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Abstract

In continuation of Matsumoto's paper [Ma12] we show that various subspaces are C∞-
dense in the space of orientation-preserving C∞-di�eomorphisms of the circle with rotation
number α, where α ∈ S1 is any prescribed Liouville number. In particular, for every odome-
ter O of product type we prove the denseness of the subspace of di�eomorphisms which are
orbit-equivalent to O.
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Introduction

Let F be the group of orientation-preserving C∞-di�eomorphisms of the circle. Furthermore,
for α ∈ S1 we consider the subspace Fα of F consisting of all the C∞-di�eomorphisms of the
circle with rotation number α. If α is irrational, for any f ∈ Fα there is a unique orientation-
preserving homeomorphism Hf of the circle such that f = Hf ◦Rα ◦H−1f and Hf (0) = 0, where

Rα denotes the rotation by α on S1. J.-C. Yoccoz proved that the subspace Oα of Fα of all the
di�eomorphisms, for which Hf are C∞-di�eomorphisms, is C∞-dense in Fα ([Yo95]).
In the following, let α be a Liouville number. By [He79], chapter IV, section 6, the unique
f -invariant probability measure µf is given by µf = (Hf )∗m, where m is the Lebesgue measure
on S1, and µf is either equivalent to m (then Hf maps any Lebesgue null set to a null set and
Hf is called absolutely continuous) or singular to m (then Hf maps some Lebesgue null set to
a conull set and Hf is called singular). In [Ma12] S. Matsumoto considered several subspaces of
Fα according to the regularity of Hf :

• G0,sing: Hf is singular and is not d-Hölder for any d ∈ (0, 1).

• G0,ac: Hf is absolutely continuous and is not d-Hölder for any d ∈ (0, 1).

• For β ∈ (0, 1) Gβ : Hf is bi-β-Hölder, but is not d-Hölder for any d ∈ (β, 1).

• G1,sing: Hf is singular and is bi-d-Hölder for any d ∈ (0, 1).

• G1,ac: Hf is absolutely continuous and is d-Hölder for any d ∈ (0, 1), but is not bi-Lipschitz.
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• For k ∈ N Gk: Hf is a Ck-di�eomorphism, but is not a Ck+1-di�eomorphism.

Then Matsumoto proved that G0,sing is C∞-dense in Fα in [Ma13]. In [Ma12], Theorem 1,
the C∞-denseness of all the other spaces is shown. In this paper we examine the subsequent
subspaces of Gβ :

Theorem 1. For any Liouville number α and for any β ∈ (0, 1) the subspaces

• Gβ,sing: Hf is singular, bi-β-Hölder, but is not d-Hölder for any d ∈ (β, 1)

• Gβ,ac: Hf is absolutely continuous, bi-β-Hölder, but is not d-Hölder for any d ∈ (β, 1)

are C∞-dense in Fα.

This statement was conjectured in [Ma12], Remark 1.6, but not pursued.

In the second part of this paper we study odometers of product type.

De�nition 1. Let (dk)k∈N be a sequence of positive integers. We consider the compact metris-
able space X =

∏
k∈N {0, ..., dk − 1} with Borel algebra B on it. For x = (xk)k∈N ∈ X we set

r(x) := inf {k : xk < dk − 1}. Hereby, we de�ne the transformation T : X → X, Tx = (yk)k∈N,
where

yk =


0 for k < r(x)

xk + 1 for k = r(x)

xk for k > r(x)

• Let µ be a continuous measure on (X,B) which is ergodic and quasi-invariant with respect to
T . Then (X,B, µ, T ) is called a measured odometer and we will denote it by O

(
(dk)k∈N , µ

)
.

• LetO
(
(dk)k∈N

)
be a measured odometer and assume that for every k ∈ N νk is a probability

measure on {0, 1, ..., dk − 1} such that the probability of every digit is positive and the
product measure ν =

∏
k∈N νk is non-atomic on O

(
(dk)k∈N

)
. Then ν is ergodic and quasi-

invariant under T . We call O
(
(dk)k∈N , ν

)
an odometer of product type and denote it also

by O
(
(dk)k∈N , {νk}

)
. We also use the notation ν

(i)
k = νk ({i− 1}).

Moreover, we recall the notion of orbit equivalence (also referred to as �weak-equivalence�
or �Dye-equivalence�): The non-singular systems (X1,B1, µ1, T1) and (X2,B2, µ2, T2) are orbit-

equivalent if there is an isomorphism ψ of (X1,B1, µ1) onto (X2,B2, µ2) such that ψ
({
T i1x

}
i∈Z

)
={

T i2ψ(x)
}
i∈Z almost everywhere. Y. Katznelson proved that for every odometer of product type

the set of C∞-di�eomorphisms of the circle, which are orbit equivalent to this odometer, is C∞-
dense in the set of all C∞-di�eomorphisms with irrational rotation number ([Ka79], Theorem
2.7). We obtain such a statement in the restricted space Fα for any Liouville number α:

Theorem 2. Let α ∈ S1 be a Liouville number. For every odometer of product type O =
O
(
(dk)k∈N , {νk}

)
the set of C∞-di�eomorphisms of the circle which are orbit-equivalent to O is

C∞-dense in Fα.

We point out that it is still an open problem to �nd a smooth realization of an odometer (cf.
[FK04], Problem 7.10).
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1 Proof of Theorem 1

The proof bases upon the �approximation by conjugation�-method developed by D. Anosov and
A. Katok ([AK70]): We construct the desired di�eomorphisms as limits of conjugates fn =
Hn ◦ Rαn+1 ◦ H−1n , where αn+1 = pn+1

qn+1
∈ Q, (pn+1, qn+1) = 1 and Hn = Hn−1 ◦ hn with an

orientation-preserving circle di�eomorphism hn satisfying hn ◦R 1
qn

= R 1
qn
◦ hn.

1.1 Denseness of Gβ,sing

Fix β ∈ (0, 1). We use a C∞-function ψ : R → [0, 1] satisfying ψ ((−∞, 0]) = 0, ψ
([

1
4 ,∞

))
= 1

and ψ is strictly monotone increasing on
[
0, 14
]
. For any t ∈ (0, 1) we de�ne the orientation-

preserving di�eomorphism ĥt of the circle as follows

ĥt (x) =



(
1− ψ

(
t−1x

))
tx+ ψ

(
t−1x

)
t−1x if x ∈

[
0, t4
]

t−1x if x ∈
[
t
4 ,

t
1+t

](
1− ψ

(
t−1x− 1

t+1

))
t−1x+ ψ

(
t−1x− 1

t+1

)
· (t(x− 1) + 1) if x ∈

[
t

1+t ,
t

1+t + t
4

]
t · (x− 1) + 1 if x ∈

[
t

1+t + t
4 , 1
]

See �gure 1 for a visualisation of such a map. In particular, ĥt is a smooth joining of the two
a�ne functions x 7→ t−1x and x 7→ t · (x − 1) + 1, which coincide at x = t

1+t . Moreover, we
observe for any r ∈ N

(1) |||ĥt|||r ≤ Cr · t−m(r)

with some constant C(r) > 0 and an integer m(r) ≥ r − 1 which are independent of t. The
notation ||| · |||r is the same as in [Ma12].
We present step n of the inductive process of our construction. Hence, we have already de�ned
the orientation-preserving di�eomorphism Hn−1 = h1 ◦ ... ◦ hn−1 as well as the numbers αn−1 =
pn−1

qn−1
∈ Q, tn−1 = cn−1

dn−1
∈ Q and Qn−1 ∈ N. We put

(2) Qn = 12 · dn−1 · (dn−1 + cn−1) ·Qn−1 · qn

and

(3) tn = Q
1−β−1

n
n ,

where the numbers qn and βn ∈ [β, βn−1] will be determined later (see Lemma 1.5). In particular,
part 4 of Lemma 1.5 shows tn ∈ Q. Note that

(4) Q−1n =
(
tnQ

−1
n

)βn
.

Let hn be the lift of ĥtn by the cyclic Qn-fold covering map πQn such that Fix(hn) 6= ∅. In
particular, we have hn ◦ R 1

Qn
= R 1

Qn
◦ hn. Since Qn is a multiple of qn, this yields hn ◦ R 1

qn
=

R 1
qn
◦ hn as well as∥∥H−1n −H−1n−1∥∥0 =

∥∥(h−1n − id) ◦H−1n−1
∥∥
0

=
∥∥h−1n − id

∥∥
0
≤ Q−1n .

Then we obtain ∥∥H−1n+k −H−1n−1∥∥0 ≤ k∑
l=0

∥∥H−1n+l −H−1n+l−1∥∥0 ≤ k∑
l=0

Q−1n+l.
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Figure 1: Qualitative shape of the function ĥt.

Since
∑∞
n=1Q

−1
n <∞ by Lemma 1.5,

(
H−1n

)
n∈N is a Cauchy sequence. This shows the uniform

convergence of
(
H−1n

)
n∈N to a continuous map H−1 : S1 → S1. Additionally, H−1 is monotone

as a uniform limit of homeomorphisms. Due to Lemma 1.6 the sequence of C∞-di�eomorphisms
fn = Hn ◦ Rαn+1 ◦ H−1n converges to a di�eomorphism f in the Di�∞-topology. Hereby, we
conclude H−1 ◦ f = Rα ◦H−1. Hence, H−1 is a homeomorphism.

Moreover, we introduce the intervals

Îtn =

[
1

1 + tn
+
t2n
4
, 1

]
, Ĵtn =

[
tn

1 + tn
+
tn
4
, 1

]
and K̂tn =

[
tn
4
,

7tn
12

]
.

By construction ĥtn |Ĵtn is an a�ne transformation with slope tn. Due to tn < 1 we have

Îtn ⊂ Ĵtn . Additionally, we observe ĥtn
(
Ĵtn

)
= Îtn and K̂tn ⊂

[
tn
4 ,

tn
1+tn

]
.

Finally, we de�ne In = π−1Qn

(
Îtn

)
, Jn = π−1Qn

(
Ĵtn

)
as well as Kn = π−1Qn

(
K̂tn

)
. By direct

computation, m (Jn) = 1
1+tn

− tn
4 ≥ 1 − 2tn, m (In) = tn

1+tn
− t2n

4 ≤ tn (where m stands for the

Lebesgue measure) and every component of Kn has length tn
3Qn

.

Now we are able to prove the singularity of H by an approach similar to [Ma12], section 3:

Lemma 1.1. H is singular.
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Proof. Let Cn =
⋂n
i=1 Ji and C =

⋂∞
i=1 Ji. By construction of the number Qn any component

of Jn−1 is a
(
Q−1n Z

)
/Z-interval. Then

m (Cn) ≥
n∏
i=1

(1− 2ti) .

Note that
∏∞
n=1(1−an), an ≥ 0, converges to a positive number if and only if

∑∞
n=1 an converges

([Kn64], section 28, Theorem 4). Since

∞∑
n=1

tn =

∞∑
n=1

Q
1−β−1

n
n ≤

∞∑
n=1

Q
1−β−1

n−1
n <∞

by part 3 of Lemma 1.5, we obtain m(C) > 0. This yields

µf (H(C)) = (H∗m)(H(C)) = m(C) > 0.

By construction of hj with the aid of the Qj-fold covering map
(
Q−1n+1Z

)
/Z is pointwise �xed

under hj , j > n. Since any component of Jn is a
(
Q−1n+1Z

)
/Z-interval, we get hj(Jn) = Jn for

j > n. Then we obtain for any j > n:

Hj(Jn) = Hn(Jn) = Hn−1hn(Jn) = Hn−1(In),

which yields Jn = H−1j Hn−1(In), where H0 = id. This shows that the uniform limit H−1 of

H−1j satis�es Jn = H−1 (Hn−1(In)) for any n ∈ N. Hereby, we observe

H (Cn) = H

(
n⋂
i=1

Ji

)
=

n⋂
i=1

H (Ji) =

n⋂
i=1

Hi−1 (Ii) .

In order to have Hi−1 (A) ⊂ Hi−2 (Ii−1) a set A ⊂ S1 has to satisfy hi−1 (A) ⊂ Ii−1 which
implies the condition A ⊂ Ji−1. Since m(Ii) ≤ ti and the slope of hi−1|Ji−1

is equal to ti−1, this

yields m (H (Cn)) ≤
∏n−1
i=1 ti which converges to 0 as n→∞. Therefore, m(H(C)) = 0.

Finally, we note that µf is not equivalent to m because µf (H(C)) > 0 and m(H(C)) = 0. Hence,
H is a singular map.

In the next steps, we examine the Hölder continuity of H:

Lemma 1.2. H is not d-Hölder for any d ∈ (β, 1).

Proof. For any component K̃i of Ki there is a component K̃i+1 of Ki+1 such that K̃i+1 ⊂ K̃i.
This proves the existence of a component K̃n which is contained in

⋂n
i=1Ki. By construction,

Hn|K̃n is an a�ne transformation of slope t−11 · · · · · t−1n . In the following, we denote K̃n = [x′, y′].

In particular, we have |y′ − x′| = 3−1tnQ
−1
n .

Moreover, we de�ne x, y ∈ S1 by H(n+1)(x) = x′ as well as H(n+1)(y) = y′ using the notation

H(n+1) = H−1n H. Its inverse
(
H(n+1)

)−1
is the uniform limit of h−1n+m ◦ · · · ◦ h−1n+2 ◦ h

−1
n+1 as

m → ∞. Since
∑∞
i=n+1Q

−1
i ≤ 3−1tnQ

−1
n for any n ∈ N by Lemma 1.5 and the maps hi are



Proof of Theorem 1 6

Q−1i -cyclic, we have

|x− y| =
∣∣∣∣(H(n+1)

)−1
(x′)−

(
H(n+1)

)−1
(y′)

∣∣∣∣
≤
∣∣∣∣(H(n+1)

)−1
(x′)− x′

∣∣∣∣+ |x′ − y′|+
∣∣∣∣y′ − (H(n+1)

)−1
(y′)

∣∣∣∣
≤

∞∑
i=n+1

Q−1i + |x′ − y′|+
∞∑

i=n+1

Q−1i

≤ 3−1tnQ
−1
n + |x′ − y′|+ 3−1tnQ

−1
n

= 3 |x′ − y′| .

With the aid of |y′ − x′| = 3−1tnQ
−1
n we estimate

|H(x)−H(y)| = |Hn(x′)−Hn(y′)| = t−11 · · · · · t−1n · |x′ − y′| = t−11 · · · · · t−1n · 3−1tnQ−1n
= 3−1t−11 · · · · · t

−1
n−1 ·Q−1n

as well as

|x− y|d ≤ 3d |x′ − y′|d = 3d
(
3−1tnQ

−1
n

)d
= tdnQ

−d
n .

Using equation 3 both estimates together yield in case of βn < d (which is ful�lled for su�ciently
large n ∈ N due to βn → β < d):

|H(x)−H(y)|
|x− y|d

≥ 3−1t−11 · · · · · t
−1
n−1 ·Qd−1n · t−dn

= 3−1t−11 · · · · · t
−1
n−1 ·Qd−1n ·Qβ

−1
n d−d
n

= 3−1t−11 · · · · · t
−1
n−1 ·Q

β−1
n d−1
n

≥ 3−1t−11 · · · · · t
−1
n−1.

Since this expression can be arbitrarily large, we conclude that H cannot be d-Hölder for any
d ∈ (β, 1).

Lemma 1.3. H−1 is β-Hölder.

Proof. For any pair of x, y ∈ S1, x 6= y, there is n ∈ N such that tn+1Q
−1
n+1 ≤ |x− y| ≤ tnQ

−1
n .

Since the Lipschitz constant of h−1i is t−1i , we have∣∣H−1n (x)−H−1n (y)
∣∣ ≤ t−11 · · · · · t−1n · |x− y| = t−11 · · · · · t−1n · |x− y|

1−β · |x− y|β

≤ t−11 · · · · · t−1n ·
(
tnQ

−1
n

)1−β · |x− y|β
= t−11 · · · · · t

−1
n−1 ·

(
Q

1−β−1
n

n

)−β
·Qβ−1n · |x− y|β

= t−11 · · · · · t
−1
n−1 ·Q

−1+ββ−1
n

n · |x− y|β

By Lemma 1.5 this shows

(5)
∣∣H−1n (x)−H−1n (y)

∣∣ ≤ |x− y|β .
There are two possible cases
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• Case 1:
∣∣H−1n (x)−H−1n (y)

∣∣ ≥ Q−1n+1

Since h−1n+1 isQ
−1
n+1-cyclic, we get in this case

∣∣H−1n+1(x)−H−1n+1(y)
∣∣ ≤ 2

∣∣H−1n (x)−H−1n (y)
∣∣.

With the aid of Lemma 1.5 we see that the numbers Qi, i > n+ 1, grow fast enough such
that ∣∣H−1(x)−H−1(y)

∣∣ ≤ 3
∣∣H−1n (x)−H−1n (y)

∣∣ ≤ 3 |x− y|β

using equation (5) in the last step.

• Case 2:
∣∣H−1n (x)−H−1n (y)

∣∣ < Q−1n+1

Once again, we exploit the fact that h−1n+1 is Q−1n+1-cyclic. In the case under consideration,

this yields
∣∣H−1n+1(x)−H−1n+1(y)

∣∣ ≤ Q−1n+1. With the aid of equation 4 we get∣∣H−1(x)−H−1(y)
∣∣ ≤ 2Q−1n+1 ≤ 2

(
tn+1Q

−1
n+1

)β ≤ 2 |x− y|β

Hence, H−1 is β-Hölder.

Lemma 1.4. H is β-Hölder.

Proof. As above, for any pair of x, y ∈ S1, x 6= y, there is n ∈ N such that tn+1Q
−1
n+1 ≤

|x− y| ≤ tnQ
−1
n . Let x′ = H(n+2)(x) and y′ = H(n+2)(y). Recall H(n+2) = H−1n+1H. Since

H is the uniform limit of Hn and the maps hi are Q
−1
i -cyclic and the numbers Qi, i > n + 1,

are su�ciently large due to Lemma 1.5, we have |x′ − y′| ≤ 2 |x− y|. Once again, we have to
examine two cases:

• Case 1: |x′ − y′| ≥ Q−1n+1

Since hn+1 is Q−1n+1-cyclic, we get in this case |x′′ − y′′| ≤ 2 |x′ − y′| for x′′ = hn+1(x′) and

y′′ = hn+1(y′). Since the Lipschitz constant of hi is t
−1
i , we obtain by the same calculations

as in the �rst case of the previous Lemma

|H(x)−H(y)| = |Hn(x′′)−Hn(y′′)| ≤ t−11 · · · · · t−1n · |x′′ − y′′|
≤ t−11 · · · · · t−1n · 2 |x′ − y′|
≤ t−11 · · · · · t−1n · 4 |x− y|

≤ 4 |x− y|β .

• Case 2: |x′ − y′| < Q−1n+1

Since hn+1 is Q−1n+1-cyclic, we have

|x′′ − y′′| = |hn+1(x′)− hn+1(y′)| ≤ Q−1n+1 =
(
tn+1Q

−1
n+1

)βn+1 ≤ |x− y|βn+1

Hereby, we conclude

|H(x)−H(y)| = |Hn(x′′)−Hn(y′′)|

≤ t−11 · · · · · t−1n · |x′′ − y′′|
1−ββ−1

n+1 · |x′′ − y′′|ββ
−1
n+1

≤ t−11 · · · · · t−1n ·
(
Q−1n+1

)1−ββ−1
n+1 · |x′′ − y′′|ββ

−1
n+1

≤ |x− y|β

using Lemma 1.5, part 4, in the last step.
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Hence, H is β-Hölder.

Finally, we want to prove convergence of the sequence (fn)n∈N in Di�∞
(
S1
)
. For this purpose,

we deduce the subsequent statement.

Lemma 1.5. Let (ln)n∈N be a strictly increasing sequence of natural numbers with
∑∞
n=1

1
ln
<∞

and Cln be the constants from [Ma12], Lemma 2.4. For any Liouvillean number α there are
sequences αn = pn

qn
of rational numbers and (βn)n∈N of real numbers, such that βn ↘ β and the

following conditions are satis�ed:

1. For every n ∈ N:
|α− αn| <

1

2n+1 · ln · Cln · |||Hn|||ln+1
ln+1

.

2. For every n ∈ N:
∞∑

i=n+1

Q−1i ≤ 3−1tnQ
−1
n

3. For every n ∈ N:

t−11 · · · · · t
−1
n−1 ·Q

−1+ββ−1
n

n ≤ 1 and Q
1−β−1

n−1
n ≤ 1

n2
.

4. tn ∈ Q for every n ∈ N.

Proof. Since the numbers ti, i < n, are independent of qn and 1 > βn−1 > β, we can demand
the number qn to be su�ciently large such that

(6) t−11 · · · · · t
−1
n−1 · q

1
2

(
1− βn−1

β

)
n ≤ 1

as well as

q
1−β−1

n−1
n ≤ 1

n2
.

Additionally, we can satisfy the second property of the Lemma by choosing the numbers qi
su�ciently large in each step.
By equations (1) and (3) we have

|||hn|||r ≤ Cr ·Qr−1n ·
(
Q
β−1
n −1
n

)m(r)

≤ Cr ·Qβ
−1·m(r)
n

= Cr · (12 · dn−1 · (dn−1 + cn−1) ·Qn−1)
β−1m(r) · qβ

−1m(r)
n

≤ Cr,n−1 · qβ
−1m(r)
n

for any r ∈ N due to the condition βn ≥ β. Using [Ma12], Lemma 2.3, we obtain

|||Hn|||r = |||Hn−1 ◦ hn|||r ≤ C̃r · |||Hn−1|||rr · |||hn|||rr ≤ Ĉr,n−1 · qβ
−1m(r)·r
n ,

where Ĉr,n−1 is a constant independent of qn. In particular, we can demand qn ≥ Ĉln+1,n−1.
Then we get

|||Hn|||ln+1 ≤ qβ
−1m(ln+1)·(ln+1)+1
n ≤ qAnn
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using the notation An = dβ−1m(ln + 1) · (ln + 1) + 1e.
Since α is a Liouvillean number, we �nd a rational number αn = pn

qn
, pn, qn relatively prime,

satisfying the above restrictions and

|α− αn| =
∣∣∣∣α− pn

qn

∣∣∣∣ < |α− αn−1|
2n+1 · ln · Cln · q

An·(ln+1)
n

≤ 1

2n+1 · ln · Cln · |||Hn|||ln+1
ln+1

.

After the number qn is determined with respect to these restrictions we can choose a number

βn ∈
[
β + βn−1−β

2 , βn−1

)
such that tn = Q

1−β−1
n

n ∈ Q. Then we have

−1 + ββ−1n = β−1n · (−βn + β) ≤ β−1 ·
(
−
(
β +

βn−1 − β
2

)
+ β

)
= β−1

β − βn−1
2

=
1

2

(
1− βn−1

β

)
< 0.

By condition 6 this yields

t−11 · · · · · t
−1
n−1 ·Q

−1+ββ−1
n

n < t−11 · · · · · t
−1
n−1 · q

−1+ββ−1
n

n ≤ t−11 · · · · · t
−1
n−1 · q

1
2

(
1− βn−1

β

)
n ≤ 1.

The previous Lemma shows that the requirements of the following convergence result deduced
in [Ku16], Lemma 5.8, are ful�lled.

Lemma 1.6. Let ε > 0 be arbitrary and (ln)n∈N be a strictly increasing sequence of natural
numbers satisfying

∑∞
n=1

1
ln
< ε. Furthermore, we assume that in our constructions the following

conditions are ful�lled:

|α− α1| < ε and |α− αn| ≤ 1

2·ln·Cln ·|||Hn|||
ln+1
ln+1

for every n ∈ N,

where Cln are the constants from [Ma12], Lemma 2.4. Then the sequence of di�eomorphisms
fn = Hn ◦Rαn+1

◦H−1n converges in the Di�∞-topology to a smooth di�eomorphism f , for which
d∞ (f,Rα) < 3 · ε holds.

Hence, the rotation Rα is contained in the C
∞-closure ofGβ,sing. Since this closure is invariant

under conjugation by any h ∈ F and Oα is C∞-dense in Fα ([Yo95]), we obtain the C∞-denseness
of Gβ,sing in Fα by the same reasoning as in [Ma12], section 2.1.

1.2 Denseness of Gβ,ac

Fix β ∈ (0, 1). We slightly modify the construction of the map ĥt from the previous chapter.
Once again, we use a C∞-map ψ : R → [0, 1] satisfying ψ ((−∞, 0]) = 0, ψ

([
1
4 ,∞

))
= 1 and

ψ is strictly monotone increasing on
[
0, 14
]
. Then, for any t ∈ (0, 1) we de�ne the orientation-

preserving di�eomorphism h̆t : [0, 1]→ [0, 1] as follows

h̆t (x) =



(
1− ψ

(
t−1x

))
x+ ψ

(
t−1x

)
t−1x if x ∈

[
0, t4
]

t−1x if x ∈
[
t
4 ,

t
1+t

](
1− ψ

(
t−1x− 1

t+1

))
t−1x+ ψ

(
t−1x− 1

t+1

)
· (t(x− 1) + 1) if x ∈

[
t

1+t ,
t

1+t + t
4

]
t · (x− 1) + 1 if x ∈

[
t

1+t + t
4 , 1−

t
4

]
(
1− ψ

(
t−1

(
x− 1 + t

4

)))
· (t(x− 1) + 1) + ψ

(
t−1

(
x− 1 + t

4

))
x if x ∈

[
1− t

4 , 1
]
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Note that h̆t coincides with the identity in a neighbourhood of the boundary. Using the maps Cn :[
0, 1

2n+1

]
→ [0, 1], Cn(x) = 2n+1 ·x, we construct the orientation-preserving circle di�eomorphism

htn as follows:

htn(x) =

{
C−1n ◦ h̆tn ◦ Cn(x) if x ∈

[
0, 1

2n+1

]
x if x ∈

[
1

2n+1 , 1
] ,

where we de�ne the numbers Qn = 2n · 12 · dn−1 · (dn−1 + cn−1) · Qn−1 · qn and tn as in the
previous section. This time, we demand the additional requirement

(7) tn ≤ 2−(n+2)

which can be satis�ed by choosing qn su�ciently large in the proof of Lemma 1.5.
Let hn be the lift of htn by the cyclic Qn-fold covering map πQn such that Fix(hn) 6= ∅. By the
same reasoning as above, the sequence

(
H−1n

)
n∈N converges to a homeomorphism H−1.

First of all, we prove the absolute continuity of H by the same method as in [Ma12], section 4:

Lemma 1.7. H is absolutely continuous.

Proof. We introduce the sets

L̂n =
[
2−(n+1), 1

]
and Ln = π−1Qn

(
L̂n

)
.

According to our construction hn is the identity on Ln. Let X =
⋂∞
n=1 Ln. Then we have

m(X) ≥ 1−
∞∑
n=1

m
(
S1 \ Ln

)
= 1−

∞∑
n=1

2−(n+1) =
1

2
.

Since H is the identity on the positive measure set X, we have for any Borel set B µf (B ∩X) =
m(B ∩X) and µf (X) = m(X) > 0.
Assume that µf is not equivalent to m. Then µf is singular to m and there is a Borel set B ⊂ S1
such thatm(B) = 1 and µf (B) = 0. But then we obtain the contradictionm(B∩X) = m(X) > 0
but µf (B ∩X) ≤ µf (B) = 0.
Hence, H is absolutely continuous.

We start to examine the Hölder-continuity of H.

Lemma 1.8. H is not d-Hölder for any d ∈ (β, 1).

Proof. Let

Ktn =

[
tn

4 · 2n+1
,

7tn
12 · 2n+1

]
and Kn = π−1Qn (Ktn) .

For any component K̃i of Ki there is a component K̃i+1 of Ki+1 such that K̃i+1 ⊂ K̃i. This
proves the existence of a component K̃n which is contained in

⋂n
i=1Ki. By construction, Hn|K̃n

is an a�ne transformation of slope t−11 · · · · · t−1n . In the following, we denote K̃n = [x′, y′]. In
particular, we have |y′ − x′| = 3−1tnQ

−1
n · 2−(n+1).

According to this we modify the second requirement of Lemma 1.5 as follows
∑∞
i=n+1Q

−1
i ≤

3−1tnQ
−1
n · 2−(n+1). Then we get for x, y ∈ S1 de�ned by H(n+1)(x) = x′ as well as H(n+1)(y) =

y′: |x− y| ≤ 3 |x′ − y′|. With the aid of |y′ − x′| = 3−1tnQ
−1
n · 2−(n+1) we estimate

|H(x)−H(y)| = |Hn(x′)−Hn(y′)| = t−11 · · · · · t−1n · |x′ − y′| = t−11 · · · · · t
−1
n−1 · 3−1Q−1n · 2−(n+1)
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as well as

|x− y|d ≤ 3d |x′ − y′|d = 3d
(

3−1tnQ
−1
n 2−(n+1)

)d
= tdnQ

−d
n · 2−(n+1)d.

Using equation 3 both estimates together yield in case of βn < d (which is ful�lled for su�ciently
large n ∈ N due to βn → β < d):

|H(x)−H(y)|
|x− y|d

≥ 3−1t−11 · · · · · t
−1
n−1 ·Qd−1n · t−dn · 2(d−1)·(n+1)

> 3−1t−11 · · · · · t
−1
n−1 ·Q

β−1
n d−1
n · 2−(n+1)

≥ 3−1t−11 · · · · · t
−1
n−2.

(where we used the additional requirement tn−1 ≤ 2−(n+1) from equation 7 in the last step).
Since this expression can be arbitrarily large, we conclude that H cannot be d-Hölder for any
d ∈ (β, 1).

Lemma 1.9. H and H−1 are β-Hölder.

Proof. Since the Lipschitz constants of hi and h
−1
i are equal to t−1i , we can copy the proofs of

Lemma 1.3 and Lemma 1.4.

Then we conclude the C∞-denseness of Gβ,ac by the same reasoning as in the previous section.

2 Proof of Theorem 2

For any n ∈ N we use a C∞-map ψn : R→ [0, 1] satisfying ψn ((−∞, 0]) = 0, ψn
([

1
4·2n ,∞

))
= 1

and ψ is strictly monotone increasing on
[
0, 1

4·2n
]
. We de�ne the orientation-preserving di�eo-

morphism h̃n of the circle as follows

• If x ∈
[
0, 1

4·2n·dn

]
h̃n (x) = (1− ψn (dnx)) dnν

(dn)
n x+ ψn (dnx) dnν

(1)
n x

• For i = 0, . . . , dn − 1 and x ∈
[
i
dn

+ 1
4·2n·dn ,

i+1
dn

]
:

h̃n(x) = dnν
(i+1)
n ·

(
x− i

dn

)
+

i∑
k=0

ν(k)n

• For i = 1, . . . , dn − 1 and x ∈
[
i
dn
, i
dn

+ 1
4·2n·dn

]
:

h̃n(x) =

(
1− ψn

(
dn ·

(
x− i

dn

)))
·

(
dnν

(i)
n

(
x− i

dn

)
+

i−1∑
k=0

ν(k)n

)

+ ψn

(
dn ·

(
x− i

dn

))
·

(
dnν

(i+1)
n

(
x− i

dn

)
+

i∑
k=0

ν(k)n

)
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Figure 2: Qualitative shape of the function h̃n.

using the notation ν
(0)
n = 0. See �gure 2 for a visualisation of such a map.

We present step n of the inductive process of our construction. Hence, we have already
de�ned the orientation-preserving di�eomorphism Hn−1 = h1 ◦ · · · ◦ hn−1 and the numbers
αn−1 = pn−1

qn−1
∈ Q.

Let hn be the lift of h̃n by the cyclic qn-fold covering map πqn such that Fix(hn) 6= ∅ where the
number qn will be determined later (see Lemma 2.1). In particular, we have hn ◦R 1

qn
= R 1

qn
◦hn

and for any l ∈ N

(8) |||hn|||l ≤ Cn,l · ql−1n ,

where the constant Cn,l is independent of qn. Then we can prove a statement analogous to
Lemma 1.5:

Lemma 2.1. Let (ln)n∈N be a strictly increasing sequence of natural numbers with
∑∞
n=1

1
ln
<∞

and Cln be the constants from [Ma12], Lemma 2.4. For any Liouvillean number α there are
sequences αn = pn

qn
of rational numbers, such that the following conditions are satis�ed:
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1. For every n ∈ N:
|α− αn| <

1

2n+1 · ln · Cln · |||Hn|||ln+1
ln+1

.

2. For every n ∈ N:
|α− αn| <

1

4 · 2n+1dnq2n
.

As in the previous chapter we prove the denseness of constructed C∞-di�eomorphisms and
observe that the sequence

(
H−1n

)
n∈N converges uniformly to a homeomorphism H−1 : S1 → S1.

In the following, we will consider systems induced on a set A:

De�nition 2. Let (X,B, µ, T ) be a non-singular system and A ∈ B be a set of positive measure.
Then T induces a mapping TA on A by TA(x) = Tn(x)(x) where n(x) is the smallest positive
integer n for which Tn(x) ∈ A. Then (A,BA, µA, TA) is called the induced system where BA is
the algebra of B-subsets of A and µA is the normalized restriction of µ to BA.

On each interval ∆
(i)
1 =

[
i

d1q1
+ 1

2·2d1q1 ,
i+1
d1q1
− 1

4·2d1q1

]
⊂ S1, i = 0, . . . , d1q1 − 1, we choose

b q2·(1−
3
8 )

d1q1
c intervals of type

[
t
q2
, t+1
q2

]
contained in ∆

(i)
1 completely. In case α2 < α1 the right-

most of these contained in ∆
(0)
1 is labelled by B1 =

[
t1
q2
, t1+1
q2

]
(in case α2 > α1 the leftmost

of these contained in ∆
(0)
1 is labelled by B1 analogously). The union of these chosen intervals[

t
q2
, t+1
q2

]
will be denoted by F1 and they will be numbered serially by the dynamical order

determined by the induced map f
h1(F1)
1 , the �rst one being h1(B1). We note that there are

N1 := b q2·(1−
3
8 )

d1q1
c · d1q1 numbers on the �rst level.

We proceed by an inductive process describing the constructions on the level n ≥ 2 under

the induction assumptions that Bn−1 =
[
tn−1

qn
, tn−1+1

qn

]
is the base level of level n − 1 and that

there are

Nn−1 = q1 ·
n−1∏
i=1

b
qi+1 ·

(
1− 3

4·2i
)

diqi
c · di

chosen intervals
(
f
Hn−1(Fn−1)
n−1

)l
(Hn−1 (Bn−1)) in Hn−1(Fn−1).

We consider fn = Hn ◦ Rαn+1 ◦ H−1n with αn+1 > αn (the proof in the case αn+1 < αn

is similar). Let ∆
(tn−1,i)
n =

[
tn−1

qn
+ i

dnqn
+ 1

2·2n·dnqn ,
tn−1

qn
+ i+1

dnqn
− 1

4·2n·dnqn

]
⊂ Bn−1 for i =

0, . . . , dn − 1. In each of these we choose b qn+1·(1− 3
4·2n )

dnqn
c intervals

[
s

qn+1
, s+1
qn+1

]
contained in it

and denote their union by F
(1,i)
n . The collective union of these chosen 1

qn+1
-intervals is called

F
(1)
n and the leftmost of all of these is labelled by Bn =

[
tn
qn+1

, tn+1
qn+1

]
.

On each of the other chosen intervals
[
t
qn
, t+1
qn

]
⊂ Fn−1 \Bn−1 we consider the intervals ∆

(t,i)
n =[

t
qn

+ i
dnqn

+ 1
4·2n·dnqn ,

t
qn

+ i+1
dnqn

]
of size slightly bigger than ∆

(tn−1,i)
n and on each of these we

chose all possible intervals
[

s
qn+1

, s+1
qn+1

]
contained in it. Let F

(2)
n denote their union. Moreover,
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we put F̃n = F
(1)
n ∪ F (2)

n . Then we consider the iterates of Hn(Bn) under f
Hn(F̃n)
n . Put

l0 = 0, lm = min

{
l ≥ lm−1 +Nn−1

∣∣∣∣ (fHn(F̃n)n (Hn(Bn))
)l
⊂ Hn

(
F (1)
n

)}
for m ≥ 1.

All the iterates
(
f
Hn(F̃n)
n

)i
(Hn (Bn)), i = lm, . . . , lm + Nn−1 − 1 are numbered with �m� on

the n-th level and their union is denoted by B
(n)
m . Note that Rlαn+1

(Bn) ⊂ ∆
(tn−1,i)
n implies

Rl+kαn+1
(Bn) ⊂ F (2)

n ∩
⋃
t∈Z ∆

(t,i)
n for every k = 1, . . . , Nn−1 − 1 because

Nn−1 · |αn+1 − αn| ≤ qn · 2 |α− αn| ≤
1

4 · 2ndnqn

due to Lemma 2.1. Hence, there are b qn+1·(1− 3
4·2n )

dnqn
c · dn di�erent numbers of the form lm and

we can choose

b
qn+1 ·

(
1− 3

4·2n
)

dnqn
c · dn ·Nn−1

iterates of Bn from the family F̃n. The complete union of chosen 1
qn+1

intervals is called Fn.

More precisely, we introduce the clusters

Ã
(n)
i =

{
Rlαn+1

(I)
∣∣∣ I ∈ F (1,i)

n . l = 0, . . . , Nn−1 − 1
}

and A
(n)
i = Hn

(
Ã

(n)
i

)
for i = 0, . . . , dn−1. Furthermore, let Ā

(n)
i denote the set of the corresponding numberings in Fn.

Lemma 2.2. We have

m
(
A

(n)
in

)
= q1 ·

ν
(in+1)
n

qn+1
·
n∏
i=1

b
qi+1 ·

(
1− 3

4·2i
)

di · qi
c · di.

Proof. In order to compute m
(
A

(n)
i

)
we point out that

hn

([
t

qn
+

i

dnqn
+

1

2 · 2n · dnqn
,
t

qn
+
i+ 1

dnqn
− 1

4 · 2n · dnqn

])
⊂
[
t

qn
,
t+ 1

qn

]
because hn is a qn-cyclic covering. For every i = 0, . . . , d1 − 1 there are q1 intervals of type[
t
q1

+ i
d1q1

, tq1 + i+1
d1q1

]
and each domain

[
t
qk

+ i
dkqk

, tqk + i+1
dkqk

]
⊂ Fk−1 contains b qk+1·(1− 3

4·2k )
dkqk

c

many chosen intervals
[

s
qk+1

, s+1
qk+1

]
. Everyone of these contains one domain of type[

s

qk+1
+

i

dk+1qk+1
,

s

qk+1
+

i+ 1

dk+1qk+1

]

for each i = 0, . . . , dk+1 − 1. Since for any �xed i the iterates
(
f
Hn(F̃n)
n

)k
(Hn (I)), k =

lm, . . . , lm + Nn−1 − 1 of I ∈ F
(1,i)
n meet every occurring domain ∆

(t,i)
n exactly once, we get
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for B
(n)
m in the situation of Rlmαn+1

|F̃n (Bn) ⊂ F (1,in)
n :

m
(
B(n)
m

)
=

d1∑
i1=1

q1

d2∑
i2=1

b
q2 ·

(
1− 3

4·2
)

d1q1
c · · ·

dn−1∑
in−1=1

b
qn ·

(
1− 3

4·2n−1

)
dn−1qn−1

cν(i1)1 d1 · ν(i2)2 d2 · · · · · ν(in+1)
n dn ·

1

qn+1

=q1b
q2 ·

(
1− 3

4·2
)

d1q1
c . . . b

qn ·
(
1− 3

4·2n−1

)
dn−1qn−1

cd1 · d2 · · · · · dn ·
ν
(in+1)
n

qn+1

Then we have

m
(
A

(n)
in

)
= q1b

q2 ·
(
1− 3

4·2
)

d1q1
c . . . b

qn ·
(
1− 3

4·2n−1

)
dn−1qn−1

cd1 · d2 · · · · · dn ·
ν
(in+1)
n

qn+1
· b
qn+1 ·

(
1− 3

4·2n
)

dnqn
c

recalling that b qn+1·(1− 3
4·2n )

dnqn
c numbers belong to this cluster.

By this Lemma we get for the set En = Hn(Fn)

m(En) =

dn−1∑
in=0

m
(
A

(n)
in

)
= q1b

q2 ·
(
1− 3

4·2
)

d1q1
c . . . b

qn ·
(
1− 3

4·2n−1

)
dn−1qn−1

cd1 · d2 · · · · · dn ·
1

qn+1
· b
qn+1 ·

(
1− 3

4·2n
)

dnqn
c

In particular, we observe

m(En) ≥
n∏
i=1

(
1− 1

2i

)
.

Moreover, we introduce the set

E =
⋂
n∈N

En.

Fn ⊂ Fn−1 for every n ∈ N implies En ⊂ En−1 and we conclude

m(E) ≥
∞∏
i=1

(
1− 1

2i

)
> 0.

By Dye's Theorem (E,LE ,mE , fE) is orbit equivalent to (S1,L,m, f) ([Ka79], Theorem
1.5), where L is the σ-algebra of the Lebesgue measurable subsets of S1. Hence, it is su�cient
to examine the induced system:

Lemma 2.3. The induced system (E,LE ,mE , fE) is orbit equivalent to the odometer of product

type O
(
(Mkdk)k∈N , {ν∗k}

)
, where Mk = b qk+1·(1− 3

4·2k )
dkqk

c and ν∗k(t) = M−1k νk(i) for t ∈ Ā
(k)
i ,

i = 0, . . . , dk − 1.

Proof. The element (tk)k∈N ∈
∏
k∈N {0, . . . ,Mkdk − 1} corresponds to{
x ∈ E

∣∣∣∣∣ x ∈ ⋂
k∈N

Hk

(
B

(k)
tk

)}
.
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The domains were introduced and labelled by numbers in such a way that fn imitates the
behaviour of the odometer up to level n and for the �rst qn+1 iterates. By the same calculations

as above we get for B
(n)
m in the situation of Rlmαn+1

|F̃n (Bn) ⊂ F (1,in)
n :

m
(
Hn

(
B

(n)
m

)
∩ E

)
m(E)

=
ν
(in+1)
n

b qn+1·(1− 3
4·2n )

dnqn
c

and

m
(
A

(n)
in
∩ E

)
m(E)

= ν(in+1)
n = νn ({in}) .

Moreover, we have for B
(k)
mk in the situation of R

lmk
αk+1 |F̃k (Bk) ⊂ F (1,ik)

k :

m
(⋂N

k=1Hk

(
B

(n)
mk

)
∩ E

)
m(E)

=

N∏
k=1

ν
(ik+1)
k

b qk+1·(1− 3

4·2k )
dkqk

c
.

Finally, we use the subsequent result on orbit equivalence of odometers stated in [Ka79],
Theorem 1.8:

Lemma 2.4. Let O
(
(dk)k∈N , {νk}k∈N

)
be an odometer of product type. For every k ∈ N let

Mk be a positive integer and ν∗k be a probability measure on A = {0, 1, . . . ,Mkdk − 1} such that
there exists a partition A =

⋃
j Aj where #Aj = Mk and ν∗k(n) = M−1k νk(j) for n ∈ Aj,

j = 0, . . . , dk − 1. Then O
(
(Mkdk)k∈N , {ν∗k}k∈N

)
is orbit equivalent to O

(
(dk)k∈N , {νk}k∈N

)
Hereby, we conclude that (S1,L,m, f) is orbit equivalent to O

(
(dk)k∈N , {νk}

)
.
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