Uniform rigidity sequences for weakly mixing diffeomorphisms on $\mathbb{D}^{m}, \mathbb{T}^{m}$ and $\mathbb{S}^{1} \times[0,1]^{m-1}$

Philipp Kunde
University of Hamburg
Department of Mathematics
Bundesstrasse 55, 20146 Hamburg, Germany
E-mail: Philipp.Kunde@math.uni-hamburg.de

Abstract

In continuation of $[\mathrm{Ku}]$ we construct weakly mixing and uniformly rigid diffeomorphisms on $\mathbb{D}^{m}, \mathbb{T}^{m}$ as well as $\mathbb{S}^{1} \times[0,1]^{m-1}(m \geq 2)$: If a sequence of natural numbers satisfies a certain growth rate, then there is a weakly mixing C^{∞}-diffeomorphism that is uniformly rigid with respect to that sequence. The proof is based on a quantitative version of the Anosov-Katok-method with explicitly defined conjugation maps.

Keywords: Smooth Ergodic Theory, weakly mixing, uniformly rigid, uniform rigidity sequence

1. Introduction

To begin, we recall that an invertible measure-preserving transformation T of a non-atomic probability space (X, \mathcal{B}, μ) is called rigid if there exists an increasing sequence $\left(n_{m}\right)_{m \in \mathbb{N}}$ of natural numbers (a so-called rigidity sequence) such that the powers $T^{n_{m}}$ converge to the identity in the strong operator topology as $m \rightarrow \infty$, i.e. $\left\|f \circ T^{n_{m}}-f\right\|_{2} \rightarrow 0$ as $m \rightarrow \infty$ for all $f \in L^{2}(X, \mu)$. So rigidity along a sequence $\left(n_{m}\right)_{m \in \mathbb{N}}$ implies $\mu\left(T^{n_{m}} A \cap A\right) \rightarrow \mu(A)$ as $m \rightarrow \infty$ for all $A \in \mathcal{B}$. In [BJLR] the authors examine conditions on a sequence $\left(n_{m}\right)_{m \in \mathbb{N}}$ which ensure that it is a rigidity sequence for some weakly mixing systems. In this paper, we study the notion of uniform rigidity introduced in [GM] as the topological analogue of rigidity in ergodic theory:

Definition 1.1. Let (X, \mathcal{B}, μ) be a Lebesgue probability space, where X is a compact metric space with metric d. A measure-preserving homeomorphism $T: X \rightarrow X$ is called uniformly rigid if there exists an increasing sequence $\left(k_{n}\right)_{n \in \mathbb{N}}$ in \mathbb{N} such that $d_{u}\left(T^{k_{n}}, i d\right) \rightarrow 0$ as $n \rightarrow \infty$, where $d_{u}(S, T)=d_{0}(S, T)+$ $d_{0}\left(S^{-1}, T^{-1}\right)$ with $d_{0}(S, T):=\sup _{x \in X} d(S(x), T(x))$ is the uniform metric on the group of measure-preserving homeomorphisms on X.

In [JKLSS], Proposition 4.1., it is shown that if an ergodic map is uniformly rigid, then any uniform rigidity sequence has zero density. Afterwards, the following question is posed:

Question 1.2. Which zero density sequences occur as uniform rigidity sequences for an ergodic transformation?

Ergodicity is implied by the weak mixing property. Recall that a measurepreserving transformation T is called weakly mixing if for all $A, B \in \mathcal{B}$ we have $\frac{1}{N} \sum_{n=1}^{N}\left|\mu\left(T^{n} A \cap B\right)-\mu(A) \cdot \mu(B)\right| \rightarrow 0$ as $N \rightarrow \infty$. An equivalent characterization is deduced by M. Sklover ([Skl]): There is an increasing sequence $\left(m_{n}\right)_{n \in \mathbb{N}}$ of natural numbers such that $\lim _{n \rightarrow \infty}\left|\mu\left(B \cap T^{-m_{n}}(A)\right)-\mu(A) \cdot \mu(B)\right|=$ 0 for every pair of measurable sets $A, B \subseteq X$.
K. Yancey considered Question 1.2 in the setting of homeomorphisms on \mathbb{T}^{2} (see [Ya]). Given a sufficient growth rate of the sequence she proved the existence of a weakly mixing homeomorphism of \mathbb{T}^{2} that is uniformly rigid with respect to this sequence: Let $\psi(x)=x^{x^{3}}$. If $\left(k_{n}\right)_{n \in \mathbb{N}}$ is an increasing sequence of natural numbers satisfying $\frac{k_{n+1}}{k_{n}} \geq \psi\left(k_{n}\right)$, there exists a weakly mixing homeomorphism of \mathbb{T}^{2} that is uniformly rigid with respect to $\left(k_{n}\right)_{n \in \mathbb{N}}$. In her Phd thesis Yancey asked about genericity of weakly mixing and uniformly rigid homeomorphisms on an arbitrary compact manifold of dimension at least 2 ([Yab], Question 5.1.2). In $[\mathrm{Ku}]$ we started to examine this problem in the smooth category. As a starting point we used the construction of weakly mixing diffeomorphisms with a prescribed Liouvillean rotation number on 2-dimensional compact connected manifolds admitting a non-trivial circle action undertaken in [FS]. Hereby, we were able to construct smooth weakly mixing diffeomorphisms on $\mathbb{D}^{2}, \mathbb{T}^{2}$ and $\mathbb{A}=\mathbb{S}^{1} \times[0,1]$ that are uniformly rigid with respect to a given sequence under a condition on the growth rate of this sequence. This condition was less restrictive than Yancey's. Actually, the constructed diffeomorphisms were C^{∞}-rigid.
Definition 1.3. Let M be a smooth compact connected manifold and $k \in$ $\mathbb{N} \cup\{\infty\}$. A C^{k}-diffeomorphism $f: M \rightarrow M$ is called C^{k}-rigid, if there exists a sequence $\left(k_{n}\right)_{n \in \mathbb{N}}$ in \mathbb{N} such that $f^{k_{n}}$ converges to the identity map in the C^{k}-topology.

Amongst others, C^{k}-rigidity of pseudo-rotations on the disc \mathbb{D}^{2} is studied in [AFLXZ].
On the other hand, for every Liouvillean number $\alpha \in \mathbb{S}^{1}$ we were able to prove the genericity of weakly mixing smooth diffeomorphisms in $\mathcal{A}_{\alpha}(M):=$ $\overline{\left\{h \circ S_{\alpha} \circ h^{-1}: h \in \operatorname{Diff}^{\infty}(M, \nu)\right\}}{ }^{C^{\infty}}$ on any smooth compact connected manifold M of dimension $m \geq 2$ admitting a non-trivial smooth circle action $\mathcal{S}=\left\{S_{t}\right\}_{t \in \mathbb{S}^{1}}$ preserving a smooth volume $\nu([\mathrm{GKu}]$, Corollary 1). These constructions were based on the "conjugation by approximation"-method introduced by D. Anosov and A. Katok in their fundamental paper [AK]: Diffeomorphisms are constructed as limits of conjugates $f_{n}=H_{n} \circ S_{\alpha_{n+1}} \circ H_{n}^{-1}$, where $\alpha_{n+1}=\frac{p_{n+1}}{q_{n+1}} \in \mathbb{Q}, H_{n}=H_{n-1} \circ h_{n}$ and h_{n} is a measure-preserving diffeomorphism satisfying $S_{\frac{1}{q_{n}}} \circ h_{n}=h_{n} \circ S_{\frac{1}{q_{n}}}$. While the sequence of conjugation
maps H_{n} does not have to converge in general, one obtains that the sequence f_{n} is a Cauchy sequence by choosing α_{n+1} so close to α_{n} that

$$
\begin{aligned}
f_{n} & =H_{n} \circ S_{\alpha_{n+1}} \circ H_{n}^{-1}=H_{n-1} \circ h_{n} \circ S_{\alpha_{n}} \circ S_{\alpha_{n+1}-\alpha_{n}} \circ h_{n}^{-1} \circ H_{n-1}^{-1} \\
& =H_{n-1} \circ S_{\alpha_{n}} \circ h_{n} \circ S_{\alpha_{n+1}-\alpha_{n}} \circ h_{n}^{-1} \circ H_{n-1}^{-1}
\end{aligned}
$$

is close to $f_{n-1}=H_{n-1} \circ S_{\alpha_{n}} \circ H_{n-1}^{-1}$. Using that method Anosov and Katok were particularly able to answer the long-standing question on the existence of an ergodic diffeomorphism on the disc \mathbb{D}^{2} affirmatively ([AK], section 3). Nowadays, this method is one of the most powerful tools for constructing smooth diffeomorphisms with ergodic properties or non-standard smooth realizations of measure-preserving maps (e.g. [Be]). See [FK04] for more details and other results of this method.
In comparison to the original construction of weakly mixing diffeomorphisms in $\mathcal{A}(M):=\overline{\left\{h \circ S_{t} \circ h^{-1}: t \in \mathbb{S}^{1}, h \in \operatorname{Diff}^{\infty}(M, \nu)\right\}}{ }^{C}$ in [AK], section 5, the constructions with a prescribed Liouvillean rotation number α in [GKu] required more explicit conjugation maps and finer norm estimates in order to guarantee convergence in $\mathcal{A}_{\alpha}(M)$. Unfortunately, these estimates are not sufficient for our purpose because the dependence on the parameter $\varepsilon_{n}=\frac{1}{60 n^{4}}$ occurring in the conjugation map in [GKu] built with the aid of "Moser's trick" is not examined. This dependence is important in order to deduce a sufficient growth rate of the uniform rigidity sequence. Therefore, we need even more explicit conjugation maps and precise norm estimates. Such a construction is provided in this paper. Hereby, we can prove the subsequent theorem:

Theorem 1. Let $m \geq 2, M$ be $\mathbb{D}^{m}, \mathbb{S}^{1} \times[0,1]^{m-1}$ or \mathbb{T}^{m} and $\varphi(n)$ be the expression
$\left(\frac{(m+n)!}{(m-1)!}\right)^{m \cdot(n+2)^{n+3}} \cdot\left(\frac{(2 n)!}{n!} \cdot \pi^{(n+1)^{2}} \cdot\left((n+1)!\cdot \exp \left(400 n^{2}\right)\right)^{10 \cdot(n+1)^{5}}\right)^{m \cdot(n+1)^{n+2}} \cdot n^{2 \cdot(m-1) \cdot(n+1)^{n+2}}$.
If $\left(\tilde{q}_{n}\right)_{n \in \mathbb{N}}$ is a sequence of natural numbers satisfying

$$
\tilde{q}_{n+1} \geq \varphi(n) \cdot \tilde{q}_{n}^{2 \cdot m^{2} \cdot(n+1)^{n+3}}
$$

there exists a weakly mixing C^{∞}-diffeomorphism of M that is uniformly rigid (actually C^{∞}-rigid) with respect to $\left(\tilde{q}_{n}\right)_{n \in \mathbb{N}}$.

In $[\mathrm{Ku}]$, Theorem 1, we have obtained a similar condition on the growth rate of the uniform rigidity sequence in case of $m=2$. In section 9 we deduce a rougher but more handy statement:

Corollary 1. Let $m \geq 2, M$ be $\mathbb{D}^{m}, \mathbb{S}^{1} \times[0,1]^{m-1}$ or \mathbb{T}^{m}. If $\left(\tilde{q}_{n}\right)_{n \in \mathbb{N}}$ is a sequence of natural numbers satisfying

$$
\tilde{q}_{1} \geq m^{2} \cdot 2^{8} \cdot \exp (400) \quad \text { as well as } \quad \tilde{q}_{n+1} \geq \tilde{q}_{n}^{\tilde{q}_{n}}
$$

there exists a weakly mixing C^{∞}-diffeomorphism of M that is uniformly rigid (actually C^{∞}-rigid) with respect to $\left(\tilde{q}_{n}\right)_{n \in \mathbb{N}}$.

We note that our requirement on the growth rate is less restrictive than the mentioned condition in [Ya], Theorem 1.5. In fact, the proof in [Ya] shows that a condition of the form $\frac{k_{n+1}}{k_{n}} \geq k_{n}^{4 k_{n}^{2}+20}$ is sufficient for her construction of a weakly mixing homeomorphism, which is uniformly rigid along $\left(k_{n}\right)_{n \in \mathbb{N}}$. Our requirement on the growth rate is still weaker.
If we consider only C^{k}-diffeomorphisms for any $k \in \mathbb{N}$, we can weaken our requirements on the uniform rigidity sequence in section 8 .

Corollary 2. Let $k \in \mathbb{N}, m \geq 2$ and M be $\mathbb{D}^{m}, \mathbb{S}^{1} \times[0,1]^{m-1}$ or \mathbb{T}^{m} and $\varphi_{k}(n)$ be the expression
$\left(\frac{(m+k)!}{(m-1)!}\right)^{m \cdot(k+2)^{4}} \cdot\left(\frac{(2 k)!}{k!} \cdot \pi^{(k+1)^{2}} \cdot\left((k+1)!\cdot \exp \left(400 n^{2}\right)\right)^{10 \cdot(k+1)^{5}}\right)^{m \cdot(k+1)^{3}} \cdot n^{2 \cdot(m-1) \cdot(k+1)^{4}}$.
If $\left(\tilde{q}_{n}\right)_{n \in \mathbb{N}}$ is a sequence of natural numbers satisfying

$$
\tilde{q}_{n+1} \geq \varphi_{k}(n) \cdot \tilde{q}_{n}^{2 \cdot m^{2} \cdot(n+1) \cdot(k+1)^{4}}
$$

there exists a weakly mixing C^{k}-diffeomorphism of M that is uniformly rigid (actually C^{k}-rigid) with respect to $\left(\tilde{q}_{n}\right)_{n \in \mathbb{N}}$.

2. Preliminaries

2.1. Definitions and notations

In this chapter we want to introduce advantageous definitions and notations as in [GKu]. Initially, we discuss topologies on the space of smooth diffeomorphisms on the manifold $M=\mathbb{S}^{1} \times[0,1]^{m-1}$. Note that for diffeomorphisms $f=\left(f_{1}, \ldots, f_{m}\right): \mathbb{S}^{1} \times[0,1]^{m-1} \rightarrow \mathbb{S}^{1} \times[0,1]^{m-1}$ the coordinate function f_{1} understood as a map $\mathbb{R} \times[0,1]^{m-1} \rightarrow \mathbb{R}$ has to satisfy the condition $f_{1}\left(\theta+n, r_{1}, \ldots, r_{m-1}\right)=f_{1}\left(\theta, r_{1}, \ldots, r_{m-1}\right)+l$ for $n \in \mathbb{Z}$, where either $l=n$ or $l=-n$. Moreover, for $i \in\{2, \ldots, m\}$ the coordinate function f_{i} has to be \mathbb{Z} periodic in the first component, i.e. $f_{i}\left(\theta+n, r_{1}, \ldots, r_{m-1}\right)=f_{i}\left(\theta, r_{1}, \ldots, r_{m-1}\right)$ for every $n \in \mathbb{Z}$.
In order to define explicit metrics on $\operatorname{Diff}^{k}\left(\mathbb{S}^{1} \times[0,1]^{m-1}\right)$ and in the following the subsequent notations will be useful:
Definition 2.1. 1. For a sufficiently differentiable function $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ and a multiindex $\vec{a}=\left(a_{1}, \ldots, a_{m}\right) \in \mathbb{N}_{0}^{m}$

$$
D_{\vec{a}} f:=\frac{\partial^{|\vec{a}|}}{\partial x_{1}^{a_{1}} \ldots \partial x_{m}^{a_{m}}} f
$$

where $|\vec{a}|=\sum_{i=1}^{m} a_{i}$ is the order of \vec{a}.
2. For a continuous function $F:(0,1)^{m} \rightarrow \mathbb{R}$

$$
\|F\|_{0}:=\sup _{z \in(0,1)^{m}}|F(z)|
$$

Diffeomorphisms on $\mathbb{S}^{1} \times[0,1]^{m-1}$ can be regarded as maps from $[0,1]^{m}$ to \mathbb{R}^{m}. In this spirit the expressions $\left\|f_{i}\right\|_{0}$ as well as $\left\|D_{\vec{a}} f_{i}\right\|_{0}$ for any multiindex \vec{a} with $|\vec{a}| \leq k$ have to be understood for $f=\left(f_{1}, \ldots, f_{m}\right) \in \operatorname{Diff}^{k}\left(\mathbb{S}^{1} \times[0,1]^{m-1}\right)$. Since such a diffeomorphism is a continuous map on the compact manifold and every partial derivative can be extended continuously to the boundary, all these expressions are finite. Thus, the subsequent definition makes sense:
Definition 2.2. 1. For $f, g \in \operatorname{Diff}^{k}\left(\mathbb{S}^{1} \times[0,1]^{m-1}\right)$ with coordinate functions f_{i} resp. g_{i} we define

$$
\tilde{d}_{0}(f, g)=\max _{i=1, . ., m}\left\{\inf _{p \in \mathbb{Z}}\left\|(f-g)_{i}+p\right\|_{0}\right\}
$$

as well as

$$
\tilde{d}_{k}(f, g)=\max \left\{\tilde{d}_{0}(f, g),\left\|D_{\vec{a}}(f-g)_{i}\right\|_{0}: i=1, \ldots, m, 1 \leq|\vec{a}| \leq k\right\} .
$$

2. Using the definitions from 1 . we define for $f, g \in \operatorname{Diff}^{k}\left(\mathbb{S}^{1} \times[0,1]^{m-1}\right)$:

$$
d_{k}(f, g)=\max \left\{\tilde{d}_{k}(f, g), \tilde{d}_{k}\left(f^{-1}, g^{-1}\right)\right\}
$$

Obviously d_{k} describes a metric on $\operatorname{Diff}^{k}\left(\mathbb{S}^{1} \times[0,1]^{m-1}\right)$ measuring the distance between the diffeomorphisms as well as their inverses. As in the case of a general compact manifold the following definition connects to it:
Definition 2.3. 1. A sequence of Diff ${ }^{\infty}\left(\mathbb{S}^{1} \times[0,1]^{m-1}\right)$-diffeomorphisms is called convergent in Diff $\infty\left(\mathbb{S}^{1} \times[0,1]^{m-1}\right)$ if it converges in $\operatorname{Diff}^{k}\left(\mathbb{S}^{1} \times[0,1]^{m-1}\right)$ for every $k \in \mathbb{N}$.
2. On Diff $\infty\left(\mathbb{S}^{1} \times[0,1]^{m-1}\right)$ we declare the following metric

$$
d_{\infty}(f, g)=\sum_{k=1}^{\infty} \frac{d_{k}(f, g)}{2^{k} \cdot\left(1+d_{k}(f, g)\right)}
$$

It is a general fact that $\operatorname{Diff}^{\infty}\left(\mathbb{S}^{1} \times[0,1]^{m-1}\right)$ is a complete metric space with respect to this metric d_{∞}.
Again considering diffeomorphisms on $\mathbb{S}^{1} \times[0,1]^{m-1}$ as maps from $[0,1]^{m}$ to \mathbb{R}^{m} we add the adjacent notation:

Definition 2.4. Let $f \in \operatorname{Diff}^{k}\left(\mathbb{S}^{1} \times[0,1]^{m-1}\right)$ with coordinate functions f_{i} be given. Then
$\|D f\|_{0}:=\max _{i, j \in\{1, \ldots, m\}}\left\|D_{j} f_{i}\right\|_{0}$,
$\|f\|_{k}:=\max \left\{\inf _{p \in \mathbb{Z}}\left\|f_{i}-p\right\|_{0},\left\|D_{\vec{a}} f_{i}\right\|_{0}: i=1, \ldots, m, \vec{a}\right.$ multiindex with $\left.1 \leq|\vec{a}| \leq k\right\}$
and

$$
\|\|f\|\|_{k}:=\max \left\{\|f\|_{k},\left\|f^{-1}\right\|_{k}\right\}
$$

Remark 2.5. By the above-mentioned observations for every multiindex \vec{a} with $|\vec{a}| \geq 1$ and every $i \in\{1, \ldots, m\}$ the derivative $D_{\vec{a}} h_{i}$ is \mathbb{Z}-periodic in the first variable. Since in case of a diffeomorphism $g=\left(g_{1}, \ldots, g_{m}\right)$ on $\mathbb{S}^{1} \times[0,1]^{m-1}$ regarded as a map $[0,1]^{m} \rightarrow \mathbb{R}^{m}$ the coordinate functions g_{j} for $j \in\{2, \ldots, m\}$ satisfy $g_{j}\left([0,1]^{m}\right) \subseteq[0,1]$, it holds:

$$
\sup _{z \in(0,1)^{m}}\left|\left(D_{\vec{a}} h_{i}\right)(g(z))\right| \leq\| \| h \mid\| \|_{|\vec{a}|} .
$$

Analogously we can define the same expressions in the case of the torus \mathbb{T}^{m}. In the case of \mathbb{D}^{m} the $\operatorname{Diff}^{k}\left(\mathbb{D}^{m}\right)$-topologies are defined in a natural way with the aid of the supremum norms. Subsequently, M is $\mathbb{S}^{1} \times[0,1]^{m-1}, \mathbb{D}^{m}$ or \mathbb{T}^{m}. Concerning the composition of functions the next results are useful:

Lemma 2.6. Let $s \in \mathbb{N}$ and g, h be C^{s}-functions on M. Then we have

$$
\|g \circ h\|_{s} \leq \frac{(m+s-1)!}{(m-1)!} \cdot\|g\|_{s} \cdot\|h\|_{s}^{s}
$$

Proof. By induction on $k \in \mathbb{N}$ we will prove the following observation:
Claim: For any multiindex $\vec{a} \in \mathbb{N}_{0}^{m}$ with $|\vec{a}|=k$ and $i \in\{1, \ldots, m\}$ the partial derivative $D_{\vec{a}}[g \circ h]_{i}$ consists of at most $\frac{(m+k-1)!}{(m-1)!}$ summands, where each summand is the product of one derivative of g of order at most k and at most k derivatives of h of order at most k.

- Start: $k=1$

For $i_{1}, i \in\{1, \ldots, m\}$ we compute:
$D_{x_{i_{1}}}[g \circ h]_{i}\left(x_{1}, \ldots, x_{m}\right)=\sum_{j_{1}=1}^{m}\left(D_{x_{j_{1}}}[g]_{i}\right)\left(h\left(x_{1}, \ldots, x_{m}\right)\right) \cdot D_{x_{i_{1}}}[h]_{j_{1}}\left(x_{1}, \ldots, x_{m}\right)$
Hence, this derivative consists of $m=\frac{(m+1-1)!}{(m-1)!}$ summands and each summand has the announced form.

- Induction assumption: The claim holds for $k \in \mathbb{N}$.
- Induction step: $k \rightarrow k+1$

Let $i \in\{1, . ., m\}$ and $\vec{b} \in \mathbb{N}_{0}^{m}$ be any multiindex of order $|\vec{b}|=k+1$. There are $j \in\{1, \ldots, m\}$ and a multiindex \vec{a} of order $|\vec{a}|=k$ such that $D_{\vec{b}}=$ $D_{x_{j}} D_{\vec{a}}$. By the induction assumption the partial derivative $D_{\vec{a}}[g \circ h]_{i}$ consists of at most $\frac{(m+k-1)!}{(m-1)!}$ summands, at which the summand with the most factors is of the subsequent form:

$$
D_{\vec{c}_{1}}[g]_{i}\left(h\left(x_{1}, \ldots, x_{m}\right)\right) \cdot D_{\vec{c}_{2}}[h]_{i_{2}}\left(x_{1}, \ldots, x_{m}\right) \cdot \ldots \cdot D_{\vec{c}_{k+1}}[h]_{i_{k+1}}\left(x_{1}, \ldots, x_{m}\right),
$$

where each \vec{c}_{i} is of order at most k. Using the product rule we compute how the derivative $D_{x_{j}}$ acts on such a summand:

$$
\begin{aligned}
& \left(\sum_{j_{1}=1}^{m} D_{x_{j_{1}}} D_{\vec{c}_{1}}[g]_{i} \circ h \cdot D_{x_{j}}[h]_{j_{1}} D_{\vec{c}_{2}}[h]_{i_{2}} \cdot \ldots \cdot D_{\vec{c}_{k+1}}[h]_{i_{k+1}}\right)+ \\
& D_{\vec{c}_{1}}[g]_{i} \circ h \cdot D_{x_{j}} D_{\vec{c}_{2}}[h]_{i_{2}} \cdot \ldots \cdot D_{\vec{c}_{k+1}}[h]_{i_{k+1}}+\ldots+D_{\vec{c}_{1}}[g]_{i} \circ h \cdot D_{\vec{c}_{2}}[h]_{i_{2}} \cdot \ldots \cdot D_{x_{j}} D_{\vec{c}_{k+1}}[h]_{i_{k+1}}
\end{aligned}
$$

Thus, each summand is the product of one derivative of g of order at most $k+1$ and at most $k+1$ derivatives of h of order at most $k+1$. Moreover, we observe that $m+k$ summands arise out of one. So the number of summands can be estimated by $(m+k) \cdot \frac{(m+k-1)!}{(m-1)!}=\frac{(m+k)!}{(m-1)!}$ and the claim is verified.

Using this claim we obtain for $i \in\{1, \ldots, m\}$ and any multiindex $\vec{a} \in \mathbb{N}_{0}^{m}$ of order $|\vec{a}|=k$:

$$
\left\|D_{\vec{a}}[g \circ h]_{i}\right\|_{0} \leq \frac{(m+k-1)!}{(m-1)!} \cdot\|g\|_{k} \cdot\|h\|_{k}^{k}
$$

Lemma 2.7. Let $s \in \mathbb{N}$ and f_{1}, \ldots, f_{l} be C^{s}-functions on M. Then we have

$$
\left\|f_{l} \circ \ldots \circ f_{1}\right\|_{s} \leq\left(\frac{(m+s-1)!}{(m-1)!}\right)^{l-1} \cdot\left\|f_{l}\right\|_{s} \cdot\left\|f_{l-1}\right\|_{s}^{s} \cdot \ldots \cdot\left\|f_{1}\right\|_{s}^{s}
$$

Proof. By several applications of Lemma 2.6 we conclude:

$$
\begin{aligned}
\left\|f_{l} \circ \ldots \circ f_{1}\right\|_{s} & \leq \frac{(m+s-1)!}{(m-1)!} \cdot\left\|f_{l} \circ \ldots \circ f_{2}\right\|_{s} \cdot\left\|f_{1}\right\|_{s}^{s} \\
& \leq \frac{(m+s-1)!}{(m-1)!} \cdot \frac{(m+s-1)!}{(m-1)!} \cdot\left\|f_{l} \circ \ldots \circ f_{3}\right\|_{s} \cdot\left\|f_{2}\right\|_{s}^{s} \cdot\left\|f_{1}\right\|_{s}^{s} \\
& \leq\left(\frac{(m+s-1)!}{(m-1)!}\right)^{l-1} \cdot\left\|f_{l}\right\|_{s} \cdot\left\|f_{l-1}\right\|_{s}^{s} \cdot \ldots \cdot\left\|f_{1}\right\|_{s}^{s}
\end{aligned}
$$

Lemma 2.8. Let $s \in \mathbb{N}$ and f_{1}, \ldots, f_{l} be C^{s}-diffeomorphisms on M. Then we have

$$
\left\|\left|\left\lvert\, f_{l} \circ \ldots \circ f_{1}\| \|_{s} \leq\left(\frac{(m+s-1)!}{(m-1)!}\right)^{l-1} \cdot\| \| f_{l}\left\|_{s}^{s} \cdot \ldots \cdot\right\|\left\|f_{1}\right\|_{s}^{s}\right.\right.\right.
$$

Proof. Applying Lemma 2.7 on $f_{l} \circ \ldots \circ f_{1}$ as well as $f_{1}^{-1} \circ \ldots \circ f_{l}^{-1}$ yields the statement.

2.2. Outline of the proof

Let $\mathbb{S}^{1} \times[0,1]^{m-1}$ be equipped with Lebesgue measure μ and smooth circle action $\mathcal{R}=\left\{R_{t}\right\}_{t \in \mathbb{S}^{1}}$ comprising of the maps $R_{t}\left(\theta, r_{1}, \ldots, r_{m-1}\right)=\left(\theta+t, r_{1}, \ldots, r_{m-1}\right)$. The aimed diffeomorphisms are constructed as limits of conjugates $f_{n}=H_{n}$ 。 $R_{\alpha_{n+1}} \circ H_{n}^{-1}$, where $\alpha_{n+1}=\frac{p_{n+1}}{q_{n+1}} \in \mathbb{Q}, H_{n}=H_{n-1} \circ h_{n}$ and h_{n} is a measurepreserving diffeomorphism satisfying $R_{\frac{1}{q_{n}}} \circ h_{n}=h_{n} \circ R_{\frac{1}{q_{n}}}$. In each step the conjugation map h_{n} is composed of two measure-preserving diffeomorphisms: $h_{n}=g_{n} \circ \phi_{n}$. The step-by-step defined map ϕ_{n} is constructed in section 3 with the aid of several maps. In fact, $\phi_{n}=\bar{\phi}_{\lambda_{m}, \delta_{n}}^{(m)} \circ \ldots \circ \bar{\phi}_{\lambda_{1}, \delta_{n}}^{(1)}$ is a composition of maps $\bar{\phi}_{\lambda, \delta}^{(j)}=C_{\lambda}^{-1} \circ \tilde{\phi}_{\delta}^{(j)} \circ C_{\lambda}$, where $C_{\lambda}\left(\theta, r_{1}, \ldots, r_{m-1}\right)=\left(\lambda \cdot \theta, r_{1}, \ldots, r_{m-1}\right)$ causes a stretch by λ in the first coordinate and $\tilde{\phi}_{\delta}^{(j)}$ is a "quasi-rotation", i.e. a measure-preserving diffeomorphism that coincides with the rotation by $\frac{\pi}{2}$ in the $x_{1}-x_{j}$-plane in the interior and with the identitity in a neighbourhood of the boundary of $[0,1]^{m}$. Descriptively, $\bar{\phi}_{\lambda, \delta}^{(j)}$ maps a cuboid of x_{1}-length l_{1} and x_{j}-length l_{j} onto one with x_{1}-length $\lambda^{-1} l_{j}$ and x_{j}-length λl_{1}. Additionally, we introduce a sequence of partial partitions η_{n} converging to the decomposition into points in subsection 3.6. These constructions are exhibited in such a way that $\Phi_{n}:=\phi_{n} \circ R_{\alpha_{n+1}}^{m_{n}} \circ \phi_{n}^{-1}$ with a specific sequence $\left(m_{n}\right)_{n \in \mathbb{N}}$ of natural numbers (see section 4) satisfies the requirements of a criterion for weak mixing based on the notion of a $(\gamma, \delta, \epsilon)$-distribution. This criterion is stated in section 5 and is similar to the one deduced in [GKu]. In order to apply it, the map g_{n} shall introduce shear in the θ-direction. Therefore, we choose

$$
g_{n}\left(\theta, r_{1}, \ldots, r_{m-1}\right)=\left(\theta+n \cdot q_{n} \cdot r_{1}, r_{1}, \ldots, r_{m-1}\right) .
$$

Moreover, Φ_{n} has to map each element of the partial partition η_{n} on a set of almost full length in the r_{1}, \ldots, r_{m-1}-coordinates in an almost uniform way. In order to produce such a mapping behaviour, there will be n different sections in a fundamental domain $\left[0, \frac{1}{q_{n}}\right] \times[0,1]^{m-1}$ with carefully chosen parameters λ_{j} of the $\operatorname{map} \phi_{n}$ and shapes of partition elements in η_{n}. This can be described as an "adaptive version" of the approximation by conjugation-method and is the novelty in the constructions of [GKu].
In our case, the sequence of rational numbers will be

$$
\alpha_{n+1}=\frac{p_{n+1}}{q_{n+1}}=\alpha_{n}-\frac{a_{n}}{q_{n} \cdot \tilde{q}_{n+1}},
$$

where $a_{n} \in \mathbb{Z}, 1 \leq a_{n} \leq q_{n}$ is chosen in such a way that $\tilde{q}_{n+1} \cdot p_{n} \equiv a_{n} \bmod q_{n}$. Hereby, we have $\left|\alpha_{n+1}-\alpha_{n}\right| \leq \frac{1}{\tilde{q}_{n+1}}$ and $\tilde{q}_{n+1} \cdot \alpha_{n+1}=\frac{\tilde{q}_{n+1} \cdot p_{n}}{q_{n}}-\frac{a_{n}}{q_{n}} \equiv 0 \bmod 1$, which implies $f_{n}^{\tilde{q}_{n+1}}=$ id. Hence, $\left(\tilde{q}_{n}\right)_{n \in \mathbb{N}}$ will be a uniform rigidity sequence of $f=\lim _{n \rightarrow \infty} f_{n}$ under some restrictions on the closeness between f_{n} and f (see subsection 6.3), which depend on the norms of the conjugation maps H_{i} and the distances $\left|\alpha_{i+1}-\alpha_{i}\right| \leq \frac{1}{\frac{\tilde{q}_{i+1}}{}}$ for every $i>n$. In the course of the paper, we will face the following conditions:

$$
\begin{equation*}
q_{n+1} \geq n^{2} \cdot q_{n}^{m \cdot n+2} \tag{A}
\end{equation*}
$$

$$
\begin{gather*}
\tilde{q}_{n+1} \geq 2^{n} \cdot C_{n} \cdot q_{n} \cdot\| \| H_{n}\| \|_{n+1}^{n+1} \tag{B}\\
\left\|D H_{n-1}\right\|_{0} \leq \frac{q_{n}}{n^{2}} \tag{C}
\end{gather*}
$$

Thus, we have to estimate the norms $\left|\left|\left|H_{n}\right| \|_{n+1}\right.\right.$ carefully. This will yield the subsequent requirement on the number \tilde{q}_{n+1} (see the end of section 6.2):

$$
\tilde{q}_{n+1} \geq \varphi(n) \cdot \tilde{q}_{n}^{2 \cdot m^{2} \cdot(n+1)^{n+3}}
$$

where $\varphi(n)$ is defined as above. This is a sufficient condition on the growth rate of the uniform rigidity sequence $\left(\tilde{q}_{n}\right)_{n \in \mathbb{N}}$ and we prove that f is weakly mixing using the before-mentioned criterion.
Since all the constructed diffeomporphisms coincide with the identity in a neighbourhood of the boundary, we can use these constructions on the torus \mathbb{T}^{m} as well. In section 7 we transfer our constructions to the case of \mathbb{D}^{m}.

3. Explicit constructions

In the first subsections we aim for a measure-preserving diffeomorphism on $[-1,1]^{m}$ that coincides with the rotation by $\frac{\pi}{2}$ in the $x_{1}-x_{j}$-plane on $[-1+$ $5 \delta, 1-5 \delta]^{m}$ and with the identity in a neighbourhood of the boundary. In [GKu], Lemma 3.6, we constructed such a pseudo-rotation $\varphi_{\delta, 1, j}$ with the aid of "Moser's trick". Since we need precise norm estimates on the parameter δ, we have to find a new construction.

3.1. Bump functions

We use the smooth map

$$
j(x)= \begin{cases}\exp \left(-\frac{1}{x^{2}}\right) & \text { for } x \geq 0 \\ 0 & \text { for } x<0\end{cases}
$$

First of all, we find norm estimates for this function j :
Lemma 3.1. For every $s \in \mathbb{N}$:

$$
\|j\|_{s}:=\max _{t=0,1, \ldots, s} \max _{x \in[0,1]}\left|j^{(t)}(x)\right| \leq 3^{2 s} \cdot s^{1.5 s} \cdot(s-1)!
$$

Proof. By direct calculation, see [Ku], Lemma 5.2.
Using the map j we define the bump function

$$
k_{a, b}(x)=\frac{j(b-x)}{j(x-a)+j(b-x)},
$$

where $a, b \in(0,1)$. We examine this bump function $k_{a, b}$:

Figure 1: Qualitative shape of the bump function $k_{a, b}$

Lemma 3.2. For every $s \in \mathbb{N}$:

$$
\left\|k_{a, b}\right\|_{s} \leq 2^{s-1} \cdot 3^{2 s^{2}+2 s} \cdot s^{1.5 s^{2}+1.5 s} \cdot s!^{s+2} \cdot \exp \left(\left(\frac{2}{b-a}\right)^{2} \cdot(s+1)\right)
$$

Proof. By direct calculation and induction arguments, see [Ku], Lemma 5.3.

In our constructions we use $a=1-3 \delta$ and $b=1-2 \delta$. We denote the corresponding map by k_{δ}. In an analogous manner we define the map

$$
v_{a, b, c, d}(x)=\frac{j(x-a)}{j(b-x)+j(x-a)} \cdot \frac{j(d-x)}{j(x-c)+j(d-x)}
$$

The map v_{ε} is introduced in case of $a=-1+\varepsilon, b=-1+2 \varepsilon, c=1-2 \varepsilon$ and $d=1-\varepsilon$. We find the same norm estimate.

3.2. The map $\psi_{\varepsilon, \delta, j}$

In case of $j \in\{2, \ldots, m\}$ we define the smooth diffeomorphism

$$
\begin{aligned}
& \psi_{\varepsilon, \delta, j}\left(\theta, x_{2}, \ldots, x_{j-1}, r, x_{j+1}, \ldots, x_{m}\right) \\
= & \left(\theta+\frac{\pi}{2} \cdot k_{\delta}(r) \cdot v_{\varepsilon}\left(x_{2}\right) \cdot \ldots v_{\varepsilon}\left(x_{j-1}\right) \cdot v_{\varepsilon}\left(x_{j+1}\right) \cdot \ldots v_{\varepsilon}\left(x_{m}\right), x_{2}, \ldots, x_{j-1}, r, x_{j+1}, \ldots, x_{m}\right)
\end{aligned}
$$

We choose $\varepsilon=2.5 \cdot \delta$ and denote the resulting map by $\psi_{\delta, j}$. As a direct consequence of the previous section we conclude:

Lemma 3.3. For every $s \in \mathbb{N}$:

$$
\left\|\psi_{\delta, j}\right\| \|_{s} \leq \pi \cdot 2^{s-1} \cdot 3^{s^{2}+s} \cdot s^{1.5 s^{2}+1.5 s} \cdot s^{s+2} \cdot \exp \left(\left(\frac{2}{\delta}\right)^{2} \cdot(s+1)\right) .
$$

Figure 2: Qualitative shape of the bump function $v_{a, b, c, d}$

3.3. The map κ_{δ}

In the construction of our conjugation map φ_{ε} there is an angle-dependent dilation. In order to make this angle-dependence smooth we use the bump functions. We define the smooth map κ_{δ} :

- On $\left[0, \frac{\pi}{2}\right]$:

$$
\kappa_{\delta}(\theta)=k_{\frac{\pi}{4}-\frac{\delta}{2}, \frac{\pi}{4}+\frac{\delta}{2}}(\theta) \cdot \frac{1}{(\cos (\theta))^{2}}+\left(1-k_{\frac{\pi}{4}-\frac{\delta}{2}, \frac{\pi}{4}+\frac{\delta}{2}}(\theta)\right) \cdot \frac{1}{(\sin (\theta))^{2}}
$$

- $\operatorname{On}\left[\frac{\pi}{2}, \pi\right]$:

$$
\kappa_{\delta}(\theta)=k_{\frac{3 \pi}{4}-\frac{\delta}{2}, \frac{3 \pi}{4}+\frac{\delta}{2}}(\theta) \cdot \frac{1}{(\sin (\theta))^{2}}+\left(1-k_{\frac{3 \pi}{4}-\frac{\delta}{2}, \frac{3 \pi}{4}+\frac{\delta}{2}}(\theta)\right) \cdot \frac{1}{(\cos (\theta))^{2}}
$$

- On $\left[\pi, \frac{3 \cdot \pi}{2}\right]$:

$$
\kappa_{\delta}(\theta)=k_{\frac{5 \pi}{4}-\frac{\delta}{2}, \frac{5 \pi}{4}+\frac{\delta}{2}}(\theta) \cdot \frac{1}{(\cos (\theta))^{2}}+\left(1-k_{\frac{5 \pi}{4}-\frac{\delta}{2}, \frac{5 \pi}{4}+\frac{\delta}{2}}(\theta)\right) \cdot \frac{1}{(\sin (\theta))^{2}}
$$

- On $\left[\frac{3 \cdot \pi}{2}, 2 \pi\right]$:

$$
\kappa_{\delta}(\theta)=k_{\frac{7 \pi}{4}-\frac{\delta}{2}, \frac{7 \pi}{4}+\frac{\delta}{2}}(\theta) \cdot \frac{1}{(\sin (\theta))^{2}}+\left(1-k_{\frac{7 \pi}{4}-\frac{\delta}{2}, \frac{7 \pi}{4}+\frac{\delta}{2}}(\theta)\right) \cdot \frac{1}{(\cos (\theta))^{2}}
$$

Remark 3.4. We note: $\kappa_{\delta}\left(\theta+\frac{\pi}{2}\right)=\kappa_{\delta}(\theta)$.
Lemma 3.5. For every $s \in \mathbb{N}$:

$$
\left\|\kappa_{\delta}\right\|_{s} \leq 2^{4 s+2} \cdot 3^{2 s^{2}+2 s} \cdot s!^{s+3} \cdot s^{1.5 s^{2}+1.5 s} \cdot \exp \left(\frac{4}{\delta^{2}} \cdot(s+1)\right)
$$

Proof. By direct calculation and induction arguments based on the quotient rule, see $[\mathrm{Ku}]$, Lemma 5.6.

3.4. $M a p \varphi_{\delta}$

We consider the disc \mathbb{D}^{2} equipped with symplectic polar coordinates (θ, r). For $r_{1}, r_{2} \in(0,1)$ we define the map

$$
\varphi_{r_{1}, r_{2}, \delta}(\theta, r)=\left(\theta, \kappa_{\delta}(\theta) \cdot r_{1}^{2}+r-r_{1}\right) \text { on } B\left(r_{1}, r_{2}\right)
$$

where $B\left(r_{1}, r_{2}\right)=\left\{(\theta, r): \theta \in \mathbb{R} / 2 \pi \mathbb{Z}, r \in\left[r_{1}, r_{2}\right]\right\}$. In our constructions we use $r_{1}=1-4 \delta$ and $r_{2}=1-\delta$. The corresponding map is called φ_{δ}.

3.5. Conjugation map ϕ_{n}

The coordinate change from symplectic polar coordinates to cartesian coordinates is given by:

$$
P(\theta, r)=\binom{x}{y}=\binom{\sqrt{r} \cdot \cos (\theta)}{\sqrt{r} \cdot \sin (\theta)}
$$

A direct computation yields $|\operatorname{det}(J P)|=\frac{1}{2}$ except at the origin.
With the aid of the maps introduced in the previous subsections we construct the smooth diffeomorphism ϕ_{δ} on \mathbb{R}^{2} equipped with symplectic polar coordinates (θ, r) :

$$
\phi_{\delta}(\theta, r)= \begin{cases}\left(\theta+\frac{\pi}{2}, r\right) & \text { inside of } \varphi_{\delta}\left(\mathbb{R} / 2 \pi \mathbb{Z} \times\left\{r_{1}\right\}\right) \\ \varphi_{\delta} \circ \psi_{\delta, 2} \circ \varphi_{\delta}^{-1}(\theta, r) & \text { on } \varphi_{\delta}\left(B\left(r_{1}, r_{2}\right)\right) \\ (\theta, r) & \text { outside of } \varphi_{\delta}\left(\mathbb{R} / 2 \pi \mathbb{Z} \times\left\{r_{2}\right\}\right)\end{cases}
$$

Recall that the domain $\varphi_{\delta}\left(B\left(r_{1}, r_{2}\right)\right)$ is invariant under the rotation about arc $\frac{\pi}{2}$ due to Remark 3.4. By our choice of r_{1} the map ϕ_{δ} is the rotation about the angle $\frac{\pi}{2}$ on $[-1+5 \delta, 1-5 \delta]^{2}$. Moreover, it coincides with the identity in a neighbourhood of the boundary of $[-1,1]^{2}$.
For $(\theta, \bar{r})=\varphi_{\delta}\left(\theta, r_{1}\right)$ we have

$$
\phi_{\delta}(\theta, \bar{r})=\varphi_{\delta} \circ \psi_{\delta, 2}\left(\theta, r_{1}\right)=\varphi_{\delta}\left(\theta+\frac{\pi}{2} \cdot k_{\delta}\left(r_{1}\right), r_{1}\right)=\left(\theta+\frac{\pi}{2}, \bar{r}\right)
$$

and for $(\theta, \bar{r})=\varphi_{\delta}\left(\theta, r_{2}\right)$ we have

$$
\phi_{\delta}(\theta, \bar{r})=\varphi_{\delta} \circ \psi_{\delta, 2}\left(\theta, r_{2}\right)=\varphi_{\delta}\left(\theta+\frac{\pi}{2} \cdot k_{\delta}\left(r_{2}\right), r_{2}\right)=(\theta, \bar{r})
$$

Since $r_{1}<a<b<r_{2}$ these equalities hold true on a neighbourhood of the points. Thus, ϕ_{δ} is a smooth diffeomorphism. Furthermore, ϕ_{δ} is measurepreserving because the maps φ_{δ} and $\psi_{\delta, 2}$ are.

Lemma 3.6. For every $s \in \mathbb{N}$:
$\left\|\left\|\phi_{\delta}\right\|\right\|_{s} \leq \pi^{s} \cdot 2^{4 s^{3}+3 s^{2}+3 s+3} \cdot 3^{2 s^{4}+4 s^{3}+4 s^{2}+2 s} \cdot s!^{s^{3}+4 s^{2}+4 s+4} \cdot s^{1.5 s^{4}+3 s^{3}+3 s^{2}+1.5 s} \cdot \exp \left(\frac{4}{\delta^{2}} \cdot\left(s^{3}+2 s^{2}+2 s+1\right)\right)$

Proof. With the aid of the chain rule and the previous norm estimates, see [Ku], Lemma 5.7.

We examine the coordinate change P on $B\left(r_{1}, r_{2}\right)$:
Lemma 3.7. For every $s \in \mathbb{N}$:

$$
\|P\|_{s, B\left(r_{1}, r_{2}\right)} \leq \frac{(2 s-2)!}{(s-1)!} \cdot \frac{1}{2^{s-0.5}}
$$

Proof. By direct calculation, see [Ku], Lemma 5.8.
For the inverse $\left.P^{-1}\right|_{P\left(B\left(r_{1}, r_{2}\right)\right)}$ we have the subsequent estimate:
Lemma 3.8. For every $s \in \mathbb{N}$:

$$
\left\|P^{-1}\right\|_{s, P\left(B\left(r_{1}, r_{2}\right)\right)} \leq 2^{3 s-2} \cdot(s-1)!
$$

Proof. By calculation and induction arguments based on the quotient rule, see [Ku], Lemma 5.9.

In higher dimension we define analogously in case of $j \in\{2, \ldots, m\}$:

$$
\begin{aligned}
& \phi_{\delta}^{(j)}\left(\theta, x_{2}, \ldots, x_{j-1}, r, x_{j+1}, \ldots, x_{m}\right) \\
&= \begin{cases}\left(\theta+\frac{\pi}{2}, x_{2}, \ldots, x_{j-1}, r, x_{j+1}, \ldots, x_{m}\right) & \text { inside of } \varphi_{\delta}\left(\mathbb{R} / 2 \pi \mathbb{Z} \times \mathbb{R}^{j-2} \times\left\{r_{1}\right\} \times \mathbb{R}^{m-j}\right) \\
\varphi_{\delta} \circ \psi_{\delta, j} \circ \varphi_{\delta}^{-1}\left(\theta, x_{2}, \ldots, x_{j-1}, r, x_{j+1}, \ldots, x_{m}\right) & \text { on } \varphi_{\delta}\left(B\left(r_{1}, r_{2}\right)\right) \\
\left(\theta, x_{2}, \ldots, x_{j-1}, r, x_{j+1}, \ldots, x_{m}\right) & \text { outside of } \varphi_{\delta}\left(\mathbb{R} / 2 \pi \mathbb{Z} \times \mathbb{R}^{j-2} \times\left\{r_{2}\right\} \times \mathbb{R}^{m-j}\right)\end{cases}
\end{aligned}
$$

where $B\left(r_{1}, r_{2}\right)=\left\{\left(\theta, x_{2}, \ldots, x_{j-1}, r, x_{j+1}, \ldots, x_{m}\right): \theta \in \mathbb{R} / 2 \pi \mathbb{Z}, x_{i} \in \mathbb{R}, r \in\left(r_{1}, r_{2}\right)\right\}$.
Again, we observe that $\phi_{\delta}^{(j)}$ is a smooth measure-preserving map which coincides with the rotation in the $\theta-x_{j}$-plane in $[-1+5 \delta, 1-5 \delta]^{m}$ and with the identity in a neighbourhood of the boundary of $[-1,1]^{m}$.

In the next step we consider the measure-preserving map $\hat{\phi}_{\delta}^{(j)}:=P \circ \phi_{\delta}^{(j)} \circ$ P^{-1}, where the coordinate transformation P acts in the coordinates θ and x_{j} : Let $s \geq 2$. Lemma 2.6 yields for $\bar{\phi}:=\phi_{\delta}^{(j)} \circ P^{-1}$:

$$
\|\bar{\phi}\|_{s} \leq \frac{(m+s-1)!}{(m-1)!} \cdot\left\|\phi_{\delta}^{(j)}\right\|_{s} \cdot\left\|P^{-1}\right\|_{s, P\left(B\left(r_{1}, r_{2}\right)\right)}^{s}
$$

Again using Lemma 2.6 we obtain

$$
\begin{aligned}
\left\|\hat{\phi}_{\delta}^{(j)}\right\|_{s} \leq & \frac{(m+s-1)!}{(m-1)!} \cdot\|P\|_{s, B\left(r_{1}, r_{2}\right)} \cdot\|\bar{\phi}\|_{s}^{s} \\
\leq & \left(\frac{(m+s-1)!}{(m-1)!}\right)^{s+1} \cdot\|P\|_{s, B\left(r_{1}, r_{2}\right)} \cdot\left\|\phi_{\delta}^{(j)}\right\|_{s}^{s} \cdot\left\|P^{-1}\right\|_{s, P\left(B\left(r_{1}, r_{2}\right)\right)}^{s^{2}} \\
\leq & \left(\frac{(m+s-1)!}{(m-1)!}\right)^{s+1} \cdot \frac{(2 s-2)!}{(s-1)!} \cdot \pi^{s^{2}} \cdot 2^{4 s^{4}+6 s^{3}+s^{2}+2 s+0.5} \cdot 3^{2 s^{5}+4 s^{4}+4 s^{3}+2 s^{2}} . \\
& s!^{s^{4}+4 s^{3}+4 s^{2}+4 s} \cdot s^{1.5 s^{5}+3 s^{4}+3 s^{3}+1.5 s^{2}} \cdot \exp \left(\frac{4}{\delta^{2}} \cdot\left(s^{4}+2 s^{3}+2 s^{2}+s\right)\right) \cdot(s-1)!^{s^{2}} \\
\leq & \left(\frac{(m+s-1)!}{(m-1)!}\right)^{s+1} \cdot \frac{(2 s-2)!}{(s-1)!} \cdot \pi^{s^{2}} \cdot 2^{4 s^{4}+6 s^{3}+s^{2}+2 s+0.5} \cdot 9^{s^{5}+2 s^{4}+2 s^{3}+s^{2}} . \\
& s!^{s^{4}+4 s^{3}+5 s^{2}+4 s} \cdot s^{1.5 s^{5}+3 s^{4}+3 s^{3}+0.5 s^{2}} \cdot \exp \left(\frac{4}{\delta^{2}} \cdot\left(s^{4}+2 s^{3}+2 s^{2}+s\right)\right)
\end{aligned}
$$

Let S be a dilation by factor 2 and a translation such that $\tilde{\phi}_{\delta}^{(j)}:=S^{-1} \circ \hat{\phi}_{\delta}^{(j)} \circ S$ is a measure-preserving diffeomorphism on $[0,1]^{m}$. Then we have

$$
\left\|\tilde{\phi}_{\delta}^{(j)}\right\|_{s} \leq 2^{s-1} \cdot\left\|\hat{\phi}_{\delta}^{(j)}\right\|_{s} .
$$

Since $2 \leq s \leq s!$ and $9 \leq \exp \left(\frac{1}{\delta^{2}}\right)$ we continue in the following manner:

$$
\begin{aligned}
& \left\|\tilde{\phi}_{\delta}^{(j)}\right\|_{s} \\
\leq & \left(\frac{(m+s-1)!}{(m-1)!}\right)^{s+1} \cdot \frac{(2 s-2)!}{(s-1)!} \cdot \pi^{s^{2}} \cdot s!^{1.5 s^{5}+8 s^{4}+13 s^{3}+6.5 s^{2}+6 s+0.5} \cdot \exp \left(\frac{1}{\delta^{2}} \cdot\left(s^{5}+6 s^{4}+10 s^{3}+9 s^{2}+4 s\right)\right)
\end{aligned}
$$

Due to $s \geq 2$ we have $1.5 s^{5}+8 s^{4}+13 s^{3}+6.5 s^{2}+6 s+0.5 \leq 10 s^{5}$ as well as $s^{5}+6 s^{4}+10 s^{3}+9 s^{2}+4 s \leq 8 s^{5}$. Thus, we proved the following statement:

Lemma 3.9. For every $s \in \mathbb{N}, s \geq 2$:

$$
\left\|\tilde{\phi}_{\delta}^{(j)}\right\| \|_{s} \leq\left(\frac{(m+s-1)!}{(m-1)!}\right)^{s+1} \cdot \frac{(2 s-2)!}{(s-1)!} \cdot \pi^{s^{2}} \cdot\left(s!\cdot \exp \left(\frac{1}{\delta^{2}}\right)\right)^{10 \cdot s^{5}}
$$

For $\lambda \in \mathbb{N}$ we use the map $C_{\lambda}\left(x_{1}, \ldots, x_{m}\right)=\left(\lambda \cdot x_{1}, x_{2}, \ldots, x_{m}\right)$. Hereby, we define the measure-preserving diffeomorphism

$$
\bar{\phi}_{\lambda, \delta}^{(j)}=C_{\lambda}^{-1} \circ \tilde{\phi}_{\delta}^{(j)} \circ C_{\lambda} .
$$

For the sake of convenience we use the notation:

$$
\bar{\phi}_{\lambda}^{(j)}=\bar{\phi}_{\lambda, \frac{1}{20 n}}^{(j)} .
$$

Then we construct the conjugation map ϕ_{n} on the fundamental sector $\left[0, \frac{1}{q_{n}}\right] \times$ $[0,1]^{m-1}$. On $\left[\frac{k}{n \cdot q_{n}}, \frac{k+1}{n \cdot q_{n}}\right] \times[0,1]^{m-1}$ in case of $k \in \mathbb{Z}, 0 \leq k \leq n-1$:

$$
\phi_{n}=\bar{\phi}_{n \cdot q_{n}^{2 \cdot(m-1) \cdot(k+1)}}^{(m)^{2}} \circ \ldots \circ \bar{\phi}_{n \cdot q_{n}^{2 \cdot 2 \cdot(k+1)}}^{(3)} \circ \bar{\phi}_{n \cdot q_{n}^{2 \cdot(k+1)}}^{(2)}
$$

Since ϕ_{n} coincides with the identity in a neighbourhood of the boundary of each individual section, ϕ_{n} is a smooth map. It is extended to a diffeomorhism on $\mathbb{S}^{1} \times[0,1]^{m-1}$ or \mathbb{T}^{m} by the description $\phi_{n} \circ R_{\frac{1}{q_{n}}}=R_{\frac{1}{q_{n}}} \circ \phi_{n}$.

3.6. Partial partition η_{n}

Remark 3.10. For convenience we will use the notation $\prod_{i=2}^{m}\left[a_{i}, b_{i}\right]$ for $\left[a_{2}, b_{2}\right] \times$ $\ldots \times\left[a_{m}, b_{m}\right]$

Initially, η_{n} will be constructed on the fundamental sector $\left[0, \frac{1}{q_{n}}\right] \times[0,1]^{m-1}$. For this purpose, we divide the fundamental sector in n sections:

- In case of $k \in \mathbb{N}$ and $0 \leq k \leq n-2$ on $\left[\frac{k}{n \cdot q_{n}}, \frac{k+1}{n \cdot q_{n}}\right] \times[0,1]^{m-1}$ the partial partition η_{n} consists of all multidimensional intervals of the following form:

$$
\begin{aligned}
& {\left[\frac{k}{n \cdot q_{n}}+\frac{j_{1}^{(1)}}{n \cdot q_{n}^{2}}+\ldots+\frac{j_{1}^{(2 \cdot m \cdot(k+1)-1)}}{n \cdot q_{n}^{2 \cdot m \cdot(k+1)}}+\frac{1}{2 n^{2} \cdot q_{n}^{2 \cdot m \cdot(k+1)}},\right.} \\
& \left.\frac{k}{n \cdot q_{n}}+\frac{j_{1}^{(1)}}{n \cdot q_{n}^{2}}+\ldots+\frac{j_{1}^{(2 \cdot m \cdot(k+1)-1)}+1}{n \cdot q_{n}^{2 \cdot m \cdot(k+1)}}-\frac{1}{2 n^{2} \cdot q_{n}^{2 \cdot m \cdot(k+1)}}\right] \\
\times & \prod_{i=2}^{m}\left[\frac{j_{i}^{(1)}}{q_{n}}+\frac{j_{i}^{(2)}}{q_{n}^{2}}+\frac{1}{2 n \cdot q_{n}^{2}}, \frac{j_{i}^{(1)}}{q_{n}}+\frac{j_{i}^{(2)}+1}{q_{n}^{2}}-\frac{1}{2 n \cdot q_{n}^{2}}\right],
\end{aligned}
$$

where $j_{1}^{(l)} \in \mathbb{Z}$ and $\left\lceil\frac{q_{n}}{2 n}\right\rceil \leq j_{1}^{(l)} \leq q_{n}-\left\lceil\frac{q_{n}}{2 n}\right\rceil-1$ for $l=1, \ldots, 2 \cdot m \cdot(k+1)-1$ as well as $j_{i}^{(l)} \in \mathbb{Z}$ and $\left\lceil\frac{q_{n}}{n}\right\rceil \leq j_{i}^{(l)} \leq q_{n}-\left\lceil\frac{q_{n}}{2 n}\right\rceil-1$ for $i=2, \ldots, m$ and $l=1,2$.

- On $\left[\frac{n-1}{n \cdot q_{n}}, \frac{1}{q_{n}}\right] \times[0,1]^{m-1}$ there are no elements of the partial partition η_{n}.

As the image under $R_{l / q_{n}}$ with $l \in \mathbb{Z}$ this partial partition of $\left[0, \frac{1}{q_{n}}\right] \times$ $[0,1]^{m-1}$ is extended to a partial partition of $\mathbb{S}^{1} \times[0,1]^{m-1}$ or \mathbb{T}^{m}.
Remark 3.11. By construction this sequence of partial partitions converges to the decomposition into points.

4. $(\gamma, \delta, \epsilon)$-distribution

We introduce the central notion of the criterion for weak mixing deduced in the next section:

Definition 4.1. Let $\Phi: M \rightarrow M$ be a diffeomorphism. We say $\Phi(\gamma, \delta, \epsilon)$ distributes an element \hat{I} of a partial partition if the following properties are satisfied:

- $\pi_{\vec{r}}(\Phi(\hat{I}))$ is a $(m-1)$-dimensional interval J, i.e. $J=I_{1} \times \ldots \times I_{m-1}$ with intervals $I_{k} \subseteq[0,1]$, and $1-\delta \leq \lambda\left(I_{k}\right) \leq 1$ for $k=1, \ldots, m-1$. Here, $\pi_{\vec{r}}$ denotes the projection on the $\left(r_{1}, \ldots, r_{m-1}\right)$-coordinates.
- $\Phi(\hat{I})$ is contained in a set of the form $[c, c+\gamma] \times J$ for some $c \in \mathbb{S}^{1}$.
- For every $(m-1)$-dimensional interval $\tilde{J} \subseteq J$ it holds:

$$
\left|\frac{\mu\left(\hat{I} \cap \Phi^{-1}\left(\mathbb{S}^{1} \times \tilde{J}\right)\right)}{\mu(\hat{I})}-\frac{\mu^{(m-1)}(\tilde{J})}{\mu^{(m-1)}(J)}\right| \leq \epsilon \cdot \frac{\mu^{(m-1)}(\tilde{J})}{\mu^{(m-1)}(J)},
$$

where $\mu^{(m-1)}$ is the Lebesgue measure on $[0,1]^{m-1}$.
In the next step we define the sequence of natural numbers $\left(m_{n}\right)_{n \in \mathbb{N}}$:

$$
\begin{aligned}
m_{n} & =\min \left\{m \leq q_{n+1} \quad: \quad m \in \mathbb{N}, \quad \inf _{k \in \mathbb{Z}}\left|m \cdot \frac{p_{n+1}}{q_{n+1}}-\frac{1}{n \cdot q_{n}}+\frac{k}{q_{n}}\right| \leq \frac{q_{n}}{q_{n+1}}\right\} \\
& =\min \left\{m \leq q_{n+1} \quad: \quad m \in \mathbb{N}, \quad \inf _{k \in \mathbb{Z}}\left|m \cdot \frac{q_{n} \cdot p_{n+1}}{q_{n+1}}-\frac{1}{n}+k\right| \leq \frac{q_{n}^{2}}{q_{n+1}}\right\}
\end{aligned}
$$

Lemma 4.2. The set $\left\{m \leq q_{n+1}: m \in \mathbb{N}, \quad \inf _{k \in \mathbb{Z}}\left|m \cdot \frac{q_{n} \cdot p_{n+1}}{q_{n+1}}-\frac{1}{n}+k\right| \leq \frac{q_{n}^{2}}{q_{n+1}}\right\}$ is nonempty for every $n \in \mathbb{N}$, i.e. m_{n} exists.
Proof. The number α_{n+1} was constructed by the rule $\frac{p_{n+1}}{q_{n+1}}=\frac{p_{n}}{q_{n}}-\frac{a_{n}}{q_{n} \cdot \tilde{q}_{n+1}}$, where $a_{n} \in \mathbb{Z}, 1 \leq a_{n} \leq q_{n}$, i.e. $p_{n+1}=p_{n} \cdot \tilde{q}_{n+1}-a_{n}$ and $q_{n+1}=q_{n}$. \tilde{q}_{n+1}. So $\frac{q_{n} \cdot p_{n+1}}{q_{n+1}}=\frac{p_{n+1}}{\tilde{q}_{n+1}}$ and the set $\left\{j \cdot \frac{q_{n} \cdot p_{n+1}}{q_{n+1}}: j=1,2, \ldots, q_{n+1}\right\}$ contains $\frac{\tilde{q}_{n+1}}{\operatorname{gcd}\left(p_{n+1}, \tilde{q}_{n+1}\right)}$ different equally distributed points on \mathbb{S}^{1}. Hence, there are at least $\frac{\tilde{q}_{n+1}}{q_{n}}=\frac{q_{n+1}}{q_{n}^{2}}$ different such points and so for every $x \in \mathbb{S}^{1}$ there is a $j \in\left\{1, \ldots, q_{n+1}\right\}$ such that

$$
\inf _{k \in \mathbb{Z}}\left|x-j \cdot \frac{q_{n} \cdot p_{n+1}}{q_{n+1}}+k\right| \leq \frac{q_{n}^{2}}{q_{n+1}}
$$

In particular, this is true for $x=\frac{1}{n}$.
Remark 4.3. We define

$$
b_{n}=\left(m_{n} \cdot \frac{p_{n+1}}{q_{n+1}}-\frac{1}{n \cdot q_{n}}\right) \bmod \frac{1}{q_{n}}
$$

By the above construction of m_{n} it holds that $\left|b_{n}\right| \leq \frac{q_{n}}{q_{n+1}}$. Due to the before mentioned condition A we have $q_{n+1} \geq 8 \cdot n^{2} \cdot q_{n}^{2 n+1}$ particularly. Thus, we get:

$$
\left|b_{n}\right| \leq \frac{1}{8 \cdot n^{2} \cdot q_{n}^{2 n}}
$$

Our constructions are done in such a way that the following property is satisfied:

Lemma 4.4. The map $\Phi_{n}:=\phi_{n} \circ R_{\alpha_{n+1}}^{m_{n}} \circ \phi_{n}^{-1}$ with the conjugating maps ϕ_{n} defined in section $3.5\left(\frac{1}{n \cdot q_{n}^{3 m}}, \frac{1}{n}, \frac{1}{n}\right)$-distributes the elements of the partition η_{n}.
Proof. The proof is analogous to the one of [GKu], Lemma 4.5. We consider a partition element $\hat{I}_{n, k}$ on $\left[\frac{k}{n \cdot q_{n}}, \frac{k+1}{n \cdot q_{n}}\right] \times[0,1]^{m-1}$. When applying the map ϕ_{n}^{-1} we observe that this element is positioned in such a way that all the occuring $\operatorname{maps}\left(\tilde{\phi}_{\delta}^{(j)}\right)^{-1}$ act as the respective rotations. Then we compute $\phi_{n}^{-1}\left(\hat{I}_{n, k}\right)$:

$$
\begin{aligned}
& {\left[v_{1}+\frac{1}{2 \cdot n^{2} \cdot q_{n}^{2 \cdot(k+2)}}, v_{1}+\frac{1}{n \cdot q_{n}^{2 \cdot(k+2)}}-\frac{1}{2 \cdot n^{2} \cdot q_{n}^{2 \cdot(k+2)}}\right] } \\
\times & \prod_{i=2}^{m-1}\left[v_{i}+\frac{1}{2 \cdot n \cdot q_{n}^{2 \cdot(k+2)}}, v_{i}+\frac{1}{q_{n}^{2 \cdot(k+2)}}-\frac{1}{2 \cdot n \cdot q_{n}^{2 \cdot(k+2)}}\right] \\
\times & {\left[v_{m}+\frac{1}{2 n \cdot q_{n}^{2 \cdot(k+1)}}, v_{m}+\frac{1}{q_{n}^{2 \cdot(k+1)}}-\frac{1}{2 n \cdot q_{n}^{2 \cdot(k+1)}}\right] }
\end{aligned}
$$

where

$$
\begin{aligned}
& v_{1}=\frac{k}{n \cdot q_{n}}+\frac{j_{1}^{(1)}}{n \cdot q_{n}^{2}}+\ldots+\frac{j_{1}^{(2 k+1)}}{n \cdot q_{n}^{2 \cdot(k+1)}}+\frac{j_{2}^{(1)}}{n \cdot q_{n}^{2 \cdot(k+1)+1}}+\frac{j_{2}^{(2)}}{n \cdot q_{n}^{2 \cdot(k+2)}} \\
& v_{i}=1-\frac{j_{1}^{(2 \cdot(i-1) \cdot(k+1))}}{q_{n}}-\ldots-\frac{j_{1}^{(2 \cdot i \cdot(k+1)-1)}}{q_{n}^{2 \cdot(k+1)}}-\frac{j_{i+1}^{(1)}}{q_{n}^{2 \cdot(k+1)+1}}-\frac{j_{i+1}^{(2)}+1}{q_{n}^{2 \cdot(k+2)}} \\
& v_{m}=1-\frac{j_{1}^{(2 \cdot(m-1) \cdot(k+1))}}{q_{n}}-\ldots-\frac{j_{1}^{(2 \cdot m \cdot(k+1)-1)}+1}{q_{n}^{2 \cdot(k+1)}} .
\end{aligned}
$$

By our choice of the number m_{n} the subsequent application of $R_{\alpha_{n+1}}^{m_{n}}$ yields a translation by $\frac{1}{n q_{n}}$ modulo $\frac{1}{q_{n}}$ except for the "error term" b_{n} introduced in Remark 4.3. In particular, $R_{\alpha_{n+1}}^{m_{n}} \circ \phi^{-1}\left(\hat{I}_{n, k}\right)$ is positioned in another domain of definition of the map ϕ_{n}, namely $\phi_{n}=\bar{\phi}_{n \cdot q_{n}^{2 \cdot(m-1) \cdot(k+2)}}^{(m)} \circ \ldots \circ \bar{\phi}_{n \cdot q_{n}^{2 \cdot 2 \cdot(k+2)}}^{(3)} \circ$ $\bar{\phi}_{n \cdot q_{n}^{2 \cdot(k+2)}}^{(2)}$. With the aid of the bound on b_{n} from Remark 4.3 we can compute the image of $\hat{I}_{n, k}$ under Φ_{n} :

$$
\begin{aligned}
& {\left[v+\frac{1}{2 n^{2} \cdot q_{n}^{2(m-1) \cdot(k+2)+2(k+1)}}, v+\frac{1}{n q_{n}^{2(m-1) \cdot(k+2)+2(k+1)}}-\frac{1}{2 n^{2} \cdot q_{n}^{2(m-1) \cdot(k+2)+2(k+1)}}\right] } \\
& \times\left[\frac{1}{2 n}+n \cdot q_{n}^{2 \cdot(k+2)} \cdot b_{n}, 1-\frac{1}{2 \cdot n}+n \cdot q_{n}^{2 \cdot(k+2)} \cdot b_{n}\right] \times \prod_{i=3}^{m}\left[\frac{1}{2 n}, 1-\frac{1}{2 n}\right]
\end{aligned}
$$

where

$$
\begin{aligned}
v= & \frac{k+1}{n \cdot q_{n}}+\frac{j_{1}^{(1)}}{n \cdot q_{n}^{2}}+\ldots+\frac{j_{1}^{(2 \cdot(k+1)-1)}}{n \cdot q_{n}^{2 \cdot(k+1)}}+\frac{j_{2}^{(1)}}{n \cdot q_{n}^{2 \cdot(k+1)+1}}+\frac{j_{2}^{(2)}}{n \cdot q_{n}^{2 \cdot(k+2)}}+\frac{j_{1}^{(2 \cdot(k+1))}}{n \cdot q_{n}^{2 \cdot(k+2)+1}}+\ldots \\
& +\frac{j_{m}^{(2)}}{n \cdot q_{n}^{2 \cdot(m-1) \cdot(k+2)}}+\frac{j_{1}^{(2 \cdot(m-1) \cdot(k+1))}}{n \cdot q_{n}^{2 \cdot(m-1) \cdot(k+2)+1}}+\ldots+\frac{j_{1}^{(2 \cdot m \cdot(k+1)-1)}}{n \cdot q_{n}^{2 \cdot(m-1)(k+2)+2 \cdot(k+1)}} .
\end{aligned}
$$

Thus, such a set $\Phi_{n}\left(\hat{I}_{n}\right)$ with $\hat{I}_{n} \in \eta_{n}$ has a θ-witdth of at most $\frac{1}{n \cdot q_{n}^{3 m}}$. Moreover, we see that we can choose $\epsilon=0$ in the definition of a $(\gamma, \delta, \epsilon)$ distribution: With the notation $A_{\theta}:=\pi_{\theta}\left(\Phi_{n}\left(\hat{I}_{n}\right)\right)$ we have $\Phi_{n}\left(\hat{I}_{n}\right)=A_{\theta} \times J$ and so for every $(m-1)$-dimensional interval $\tilde{J} \subseteq J$:

$$
\frac{\mu\left(\hat{I}_{n} \cap \Phi_{n}^{-1}\left(\mathbb{S}^{1} \times \tilde{J}\right)\right)}{\mu\left(\hat{I}_{n}\right)}=\frac{\mu\left(\Phi_{n}\left(\hat{I}_{n}\right) \cap \mathbb{S}^{1} \times \tilde{J}\right)}{\mu\left(\Phi_{n}\left(\hat{I}_{n}\right)\right)}=\frac{\tilde{\lambda}\left(A_{\theta}\right) \cdot \mu^{(m-1)}(\tilde{J})}{\tilde{\lambda}\left(A_{\theta}\right) \cdot \mu^{(m-1)}(J)}=\frac{\mu^{(m-1)}(\tilde{J})}{\mu^{(m-1)}(J)}
$$

because Φ_{n} is measure-preserving.

5. Criterion for weak mixing

In this section we will state a criterion for weak mixing on $M=\mathbb{S}^{1} \times[0,1]^{m-1}$ or $M=\mathbb{T}^{m}$ in the setting of the beforehand constructions. Its proof is analogous to the one in [GKu], section 6. The only difference occurs in comparison to Lemma 6.3. which in our case will be formulated in the subsequent way:

Lemma 5.1. Consider the sequence of partial partitions $\left(\eta_{n}\right)_{n \in \mathbb{N}}$ constructed in section 3.6 and the diffeomorphisms $g_{n}\left(\theta, x_{2}, \ldots, x_{m}\right)=\left(\theta+n \cdot q_{n} \cdot x_{2}, x_{2}, \ldots, x_{m}\right)$. Furthermore, let $\left(H_{n}\right)_{n \in \mathbb{N}}$ be a sequence of measure-preserving smooth diffeomorphisms satisfying

$$
\begin{equation*}
\left\|D H_{n-1}\right\|_{0} \leq \frac{q_{n}}{n^{2}} \tag{C}
\end{equation*}
$$

for every $n \in \mathbb{N}$ and define the partial partitions $\nu_{n}=\left\{\Gamma_{n}=H_{n-1} \circ g_{n}\left(\hat{I}_{n}\right): \hat{I}_{n} \in \eta_{n}\right\}$. Then we get $\nu_{n} \rightarrow \varepsilon$.

Proof. By construction $\eta_{n}=\left\{\hat{I}_{n}^{i}: i \in \Lambda_{n}\right\}$, where Λ_{n} is a countable set of indices. Because of $\eta_{n} \rightarrow \varepsilon$ it holds $\lim _{n \rightarrow \infty} \mu\left(\bigcup_{i \in \Lambda_{n}} \hat{I}_{n}^{i}\right)=1$. Since $H_{n-1} \circ g_{n}$ is measure-preserving, we conclude:
$\lim _{n \rightarrow \infty} \mu\left(\bigcup_{i \in \Lambda_{n}} \Gamma_{n}^{i}\right)=\lim _{n \rightarrow \infty} \mu\left(\bigcup_{i \in \Lambda_{n}} H_{n-1} \circ g_{n}\left(\hat{I}_{n}^{i}\right)\right)=\lim _{n \rightarrow \infty} \mu\left(H_{n-1} \circ g_{n}\left(\bigcup_{i \in \Lambda_{n}} \hat{I}_{n}^{i}\right)\right)=1$.
For any m-dimensional cube with sidelength l_{n} it holds: $\operatorname{diam}\left(W_{n}\right)=\sqrt{m} \cdot l_{n}$. Because every element of the partition η_{n} is contained in a cube of side length
$\frac{1}{q_{n}^{2}}$, it follows for every $i \in \Lambda_{n}: \operatorname{diam}\left(\hat{I}_{n}^{i}\right) \leq \sqrt{m} \cdot \frac{1}{q_{n}^{2}}$. Hence, for every $\Gamma_{n}^{i}=$ $H_{n-1} \circ g_{n}\left(I_{n}^{i}\right)$ we observe:

$$
\operatorname{diam}\left(\Gamma_{n}^{i}\right) \leq\left\|D H_{n-1}\right\|_{0} \cdot\left\|D g_{n}\right\|_{0} \cdot \operatorname{diam}\left(\hat{I}_{n}^{i}\right) \leq \frac{q_{n}}{n^{2}} \cdot n \cdot q_{n} \cdot \frac{\sqrt{m}}{q_{n}^{2}} \leq \frac{\sqrt{m}}{n}
$$

We conclude $\lim _{n \rightarrow \infty} \operatorname{diam}\left(\Gamma_{n}^{i}\right)=0$ and consequently $\nu_{n} \rightarrow \varepsilon$.
Now we are able to formulate the aimed criterion for weak mixing.
Proposition 5.2 (Criterion for weak mixing). Let $f_{n}=H_{n} \circ R_{\alpha_{n+1}} \circ H_{n}^{-1}$ and the sequence $\left(m_{n}\right)_{n \in \mathbb{N}}$ be constructed as in the previous sections. Suppose additionally that $d_{0}\left(f^{m_{n}}, f_{n}^{m_{n}}\right)<\frac{1}{2^{n}}$ for every $n \in \mathbb{N},\left\|D H_{n-1}\right\|_{0} \leq \frac{q_{n}}{n^{2}}$ and that the limit $f=\lim _{n \rightarrow \infty} f_{n}$ exists.
Then f is weakly mixing.
Proof. We just give a sketch of the proof which is analogous to the one of [GKu], Proposition 6.6.
As above, we consider the partial partitions $\nu_{n}=H_{n-1} \circ g_{n}\left(\eta_{n}\right)$ defined with the aid of η_{n} constructed in section 3.6. By Lemma 5.1 this sequence converges to the decomposition into points. In order to prove the weak mixing property of f it suffices to check that for every m-dimensional cube A and for every $\epsilon>0$ there exists $N \in \mathbb{N}$ such that for every $n \geq N$ and for every $\Gamma_{n} \in \nu_{n}$ we have

$$
\begin{equation*}
\left|\mu\left(\Gamma_{n} \cap f^{-m_{n}}(A)\right)-\mu\left(\Gamma_{n}\right) \cdot \mu(A)\right| \leq 3 \cdot \epsilon \cdot \mu\left(\Gamma_{n}\right) \cdot \mu(A) \tag{1}
\end{equation*}
$$

Due to the proximity of $f^{m_{n}}$ and $f_{n}^{m_{n}}$ it is enough to check (1) for f_{n}. Moreover, we consider m-dimensional cubes S_{n} of side length q_{n}^{-1} (instead of $q_{n}^{-\sigma}$ as in [GKu]) and observe for sets $C_{n}=H_{n-1}\left(S_{n}\right)$ that

$$
\operatorname{diam}\left(C_{n}\right) \leq\left\|D H_{n-1}\right\|_{0} \cdot \operatorname{diam}\left(S_{n}\right) \leq \frac{q_{n}^{2}}{n^{2}} \cdot \frac{\sqrt{m}}{q_{n}} \rightarrow 0 \text { as } n \rightarrow \infty
$$

Thus, we can approximate any cube A by a countable disjoint union of sets $C_{n}=H_{n-1}\left(S_{n}\right)$ with given precision for n sufficiently large and so we can examine $\left|\mu\left(\Gamma_{n} \cap f_{n}^{-m_{n}}\left(C_{n}\right)\right)-\mu\left(\Gamma_{n}\right) \cdot \mu\left(C_{n}\right)\right|$ in order to check (1). Since $f_{n}^{m_{n}}=H_{n-1} \circ g_{n} \circ \Phi_{n} \circ g_{n}^{-1} \circ H_{n-1}^{-1}$ and g_{n} as well as H_{n-1} are measurepreserving, we get
$\left|\mu\left(\Gamma_{n} \cap f_{n}^{-m_{n}}\left(C_{n}\right)\right)-\mu\left(\Gamma_{n}\right) \mu\left(C_{n}\right)\right|=\left|\mu\left(\hat{I}_{n} \cap \Phi_{n}^{-1} \circ g_{n}^{-1}\left(S_{n}\right)\right)-\mu\left(\hat{I}_{n}\right) \mu\left(S_{n}\right)\right|$
with $\hat{I}_{n} \in \eta_{n}$. By Lemma $4.4 \Phi_{n}\left(\frac{1}{n \cdot q_{n}^{3 m}}, \frac{1}{n}, \frac{1}{n}\right)$-distributes the elements of the partition η_{n}. Then a partition element is "almost uniformly distributed" under $g_{n} \circ \Phi_{n}$ on the whole manifold M due to the shear induced by g_{n} (see [GKu], Lemma 6.5, for a detailed proof of this fact). So $\left|\mu\left(\hat{I}_{n} \cap \Phi_{n}^{-1} \circ g_{n}^{-1}\left(S_{n}\right)\right)-\mu\left(\hat{I}_{n}\right) \cdot \mu\left(S_{n}\right)\right| \rightarrow$ 0 as $n \rightarrow \infty$.

Remark 5.3. In $[\mathrm{GKu}]$ it is demanded $\left\|D H_{n-1}\right\|_{0}<\frac{\ln \left(q_{n}\right)}{n}$ instead of requirement C. We did this modification because the fulfilment of the original condition would lead to stricter requirements on the uniform rigidity sequence: In particular, it would require an exponential growth rate.

6. The case of \mathbb{T}^{m} and $\mathbb{S}^{1} \times[0,1]^{m-1}$

We aim for precise requirements on the growth rate of the uniform rigidity sequence to guarantee convergence of the sequence of diffeomorphisms $f_{n}=$ $H_{n} \circ R_{\alpha_{n+1}} \circ H_{n}^{-1}$. For this purpose, we need norm estimates on the conjugation maps.

6.1. Properties of the conjugation maps

Lemma 6.1. We have for every $s \in \mathbb{N}, s \geq 2$:
$\left\|\phi_{n} \mid\right\|_{s} \leq\left(\frac{(m+s-1)!}{(m-1)!}\right)^{(m-1) \cdot(s+1)^{2}} \cdot\left(\frac{(2 s-2)!}{(s-1)!} \cdot \pi^{s^{2}} \cdot\left(s!\cdot \exp \left(\frac{1}{\delta_{n}^{2}}\right)\right)^{10 s^{5}}\right)^{(m-1) \cdot s} \cdot\left(n \cdot q_{n}^{m \cdot n}\right)^{(m-1) \cdot s^{2}}$
Proof. Obviously, we have for $\bar{\phi}_{\lambda, \delta}^{(j)}=C_{\lambda}^{-1} \circ \tilde{\phi}_{\delta}^{(j)} \circ C_{\lambda}$:

$$
\left\|\left|\bar{\phi}_{\lambda, \delta}^{(j)}\right|\right\|_{s} \leq \lambda^{s} \cdot\left\|\mid \tilde{\phi}_{\delta}^{(j)}\right\| \|_{s}
$$

Lemma 2.8 yields

$$
\begin{aligned}
\left\|\left\|\phi_{n}\right\|_{s}\right. & \leq\left(\frac{(m+s-1)!}{(m-1)!}\right)^{m-2} \cdot\left(\lambda_{m}^{s} \cdot\left\|\mid \tilde{\phi}_{\delta}\right\|_{s}\right)^{s} \cdot \ldots \cdot\left(\lambda_{2}^{s} \cdot\left\|\tilde{\phi}_{\delta}\right\|_{s}\right)^{s} \\
& =\left(\frac{(m+s-1)!}{(m-1)!}\right)^{m-2} \cdot\left(\lambda_{m} \cdot \ldots \cdot \lambda_{2}\right)^{s^{2}} \cdot\left\|\tilde{\phi}_{\delta}\right\|_{s}^{(m-1) \cdot s}
\end{aligned}
$$

By our explicit constructions in subsection 3.5 we obtain

$$
\lambda_{m} \cdot \ldots \cdot \lambda_{2} \leq n \cdot q_{n}^{2 \cdot(m-1) \cdot n} \cdot n \cdot q_{n}^{2 \cdot(m-2) \cdot n} \cdot \ldots \cdot n \cdot q_{n}^{2 \cdot n}=n^{m-1} \cdot q_{n}^{2 \cdot n \cdot \sum_{l=1}^{m-1} l}=\left(n \cdot q_{n}^{m \cdot n}\right)^{m-1}
$$

With the aid of Lemma 3.9 we conclude

$$
\begin{aligned}
& \left\|\phi_{n}\right\|_{s} \\
\leq & \left(\frac{(m+s-1)!}{(m-1)!}\right)^{m-2+(m-1) \cdot s \cdot(s+1)} \cdot\left(n \cdot q_{n}^{m \cdot n}\right)^{(m-1) \cdot s^{2}} \cdot\left(\frac{(2 s-2)!}{(s-1)!} \cdot \pi^{s^{2}} \cdot\left(s!\cdot \exp \left(\frac{1}{\delta_{n}^{2}}\right)\right)^{10 s^{5}}\right)^{(m-1) \cdot s}
\end{aligned}
$$

As a direct consequence we conclude for the composition $h_{n}=g_{n} \circ \phi_{n}$:

Lemma 6.2. We have for every $s \in \mathbb{N}, s \geq 2$:
$\left\|\left|\left|h_{n}\right| \|_{s} \leq\right.\right.$
$2 \cdot\left(\frac{(m+s-1)!}{(m-1)!}\right)^{(m-1) \cdot(s+1)^{2}} \cdot\left(\frac{(2 s-2)!}{(s-1)!} \cdot \pi^{s^{2}} \cdot\left(s!\cdot \exp \left(\frac{1}{\delta_{n}^{2}}\right)\right)^{10 s^{5}}\right)^{(m-1) \cdot s} \cdot\left(n^{2} \cdot q_{n}^{m \cdot n+1}\right)^{(m-1) \cdot s^{2}}$.
Proof. At first, we estimate for the composition

$$
\left\|\left\|h_{n}\right\|\right\|_{s} \leq 2 \cdot\left(n q_{n}\right)^{s} \cdot\| \| \phi_{n}\left\|_{s}=2 \cdot n^{s} \cdot q_{n}^{s} \cdot\right\|\left\|\phi_{n}\right\|_{s}
$$

We conclude with the aid of Lemma 6.1:
$\left\|\left|\left|h_{n}\right| \|_{s} \leq\right.\right.$
$2 \cdot\left(\frac{(m+s-1)!}{(m-1)!}\right)^{(m-1) \cdot(s+1)^{2}} \cdot\left(\frac{(2 s-2)!}{(s-1)!} \cdot \pi^{s^{2}} \cdot\left(s!\cdot \exp \left(\frac{1}{\delta_{n}^{2}}\right)\right)^{10 s^{5}}\right)^{(m-1) \cdot s} \cdot\left(n^{2} \cdot q_{n}^{m \cdot n+1}\right)^{(m-1) \cdot s^{2}}$.

Under another condition on the growth rate of the sequence $\left(q_{n}\right)_{n \in \mathbb{N}}$ we deduce a norm estimate on the conjugation map H_{n} :

Lemma 6.3. Assume

$$
\begin{equation*}
q_{n+1} \geq n^{2} \cdot q_{n}^{m \cdot n+2} \tag{A}
\end{equation*}
$$

Then we have for every $s \in \mathbb{N}, s \geq 2$:

$$
\left\|\left|H_{n}\right|\right\|_{s} \leq \varphi(s, n) \cdot\left(n^{2} \cdot q_{n}^{m \cdot n+2}\right)^{(m-1) \cdot s^{n+1}}
$$

at which $\varphi(s, n)$ is the expression
$2^{n \cdot s^{n}} \cdot\left(\frac{(m+s-1)!}{(m-1)!}\right)^{m \cdot(s+1)^{2} \cdot n \cdot s^{n-1}} \cdot\left(\frac{(2 s-2)!}{(s-1)!}\right)^{(m-1) \cdot n \cdot s^{n}} \cdot \pi^{(m-1) \cdot s^{2+n} \cdot n} \cdot\left(s!\cdot \exp \left(\frac{1}{\delta_{n}^{2}}\right)\right)^{(m-1) \cdot n \cdot 10 \cdot s^{n+5}}$.
Proof. We prove this result by induction on $n \in \mathbb{N}$:
Start $n=1$: Lemma 6.2 yields the statement for $H_{1}=h_{1}$.
Induction assumption: The claim holds true for $n \in \mathbb{N}$.
Induction step $n \rightarrow n+1$: We apply Lemma 2.8 , Lemma 6.2 and the induction
assumption on the composition $H_{n+1}=H_{n} \circ h_{n+1}$:

$$
\begin{aligned}
& \left\|H_{n+1}\right\| \|_{s} \\
\leq & \frac{(m+s-1)!}{(m-1)!} \cdot\left\|\left\|H_{n}\right\|_{s}^{s} \cdot\right\| h_{n+1} \|_{s}^{s} \\
\leq & \frac{(m+s-1)!}{(m-1)!} \cdot 2^{n \cdot s^{n+1}} \cdot\left(\frac{(m+s-1)!}{(m-1)!}\right)^{m \cdot(s+1)^{2} \cdot n \cdot s^{n}} \cdot\left(\frac{(2 s-2)!}{(s-1)!}\right)^{(m-1) \cdot n \cdot s^{n+1}} \cdot \pi^{(m-1) \cdot s^{3+n} \cdot n} \\
& \cdot\left(s!\cdot \exp \left(\frac{1}{\delta_{n}^{2}}\right)\right)^{(m-1) \cdot n \cdot 10 \cdot s^{n+6}} \cdot q_{n+1}^{(m-1) \cdot s^{n+2}} \cdot 2^{s} \cdot\left(\frac{(m+s-1)!}{(m-1)!}\right)^{(m-1) \cdot(s+1)^{2} \cdot s} \\
& \cdot\left(\frac{(2 s-2)!}{(s-1)!} \cdot \pi^{s^{2}} \cdot\left(s!\cdot \exp \left(\frac{1}{\delta_{n+1}^{2}}\right)\right)^{10 s^{5}}\right)^{(m-1) \cdot s^{2}} \cdot\left((n+1)^{2} \cdot q_{n+1}^{m \cdot(n+1)+1}\right)^{(m-1) \cdot s^{3}} \\
\leq & \left.2^{(n+1) \cdot s^{n+1}} \cdot\left(\frac{(m+s-1)!}{(m-1)!}\right)^{m \cdot(s+1)^{2} \cdot(n+1) \cdot s^{n}} \cdot\left(\frac{(2 s-2)!}{(s-1)!}\right)^{(m-1) \cdot(n+1) \cdot s^{n+1}} \cdot \pi^{(m-1) \cdot s^{3+n} \cdot(n+1)}\right) \\
& \cdot\left(s!\cdot \exp \left(\frac{1}{\delta_{n+1}^{2}}\right)\right)^{(m-1) \cdot(n+1) \cdot 10 \cdot s^{n+6}} \cdot\left((n+1)^{2} \cdot q_{n+1}^{m \cdot(n+1)+2}\right)^{(m-1) \cdot s^{n+2}}
\end{aligned}
$$

6.2. Proof of convergence of $\left(f_{n}\right)_{n \in \mathbb{N}}$ in Diff ${ }^{\infty}(M)$

For the proof of convergence of the sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ the next result is very useful:

Lemma 6.4. Let $k \in \mathbb{N}_{0}$ and h be a C^{k+1}-diffeomorphism on M. Then we get for every $\alpha, \beta \in \mathbb{R}$:

$$
d_{k}\left(h \circ R_{\alpha} \circ h^{-1}, h \circ R_{\beta} \circ h^{-1}\right) \leq C_{k} \cdot\left|\left\|h\left|\|_{k+1}^{k+1} \cdot\right| \alpha-\beta \mid,\right.\right.
$$

where $C_{k}=\frac{(m+k-1)!}{(m-1)!}$.
Indeed, this is a more precise statement than [FS], Lemma 5.6.
Proof. Let $i \in\{1, \ldots, m\}$ and $\vec{a} \in \mathbb{N}_{0}^{m}$ be a multiindex of order $|\vec{a}|=k$. Based on the observations in the proof of Lemma 2.6 the derivative $D_{\vec{a}}\left[h \circ R_{\alpha} \circ h^{-1}\right]_{i}$ consists of at most $\frac{(m+k-1)!}{(m-1)!}$ summands, where each summand is the product of one derivative of h of order at most k and at most k derivatives of h^{-1} of order at most k.
Furthermore, with the aid of the mean value theorem we can estimate for any multiindex $\vec{a} \in \mathbb{N}_{0}^{2}$ with $|\vec{a}| \leq k$ and $i \in\{1, \ldots, m\}$:
$\left|D_{\vec{a}}[h]_{i}\left(R_{\alpha} \circ h^{-1}\left(x_{1}, \ldots, x_{m}\right)\right)-D_{\vec{a}}[h]_{i}\left(R_{\beta} \circ h^{-1}\left(x_{1}, \ldots, x_{m}\right)\right)\right| \leq\left\|\left||h| \|_{k+1} \cdot\right| \alpha-\beta \mid\right.$.

Since $\left(h \circ R_{\alpha} \circ h^{-1}\right)^{-1}=h \circ R_{-\alpha} \circ h^{-1}$ is of the same form, we obtain in conclusion:

$$
\begin{aligned}
d_{k}\left(h \circ R_{\alpha} \circ h^{-1}, h \circ R_{\beta} \circ h^{-1}\right) & \left.\leq \frac{(m+k-1)!}{(m-1)!} \cdot\||h|\|_{k+1} \cdot\left|\|h\|_{k}^{k} \cdot\right| \alpha-\beta \right\rvert\, \\
& \left.\leq \frac{(m+k-1)!}{(m-1)!} \cdot\left|\|h\|_{k+1}^{k+1} \cdot\right| \alpha-\beta \right\rvert\,
\end{aligned}
$$

With the aid of the subsequent lemma we are able to prove convergence of the sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ under a condition on the proximity of α_{n+1} and α_{n} :
Lemma 6.5. We assume

$$
\left|\alpha_{n+1}-\alpha_{n}\right| \leq \frac{1}{2^{n} \cdot C_{n} \cdot q_{n} \cdot| |\left|H_{n}\right| \|_{n+1}^{n+1}}
$$

Then the diffeomorphisms $f_{n}=H_{n} \circ R_{\alpha_{n+1}} \circ H_{n}^{-1}$ satisfy:

- The sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ converges in the Diff ${ }^{\infty}(M)$-topology to a measurepreserving diffeomorphism f.
- We have for every $n \in \mathbb{N}$ and $m \leq q_{n+1}$:

$$
d_{0}\left(f^{m}, f_{n}^{m}\right)<\frac{1}{2^{n}}
$$

Proof. Analogous to $[\mathrm{Ku}]$, Lemma 6.5.
Since $\left|\alpha_{n+1}-\alpha_{n}\right|=\frac{a_{n}}{q_{n} \cdot \tilde{q}_{n+1}} \leq \frac{1}{\tilde{q}_{n+1}}$ this requirement B' can be met if we demand

$$
\begin{equation*}
\tilde{q}_{n+1} \geq 2^{n} \cdot C_{n} \cdot q_{n} \cdot\| \| H_{n} \|_{n+1}^{n+1} \tag{B}
\end{equation*}
$$

By Lemma 6.3 this condition is fulfilled under the requirement

$$
\begin{aligned}
\tilde{q}_{n+1} \geq & 2^{n} \cdot C_{n} \cdot q_{n} \cdot 2^{n \cdot(n+1)^{n+1}} \cdot\left(\frac{(m+n)!}{(m-1)!}\right)^{m \cdot(n+2)^{2} \cdot n \cdot(n+1)^{n}} \cdot\left(\frac{(2 n)!}{n!}\right)^{(m-1) \cdot n \cdot(n+1)^{n+1}} \\
& \cdot \pi^{(m-1) \cdot(n+1)^{3+n} \cdot n} \cdot\left((n+1)!\cdot \exp \left(\frac{1}{\delta_{n}^{2}}\right)\right)^{(m-1) \cdot n \cdot 10 \cdot(n+1)^{n+6}} \cdot\left(n^{2} \cdot q_{n}^{m \cdot n+2}\right)^{(m-1) \cdot(n+1)^{n+2}}
\end{aligned}
$$

Hereby, condition A is satisfied, too.
Using $q_{n}=q_{n-1} \cdot \tilde{q}_{n}<\tilde{q}_{n}^{2}$ we can fulfill the requirement if we demand

$$
\tilde{q}_{n+1} \geq \varphi(n) \cdot \tilde{q}_{n}^{2 \cdot m^{2} \cdot(n+1)^{n+3}}
$$

at which $\varphi(n)$ is the expression (recall $\delta_{n}=\frac{1}{20 n}$)

$$
\left(\frac{(m+n)!}{(m-1)!}\right)^{m \cdot(n+2)^{n+3}} \cdot\left(\frac{(2 n)!}{n!} \cdot \pi^{(n+1)^{2}} \cdot\left((n+1)!\cdot \exp \left(400 n^{2}\right)\right)^{10 \cdot(n+1)^{5}}\right)^{m \cdot(n+1)^{n+2}} \cdot n^{2 \cdot(m-1) \cdot(n+1)^{n+2}}
$$

This condition is satisfied by the assumptions of Theorem 1. Hence, we can apply Lemma 6.5 and obtain convergence of the sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ in the Diff ${ }^{\infty}(M)$ topology to a measure-preserving diffeomorphism f. In the following subsections we will prove that f is the aimed diffeomorphism as asserted in Theorem 1, namely uniformly rigid with respect to $\left(\tilde{q}_{n}\right)_{n \in \mathbb{N}}$ and weakly mixing.

6.3. Proof of uniform rigidity along the sequence $\left(\tilde{q}_{n}\right)_{n \in \mathbb{N}}$

By definition $\tilde{q}_{n+1} \leq q_{n+1}$. Hence, the second statement of Lemma 6.5 implies $d_{0}\left(f_{n}^{\tilde{q}_{n+1}}, f^{\tilde{q}_{n+1}}\right)<\frac{1}{2^{n}}$. Since the number α_{n+1} was chosen in such a way that $f_{n}^{\tilde{q}_{n+1}}=\mathrm{id}$, we have $d_{0}\left(\mathrm{id}, f^{\tilde{q}_{n+1}}\right)<\frac{1}{2^{n}}$ which converges to zero as $n \rightarrow \infty$. Thus, $\left(\tilde{q}_{n}\right)_{n \in \mathbb{N}}$ is a uniform rigidity sequence of f.

6.4. Proof of weak mixing

In our criterion for weak mixing in Proposition 5.2 we need $\left\|D H_{n-1}\right\|_{0} \leq \frac{q_{n}}{n^{2}}$. This condition is satisfied if we require condition B. Moreover, the required proximity $d_{0}\left(f^{m_{n}}, f_{n}^{m_{n}}\right)<\frac{1}{2^{n}}$ is fulfilled by Lemma 6.5 for the sequence $\left(m_{n}\right)_{n \in \mathbb{N}}$ introduced in section 4 . Hence, we can apply the criterion for weak mixing deduced in section 5 and conclude that f is weakly mixing.

7. The case of $M=\mathbb{D}^{m}$

First of all, we introduce the coordinate change $J: \mathbb{S}^{1} \times[0,1]^{m-1} \rightarrow \mathbb{D}^{m}$, $J\left(\theta, r_{1}, r_{2}, \ldots, r_{m-1}\right)=\vec{x}$, to m-dimensional polar coordinates:

$$
\begin{aligned}
x_{1} & =r_{1} \cdot \cos \left(\pi r_{2}\right) \\
x_{i} & =r_{1} \cdot \prod_{j=2}^{i} \sin \left(\pi r_{j}\right) \cdot \cos \left(\pi r_{i+1}\right) \text { for } i=2, \ldots, m-2 \\
x_{m-1} & =r_{1} \cdot \prod_{j=2}^{m-1} \sin \left(\pi r_{j}\right) \cdot \cos (2 \pi \theta) \\
x_{m} & =r_{1} \cdot \prod_{j=2}^{m-1} \sin \left(\pi r_{j}\right) \cdot \sin (2 \pi \theta)
\end{aligned}
$$

Then we can define a sequence of smooth diffeomorphisms $\tilde{f}_{n}=J \circ f_{n} \circ J^{-1}$ on $\mathbb{D}^{m} \backslash\{(0, \ldots, 0)\}$, where f_{n} is constructed as in the previous section. Since these diffeomorphisms satisfy $f_{n}=R_{\alpha_{n+1}}$ on $\mathbb{S}^{1} \times\left[0, \frac{1}{40 n}\right]^{m-1}$, we observe for any $k \in \mathbb{N}$

$$
d_{k}\left(\tilde{f}_{n}, \tilde{f}_{n-1}\right) \leq \frac{(m+k-1)!}{(m-1)!} \cdot\left\|\left|J \circ H_{n}\right|\right\|_{k+1, \mathbb{S}^{1} \times\left[\frac{1}{40 n}, 1\right]^{m-1}}^{k+1} \cdot\left|\alpha_{n+1}-\alpha_{n}\right|
$$

 can prove convergence of the sequence $\left(\tilde{f}_{n}\right)_{n \in \mathbb{N}}$ in Diff ${ }^{\infty}\left(\mathbb{D}^{m}\right)$ as before and
the limit diffeomorphism \tilde{f} can be extended to the origin smoothly. This diffeomorphism is weakly mixing with respect to the measure $J_{*} \mu$, where μ is the Lebesgue measure on $\mathbb{S}^{1} \times[0,1]^{m-1}$ and $J_{*} \mu(A)=\mu\left(J^{-1}(A)\right)$ for any Lebesgue measurable set $A \subset \mathbb{D}^{m}$. By [AK], Theorem 1.2, there is a C^{∞}-diffeomorphism $G: \mathbb{D}^{m} \rightarrow \mathbb{D}^{m}$ such that $(G \circ J)_{*} \mu=G_{*}\left(J_{*} \mu\right)=\lambda$, where λ is the Lebesgue measure on \mathbb{D}^{m}. Hence, the diffeomorphism $G \circ \tilde{f} \circ G^{-1}$ is weakly mixing with respect to λ.
In order to find estimates on $\left\|\left|J \circ H_{n} \|\right|_{n+1, \mathbb{S}^{1} \times\left[\frac{1}{40 n}, 1\right]^{m-1}}\right.$ we use the same techniques and estimates as in the previous sections. In particular, we have $\|J\|_{s, \mathbb{S}^{1} \times[0,1]^{m-1}}=1$ for every $s \in \mathbb{N}$. For the inverse transformation we deduce the subsequent norm estimate:

Lemma 7.1. For any $s \in \mathbb{N}$

$$
\left\|J^{-1}\right\|_{s, J\left(\mathbb{S}^{1} \times\left[\frac{1}{40 n}, 1\right]^{m-1}\right)} \leq s!\cdot(40 n)^{4 s m}
$$

Proof. We have

$$
J^{-1}\left(x_{1}, \ldots, x_{m}\right)=\left(\begin{array}{c}
\frac{1}{2 \pi} \arccos \left(\frac{x_{m-1}}{\sqrt{x_{m}^{2}+x_{m-1}^{2}}}\right) \\
\sqrt{x_{1}^{2}+\ldots+x_{m}^{2}} \\
\frac{1}{\pi} \arccos \left(\frac{x_{1}}{\sqrt{x_{1}^{2}+\ldots+x_{m}^{2}}}\right) \\
\frac{1}{\pi} \arccos \left(\frac{x_{2}}{\sqrt{x_{2}^{2}+\ldots+x_{m}^{2}}}\right) \\
\vdots \\
\frac{1}{\pi} \arccos \left(\frac{x_{m-2}}{\sqrt{x_{m-2}^{2}+x_{m-1}^{2}+x_{m}^{2}}}\right)
\end{array}\right) \text { in case of } x_{m} \geq 0
$$

and

$$
J^{-1}\left(x_{1}, \ldots, x_{m}\right)=\left(\begin{array}{c}
1-\frac{1}{2 \pi} \arccos \left(\frac{x_{m-1}}{\sqrt{x_{m}^{2}+x_{m-1}^{2}}}\right) \\
\sqrt{x_{1}^{2}+\ldots+x_{m}^{2}} \\
\frac{1}{\pi} \arccos \left(\frac{x_{1}}{\sqrt{x_{1}^{2}+\ldots+x_{m}^{2}}}\right) \\
\frac{1}{\pi} \arccos \left(\frac{x_{2}}{\sqrt{x_{2}^{2}+\ldots+x_{m}^{2}}}\right) \\
\vdots \\
\frac{1}{\pi} \arccos \left(\frac{x_{m-2}}{\sqrt{x_{m-2}^{2}+x_{m-1}^{2}+x_{m}^{2}}}\right)
\end{array}\right) \text { in case of } x_{m}<0
$$

We examine the derivatives of $\arccos \left(\frac{x_{1}}{\sqrt{x_{1}^{2}+\ldots+x_{m}^{2}}}\right)$. The first partial derivative with respect to x_{i} in case of $i=2, \ldots, m$ is $\frac{x_{1} \cdot x_{i}}{\left(x_{1}^{2}+\ldots+x_{m}^{2}\right) \cdot \sqrt{x_{2}^{2}+\ldots+x_{m}^{2}}}$. The further
derivatives are found with the aid of the quotient rule. For this purpose, we consider

$$
\varphi_{s}\left(x_{1}, \ldots, x_{m}\right)=\frac{P_{s}\left(x_{1}, \ldots, x_{m}\right)}{\left(x_{1}^{2}+\ldots+x_{m}^{2}\right)^{n_{s}} \cdot{\sqrt{x_{2}^{2}+\ldots+x_{m}^{2}}}^{b_{s}}}
$$

where P_{s} is a polynomial of degree d_{s} with z_{s} summands. With the aid of the quotient rule we see that the partial derivative of $\frac{P_{s}\left(x_{1}, \ldots, x_{m}\right)}{{\sqrt{x_{2}^{2}+\ldots+x_{m}^{2}}}^{b_{s}}}$ with respect to x_{i} is of the form
$\frac{\tilde{P}_{s}\left(x_{1}, \ldots, x_{m}\right)}{{\sqrt{x_{2}^{2}+\ldots+x_{m}^{2}}}^{b_{s}+2}}$, where $\tilde{P}_{s+1}\left(x_{1}, \ldots, x_{m}\right)=\frac{\partial P_{s}}{\partial x_{i}}\left(x_{1}, \ldots, x_{m}\right) \cdot\left(x_{2}^{2}+\ldots+x_{m}^{2}\right)-P_{s}\left(x_{1}, \ldots, x_{m}\right) \cdot b_{s} \cdot x_{i}$
is a polynomial of degree $d_{s}+1$ with at most $d_{s} \cdot z_{s} \cdot(m-1)+b_{s} \cdot z_{s}$ summands.
Then the quotient rule yields

$$
\frac{\partial \varphi_{s}}{\partial x_{i}}\left(x_{1}, \ldots, x_{m}\right)=\frac{\tilde{P}_{s+1}\left(x_{1}, \ldots, x_{m}\right) \cdot\left(x_{1}^{2}+\ldots+x_{m}^{2}\right)-P_{s}\left(x_{1}, \ldots, x_{m}\right) \cdot 2 n_{s} \cdot x_{i} \cdot\left(x_{2}^{2}+\ldots+x_{m}^{2}\right)}{\left(x_{1}^{2}+\ldots+x_{m}^{2}\right)^{n_{s}+1} \cdot{\sqrt{x_{2}^{2}+\ldots+x_{m}^{2}}}^{b_{s}+2}}
$$

Hence, P_{s+1} is a polynomial of degree $d_{s}+3$ with at most $\left(d_{s} z_{s} \cdot(m-1)+b_{s} z_{s}\right)$. $m+z_{s} \cdot 2 n_{s} \cdot(m-1)$ summands. Since $d_{1}=2, b_{1}=1$ and $n_{1}=1$ we get $d_{s}=3 s-1, b_{s}=2 s-1$ and $n_{s}=s$. Hereby, we have $z_{s+1} \leq z_{s} \cdot s \cdot m \cdot(3 m+1)$. By $z_{1}=1$ this implies $z_{s} \leq(s-1)!\cdot m^{s-1} \cdot(3 m+1)^{s-1}$.
Analogously, we consider the partial derivative of an expression of the form

$$
\frac{P_{s}\left(x_{1}, \ldots, x_{m}\right)}{{\sqrt{x_{2}^{2}+\ldots+x_{m}^{2}}}^{b_{s}} \cdot\left(x_{1}^{2}+\ldots+x_{m}^{2}\right)^{n_{s}}}
$$

with respect to x_{1} (note that in case of the first partial derivative with respect to x_{1} we have $b_{1}=-1$):

$$
\frac{\frac{\partial P_{s}}{\partial x_{1}}\left(x_{1}, \ldots, x_{m}\right) \cdot\left(x_{1}^{2}+\ldots+x_{m}^{2}\right)-P_{s}\left(x_{1}, \ldots, x_{m}\right) \cdot 2 x_{1} \cdot n_{s}}{{\sqrt{x_{2}^{2}+\ldots+x_{m}^{2}}}^{b_{s}} \cdot\left(x_{1}^{2}+\ldots+x_{m}^{2}\right)^{n_{s}+1}} .
$$

Hence, P_{s+1} is a polynomial of degree $d_{s}+1$ with at most $z_{s} \cdot\left(d_{s} m+2 n_{s}\right)$ summands. We get $d_{s} \leq s+2, n_{s}=s$ and $z_{s} \leq 2^{s-1} \cdot s!\cdot m^{s-1}$.

Altogether, we conclude an estimate for the derivative of order s of the following form

$$
\frac{s!\cdot m^{s-1} \cdot(3 m+1)^{s-1}}{\left(x_{1}^{2}+\ldots+x_{m}^{2}\right)^{s} \cdot{\sqrt{x_{2}^{2}+\ldots+x_{m}^{2}}}^{2 s-1}} .
$$

Additionally, we observe on $J\left(\mathbb{S}^{1} \times\left[\frac{1}{40 n}, 1\right]^{m-1}\right)$

$$
x_{m-k}^{2}+\ldots+x_{m}^{2}=r_{1}^{2} \cdot \prod_{j=2}^{m-k} \sin ^{2}\left(\pi r_{j}\right) \geq\left(\frac{1}{40 n}\right)^{2(m-k)}
$$

Since

$$
s!\cdot k^{s-1} \cdot(3 k+1)^{s-1} \cdot(40 n)^{2 s(m-k)} \cdot(40 n)^{(2 s-1) \cdot(m-k+1)} \leq s!\cdot(40 n)^{4 s m}
$$

we obtain

$$
\left\|J^{-1}\right\|_{s, J\left(\mathbb{S}^{1} \times\left[\frac{1}{40 n}, 1\right]^{m-1}\right)} \leq s!\cdot(40 n)^{4 s m}
$$

With the aid of Lemma 2.7 and Lemma 6.3 we have

$$
\begin{aligned}
& 2^{n} \cdot \frac{(m+n-1)!}{(m-1)!} \cdot q_{n} \cdot\left\|J \circ H_{n}\right\|_{n+1, \mathbb{S}^{1} \times\left[\frac{1}{40 n}, 1\right]^{m-1}} \\
\leq & 2^{n} \cdot \frac{(m+n-1)!}{(m-1)!} \cdot q_{n} \cdot \frac{(m+n)!}{(m-1)!} \cdot\|J\|_{n+1, \mathbb{S}^{1} \times\left[\frac{1}{40 n}, 1\right]^{m-1} \cdot\left\|H_{n}\right\|_{n+1}^{n+1}} \\
\leq & 2^{n} \cdot \frac{(m+n-1)!}{(m-1)!} \cdot q_{n} \cdot \frac{(m+n)!}{(m-1)!} \cdot 2^{n \cdot(n+1)^{n+1}} \cdot\left(\frac{(m+n)!}{(m-1)!}\right)^{m \cdot(n+2)^{2} \cdot n \cdot(n+1)^{n}} \cdot\left(\frac{(2 n)!}{n!}\right)^{(m-1) \cdot n \cdot(n+1)^{n+1}} \\
& \cdot \pi^{(m-1) \cdot(n+1)^{3+n} \cdot n} \cdot\left((n+1)!\cdot \exp \left(400 n^{2}\right)\right)^{(m-1) \cdot n \cdot 10 \cdot(n+1)^{n+6}} \cdot\left(n^{2} \cdot q_{n}^{m \cdot n+2}\right)^{(m-1) \cdot(n+1)^{n+2}}
\end{aligned}
$$

as well as

$$
\begin{aligned}
& \left.2^{n} \cdot \frac{(m+n-1)!}{(m-1)!} \cdot q_{n} \cdot\left\|H_{n}^{-1} \circ J^{-1}\right\|_{n+1, J\left(\mathbb{S}^{1} \times\left[\frac{1}{40 n}, 1\right]^{m-1}\right.}\right) \\
\leq & 2^{n} \cdot \frac{(m+n-1)!}{(m-1)!} \cdot q_{n} \cdot \frac{(m+n)!}{(m-1)!} \cdot\| \| H_{n}\| \|_{n+1} \cdot\left\|J^{-1}\right\|_{n+1, J\left(\mathbb{S}^{1} \times\left[\frac{1}{40 n}, 1\right]^{m-1}\right)}^{n+1} \\
\leq & 2^{n} \cdot \frac{(m+n-1)!}{(m-1)!} \cdot q_{n} \cdot \frac{(m+n)!}{(m-1)!} \cdot 2^{n \cdot(n+1)^{n}} \cdot\left(\frac{(m+n)!}{(m-1)!}\right)^{m \cdot(n+2)^{2} \cdot n \cdot(n+1)^{n-1}} \cdot\left(\frac{(2 n)!}{n!}\right)^{(m-1) \cdot n \cdot(n+1)^{n}} \\
& \cdot \pi^{(m-1) \cdot(n+1)^{2+n} \cdot n} \cdot\left((n+1)!\cdot \exp \left(400 n^{2}\right)\right)^{(m-1) \cdot n \cdot 10 \cdot(n+1)^{n+5}} \cdot\left(n^{2} \cdot q_{n}^{m \cdot n+2}\right)^{(m-1) \cdot(n+1)^{n+1}} \\
& \cdot(n+1)!^{n+1} \cdot(40 n)^{4(n+1)^{2} m}
\end{aligned}
$$

By the same arguments as above we find the sufficient condition on the growth rate

$$
\tilde{q}_{n+1} \geq \varphi(n) \cdot \tilde{q}_{n}^{2 \cdot m^{2} \cdot(n+1)^{n+3}}
$$

Since this condition is fulfilled due to our assumptions of Theorem 1, we obtain convergence of the sequence $\left(\tilde{f}_{n}\right)_{n \in \mathbb{N}}$ in Diff ${ }^{\infty}\left(\mathbb{D}^{m}\right)$ to a limit diffeomorphism \tilde{f}. As argued above, $G \circ \tilde{f} \circ G^{-1}$ is weakly mixing with respect to the Lebesgue measure on \mathbb{D}^{m} and uniformly rigid with respect to $\left(\tilde{q}_{n}\right)_{n \in \mathbb{N}}$. Hence, Theorem 1 is also proven in the case of the disc \mathbb{D}^{m}.

8. Proof of Corollary 2

In order to prove Corollary 2 we only need the proximity

$$
d_{k}\left(f_{n}, f_{n-1}\right) \leq C_{k} \cdot| |\left|H_{n}\right| \|_{k+1}^{k+1} \cdot\left|\alpha_{n+1}-\alpha_{n}\right|<\frac{1}{2^{n}}
$$

which is satisfied if we demand

$$
\begin{equation*}
\left.\tilde{q}_{n+1} \geq 2^{n} \cdot \frac{(m+k)!}{(m-1)!} \cdot q_{n} \cdot \right\rvert\,\left\|H_{n}\right\|_{k+1}^{k+1} \tag{2}
\end{equation*}
$$

We find a new norm estimate $\left\|\left\|H_{n}\right\|_{k+1}^{k+1}\right.$: Since $\tilde{q}_{n} \leq q_{n}$ we estimate with the aid of Lemma 2.8, equation 2 and Lemma 6.2

$$
\begin{aligned}
& \left.\left\|H_{n}\right\|\left\|_{k+1}=\right\|\left|H_{n-1} \circ h_{n}\| \|_{k+1} \leq \frac{(m+k)!}{(m-1)!} \cdot\| \| H_{n-1}\right|\left\|_{k+1}^{k+1} \cdot\right\|\left\|h_{n}\right\|\left\|_{k+1}^{k+1} \leq q_{n} \cdot\right\| \right\rvert\, h_{n} \|_{k+1}^{k+1} \\
\leq & q_{n} \cdot 2^{k+1} \cdot\left(\frac{(m+k)!}{(m-1)!}\right)^{(m-1) \cdot(k+2)^{2} \cdot(k+1)} \cdot\left(\frac{(2 k)!}{k!} \cdot \pi^{(k+1)^{2}} \cdot\left((k+1)!\cdot \exp \left(\frac{1}{\delta_{n}^{2}}\right)\right)^{10 \cdot(k+1)^{5}}\right)^{(m-1) \cdot(k+1)^{2}} \\
& \cdot n^{2 \cdot(m-1) \cdot(k+1)^{3}} \cdot q_{n}^{(m \cdot n+1) \cdot(m-1) \cdot(k+1)^{3}}
\end{aligned}
$$

By equation 2 we conclude the requirement

$$
\begin{array}{r}
\tilde{q}_{n+1} \geq\left(\frac{(m+k)!}{(m-1)!}\right)^{m \cdot(k+2)^{4}} \cdot\left(\frac{(2 k)!}{k!} \cdot \pi^{(k+1)^{2}}\left((k+1)!\cdot \exp \left(\frac{1}{\delta_{n}^{2}}\right)\right)^{10 \cdot(k+1)^{5}}\right)^{m \cdot(k+1)^{3}} \\
\cdot n^{2 \cdot(m-1) \cdot(k+1)^{4}} \cdot q_{n}^{m^{2} \cdot(n+1) \cdot(k+1)^{4}}
\end{array}
$$

Due to $q_{n}<\tilde{q}_{n}^{2}$ the condition from Corollary 2 is sufficient.

9. Proof of Corollary 1

We recall the assumptions $\tilde{q}_{1} \geq m^{2} \cdot 2^{8} \cdot \exp (400)$ and $\tilde{q}_{n+1} \geq \tilde{q}_{n}^{\tilde{q}_{n}}$ on the sequence $\left(\tilde{q}_{n}\right)_{n \in \mathbb{N}}$.
Claim: Under these assumptions the numbers \tilde{q}_{n} satisfy $\tilde{q}_{n} \geq m^{2} \cdot(n+1)^{n+7}$. $\exp \left(400 n^{2}\right)$.
Proof with the aid of complete induction:

- Start $n=1: \quad \tilde{q}_{1} \geq m^{2} \cdot 2^{8} \cdot \exp (400)=m^{2} \cdot(1+1)^{1+7} \cdot \exp (400)$
- Assumption: The claim is true for $n \in \mathbb{N}$.
- Induction step $n \rightarrow n+1$: We calculate

$$
\begin{aligned}
\tilde{q}_{n+1} & \geq \tilde{q}_{n}^{\tilde{q}_{n}} \geq\left(m^{2} \cdot(n+1)^{n+7} \cdot \exp \left(400 n^{2}\right)\right)^{m^{2} \cdot(n+1)^{n+7}} \\
& \geq m^{2} \cdot(n+1)^{(n+7) \cdot m^{2} \cdot(n+1)^{n+7}} \cdot \exp \left(400 n^{2} \cdot m^{2} \cdot(n+1)^{n+7}\right) \\
& \geq m^{2} \cdot(n+2)^{n+8} \cdot \exp \left(400 \cdot(n+1)^{2}\right)
\end{aligned}
$$

using the relation $(n+1)^{m^{2}} \geq n+2$ in the last step.

Hereby, we have due to $\exp \left(400 n^{2}\right) \geq 14$:

$$
\begin{aligned}
\tilde{q}_{n+1} \geq & \tilde{q}_{n}^{\tilde{q}_{n}} \geq \tilde{q}_{n}^{14 \cdot m^{2} \cdot(n+1)^{n+7}}=\tilde{q}_{n}^{2 \cdot m^{2} \cdot(n+1)^{n+7}} \cdot \tilde{q}_{n}^{12 \cdot m^{2} \cdot(n+1)^{n+7}} \\
\geq & \tilde{q}_{n}^{2 \cdot m^{2} \cdot(n+1)^{n+7}} \cdot\left(m^{2} \cdot(n+1)^{n+7} \cdot \exp \left(400 n^{2}\right)\right)^{12 \cdot m^{2} \cdot(n+1)^{n+7}} \\
\geq & \tilde{q}_{n}^{2 \cdot m^{2} \cdot(n+1)^{n+7}} \cdot(n+1)^{(n+7) \cdot 10 \cdot m^{2} \cdot(n+1)^{n+7}} \cdot \exp \left(400 n^{2}\right)^{10 \cdot m^{2} \cdot(n+1)^{n+7}} \cdot(m n+m)^{2 \cdot m^{2} \cdot(n+1)^{n+7}} \\
& \cdot(m \cdot(n+1))^{2 \cdot m^{2} \cdot(n+1)^{n+7}} \cdot(n+1)^{2 \cdot m^{2} \cdot(n+1)^{n+7}} \cdot \exp \left(400 n^{2}\right)^{2 \cdot m^{2} \cdot(n+1)^{n+7}} \\
\geq & \tilde{q}_{n}^{2 \cdot m^{2} \cdot(n+1)^{n+7}} \cdot((n+1)!)^{10 \cdot m^{2} \cdot(n+1)^{n+7}} \cdot \exp \left(400 n^{2}\right)^{10 \cdot m^{2} \cdot(n+1)^{n+7}} \cdot\left(\frac{(m+n)!}{(m-1)!}\right)^{2 \cdot m^{2} \cdot(n+1)^{n+6}} \\
& \quad \cdot\left(\frac{(2 n)!}{n!}\right)^{2 \cdot m^{2} \cdot(n+1)^{n+6}} \cdot n^{2 \cdot m^{2} \cdot(n+1)^{n+6}} \cdot \pi^{m^{2} \cdot(n+1)^{n+4}} \\
\geq & \varphi_{1}(n) \cdot \tilde{q}_{n}^{2 \cdot m^{2} \cdot(n+1)^{n+3}} \cdot
\end{aligned}
$$

Hence, the requirement of the Theorem is met.
Acknowledgements: I would like to thank the referee for a careful proofreading and interesting comments. In particular, these helped to improve the presentation of the paper.
[AFLXZ] A. Avila, B. Fayad, P. Le Calvez, D. Xu, Z. Zhang: On mixing diffeomorphisms of the disk. Preprint, arXiv:1509.06906, 2015.
[AK] D. V. Anosov and A. Katok: New examples in smooth ergodic theory. Ergodic diffeomorphisms. Trudy Moskov. Mat. Obsc., 23: 3-36, 1970.
[Be] M. Benhenda: Non-standard Smooth Realization of Shifts on the Torus. Journal of Modern Dynamics, 7 (3): 329-367, 2013.
[BJLR] V. Bergelson, A. Del Junco, M. Lemanczyk and J. Rosenblatt: Rigidity and non-recurrence along sequences. Ergodic Theory and Dynamical Systems, 34(5): 1464-1502, 2014.
[FK04] B. Fayad and A. Katok: Constructions in elliptic dynamics. Ergodic Theory Dynam. Systems, 24 (5): 1477-1520, 2004.
[FS] B. Fayad and M. Saprykina: Weak mixing disc and annulus diffeomorphisms with arbitrary Liouville rotation number on the boundary. Ann. Scient. cole. Norm. Sup.(4), 38(3): 339-364, 2005.
[GKu] R. Gunesch and P. Kunde: Weakly mixing diffeomorphisms preserving a measurable Riemannian metric with prescribed Liouvillean rotation behavior. Submitted to Journal of Discrete and Continuous Dynamical Systems A, arXiv:1512.00075.
[GM] S. Glasner and D. Maon: Rigidity in topological dynamics. Ergodic Theory Dynam. Systems, 9: 309-320, 1989.
[JKLSS] J. James, T. Koberda, K. Lindsey, C. Silva and P. Speh: On ergodic transformations that are both weak mixing and uniformly rigid. New York J. Math, 15: 393-403, 2009.
[Ku] P. Kunde: Uniform rigidity sequences for weak mixing diffeomorphisms on $\mathbb{D}^{2}, \mathbb{A}$ and \mathbb{T}^{2}. Journal of Mathematical Analysis and Applications, 429: 111-130, 2015.
[Skl] M. D. Sklover: Classical dynamical systems on the torus with continuous spectrum. Izv. Vys. Ucebn. Zaved. Mat., 10: 113-124, 1967.
[Ya] K. Yancey: On weakly mixing homeomorphisms of the two-torus that are uniformly rigid. Journal of Mathematical Analysis and Applications, 399 (2): 524-541, 2013.
[Yab] K. Yancey: Uniformly rigid homeomorphisms. Phd thesis, available under http://hdl.handle.net/2142/45507, 2013.

