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Abstract

In the case of the disc D2, the annulus A = S1× [0, 1] and the torus T2 we will show that
if a sequence of natural numbers satisfies a certain growth rate, then there is a weak mixing
diffeomorphism that is uniformly rigid with respect to that sequence. The proof is based
on a quantitative version of the Anosov-Katok-method with explicitly defined conjugation
maps and the constructions are done in the C∞-topology. Beyond that we can deduce a
similar result in the real-analytic topology in the case of T2.

1 Introduction

In [GM] the notion of uniform rigidity was introduced as the topological analogue of rigidity in
ergodic theory:

Definition 1.1. 1. Let T be an invertible measure-preserving transformation of a non-atomic
probability space (X,B, µ). T is called rigid if there exists an increasing sequence (nm)m∈N
of natural numbers such that the powers Tnm converge to the identity in the strong operator
topology as m→∞, i.e. ‖f ◦ Tnm − f‖2 → 0 as m→∞ for all f ∈ L2 (X,µ). So rigidity
along a sequence (nm)m∈N implies µ (TnmA ∩A)→ µ (A) as m→∞ for all A ∈ B.

2. Let (X,B, µ) be a Lebesgue probability space, where X is a compact metric space with met-
ric d. A measure-preserving homeomorphism T : X → X is called uniformly rigid if there
exists an increasing sequence (nm)m∈N of natural numbers such that du (Tnm , id) → 0 as
m→∞, where du (S, T ) = d0 (S, T )+d0

(
S−1, T−1

)
with d0 (S, T ) := supx∈X d (S (x) , T (x))

is the uniform metric on the group of measure-preserving homeomorphisms on X.

Remark 1.2. Uniform rigidity implies rigidity. In [Ya], example 3.1, an example of a rigid, but
not uniformly rigid homeomorphism of T2 is presented. Thus, rigidity and uniform rigidity do
not coincide on T2.

In [JKLSS], Proposition 4.1., it is shown that if an ergodic map is uniformly rigid, then any
uniform rigidity sequence has zero density. Afterwards, the following question is posed:

Question 1.3. Which zero density sequences occur as uniform rigidity sequences for an ergodic
transformation?
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Under some assumptions on the sequence (nm)m∈N measure-preserving transformations that
are weak mixing and rigid along this sequence are constructed by a cutting and stacking method
in [BJLR]. Recall that a measure-preserving transformation T : (X,B, µ) → (X,B, µ) is called
weak mixing if for all A,B ∈ B: 1

N

∑N
n=1 |µ (TnA ∩B)− µ (A) · µ (B)| → 0 as N →∞.

K. Yancey considered Question 1.3 in the setting of homeomorphisms on T2 (see [Ya]). Given a
sufficient growth rate of the sequence she proved the existence of a weak mixing homeomorphism
of T2 that is uniformly rigid with respect to this sequence: Let ψ (x) = xx

3
. If (nm)m∈N is an

increasing sequence of natural numbers satisfying nm+1
nm

≥ ψ (nm), there exists a weak mixing
homeomorphism of T2 that is uniformly rigid with respect to (nm)m∈N. In this paper we start
to examine this problem in the smooth category.

Theorem 1. Let ϕ1(n) := 4(n+2)n+2 · ((n+ 2)!)11(n+2)n+6

· exp
(
100n2

)11n(n+1)n+5

and M be D2,
A or T2. If (q̃n)n∈N is a sequence of natural numbers satisfying

q̃n+1 ≥ ϕ1 (n) · q̃6·(n+1)n+1

n ,

then there exists a weak mixing C∞-diffeomorphism of M that is uniformly rigid with respect to
(q̃n)n∈N.

We note that our requirement on the growth rate is less restrictive than the mentioned
condition in [Ya], Theorem 1.5.. In fact, the proof in [Ya] shows that a condition of the form
nm+1
nm

≥ n
4n2
m+20

m is sufficient for her construction of a weakly mixing homeomorphism, which is
uniformly rigid along (nm)m∈N. Our requirement on the growth rate is still weaker.
The aimed diffeomorphisms are constructed with the aid of the so-called “approximation by
conjugation-method” introduced in [AK]. On every smooth compact connected manifold of
dimension m ≥ 2 admitting a non-trivial circle action S = {St}t∈S1 this method enables the
construction of smooth diffeomorphisms with specific ergodic properties (e.g. weak mixing ones
in [AK], section 5, or [GK]) or non-standard smooth realizations of measure-preserving systems
(e.g. [AK], section 6, and [FSW]). These diffeomorphisms are constructed as limits of conjugates
fn = Hn ◦Sαn+1 ◦H−1

n , where αn+1 = pn+1
qn+1

∈ Q, Hn = Hn−1 ◦hn and hn is a measure-preserving
diffeomorphism satisfying S 1

qn
◦ hn = hn ◦ S 1

qn
. See [FK] for more details and other results of

this method.
Our specific constructions are inspired by the construction of weak mixing diffeomorphisms with
prescribed Liouvillean rotation number by B. Fayad and M. Saprykina ([FS]): Basically, we use
the same criterion for weak mixing and the conjugation maps are supposed to have the same
effect on the partition elements. In [FS] the conjugation maps are based on a “quasi-rotation” ϕε
on the unit square [−1, 1]2, which is the rotation by π

2 on [−1 + 2ε, 1− 2ε]2 and coincides with
the identity in a neighbourhood of the boundary. It is designed with the aid of “Moser’s trick”
and it does not admit a norm estimate with explicit dependence on the parameter ε. Since the
parameter ε depends on n and we require precise norm estimates of the conjugation maps in
order to deduce a sufficient growth rate of the uniform rigidity sequence, the construction of the
conjugation maps has to be modified. We give further details on these modifications and outline
our constructions in section 3.

Remark 1.4. In the case of the torus, we can apply essentially the same method and obtain
the following result:
Let ρ > 0. If (q̃n)n∈N is a sequence of natural numbers satisfying q̃1 ≥ ρ+ 1 and

q̃n+1 ≥ 2n · 642 · π4 · n4 · q̃26n · exp
(
4π · n · q̃6n · exp

(
2π · q̃4n · (1 + n · q̃n)

))
,
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then there exists a weak mixing Diffωρ -diffeomorphism of T2 that is uniformly rigid with respect
to (q̃n)n∈N.
We do not include the detailed proof because the method of reparameterized linear flows as in
[Fa] seems to be a more appropriate approach.

2 Definitions and notations

In this chapter we want to introduce advantageous definitions and notations. In particular, we
discuss topologies on the space of diffeomorphisms on the considered manifolds.

2.1 C∞-topology

For defining explicit metrics on Diffk
(
T2
)
and in the following the subsequent notations will be

useful:

Definition 2.1. 1. For a sufficiently differentiable function f : R2 → R and a multiindex
~a = (a1, a2) ∈ N2

0

D~af :=
∂|~a|

∂xa1
1 ∂x

a2
2

f,

where |~a| = a1 + a2 is the order of ~a.

2. For a continuous function F : (0, 1)2 → R

‖F‖0 := sup
z∈(0,1)2

|F (z)| .

For f, g ∈ Diffk
(
T2
)
let F,G : R2 → R2 denote their lifts. Furthermore, for a function

F : R2 → R2 we denote by [F ]i the i-th coordinate function.

Definition 2.2. 1. For f, g ∈ Diffk
(
T2
)
we define

d̃0 (f, g) = max
i=1,2

{
inf
p∈Z
‖[F −G]i + p‖0

}
as well as

d̃k (f, g) = max
{
d̃0 (f, g) , ‖D~a [F −G]i‖0 : i = 1, 2 , 1 ≤ |~a| ≤ k

}
.

2. Using the definitions from 1. we define for f, g ∈ Diffk
(
T2
)
:

dk (f, g) = max
{
d̃k (f, g) , d̃k

(
f−1, g−1

)}
.

Obviously dk describes a metric on Diffk
(
T2
)
measuring the distance between the diffeomor-

phisms as well as their inverses. As in the case of a general compact manifold the following
definition connects to it:

Definition 2.3. 1. A sequence of Diff∞
(
T2
)
-diffeomorphisms is called convergent in Diff∞

(
T2
)

if it converges in Diffk
(
T2
)
for every k ∈ N.
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2. On Diff∞
(
T2
)
we declare the following metric

d∞ (f, g) =
∞∑
k=1

dk (f, g)
2k · (1 + dk (f, g))

.

It is a general fact that Diff∞
(
T2
)
is a complete metric space with respect to this metric d∞.

Moreover, we add the adjacent notation:

Definition 2.4. Let f ∈ Diffk
(
T2
)
with lift F be given. Then

‖Df‖0 := max
i,j∈{1,2}

‖Dj [F ]i‖0

‖f‖k := max
{

inf
p∈Z
‖fi − p‖0 , ‖D~afi‖0 : i = 1, 2,~a multiindex with 1 ≤ |~a| ≤ k

}
and

|||f |||k := max
{
‖f‖k ,

∥∥f−1
∥∥
k

}
.

Remark 2.5. Since for h ∈ Diff∞
(
T2
)
, every multiindex ~a with |~a| ≥ 1 and every i ∈ {1, 2} the

derivative D~ahi is Z2-periodic, it holds for any diffeomorphism g:

sup
z∈(0,1)m

|(D~ahi) (g (z))| ≤ |||h||||~a|.

Analogously we can define the same expressions in the case of the annulus A = S1 × [0, 1].
In the case of the disc the Diffk

(
D2
)
-topologies are defined in a natural way with the aid of the

supremum norm on the disc.
Concerning the composition of functions the next result is useful:

Lemma 2.6. Let M be D2, A or T2. Moreover, let g, h ∈ Diff∞ (M) and k ∈ N. Then for the
composition g ◦ h it holds

‖g ◦ h‖k ≤ (k + 1)! · ‖g‖k · ‖h‖
k
k and |||g ◦ h|||k ≤ (k + 1)! · |||g|||kk · |||h|||kk.

Proof. By induction on k ∈ N we will prove the following observation:
Claim: For any multiindex ~a ∈ N2

0 with |~a| = k and i ∈ {1, 2} the partial derivative D~a [g ◦ h]i
consists of at most (k + 1)! summands, where each summand is the product of one derivative of
g of order at most k and at most k derivatives of h of order at most k.

• Start: k = 1
For i1, i ∈ {1, 2} we compute:

Dxi1
[g ◦ h]i (x1, x2) =

2∑
j1=1

(
Dxj1

[g]i
)

(h (x1, x2)) ·Dxi1
[h]j1 (x1, x2) .

Hence, this derivative consists of 2! = 2 summands and each summand has the announced
form.

• Induction assumption: The claim holds for k ∈ N.

• Induction step: k → k + 1
Let i ∈ {1, 2} and ~b ∈ N2

0 be any multiindex of order
∣∣∣~b∣∣∣ = k + 1. There are j ∈ {1, 2} and
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a multiindex ~a of order |~a| = k such that D~b = DxjD~a. By the induction assumption the
partial derivative D~a [g ◦ h]i consists of at most (k + 1)! summands, at which the summand
with the most factors is of the subsequent form:

D~c1 [g]i (h (x1, x2)) ·D~c2 [h]i2 (x1, x2) · ... ·D~ck+1 [h]ik+1
(x1, x2) ,

where each ~ci is of order at most k. Using the product rule we compute how the derivative
Dxj acts on such a summand: 2∑

j1=1

Dxj1
D~c1 [g]i ◦ h ·Dxj [h]j1 D~c2 [h]i2 · ... ·D~ck+1 [h]ik+1

+

D~c1 [g]i ◦ h ·DxjD~c2 [h]i2 · ... ·D~ck+1 [h]ik+1
+ ...+

D~c1 [g]i ◦ h ·D~c2 [h]i2 · ... ·DxjD~ck+1 [h]ik+1

Thus, each summand is the product of one derivative of g of order at most k+1 and at most
k+1 derivatives of h of order at most k+1. Moreover, we observe that 2+k summands arise
out of one. So the number of summands can be estimated by (k + 2) · (k + 1)! = (k + 2)!
and the claim is verified.

Using this claim we obtain for i ∈ {1, 2} and any multiindex ~a ∈ N2
0 of order |~a| = k:

‖D~a [g ◦ h]i‖0 ≤ (k + 1)! · ‖g‖k · ‖h‖
k
k .

Applying the claim on h−1 ◦ g−1 yields:∥∥D~a [h−1 ◦ g−1
]
i

∥∥
0
≤ (k + 1)! · ‖g‖kk · ‖h‖k .

We conclude
|||g ◦ h|||k ≤ (k + 1)! · |||g|||kk · |||h|||kk.

2.2 Analytic topology

Real-analytic diffeomorphisms of T2 homotopic to the identity have a lift of type

F (θ, r) = (θ + f1 (θ, r) , r + f2 (θ, r)) ,

where the functions fi : R2 → R are real-analytic and Z2-periodic for i = 1, 2. For these functions
we introduce the subsequent definition:

Definition 2.7. For any ρ > 0 we consider the set of real-analytic Z2-periodic functions on R2,
that can be extended to a holomorphic function on Aρ :=

{
(θ, r) ∈ C2 : |imθ| < ρ, |imr| < ρ

}
.

1. For these functions let ‖f‖ρ := sup(θ,r)∈Aρ |f (θ, r)|.

2. The set of these functions satisfying the condition ‖f‖ρ <∞ is denoted by Cωρ
(
T2
)
.

Furthermore, we consider the space Diffωρ
(
T2
)
of those diffeomorphisms homotopic to the

identity, for whose lift we have fi ∈ Cωρ
(
T2
)
for i = 1, 2.
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Definition 2.8. For f, g ∈ Diffωρ
(
T2
)
we define

‖f‖ρ = max
i=1,2

‖fi‖ρ

and the distance
dρ (f, g) = max

i=1,2

{
inf
p∈Z
‖fi − gi − p‖ρ

}
.

Remark 2.9. Diffωρ
(
T2
)
is a Banach space (see [Sa] or [Ly] for a more extensive treatment of

these spaces).

3 Outline of the proof

In our constructions we consider D2, A and T2 with the standard circle actions R = {Rt}t∈S1

comprising of the diffeomorphisms Rt (θ, r) = (θ + t, r).
First of all, we will do the constructions on T2 and A. Inductively, we will design a sequence of
smooth measure-preserving diffeomorphisms fn = Hn ◦Rαn+1 ◦H−1

n with Hn = Hn−1 ◦ hn. The
conjugation map hn will be a composition hn = gn ◦ φn, where gn (θ, r) = (θ + [nqσn] · r, r) with
some 0 < σ < 0.25 and the conjugation map φn is constructed in section 5, and the sequence of
rational numbers will be

αn+1 =
pn+1

qn+1
= αn −

an
qn · q̃n+1

,

where an ∈ Z, 1 ≤ an ≤ qn is chosen in such a way that q̃n+1 · pn ≡ an mod qn. Therewith, we
have |αn+1 − αn| ≤ 1

q̃n+1
and q̃n+1 · αn+1 = q̃n+1·pn

qn
− an

qn
≡ 0 mod 1, which implies f q̃n+1

n = id.
Hence, (q̃n)n∈N will be a uniform rigidity sequence of f = limn→∞ fn under some restrictions
on the closeness between fn and f (see subsection 6.3), which depend on the norms of the
conjugation maps Hi and the distances |αi+1 − αi| ≤ 1

q̃i+1
for every i > n. Thus, we have to

estimate the norms |||Hn|||n+1 carefully in subsection 6.1. At the end of subsection 6.2 this will
yield a sufficient condition on the growth rate of the uniform rigidity sequence (q̃n)n∈N and in
subsection 6.4 we prove that f is weak mixing using a criterion similar to that deduced in [FS]
(see section 4).
Finally, we will transform these constructed diffeomorphisms into smooth diffeomorphisms on
D2. Hereby, we will prove Theorem 1 in the case of D2 in section 7.

4 Criterion for weak mixing

In this section we will formulate a criterion for weak mixing on M = T2 or M = A.

4.1 (γ, δ, ε)-distribution of horizontal intervals
We recall the following definitions stated in [FS]:

Definition 4.1. Let η̂ be a partial decomposition of T into intervals. On M = T2 or M = A
we will consider a decomposition η consisting of intervals in η̂ times some r ∈ [0, 1]. Sets of
this form will be called horizontal intervals and decompositions of this type standard partial
decompositions. On the other hand, sets of the form {θ} × J , where J is an interval on the
r-axis, are called vertical intervals.
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Hereby, we can introduce the notion of (γ, δ, ε)-distribution of a horizontal interval in the
vertical direction:

Definition 4.2. A diffeomorphism Φ : M →M (γ, δ, ε)-distributes a horizontal interval I if the
following conditions are satisfied

• πr (Φ (I)) is an interval J with 1− δ ≤ λ (J) ≤ 1,

• Φ (I) is contained in a vertical strip [c, c+ γ]× J for some c ∈ S1,

• for any interval J̃ ⊆ J we have∣∣∣∣∣∣
λ
(
I ∩ Φ−1

(
T× J̃

))
λ (I)

−
λ
(
J̃
)

λ (J)

∣∣∣∣∣∣ ≤ ε ·
λ
(
J̃
)

λ (J)
.

4.2 Statement of the criterion
The proof of the criterion is the same as in [FS], section 3. The only difference occurs in
comparison to Lemma 3.5., which in our case will be stated in the subsequent way:

Lemma 4.3. Let (ηn)n∈N be a sequence of standard partial decompositions of M into horizontal
intervals of length less than q−1

n . Moreover, let gn be defined by gn (θ, r) = (θ + [nqσn] · r, r) with
some 0 < σ < 0.25 and let (Hn)n∈N be a sequence of area-preserving diffeomorphisms such that
for every n ∈ N:

(C1) ‖DHn−1‖0 ≤ q
0.25
n .

Consider the partitions νn := {Γn = Hn−1 (gn (In)) : In ∈ ηn}.
Then ηn → ε implies νn → ε.

Proof. For every ε > 0 we can choose n large enough such that µ
(⋃

I∈ηn I
)
> 1−ε and there is

a collection of squares S̃n := {Sn,i} with side length between q−0.6
n and q−0.9

n with total measure of
the union Sn :=

⋃
i Sn,i greater than 1−

√
ε. Then we have µ

(⋃
I∈ηn I ∩ Sn

)
≥ (1−

√
ε) ·µ (Sn),

because otherwise µ
(
Sn \

⋃
I∈ηn I

)
>
√
ε · µ (Sn) >

√
ε · (1−

√
ε) and so µ

(
T2 \

⋃
I∈ηn I

)
>

√
ε−ε > ε in case of ε < 1

4 , which contradicts µ
(⋃

I∈ηn I
)
> 1−ε. Since the horizontal intervals

I ∈ ηn have length less than q−1
n , we can approximate the squares in the above collection S̃n for

n sufficiently large in such a way that µ
(⋃

I∈ηn,I⊂Sn I
)
≥ (1− 2

√
ε) · µ (Sn).

In the next step we consider the sets Cn,i := Hn−1 (gn (Sn,i)) with Sn,i ∈ S̃n. For these sets Cn,i
we have:

diam (Cn,i) ≤ ‖DHn−1‖0 · ‖Dgn‖0 · diam (Sn,i) ≤ n ·
√

2 · qσ−0.35
n

which goes to 0 as n → ∞ because σ < 0.25. Therefore, any Borel set B can be approximated
by a union of such sets Cn,i with any prescribed accuracy if n is sufficiently large, i.e. for every
ε > 0 there is N ∈ N such that for n ≥ N there is an index set Jn: µ

(
B4

⋃
i∈Jn Cn,i

)
< ε. Now

we choose the union of these elements I ∈ ηn contained in the occurring cubes Sn,i and obtain:

µ
(
B4

⋃
Hn−1 ◦ gn (I)

)
≤ µ

(
B4

⋃
i∈Jn

Cn,i

)
+ µ

Sn \ ⋃
I∈ηn,I⊂Sn

I


< ε+ 2

√
ε · µ (Sn) < 3

√
ε.

Thus, B gets well approximated by unions of elements of νn if n is chosen sufficiently large.
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Now the criterion for weak mixing can be stated in the following way (compare with [FS],
Proposition 3.9.):

Proposition 4.4. Let fn = Hn ◦ Rαn+1 ◦H−1
n be diffeomorphisms constructed as explained in

the Outline with σ < 1
4 and such that ‖DHn−1‖0 ≤ q0.25n holds for all n ∈ N.

Suppose that the limit f := limn→∞ fn exists. If there exists a sequence (mn)n∈N of natural num-
bers satisfying d0 (fmnn , fmn) < 1

2n and a sequence (ηn)n∈N of standard partial decompositions
of M into horizontal intervals of length less than q−1

n such that ηn → ε and the diffeomorphism
Φn := φn ◦Rmnαn+1

◦ φ−1
n

(
1
nqσn

, 1
n ,

1
n

)
-distributes every interval In ∈ ηn, then the limit diffeomor-

phism f is weak mixing.

Remark 4.5. In [FS] it is demanded ‖DHn−1‖0 < ln (qn) instead of requirement C1. We did this
modification because the fulfilment of the original condition would lead to stricter requirements
on the rigidity sequence: In particular, equation A3 would require an exponential growth rate.

5 Explicit constructions

Once again, we consider M = T2 or M = A. In this section we will construct the conjugation
map φn satisfying the subsequent Proposition.

Proposition 5.1. There exists a smooth measure-preserving diffeomorphism φn : M → M
satisfying the following properties

• φn ◦R 1
qn

= R 1
qn
◦ φn

• On
[

1
8nqn

, 1
2qn
− 1

8nqn

]
×
[

1
4n , 1−

1
4n

]
: φn (r, θ) =

(
1

2qn
− 1

2qn
· θ, 2qn · r

)
.

• On
[

1
2qn

, 1
qn

]
× [0, 1] the map φn is equal to the identity.

• We have for every s ∈ N, s ≥ 2:

|||φn|||s ≤ 4s · ((s+ 1)!)s+1 ·
(
s! · exp

(
100n2

))11·s5 · qsn.
In order to prove this Proposition let δ > 0. Our first aim is to construct a measure-

preserving diffeomorphism on the square ∆ := [−1, 1]2 that coincides with the rotation by π
2 on

∆(5δ) := [−1 + 5δ, 1− 5δ]2 and with the identity in a neighbourhood of the boundary, namely
∆ \∆(δ). As announced in the introduction, in comparison with [FS] this map has to play the
role of ϕn which was constructed with the aid of “Moser’s trick”. Since we need precise norm
estimates, we have to modify the construction.

5.1 Bump functions and map ψδ

We use the smooth map

j(x) =

{
exp

(
− 1
x2

)
for x ≥ 0

0 for x < 0

First of all, we find norm estimates for this function j:



Explicit constructions 9

Lemma 5.2. For every s ∈ N:

‖j‖s := max
t=0,1,...,s

max
x∈[0,1]

∣∣∣j(t)(x)
∣∣∣ ≤ 32s · s1.5s · (s− 1)!.

Proof. We consider j̃(x) = exp
(
− 1
x2

)
with derivative j̃(1)(x) = 2

x3 exp
(
− 1
x2

)
. Differentiating

yields j(2)(x) = exp
(
− 1
x2

)
· 4
x6 − exp

(
− 1
x2

)
· 6
x4 . Continuing in this way we observe for j(s) that

the number as of summands is as = 2 · as−1 (with a1 = 1) and the exponent in the denominator
is at most 3s. Hence, for x ∈ [0, 1] an upper bound of

∣∣j(s)(x)
∣∣ is given by

as · exp
(
− 1
x2

)
· 1
x3s
· 2 ·

s−1∏
i=1

(3i) = exp
(
− 1
x2

)
· 1
x3s
· 2s · 3s−1 · (s− 1)!

For x =
√

2
3s this expression has a maximum on [0, 1] and takes the value

2−0.5s · 32.5s−1 · s1.5s · (s− 1)! · exp (−1.5s) ≤ 30.5s

20.5s · exp (1.5s)
· 32s · s1.5s · (s− 1)!.

Using the map j we define the bump function

ka,b (x) =
j (b− x)

j (x− a) + j (b− x)
,

where a, b ∈ (0, 1). We examine this bump function ka,b:

Figure 1: Qualitative shape of the bump function ka,b

Lemma 5.3. For every s ∈ N:

‖ka,b‖s ≤ 2s−1 · 32s2+2s · s1.5s
2+1.5s · s!s+2 · exp

((
2

b− a

)2

· (s+ 1)

)
.
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Proof. At first, we consider the denominator l(x) := j (x− a) + j (b− x): On [0, 1] it is minimal
for x = a+b

2 and takes the value l
(
a+b
2

)
= 2 · exp

(
− 4

(b−a)2

)
.

In order to examine the derivatives of ka,b we use the quotient rule. Hereby, we observe that
the denominator of k(s)

a,b is (l(x))s+1. Moreover, each summand of the numerator is a product
of a derivative of j (b− x) of order at most s and s derivatives of l of order at most s. Hence,
the derivative of this numerator consists of (s+ 1) · as summands, at which as is the number of
summands of the numerator of k(s)

a,b. Then, the number as+1 of summands of the numerator of

k
(s+1)
a,b is at most 2 · (s+ 1) · as. Since a0 = 1 we obtain as = 2s · s!. We conclude:∣∣∣k(s)

a,b (x)
∣∣∣ ≤ ‖j‖s · ‖l‖

s
s(

minx∈[0,1] l(x)
)s+1 · as ≤

‖j‖s · (2 · ‖j‖s)
s(

minx∈[0,1] l(x)
)s+1 · as

≤32s · s1.5s · (s− 1)! · 2s · 32s2 · s1.5s
2
· (s− 1)!s · 1

2s+1
exp

(
4(s+ 1)
(b− a)2

)
· 2s · s!

In our constructions we use a = 1− 3δ and b = 1− 2δ. We denote the corresponding map by
kδ. Hereby, we define the smooth diffeomorphism

ψδ

(
θ̃, r̃
)

=
(
θ̃ +

π

2
· kδ (r̃) , r̃

)
on R2 with symplectic polar coordinates θ̃ ∈ R/2πZ, r̃ ∈ R+. This map coincides with the
rotation by π

2 on B(1− 3δ) and with the identity on R2 \B(1− 2δ). As a direct consequence of
the previous results we conclude:

Lemma 5.4. For every s ∈ N:

|||ψδ|||s ≤ π · 2s−1 · 32s2+2s · s1.5s
2+1.5s · s!s+2 · exp

(
4
δ2
· (s+ 1)

)
.

5.2 Maps κδ and ϕδ

In the construction of our conjugation map ϕδ there is an angle-dependent dilation. In order to
make this angle-dependence smooth we use the bump functions. We define the smooth map κδ:

• On
[
0, π2

]
:

κδ (θ) = kπ
4−

δ
2 ,
π
4 + δ

2
(θ) · 1

(cos (θ))2
+
(

1− kπ
4−

δ
2 ,
π
4 + δ

2
(θ)
)
· 1

(sin (θ))2

• On
[
π
2 , π

]
:

κδ (θ) = k 3π
4 −

δ
2 ,

3π
4 + δ

2
(θ) · 1

(sin (θ))2
+
(

1− k 3π
4 −

δ
2 ,

3π
4 + δ

2
(θ)
)
· 1

(cos (θ))2

• On
[
π, 3·π

2

]
:

κδ (θ) = k 5π
4 −

δ
2 ,

5π
4 + δ

2
(θ) · 1

(cos (θ))2
+
(

1− k 5π
4 −

δ
2 ,

5π
4 + δ

2
(θ)
)
· 1

(sin (θ))2
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• On
[
3·π
2 , 2π

]
:

κδ (θ) = k 7π
4 −

δ
2 ,

7π
4 + δ

2
(θ) · 1

(sin (θ))2
+
(

1− k 7π
4 −

δ
2 ,

7π
4 + δ

2
(θ)
)
· 1

(cos (θ))2

Remark 5.5. We note: κδ
(
θ + π

2

)
= κδ (θ).

Lemma 5.6. For every s ∈ N:

‖κδ‖s ≤ 24s+2 · 32s2+2s · s!s+3 · s1.5s
2+1.5s · exp

(
4
δ2
· (s+ 1)

)
.

Proof. In a first step, we examine the map v(x) := 1
(cos(x))2

with derivative v(1)(x) = 2·sin(x)

(cos(x))3
.

The next derivatives are computed with the aid of the quotient rule. The denominator of v(s)(x)
is (cos(x))s+2 with degree ns = s + 2 and the numerator consists of zs summands, where each
summand is a product of ps factors sin(x) and cos(x) respectively. Then, the quotient rule yields
ps+1 = ps + 1 and zs+1 = (ns + ps) · zs. Since z1 = 2 and p1 = 1 we obtain ps = s and

zs+1 = zs · (2s+ 2) = zs−1 · 2 · s · 2 · (s+ 1) = 2s+1 · (s+ 1)!.

Hereby, we conclude for x ∈
[
−π3 ,

π
3

]
, i.e. cos(x) ≥ 0.5:∣∣∣v(s)(x)

∣∣∣ ≤ zs

(cos(x))s+2 ≤ 2s · s! · 2s+2 = 22s+2 · s!.

By the same arguments we obtain the same bound on the derivatives of 1
(sin(x))2

for x ∈
[
π
6 ,

5π
6

]
.

An estimate deduced from the product rule yields

‖κδ‖s ≤ 2s · ‖kδ‖s · ‖v‖s,[−π3 ,π3 ] + 2s · ‖1− kδ‖s ·

∥∥∥∥∥ 1
(sin(x))2

∥∥∥∥∥
s,[π6 , 5π6 ]

≤ 2s+1 · ‖kδ‖s · ‖v‖s,[−π3 ,π3 ] .

The same holds true on the other particular domains. Then we find the claimed estimate

‖κδ‖s ≤ 2s+1 · 2s−1 · 32s2+2s · s1.5s
2+1.5s · s!s+2 · exp

((
2
δ

)2

(s+ 1)

)
· 22s+2 · s!

≤ 24s+2 · 32s2+2s · s1.5s
2+1.5s · s!s+3 · exp

(
4 · (s+ 1)

δ2

)
.

Once again, we consider R2 equipped with symplectic polar coordinates
(
θ̃, r̃
)
. For r1, r2 ∈

(0, 1) we define the map

ϕr1,r2,δ

(
θ̃, r̃
)

=
(
θ̃, κδ

(
θ̃
)
· r21 + r̃ − r1

)
on B (r1, r2) ,

where B (r1, r2) =
{(
θ̃, r̃
)

: θ̃ ∈ R/2πZ, r̃ ∈ [r1, r2]
}
. In our constructions we use r1 = 1 − 4δ

and r2 = 1− δ. The corresponding map is called ϕδ.
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5.3 The map φδ

With the aid of the maps introduced in the previous subsections we construct the smooth dif-
feomorphism φ̃δ on R2 equipped with symplectic polar coordinates

(
θ̃, r̃
)
:

φ̃δ

(
θ̃, r̃
)

=


(
θ̃ + π

2 , r̃
)

inside of ϕδ
(
S1 × {r1}

)
ϕδ ◦ ψδ ◦ ϕ−1

δ

(
θ̃, r̃
)

on ϕδ (B (r1, r2))(
θ̃, r̃
)

outside of ϕδ
(
S1 × {r2}

)
Recall that the domain ϕδ (B (r1, r2)) is invariant under the rotation about arc π

2 due to Remark
5.5.
For (θ, r̄) = ϕδ (θ, r1) we have

φ̃δ (θ, r̄) = ϕδ ◦ ψδ (θ, r1) = ϕδ

(
θ +

π

2
· kδ (r1) , r1

)
=
(
θ +

π

2
, r̄
)

and for (θ, r̄) = ϕδ (θ, r2) we have

φ̃δ (θ, r̄) = ϕδ ◦ ψδ (θ, r2) = ϕδ

(
θ +

π

2
· kδ (r2) , r2

)
= (θ, r̄) .

Since r1 < a < b < r2 these equalities hold true on a neighbourhood of the points. Thus, φ̃δ is
a smooth diffeomorphism. Furthermore, φ̃δ is measure-preserving because the maps ϕδ and ψδ
are.

Lemma 5.7. For every s ∈ N:

|||φ̃δ|||s ≤πs · 24s3+3s2+3s+3 · 32s4+4s3+4s2+2s · s!s
3+4s2+4s+4 · s1.5s

4+3s3+3s2+1.5s

· exp
(

4
δ2
·
(
s3 + 2s2 + 2s+ 1

))
Proof. On ϕδ (B (r1, r2)) we have

φ̃δ

(
θ̃, r̃
)

=

(
θ̃ +

π

2
· kδ

(
r1 + r̃ − κδ

(
θ̃
)
· r21
)
,

r̃ + κδ

(
θ̃ +

π

2
· kδ

(
r1 + r̃ − κδ

(
θ̃
)
· r21
))
· r21 − κδ

(
θ̃
)
· r21

)

In a first step we consider K1

(
θ̃, r̃
)

:= kδ

(
r1 + r̃ − κδ

(
θ̃
)
· r21
)
. With the aid of the chain rule

we compute
‖K1‖s ≤ s! · ‖kδ‖s · ‖κδ‖

s
s .

Again using the chain rule we obtain for K2

(
θ̃, r̃
)

:= κδ

(
θ̃ + π

2 ·K1

(
θ̃, r̃
))

:

‖K2‖s ≤ s! · ‖κδ‖s ·
(

2 · π
2
· ‖K1‖s

)s
.
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By the previous norm estimates we conclude∥∥∥φ̃δ∥∥∥
s
≤2 · ‖K2‖s ≤ 2 · s! · ‖κδ‖s · π

s · ‖K1‖ss
≤2 · s! · ‖κδ‖s · π

s · (s! · ‖kδ‖s · ‖κδ‖
s
s)
s

≤2 · s!s+1 · πs · ‖κδ‖s
2+1
s · ‖kδ‖ss

≤πs · 24s3+3s2+3s+3 · 32s4+4s3+4s2+2s · s!s
3+4s2+4s+4 · s1.5s

4+3s3+3s2+1.5s

· exp
(

4
δ2
·
(
s3 + 2s2 + 2s+ 1

))
Since φ̃−1

δ is of the same form, we obtain the claim.

The coordinate change from symplectic polar coordinates to cartesian coordinates is given
by:

P
(
θ̃, r̃
)

=
(
x
y

)
=

 √r̃ · cos
(
θ̃
)

√
r̃ · sin

(
θ̃
) 

A direct computation yields |det (JP )| = 1
2 except at the origin. Hereby, we consider the area-

preserving map φδ := P ◦ φ̃δ ◦ P−1. By our choice of r1 the map φδ is the rotation about the
angle π

2 on [−1 + 5δ, 1− 5δ]2. Moreover, it coincides with the identity outside of [−1 + δ, 1− δ]2.
In order to obtain norm estimates of φδ we examine the coordinate change P on B (r1, r2):

Lemma 5.8. For every s ∈ N:

‖P‖s,B(r1,r2)
≤ 2s−1.5 · (s− 1)!.

Proof. The norm ‖P‖s,B(r1,r2)
is determined by the derivatives of p(r) =

√
r. Direct computa-

tion shows

p(s)(r) = r−
2s−1

2 · (−1)s ·
s−1∏
i=0

2i− 1
2

= r−
2s−1

2 · (−1)s+1 · 1
2s
·
s−1∏
i=1

(2i− 1).

Since r1 ≥ 0.5 we obtain

‖P‖s,B(r1,r2)
≤ r−

2s−1
2

1 · 1
2s
· 2s−1 · (s− 1)! ≤ 2s−1.5 · (s− 1)!.

For the inverse P−1|P (B(r1,r2)) we deduce the subsequent estimate:

Lemma 5.9. For every s ∈ N:∥∥P−1
∥∥
s,P (B(r1,r2))

≤ 23s−2 · (s− 1)!.

Proof. The inverse coordinate transformation is given by

P−1 (x, y) =
(
θ̃
r̃

)
=

 arccos
(

x√
x2+y2

)
x2 + y2

 for y ≥ 0

P−1 (x, y) =
(
θ̃
r̃

)
=

 − arccos
(

x√
x2+y2

)
x2 + y2

 for y < 0
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The norm estimate is determined by the derivatives of ± arccos
(

x√
x2+y2

)
with respect to x.

The first derivative is q(1)(x) = − y
x2+y2 . The further derivatives are found with the aid of the

quotient rule: The denominator of q(s)(x) is
(
x2 + y2

)ns with exponent ns and the numerator
consists of zs summands with ps factors x or y. Then we have ns+1 = ns + 1, ps+1 = ps + 1 and
zs+1 = 2 · zs · (ps + ns). Since n1 = 1, p1 = 1 and z1 = 1 we conclude ns+1 = s+ 1, ps+1 = s+ 1
as well as

zs+1 = 2 · zs · 2 · s = 4s · zs = 4s · 4 · (s− 1) · zs−1 = 4s · s!,

i.e. zs = 4s−1 · (s− 1)! = 22s−2 · (s− 1)!. Due to x2 + y2 ≥ r1 ≥ 0.5 we obtain

∥∥P−1
∥∥
s,P (B(r1,r2))

≤ zs
(x2 + y2)ns

≤ 22s−2 · (s− 1)!
rs1

≤ 23s−2 · (s− 1)!.

Let s ≥ 2. Lemma 2.6 yields for φ̄ := φ̃δ ◦ P−1:∥∥φ̄∥∥
s
≤ (s+ 1)! ·

∥∥∥φ̃δ∥∥∥
s
·
∥∥P−1

∥∥s
s,P (B(r1,r2))

.

Again using Lemma 2.6 we obtain

‖φδ‖s ≤ (s+ 1)! · ‖P‖s,B(r1,r2)
·
∥∥φ̄∥∥s

s

≤ ((s+ 1)!)s+1 · ‖P‖s,B(r1,r2)
·
∥∥∥φ̃δ∥∥∥s

s
·
∥∥P−1

∥∥s2
s,P (B(r1,r2))

≤ ((s+ 1)!)s+1 · πs
2
· 24s4+6s3+s2+4s−1.5 · 32s5+4s4+4s3+2s2 · s!s

4+4s3+4s2+4s

· s1.5s
5+3s4+3s3+1.5s2 · exp

(
4
δ2
·
(
s4 + 2s3 + 2s2 + s

))
· (s− 1)!s

2+1

≤ ((s+ 1)!)s+1 · πs
2
· 24s4+6s3+s2+4s−1.5 · 9s

5+2s4+2s3+s2 ·

s!s
4+4s3+5s2+4s+1 · s1.5s

5+3s4+3s3+1.5s2 · exp

(
4 ·
(
s4 + 2s3 + 2s2 + s

)
δ2

)

Since 2 ≤ s!, s ≤ s! and π ≤ 9 ≤ exp
(

1
δ2

)
we continue in the following mater:

‖φδ‖s

≤(s+ 1)!s+1 · s!1.5s
5+8s4+13s3+7.5s2+8s−0.5 · exp

(
s5 + 6s4 + 10s3 + 10s2 + 4s

δ2

)
Due to s ≥ 2 we have 1.5s5 + 8s4 + 13s3 + 7.5s2 + 8s− 0.5 ≤ 11s5 as well as s5 + 6s4 + 10s3 +
10s2 + 4s ≤ 8s5. Thus, we proved the following statement:

Lemma 5.10. For every s ∈ N, s ≥ 2:

|||φδ|||s ≤ ((s+ 1)!)s+1 ·
(
s! · exp

(
1
δ2

))11·s5

.
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5.4 Conjugation map φn

In the first instance, we construct the conjugation map φn on the fundamental sector
[
0, 1

qn

]
×

[0, 1] by the same approach as in [FS], section 5.2.2. On D1
n :=

[
0, 1

2qn

]
× [0, 1] we use the affine

transformation Cn (θ, r) = (4qn · θ − 1, 2r − 1) sending D1
n onto ∆. Hereby, we set

φn = C−1
n ◦ φ 1

10n
◦ Cn

On D2
n :=

[
1

2qn
, 1
qn

]
× [0, 1] we define φn = id. We observe that φn is smooth, area-preserving and

coincides with the the identity in a neighbourhood of the boundary of the fundamental sector.
Hence, we can extend it equivariantly by the formula φn

(
θ + k

qn
, r + l

)
=
(
k
qn
, l
)

+ φn (θ, r) for
every k, l ∈ Z. Then φn becomes a diffeomorphism on T2 as well as A.

6 The smooth case on T2 and A

6.1 Properties of the conjugation maps hn and Hn

We aim for precise requirements on the growth rate of the uniform rigidity sequence to guarantee
convergence of the sequence of diffeomorphisms fn = Hn ◦ Rαn+1 ◦ H−1

n . For this purpose, we
need norm estimates on the conjugation maps.

Lemma 6.1. We have for every s ∈ N, s ≥ 2:

|||hn|||s ≤ 2 · 4s · ((s+ 1)!)s+1 ·
(
s! · exp

(
100n2

))11·s5 · ns · qs·(1+σ)
n .

Proof. Obviously, we have for φn = C−1
n ◦ φ 1

10n
◦ Cn:

|||φn|||s ≤ (4qn)s · |||φ 1
10n
|||s.

Using the explicit definitions of the maps gn and hn = gn ◦ φn we can compute

hn (θ, r) = ([φn]1 + [nqσn] · [φn]2 , [φn]2)

as well as
h−1
n (θ, r) = ([φn]1 − [nqσn] · [φn]2 , [φn]2) .

Then we obtain with the aid of Lemma 5.10

|||hn|||s ≤ 2 · [nqσn]s · |||φn|||s ≤ 2 · 4sns · (s+ 1)!s+1 ·
(
s! · exp

(
100n2

))11s5 · qs·(1+σ)
n .

In the next step we want to deduce norm estimates for the conjugation map Hn = Hn−1 ◦hn
under some assumptions on the growth rate of the numbers qn:

Lemma 6.2. Let k, n ∈ N and k ≥ 2. Assume

(A2) qn+1 ≥ n · q2+σn .

Then we have

|||Hn|||k ≤ 4n·(k+1)n · ((k + 1)!)n·(k+1)n ·
(
k! · exp

(
100n2

))11n·kn+4

·
(
n · q2+σn

)kn
.
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Proof. Let k ∈ N, k ≥ 2. We proof the claim by induction on n:
Start n = 1: Lemma 6.1 yields the statement for H1 = h1.
Induction assumption: The claim holds true for n ∈ N.
Induction step n→ n+ 1 : We apply Lemma 2.6, Lemma 6.1 and the induction assumption on
the composition Hn+1 = Hn ◦ hn+1:

|||Hn+1|||k ≤ (k + 1)! · |||Hn|||kk · |||hn+1|||kk

≤ (k + 1)! · 4n·(k+1)n+1
· ((k + 1)!)n·(k+1)n·k ·

(
k! · exp

(
100n2

))11n·kn+5

· qk
n+1

n+1

· 4(k+1)·k · ((k + 1)!)(k+1)·k ·
(
k! · exp

(
100(n+ 1)2

))11·k6

·
(
n · q1+σn+1

)k2

≤4(n+1)(k+1)n+1
(k + 1)!(n+1)(k+1)n+1 (

k! exp
(
100(n+ 1)2

))11(n+1)kn+5 (
nq2+σn+1

)kn+1

Remark 6.3. As a special case of Lemma 2.6 we observe that ‖DHn‖0 ≤ 2!·‖DHn−1‖0 ·‖Dhn‖0.
With the aid of Lemma 6.1 we can estimate:

‖DHn‖0 ≤ 2! · q0.25n · 32 · exp
(
100n2

)11 · n · q1+σn ,

where we used condition C1, i.e. ‖DHn−1‖0 ≤ q0.25n . In order to guarantee this property for
DHn we demand:

(A3) qn+1 ≥ ‖DHn‖40 ≥ 644 · exp
(
100n2

)44 · n4 · q5+4σ
n .

6.2 Proof of Convergence
In the proof of convergence the following result, which is more precise than [FS], Lemma 5.6., is
useful:

Lemma 6.4. Let k ∈ N0 and h ∈ Diff∞ (M). Then for all α, β ∈ R we obtain:

dk
(
h ◦Rα ◦ h−1, h ◦Rβ ◦ h−1

)
≤ Ck · |||h|||k+1

k+1 · |α− β| ,

where Ck = (k + 1)!.

Proof. As an application of the claim in the proof of Lemma 2.6 we observe
Fact: For any ~a ∈ N2

0 with |~a| = k and i ∈ {1, 2} the partial derivative D~a
[
h ◦Rα ◦ h−1

]
i

consists of at most (k + 1)! summands, where each summand is the product of one derivative of
h of order at most k and at most k derivatives of h−1 of order at most k.
Furthermore, with the aid of the mean value theorem we can estimate for any multiindex ~a ∈ N2

0

with |~a| ≤ k and i ∈ {1, 2}:∣∣D~a [h]i
(
Rα ◦ h−1 (x1, x2)

)
−D~a [h]i

(
Rβ ◦ h−1 (x1, x2)

)∣∣ ≤ |||h|||k+1 · |α− β|

Since
(
hn ◦Rα ◦ h−1

n

)−1 = hn ◦R−α ◦ h−1
n is of the same form, we obtain in conclusion:

dk
(
h ◦Rα ◦ h−1, h ◦Rβ ◦ h−1

)
≤ (k + 1)! · |||h|||k+1 · |||h|||kk · |α− β|
≤ (k + 1)! · |||h|||k+1

k+1 · |α− β| .
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Under some conditions on the proximity of αn and αn+1 we can prove convergence:

Lemma 6.5. We assume

(A1) |αn+1 − αn| ≤
1

2n · (n+ 1)! · qn · |||Hn|||n+1
n+1

.

Then the diffeomorphisms fn = Hn ◦Rαn+1 ◦H−1
n satisfy:

• The sequence (fn)n∈N converges in the Diff∞ (M)-topology to a measure-preserving diffeo-
morphism f .

• We have for every n ∈ N and m ≤ qn+1:

d0 (fm, fmn ) <
1
2n
.

Proof. 1. According to our construction it holds hn ◦ Rαn = Rαn ◦ hn and hence we can
apply Lemma 6.4 for every k, n ∈ N:

dk (fn, fn−1) = dk
(
Hn ◦Rαn+1 ◦H−1

n , Hn ◦Rαn ◦H−1
n

)
≤ Ck · |||Hn|||k+1

k+1 · |αn+1 − αn| .

By the assumptions of this Lemma it follows for every k ≤ n:

(1) dk (fn, fn−1) ≤ dn (fn, fn−1) ≤ Cn · |||Hn|||n+1
n+1 ·

1
2nCnqn · |||Hn|||n+1

n+1

<
1
2n
.

In the next step we show that for arbitrary k ∈ N (fn)n∈N is a Cauchy sequence in Diffk (M),
i.e. limn,m→∞ dk (fn, fm) = 0. For this purpose, we calculate:

(2) lim
n→∞

dk (fn, fm) ≤ lim
n→∞

n∑
i=m+1

dk (fi, fi−1) =
∞∑

i=m+1

dk (fi, fi−1) .

We consider the limit processm→∞, i.e. we can assume k ≤ m and obtain from equations
1 and 2:

lim
n,m→∞

dk (fn, fm) ≤ lim
m→∞

∞∑
i=m+1

1
2i

= 0.

Since Diffk (M) is complete, the sequence (fn)n∈N converges consequently in Diffk (M) for
every k ∈ N. Thus, the sequence converges in Diff∞ (M) by definition.

2. Again with the help of Lemma 6.4 we compute for every i ∈ N:

d0

(
fmi , f

m
i−1

)
= d0

(
Hi ◦Rm·αi+1 ◦H−1

i , Hi ◦Rm·αi ◦H−1
i

)
≤ |||Hi|||1 ·m · |αi+1 − αi| .

Since m ≤ qn+1 ≤ qi we conclude for every i > n:

d0

(
fmi , f

m
i−1

)
≤ |||Hi|||1 ·m ·

1
2i · (i+ 1)! · qi · |||Hi|||i+1

i+1

<
m

qi
· 1

2i
≤ 1

2i
.

Thus, for every m ≤ qn+1 we get the claimed result:

d0 (fm, fmn ) ≤ lim
k→∞

k∑
i=n+1

d0

(
fmi , f

m
i−1

)
<

∞∑
i=n+1

1
2i

=
(

1
2

)n
.



The smooth case on T2 and A 18

By Lemma 6.2 we have

2n · (n+ 1)! · qn · |||Hn|||n+1
n+1 ≤ ϕ1(n) · q3·(n+1)n+1

n ,

at which ϕ1(n) := 4(n+2)n+2 · ((n+ 2)!)11·(n+2)n+6

· exp
(
100n2

)11n(n+1)n+5

. Since |αn+1 − αn| =
an

qn·q̃n+1
≤ 1

q̃n+1
the requirement A1 can be met if we demand

q̃n+1 ≥ ϕ1 (n) · q3·(n+1)n+1

n .

Hereby, the other conditions A3 and A2 are fulfilled.
Using qn = qn−1 · q̃n < q̃2n this yields the condition

q̃n+1 ≥ ϕ1 (n) · q̃6·(n+1)n+1

n .

This condition is satisfied by the assumptions of Theorem 1. Hence, we can apply Lemma 6.5 and
obtain convergence of the sequence (fn)n∈N in the Diff∞ (M)-topology to a measure-preserving
diffeomorphism f . In the following subsections we will prove that f is the aimed diffeomorphism
as asserted in Theorem 1, namely uniformly rigid with respect to (q̃n)n∈N and weak mixing.

6.3 Proof of uniform rigidity along the sequence (q̃n)n∈N

By definition q̃n+1 ≤ qn+1. Hence, the second statement of Lemma 6.5 implies d0

(
f
q̃n+1
n , f q̃n+1

)
<

1
2n . Since the number αn+1 was chosen in such a way that f q̃n+1

n = id, we have d0

(
id, f q̃n+1

)
< 1

2n ,
which goes to zero as n→∞. Thus, (q̃n)n∈N is an uniform rigidity sequence of f .

6.4 Proof of weak mixing
By the same approach as in [FS] we want to apply Proposition 4.4. For this purpose, we
introduce a sequence (mn)n∈N of natural numbers mn ≤ qn+1 in subsection 6.4.1 and a sequence
(ηn)n∈N of standard partial decompositions in subsection 6.4.2. Finally, we show that the map
Φn := φn ◦Rmnαn+1

◦ φ−1
n

(
0, 1

2n , 0
)
-distributes the elements of this partition.

6.4.1 Choice of the mixing sequence (mn)n∈N

By condition A3 our chosen sequence (qn)n∈N satisfies

(C2) qn+1 ≥ n · q5n.

Define

mn = min
{
m ≤ qn+1 : m ∈ N, inf

k∈Z

∣∣∣∣m · pn+1

qn+1
− 1

2 · qn
+

k

qn

∣∣∣∣ ≤ qn
qn+1

}
= min

{
m ≤ qn+1 : m ∈ N, inf

k∈Z

∣∣∣∣m · qn · pn+1

qn+1
− 1

2
+ k

∣∣∣∣ ≤ q2n
qn+1

}
Lemma 6.6. The set

{
m ≤ qn+1 : m ∈ N, infk∈Z

∣∣∣m qn·pn+1
qn+1

− 1
2 + k

∣∣∣ ≤ q2n
qn+1

}
is nonempty for

every n ∈ N, i.e. mn exists.
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Proof. The number αn+1 was constructed by the rule pn+1
qn+1

= pn
qn
− an

qn·q̃n+1
, where an ∈ Z,

1 ≤ an ≤ qn, i.e. pn+1 = pnq̃n+1 − an and qn+1 = qnq̃n+1. So qn·pn+1
qn+1

= pn+1
q̃n+1

and the set{
j qn·pn+1

qn+1
: j = 1, 2, ..., qn+1

}
contains q̃n+1

gcd(pn+1,q̃n+1)
different equally distributed points on S1.

Hence, there are at least q̃n+1
qn

= qn+1
q2n

different such points and so for every x ∈ S1 there is a
j ∈ {1, ..., qn+1} such that

inf
k∈Z

∣∣∣∣x− j · qn · pn+1

qn+1
+ k

∣∣∣∣ ≤ q2n
qn+1

.

In particular, this is true for x = 1
2 .

Remark 6.7. We define

∆n :=
(
mn ·

pn+1

qn+1
− 1

2 · qn

)
mod

1
qn
.

By the above construction of mn it holds: |∆n| ≤ qn
qn+1

. By C2 we get: |∆n| ≤ 1
q4n
.

6.4.2 Application of the criterion

The partition ηn is defined to be the standard partial decomposition of M consisting of the
horizontal intervals

In,j × {r} :=
[
j

qn
+

1
8nqn

,
j

qn
+

1
2qn
− 1

8nqn

]
× {r} and

Īn,j × {r} :=
[
j

qn
+

1
2qn

+
1

8nqn
− an,

j + 1
qn
− 1

8nqn
− an

]
× {r} ,

where j ∈ Z and r ∈
[

1
4n , 1−

1
4n

]
. Obviously, we have ηn → ε and the length of the horizontal

intervals is at most q−1
n . In order to apply the criterion for weak mixing we prove

Lemma 6.8. Let In ∈ ηn. Then Φn
(
0, 1

2n , 0
)
-distributes In.

Proof. Since Cn (In,j × {r}) is located in the domain where φ−1
1

10n
acts as the rotation on it,

φ−1
n (In,j × {r}) = {θ} ×

[
1
4n , 1−

1
4n

]
for some θ ∈ In,j . By definition of the number mn and

Remark 6.7 we have Rmnαn+1
◦ φ−1

n (In,j × {r}) ⊂ R j′
qn

(
D2
n

)
for some j′ ∈ Z. Hence, φn acts as

the identity on it and we have Φn (In,j × {r}) = {θ′} ×
[

1
4n , 1−

1
4n

]
for some θ′ ∈ S1.

Again, by definition of the number mn and the bound on an we have

Φn
(
Īn,j × {r}

)
= φn ◦Rmnαn+1

(
Īn,j × {r}

)
= φn (In,j′ × {r})

= {θ} ×
[

1
4n
, 1− 1

4n

]
for some j′ ∈ Z and θ ∈ S1.
In both cases, Φn (In) is a vertical interval (hence, γ = 0) and the projection on the r-axis is[

1
4n , 1−

1
4n

]
(hence, δ = 1

2n ). Finally, we can take ε = 0 because the restriction of Φn to In is
an affine map.

By Lemma 6.5, 2. we have d0 (fmn , fmnn ) < 1
2n because mn ≤ qn+1 by definition. Because

of the requirement A3 on the number qn we have C1 (see Remark 6.3). Thus, we can apply
Proposition 4.4 and conclude that the constructed diffeomorphisms are weak mixing.
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7 The case of the disc D2

Using the polar coordinate change

P (θ, r) =
(
x
y

)
=
( √

r · cos (2πθ)√
r · sin (2πθ)

)
transforming the annulus into the disc (with |det (JP )| = π except at the origin) we can define
a sequence of smooth area-preserving diffeomorphisms f̃n = P ◦ fn ◦P−1 on D2 \ {(0, 0)}, where
fn is constructed as in the previous section. Since these diffeomorphisms satisfy fn = Rαn+1 on
S1 ×

[
0, 1

10n

]
, we observe for any k ∈ N

dk

(
f̃n, f̃n−1

)
≤ (k + 1)! · |||P ◦Hn|||k+1

k+1,S1×[ 1
10n ,1]

· |αn+1 − αn| .

Under the condition |αn+1 − αn| < 1
2n·(n+1)!·qn·|||P◦Hn|||n+1

n+1,S1×[ 1
10n ,1]

we can prove convergence of

the sequence
(
f̃n

)
n∈N

in Diff∞
(
D2
)
as before and the limit diffeomorphism f̃ can be extended to

the origin smoothly. This diffeomorphism is weak mixing because the coordinate transformation
is area-preserving (up to a multiplicative constant).
In order to find estimates on |||P ◦Hn|||n+1,S1×[ 1

10n ,1] we use the same techniques and estimates
as in the previous section. Additionally, we recall from the proof of Lemma 5.8 and Lemma 5.9
respectively:

‖P‖s,B(r1,r2)
≤ πs · (s− 1)! · r−s1 and

∥∥P−1
∥∥
s,PB(r1,r2)

≤ 22s−2 · (s− 1)! · r−s1

With the aid of Lemma 2.6 and Lemma 6.2 we have

2n · (n+ 1)! · qn · ‖P ◦Hn‖n+1,S1×[ 1
10n ,1]

≤2n · (n+ 1)! · qn · (n+ 2)! · ‖P‖n+1,S1×[ 1
10n ,1] · ‖Hn‖n+1

n+1

≤4(n+2)n+2
· ((n+ 2)!)11·(n+2)n+6

· exp
(
100n2

)11n(n+1)n+5

· q3·(n+1)n+1

n

as well as

2n · (n+ 1)! · qn ·
∥∥H−1

n ◦ P−1
∥∥
n+1,P(S1×[ 1

10n ,1])

≤2n · (n+ 1)! · qn · (n+ 2)! · |||Hn|||n+1 ·
∥∥P−1

∥∥n+1

n+1,P(S1×[ 1
10n ,1])

≤4(n+2)n+2
· ((n+ 2)!)11·(n+2)n+5

· exp
(
100n2

)11n(n+1)n+4

· q3·(n+1)n

n .

By the same arguments as above we find the sufficient condition on the growth rate

q̃n+1 ≥ ϕ1 (n) · q̃6·(n+1)n+1

n ,

at which ϕ1(n) := 4(n+2)n+2 · ((n+ 2)!)11·(n+2)n+6

· exp
(
100n2

)11n(n+1)n+5

.
Since this condition is fulfilled due to our assumptions of Theorem 1, we obtain convergence of
the sequence

(
f̃n

)
n∈N

in Diff∞
(
D2
)
to a limit diffeomorphism f̃ . As argued above, f̃ is weak

mixing and uniformly rigid with respect to (q̃n)n∈N. Hence, Theorem 1 is also proven in the case
of the disc D2.

Acknowledgements: I want to thank the referee for interesting comments.
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