dk (fm]an) > dk (fm'fn)
deo (fmf”) o i ok. (1 + dj, (fmfn>> +k::kn+1 2k . (1 + dj, (fnafn)>
En i o
seywt > wept(s)
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Consequently lim,,_, o, d (fn, fn) = 0. With it we compute:

Jim o (7. 40) = Jim doc (Jim fon Jo) = i Jim o (£ o)

n—oom

= Jm 3 doc(fufin) + Jim (furfn) =0,
1=n-+
As asserted we obtain: lim,, o doo (fn, f) =0.
O

As announced we show that we can satisfy the conditions from Lemma [5.8]in our construc-
tions:

Lemma 5.9. Let (ky),, oy e a strictly increasing sequence of natural numbers with > ﬁ < o0
and Cy,, be the constants from Lemma @ For any Liouvillean number o there exists a sequence
Qp = % of rational numbers with the property that 260n* divides q,,, such that our conjugation

maps H, constructed in section and[3.3 fulfil the following conditions:
1. For every n € N:
1

kn+1°
2 ky - Ckn ’ |||Hn|”kni1

o — an| <

2. For every n € N:
1

ol < G T

3. For everyn € N:

In (gy)
IDH, 1l < —

o 2. o
Proof. In Lemma we saw ||[Hpl|lk,+1 < Crn - g™ * 9 where the constant C, was

independent of ¢,. Thus, we can choose g, > C),, for every n € N. Hence, we obtain:

. 2. -
1 Holll 1 < g™ 0.

Besides ¢, > C,, we keep the mentioned condition ¢, > 80 -260-n*- (n — 1)* - ¢™ ; in mind.
Furthermore, we can demand || DH, ||, < % from ¢, because H,,_; is independent of g,.
Since « is a Liouvillean number, we find a sequence of rational numbers &,, = %, Pn, @n relatively

prime, under the above restrictions (formulated for ¢, ) satisfying:

D |ov — avp—1]|

o — ay| = |a — =

an

<

201y - G+ (260p4) O Ut DT glbsm (1)

Put ¢, :== 260n* - §, and p,, = 260n* - p,,. Then we obtain:

loe — 1]

o — ay| <

. . 2
2+ k- Cp g m2-(kn+1)
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So we have o — a,| =3 0 monotonically. Because of [||H,|[[}" 1] < @™ (kntD” this yields:

1 . .
. Thus, the fi f this L fulfilled.
2 g o O LT us, the first property of this Lemma is fulfilled

Furthermore, we note k, > 1 and Cy, > 1 by Lemma Thus, qn, - ky - Ck, > qn. Moreover,
[Ha|ll1 > |Hall, = 1, because H,, : S* x [0,1]" " — S x [0,1)™ " is a diffeomorphism. Hence,
|||Hn\|\’,z:+1 > |||Hpl||1- Altogether, we conclude 2”“‘1~qn~l~cn-Ckn-|||Hn|||k"Jrl > 2" g ||| Hpl| 11

o — | <

+1 = kn+1 =
and so:
1 1
(7) la —an| < <
T2t gk O - T T 20 [ Hall
i.e. we verified the second property. O

Remark 5.10. Lemma 5.9 shows that the conditions of Lemma[5.8| are satisfied. Therefore, our
sequence of constructed diffeomorphisms f,, converges in the Diff>*(M)-topology to a diffeomor-
phism f € A,(M). In addition, for every € > 0 we can choose the parameters by Lemma in
such a way, that do (f, Ry) < € holds.

To apply Proposition we need another result:
Lemma 5.11. Let (av,), oy be constructed as in Lemma . Then it holds for every n € N and

for every m < qpi1: .

Proof. In the proof of Lemma we observed fi_1 = H;o R, © Hi_1 for every i € N. Hereby
and with the help of Lemma [5.7] we compute:

do( {, ﬁl) =dp (HioRm.a oH{l,HioRm.ai oH{l) <|[Hillls -m -2+ |a— .

i+1

Since m < gp+1 < ¢; we conclude for every i > n using equation :

do (f7*, f70) < WHllly - 2+ o — ai| < ||| Hl||y - -2 5it1 'Qi%|||Hi|||1 < g ' % < %
Thus, for every m < ¢, 41 we get the claimed result:
- _ ~ B k ~ ~ 1 1\"
do (17 £7) = i o (0. 7) < Jim 32 o (720 < 3 5= (3) -

O

Remark 5.12. Note that the sequence (m,,), . defined in section [4| meets the mentioned con-
dition m,, < ¢,+1 and hence Lemma can be applied to it.

6 Proof of weak mixing

In this section we will prove that our constructed diffeomorphisms on M = S! x [0, 1]m71 are
weakly mixing. For the derivation we need a couple of lemmas. The first one expresses the weak
mixing property on the elements of a partial partition v,, generally:
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Lemma 6.1. Let f € Diff>* (M, ), (my),cy be a sequence of natural numbers and (vy,),, cy be a
sequence of partial partitions satisfying v, — ¢ the following property: For every m-dimensional
cube A C St x (0, 1)m_1 and for every € > 0 there exists N € N such that for every n > N and
for every 'y, € v,, we have

(8) [ (D 0 F~ (4)) = () - 1 (A)] <3+ u(T) - e (4).
Then f is weakly mizing.

In our case the partial partition v, will be the image of 7, from section [3.1.1] under the
measure-preserving map H,_1 o g,.

Proof. A diffeomorphism f is weakly mixing if for all measurable sets A, B C M it holds:

im [ (B (4) — p(B) - (A)] = 0.
Since every measurable set in M = S x [0,1]™"" can be approximated by a countable disjoint
union of m-dimensional cubes in S! x (0,1)"" in arbitrary precision, we only have to prove the
statement in case that A is a m-dimensional cube in S! x (0,1)™".
Hence, we consider an arbitrary m-dimensional cube A C S! x (0, 1)m71. Moreover, let B C M
be a measurable set. Since v, — ¢ for every e € (0,1] there are n € N and a set B = [J;c, 'L,

where T'! € v, and A is a countable set of indices, such that u (BAB) <e-pu(B) -pu(A). We

obtain for sufficiently large n:

(U mas ) - (U

ISHN

< (BAB)+ |30 (T 0 7 (A)) = (T4) - o (A)

1EA

e u(B) - p(A) + Y (ln (T 0 f7m(A) = p () - w(A)]) + e p(A)? - u(B)
i€EA

<Z(3-6-M(F2)-u(A))+2-6-u(A)~u(B)=3~6-M(A)-u(Uiﬁ) +2-¢-pu(A) - u(B)

i€EA iEA

Fu(A) - p (BAB)

=3 cpu(A) - (B) +2- € p(A) - u(B) <3 - p(A) - (u(B) +  (BAB)) +2- - p(A) - pu(B)
<5-e-pu(A) - u(B)+3-€ - u(A)? - u(B).

This estimate shows lim, oo [ (BN f77" (A)) — u(B) - p(A)] = 0, because € can be chosen
arbitrarily small. O

In property (8) we want to replace f by fn:
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Lemma 6.2. Let f = lim,, ,o fn be a diffeomorphism obtained by the constructions in the
preceding sections and (my,),, oy be a sequence of natural numbers fulfilling do (f™, fo'") < 7.
Furthermore, let (v,), oy be a sequence of partial partitions satisfying v, — ¢ and the following
property: For every m-dimensional cube A C S' x (0,1)™ " and for every € € (0,1] there exists
N € N such that for every n > N and for every I',, € v,, we have

(9) [ (T 0 £ (A)) = () - i (A)] < e o (L) - o (A4).
Then f is weakly mixing.

Proof. We want to show that the requirements of Lemma [6.1] are fulfilled. This implies that f
is weakly mixing.
For it let A C S! x (0,1)"™ " be an arbitrary m-dimensional cube and € € (0, 1].
We consider two m-dimensional cubes Aj, Ay C S* x (0, 1)m*1 with A7 C A C Ay as well as
1 (AAA;) < e i (A) and for sufficiently large n: dist(9A,04;) > 5~ for i =1,2.

If n is sufficiently large, we obtain for I',, € v, and for ¢ = 1,2 by the assumptions of this
Lemma:

[ (T OV f ™ (A9) = (D) - o (Ag)| < € (D) - o (Ay) -

Herefrom we conclude (1 —¢€) - u(T'yp) - p (A1) < p(Tn N f,;™ (A1)) on the one hand and
(TN frmn (Ag)) < (1+€) - pu(Ty) - 1 (Ag) on the other hand. Because of do (f™", fi') < 5+
the following relations are true:

fi(z) € Ay = [ (x) € A,
[ (z) € A= ' () € As.
Thus: 1 (Tp 0 f7™ (A1) < p (T 0 7 (A)) < p (T 0 f7™ (Az)).

Altogether, it holds: (1 —€) - u(Ty) - p(A41) < p (TN f™ (A)) < (I+¢€) - pu(Ty) - pw(A2).
Therewith, we obtain the following estimate from above:

p(Tn 07 (A)) = 1 (Tn) - i (A)

S +e) - pTn) - p(A2) = p(Tn) - p(A2) + (L) - (u (A2) — p(4))
Se p(Tn) - p(A2) +p () - p(A28A) <e-p(Tn) - (u(A) + p (A2DA)) + € (Tn) - (A)
<2 p(Tn) p(A) + € p(Tn) - p(A) <3 e pp(Tn) - (A)

Furthermore, we deduce the following estimate from below in an analogous way:

i (T 07 (A)) = (D) - (A) > =3 e p (T) - e (4)

Hence, we get: | (T, N f7™n (A)) — p(Ty) - (A)] < 3-€-u(Ty)-p (A), i.e. the requirements
of Lemma [6.1] are met. O

Now we concentrate on the setting of our explicit constructions:

Lemma 6.3. Consider the sequence of partial partitions (1,),, oy constructed in section and
the diffeomorphisms g, from chapter . Furthermore, let (H.,),y be a sequence of measure-

preserving smooth diffeomorphisms satisfying |DH,_1]| < % for every n € N and define the
partial partitions v, = {I‘n =H, 109, (fn) : fn S nn}.
Then we get v,, — €.
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Proof. By construction 1, = {I% NS An}, where A,, is a countable set of indices. Because of

Nn — € it holds lim,, oo p (UZQA I’) = 1. Since H,_1 o g, is measure-preserving, we conclude:

Aw(U Fié) Jggou<U Ho-10gn (fn)> JLH;w(Hn—logn ( U fi)) -1

€A, i€EA i€A,

For any m-dimensional cube with side length I,, it holds: diam(W,,) = \/m - l,,. Because every
element of the partltlon 7y, 18 contained in a cube of side length qi it follows for every ¢ € A,:

diam (f,’l) vm - o-. Furthermore, we saw in Proposition In (f;) = Gings] (IA}I) for every
i € A,,. Hence, for every Iy = Hy_1 0 Gjnge) (11)

. : N . s In (g, - m o
diam (T},) < [DHp1llg - || Dnggi]|, - diam (I,’l) < 51 ). [n-q]- \qﬁ <vm-q3 ' In(gqn).
Because of o0 < 1 we conclude lim,,_,diam (F;) = 0 and consequently v,, — €. O

In the following the Lebesgue measures on S!, [0,1]™72, [0,1]™ " are denoted by A, u(m=2
and f respectively. The next technical result is needed in the proof of Lemma[6.5]

Lemma 6.4. Given an interval on the ri-axis of the form K = [%, kb?;], where ki,ky € Z

with b?’l 0 < ki <ky < b‘T" — b'?“ -0, and a (m — 2)-dimensional interval Z in (ra,...,7m—1), let
K., denote the cuboid [c,c+ 7] x K X Z for some v > 0. We consider the diffeomorphism gqp.c,s
constructed in subsection E and an interval L = [l1,13] of St satisfying X (L) > 4 - % — .

If b- M(K) > 2, then for the set Q := 7z (Kc,,y ﬂg;}w’é (L x K x Z)) we have:

7(Q) = A (1) - A (L) - u"=2 (2)

2 - 2. 1-2 1-2
< (b.A(L)+b7+7-A(K)+4- . S AK)+ 8- €>-u<m—2>(2).

b-a

Proof. We consider the diffeomorphism g, : M — M, (8,71, ...;7m—1) = (0 +b- 11,71, .o, Trm—1)
and the set:

Qv =7 (Key NGy ' (L x K x Z))
={(r1,r2,csTm-1) E KX Z : (0+b-m,7) €L XxKXZ0E€E|[c,ct+7]|}
={(r1,r2ystm_1) E K XZ 1 b-ri €[l —c—7,la —¢] mod 1}.
The interval b- K seen as an interval in R does not intersect more than b- A(K) + 2 and not less

than b- A (K) — 2 intervals of the form [i,7 + 1] with ¢ € Z. By construction of the map gq p.c,s
it holds for A; := [175 (HL)‘E} in consideration: 7 (ga,bﬁ,a ([eye+v]) x A x Z)) =4 x Z.

b-a’> b

Claim: A resulting 1nterva1 on the rj-axis of K., N g7 (L x K x Z) and the corresponding
ry-projection of K., N g, . (L x K x Z) can differ by a length of at most 4 - 1-2<.

Proof: If {c}xA;xZ (resp {¢ + v} xA;xZ) are contained in the domain, where Ja,be = Gb, the
left (resp. the right) boundaries of 74 (ga b6 ([c,c + ] X A; x Z)) and g (gb ([eye+ ] x Ap x Z))
coincide. Otherwise, i.e. ¢ € (§ + e, kil - 8) (resp. ¢+ v € (% + e, % — 5)) the sets
7o (Jabes ({c} X Ay x Z)) and g (gp ({c} X A X Z)) (vesp. 7o (Japes ({c+ v} x A x Z)) and
T (3o ({c+ 7} x Ay x Z))) differ by a length of at most =2, Since my (g, ({u} x Ay x Z)) for




Proof of weak mixing 34

arbitrary u € S' has a length of £ on the f-axis, this discrepancy will be equalised after at
most 1=2¢ : £ = 1=22 blocks A; on the ri-axis. Thus, the resulting interval on the rq-axis of

K.nNg ~_1 (Lx K >< Z) and the correspondlng ri-projection of K, N g, bE (L x K x Z) can
'W_4 (1—2€)b_a. O
Therefore, we compute on the one side:

Q) < (b A(K) +2)- <l2‘(lbl"y> +4. 1;25) =D ()

and on the other side

A(Q) > (b- MK ( ll* 4-1.2€>-u<m2>(z)

=<A<K> AL) - (L A(K) - —”—4-A<K)~1‘2g+8~1‘2€>-u<m2><Z>.

Both equations together yield:

Q)= M(K) ML) )" (2) =3 A (K) 2 (2) = 8 2 (2)
< (i-i(LH 20 4 4am)- a%) D (7).
The claim follows because
7(Q) = A(K) - ML) u" D (2)] =y AE) p" D) (2) 8- L) ()
<@ = AK) A 1 (2) =y A ) D (2) =8 L2 ().

O

Lemma 6.5. Let n be sufficiently large, g, as in sectz’on and I, € Nn, where n, is the partial
partition constructed in section[3.1.1l For the diffeomorphism ¢, constructed in section[3.3 and

m, as in chapter we consider ¢, = ¢, o R;":H o ¢t

Then for every m-dimensional cube S of side length q,° lying in S* x [ﬁ, 1-—- ﬁ]mil we
get

2 _ _ A 42 4+ 2m A
(10) ‘M (Iﬂfbnl g, (5)) —p (I) 'M(5>‘ S — 'M(I) e (S)-

In other words this Lemma tells us that a partition element is “almost uniformly distributed”
under g, o ®,, on the whole manifold M = S* x [0,1]™ .
1 }m—l

Proof. Let S be a m-dimensional cube with side length ¢, 7 lying in S! x [ﬁ, 1= 157

Furthermore, we denote:

Sg = T (S) Sr1 = T,y (S) S;ZW(T27W7TM_1) (S) Sr :Sr1 X S%ZFF(S)
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Obviously: A(Sp) = A(Sy,) = ¢, and A(Sp) - A(Sy,) - 4™ (Sz) = u(S) = ¢, ™.
Recalling the parameters in the definition of g, = ga,5.¢,s We introduce the set A; = [

forlez,0<l<e—1,

le (I+1)e
ba’ ba

e In case of a partition element I,, € Ny, of the first kind we define

Sr = U Ay S = U Apx Sz as well as S:=8yxS,CS.
Algsrl Algsrl

Here ‘,u (S”) — /J(S)‘ =pu (S\S”) < 255X (Sp) - um? (S=) < 2-£-(S), where we used
b=[n-q¢%] > q7 in case of n > 4. Since ®,, and g,, are measure-preserving, we additionally
obtain: ’p <fﬂ<I>;1 (g;l(S))> —p(In®;! (g;l (5‘)))’ <u (S\S‘) <2-£.4(S). In

equationin the proof of Lemma we observed p <<I>n (f)) > % (1 — L)2m71- Hence:

i (fne (5;18) —n(Ine (67 (8)))| <2+ - n(9)

§2-(1_f)2m1-u(5)-u(¢n(f)) §4-6-u(5)-u<f)-

e In case of a partition element I, € Ny of the second kind we define

STI = U Ay S, = U A xSz NJy aswellas S:==8,xS,.CS
A CSry A;CSry

Once again, we want to estimate (S \ §> As seen above we have A (Srl \ 5}1> <25
Since the cube of side length ¢;, 7 in the 7-coordinates contains at least Z—Z — 2 and at most

n

22 +-2 intervals of the form [q#, l;r—l] for some [ € Z in each of those coordinates, we estimate

I (S \ S) < % - (S) for n sufficiently large. Moreover, we observed 7z (‘1)” (fn» C Jn
in the proof of Lemma[4.5] Hereby, we get

[N (g1 —u(ine-' (g1 (3 N (Sp)-2 = (m=2) (g £
i (fne (5,18) —n (Tn@ (927 (8)))] < A2 pn™ D (85) < 2:=on(9).

Then we continue as in the previous case.

For partition elements of both kinds &, (ﬁ, = )-distributes the partition element I, e Mn

1
)
on a set J according to Lemma in particular @, (fn> C [e,e+ 9] x 0, l]m—l for some ¢ € S
and some v < ﬁ. On the other hand, we saw v > 1=2¢ in the proof of Lemma

Using the triangle inequality we obtain

(T2, (9,7 (9))) = (1) - 1(9)|
<lu(ine;! (5:1(9)) —u (In e, (0. (5))) |+ ﬂ(f,) i (Fnes (920 (8))) ) = (

+
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In both cases, Bernoulli’s inequality yields: fi(.J) > (1 — l)W%l >14+(m-1)-(-1)

1—2=1_ Hence we obtain for n > 2-(m—1): fi(J) > 1 and so: L-ill) < 2:(1—p(J) < 2(m=1)
Thus, we obtain:

a(J) = n
‘u (fﬁ o, (9;1(5))> — (I) -u(S)’

. . o ~ - 2m -
< 9. -1, -1 0 _ ‘ . -
<2 )u (IWPn (gn (S))) f(J) —p (I) I (S) +de - p(S)p (I) +——n(S)p (I)
Next, we want to estimate the first summand. By construction of the map g, = gq.4,c,6 and the
definition of S it holds: ®, (f) Ng,?t (5‘) C [e,c+7] x S, =t K. . Considering the proof of
Lemma [4.6) again, we obtain g, (Kc,y) = Jingg] (Ke,y) (since ¢ and ¢+ are in the domain where
gn = g[nqﬁ] hOldS) ~
Because of Lemma 2y < ﬁ < ;% for n > 2. So we can define a cuboid S; C S, where

Sy =1[s1+7,82 — 7] X S, using the notation Sp = [s1, s2]. We examine the two sets

(11)

Q:=mr (Kc,,Y N g;l (Sg X 5})) Q1 := 77 (Kc,,y ﬂg;l ([51 + 7,82 — 7] X 5}))

As seen above @, (f) Ng,* (5‘) C K. . Hence 9, (f) Ng,* (5) i (f) Ng,* (S) NKe,
which implies ®,, (I) ng;! (S) co, (1) N (St x Q).

Claim: On the other hand: @, (1) N (8! x Q1) € @, (1) ng;* (5),

Proof of the claim: For (0,7) € &, (f) N (Sl X Ql) arbitrary it holds (6,7) € @, (f),
ie. 0 € [c,c+1], and ¥ € 77 (KC,.Y Ng,?! ([51 + 79,82 — 7] x 5})), ie. in particular 7 € S,.
This implies the existence of 6 € [c, ¢+ ~] satisfying (6,7) € K., N g,*(S1). Hence, there
are B € [s1+7,52—7] and 71 € S, such that g, (6,7) = (B,71). Because of 0 € [c,c+ 1]
and 7 € S, the point (0_, F) is contained in one cuboid of the form A, ;.. Since § € [¢,c+ 7],
(0,7) is contained in the same A, ;.. Thus, 77 (gn (0,7)) € S'r_. Furthermore, g, (0,7) and

In (0,7"') are in a distance of at most 7 on the #-axis, because 6,0 € [¢,c+ 7], i.e. |9 - 9_| <7,
9n (Ken) = Gingg) (Kc) and the map §j,q0) preserves the distances on the ¢-axis. Thus, there

are B € [s1,55] and 7 € S, such that g,, (6,7) = (3,7). So (0,7) € @, (1) ng:! (5) O
Altogether, the following inclusions are true:
@, (1) (8" x Qi) S (1) ng;" (5) S (1) N (S x Q).

Thus, we obtain:

(
(12) Smax(u(fﬂq);l(SlXQ)>.11(J)—M(f>~u(§)
(

We want to apply Lemma for K = S,, L = Sp, Z = Sz and b = [n-q] (note that

1—2¢ 1—2¢ 3 1—2¢
4 =Fmys3 T S am < a

< gom =) (L) because of the mentioned relation v > and for
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n>4:b-NK) = [ng3]-q¢;° > ingg - q;7 > 2):

n =2
‘u(Q )‘
2 1—2¢ ~ 1-—2¢
. LT m=2) (g

g( ]+7 A(Sn) +4-—=0(5,) +8 [nqg}.a> pum=2 (32)

1 1—2¢ 16~(1—25)> (m—2)
< + A(Sy,) +4- ANSp )+ ————=) . S=
_(n a, Se) o qp - qn Mgy S 2-qy (Sr1) negy -2 qy : (5%)
<; (S).

In particular, we receive from this estimate: 1 . (S) > 1 (Q) — p (5) > 1 (Q) — 1 (S), hence:
Q)< (1+2) - u(S) <4-u(5).

Analogously, we obtain: i (Q1) <4-u(S) as well as ’,& (Q1) —p (5’1> < WS,

Since @ as well as ()1 are a finite union of disjoint (m — 1)-dimensional 1ntervals contained in J
and @, (Qq%, %)—distributes the interval I on J, we get:

i (net Q) -t (1) m@| < - n (1) 1@ <

as well as

Now we can proceed
(e, (8" x Q) - () — (1)
<|u(ine, (8" x Q) - a(n—n(i
Sé-u(l> (S)+u(f) (

14

n
Noting that u(Sl)—u( ) 2y - u(S) and sou( ) w(Sy) SZ-#-[A(S}) <2.4(9)
we obtain in the same way as above:

’u(fﬂq’il (Slel))'ﬂ(J)_M(j)'M(g)‘ <

Using equation this yields:

(085 0 (5))) 5000 0) (9] <2 (1) )

Finally, we conclude with the aid of equation lb because of ¢ = ==

=8

42 4+ 2m
n

’” (fmq)51 (951(5))> - (I) -#(5)‘ <

Now we are able to prove the desired weak mixing-property.
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Proposition 6.6 (Proof of weak mixing). Let f,, = H,o R, ,, oH, ' and the sequence (m,,)
be constructed as in the previous sections. Then f = lim,_, f, is weakly mizing.

Proof. By Lemma we have do (f™", fi"») < 5 for every n € N. To apply Lemma
we consider the partial partitions v, = H,_1 0 ¢, (,,). As proven in Lemma these partial
partitions satisfy v, — e. We have to establish equation @D To do so, let ¢ > 0 and a

m-dimensional cube A C S! x (0,1)" " be given. There exists N € N such that A C S x

[4,1- —]m_l for every n > N. Furthermore, we note that f7» = H, o R™ o H,! =

neN

An41
H, 10g,0®, og;loff_1
Let S, be a m-dimensional cube of side length g, contained in S* x [, 1 — #]m_l. We look
at Cp, n—1 (Sn), T'n € vy, and compute (since g, and H,_; are measure-preserving):
1 (T 017 (Ca)) = 1 (D) 1 (o) = [ (B 105 0.9 (S0)) = () - (S|
We continue by applying Lemma
—m 424+ 2-m .
1 (T O F7 (Ca)) = 1 (Ta) - 1 (Co)| € =2 (£ ) - 11 ()

Moreover, we recall that [|[DH,_[|, < % by Lemma 3. Then we get that diam(C,,) <
|DHy—1]|y - diam (Sy,) < /m - %%Z”, i.e. diam(C,) — 0 as n — oo. Thus, we can approximate

A by a countable disjoint union of sets C,, = H,,_1 (S,) with S,, C S! x [%71 — %]mfl a m-
dimensional cube of side length ¢, with given precision, assuming that n is chosen to be large
enough. Consequently for sufficiently large n there are sets A; = UiEZ}L C! and Ay = UiEE% ct
with countable sets Y1 and 2 of indices satisfying A1 C A C Ay as well as |[u(A) — pu(A;)] <
£ - p(A) fori=1,2.

Additionally we choose n such that % < 5 holds. It follows that

t(Tn 0 f " (A)) = (D) - 1 (A)
<p(Tn 0 fr™ (A2)) = p(Tn) - p(A2) + 1 (Tn) - (1 (A2) — p(A))
<3 (T £ (CL)) = i (Ta) - 1 (CL)) + = - i (T) - 1 (A)

3
€32
-y (W.M(fn) .M(s,g)) + 2 n(T) ()
1€X2

€

= D) A S () (r(A) (A (D) () < e (D) (4
Analogously, we estimate that p(T'p, N f, ™ (A)) — p(Tp) - n(A) > —e- pu(Ty) - n(A). Both
estimates enable us to conclude that |u (T N f, ™ (A) — u(Th) - p(A)| <e-p(Tn)-p(A). O

7 Construction of the measurable f-invariant Riemannian
metric

Let wp denote the standard Riemannian metric on M = S! x [0, l}mfl. The following Lemma
shows that the conjugation map h,, = g,, 0 ¢, constructed in section [3|is an isometry with respect
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to wp on the elements of the partial partition (,.
Lemma 7.1. Let I, € Cn. Then hn\jn is an isometry with respect to wq.

Proof. Let fn,k € ¢, be a partition element on {qun, %} x [0, l]m_l. In case of k even, ¢,, acts

as an isometry on jn,k by Proposition , 3., and ¢, (fnk) is equal to

. . (1 . . (1
LI R IS S WS N SR NN S SO N
20 242 277" 2q nt-2g0 7 2¢, 242 2¢ 7 2q7 nt-2q
(m—1 (2 . (m+1
i i is" gy !
X | = T2 tot m 4 m o + 8 m o]’
Gn a2 g 160t - g -[ngg]  16n® - ¢ - [ngg)
(m—1 (2 . (m+1
A L O GoPs 1
-t 2 RE m + 4 m o] 8 m o
an a g 16nt g -[ng7]  16n°- g - [ng]]
) ﬁ j§m+1—i) . 1 j§m+1—i) 11
paiell I g’ an ntegn |
By Proposition Izgl, 35 In = 92gm [n-qz R acts as an is?metry on this set.
In case of k odd ¢, acts as the identity on the element I, ;. By the shape of this set and

Proposition 3.8} 3., g,, acts as an isometry on it. O

This Lemma implies that h,!| ho(7,) 18 an isometry as well.

n I,

In the following we construct the f-invariant measurable Riemannian metric. This construction
parallels the approach in [GKQQ, section 4.8]. For it we put wy, = (H,, )" wp. Each w, is a smooth
Riemannian metric because it is the pullback of a smooth metric via a C>° (M)-diffeomorphism.

. N - . . . N
Since Ran+1wo = wy the metric w, is f,-invariant:

f;:wn — (Hn OROén-H oH;l)* (Hil)*wO _ (H;l)* R* H* (Hgl)*wo _ (H;l)*R* wo

n An41- "M

With the succeeding Lemmas we show that the limit we, = lim,_, w, exists p-almost every-
where and is the desired f-invariant Riemannian metric.

Lemma 7.2. The sequence (wn)neN converges p-a.e. to a limit wso

Proof. For every N € N we have for every k > 0:

WN4k = (H;,}rk)* wo = (h;\lik 0...0 hli\f::—l o H;,l)* wy = (HNl)* (h&lﬂc 0...0 h]?f{&-l)* wo-

Since the elements of the partition (,, cover M except a set of measure at most i—”; by Remark
Lemma shows that wy, coincides with wy = (Hg,l)* wp on a set of measure at least
1= 0" nyi1 7% As this measure approaches 1 for N — oo, the sequence (wy,),,cy converges on
a set of full measure. O

Lemma 7.3. The limit ws is a measurable Riemannian metric.

Proof. The limit w,, is a measurable map because it is the pointwise limit of the smooth metrics
wp, which in particular are measurable. By the same reasoning ws |, is symmetric for p-almost
every p € M. Furthermore, w,, is positive definite because w,, is positive definite for every n € N
and ws, coincides with wy on 71 M ® T1 M minus a set of measure at most ZZO:NH ‘;—Zb. Since
this is true for every N € N, w,, is positive definite on a set of full measure. O
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Remark 7.4. In the proof of the subsequent Lemma we will need Egoroff’s theorem (for example
[Ha65) §21, Theorem A]): Let (V, d) denote a separable metric space. Given a sequence (¢n,),,cy
of N-valued measurable functions on a measure space (X, X, 1) and a measurable subset A C X,
p(A) < oo, such that (¢,),cy converges p-a.e. on A to a limit function ¢. Then for every
€ > 0 there exists a measurable subset B C A such that p (B) < ¢ and (¢,),,cy converges to ¢
uniformly on A\ B.

Lemma 7.5. wy is f-invariant, i.e. f*ws = weo U-a.e..

Proof. By Lemma the sequence (wp), oy converges in the C*-topology pointwise almost
everywhere. Hence, we obtain using Egoroff’s theorem: For every > 0 there is a set Cs C M
such that p (M \ Cs) < ¢ and the convergence w,, — Wy is uniform on Cs.

The function f was constructed as the limit of the sequence (f,), cy in the C*°-topology. Thus,
fn = f ' o f—id in the C*-topology. Since M is compact, this convergence is uniform too.
Furthermore, the smoothness of f implies f*we = f*lim, oo Wy = lim,_ oo f*wy,. Therewith,

~ * ~ ~
we compute on Cs: f*we = litmy_o (( s fn) wn> = litmpo0 ( 7 f;;wn) = limy oo frwn =
Woo, Where we used the uniform convergence on Cjy in the last step. As this holds on every set

Cs with § > 0, it also holds on the set U5>0 Cs. This is a set of full measure and therefore the
claim follows. O

Hence, the desired f-invariant measurable Riemannian metric wy, is constructed and thus
Proposition 2.8]is proven.

Acknowledgement: We would like to thank the referee for very interesting remarks and
comments. In particular, these helped to improve the presentation of the paper.
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