Further dense properties of the space of circle
diffeomorphisms with a Liouville rotation number

PuiLirp KUNDE

Department of Mathematics, University of Hamburg, Hamburg, Germany

April 6, 2017

Abstract
In continuation of Matsumoto’s paper [Mal2] we show that various subspaces are C*°-
dense in the space of orientation-preserving C'°°-diffeomorphisms of the circle with rotation
number «, where o € S' is any prescribed Liouville number. In particular, for every odome-
ter O of product type we prove the denseness of the subspace of diffeomorphisms which are
orbit-equivalent to O.
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Introduction

Let F' be the group of orientation-preserving C°°-diffeomorphisms of the circle. Furthermore,
for a € S' we consider the subspace F,, of F consisting of all the C'*°-diffeomorphisms of the
circle with rotation number «. If « is irrational, for any f € F, there is a unique orientation-
preserving homeomorphism Hy of the circle such that f = Hyo R, 0 ;1 and H¢(0) = 0, where
R,, denotes the rotation by a on S'. J.-C. Yoccoz proved that the subspace O, of F, of all the
diffeomorphisms, for which H; are C*°-diffeomorphisms, is C*°-dense in F,, ([Yo97]).

In the following, let o be a Liouville number. By [He79|, chapter IV, section 6, the unique
f-invariant probability measure iy is given by uy = (Hy).m, where m is the Lebesgue measure
on S', and puy is either equivalent to m (then H; maps any Lebesgue null set to a null set and
Hy is called absolutely continuous) or singular to m (then H; maps some Lebesgue null set to
a conull set and Hjy is called singular). In [Mal2] S. Matsumoto considered several subspaces of
F, according to the regularity of H:

® Gogsing: Hy is singular and is not d-Hélder for any d € (0,1).

o Goac: Hy is absolutely continuous and is not d-Holder for any d € (0, 1).

For 5 € (0,1) Gg: Hy is bi-g-Holder, but is not d-Holder for any d € (3, 1).

G sing: Hj is singular and is bi-d-Hélder for any d € (0, 1).

G1,act Hy is absolutely continuous and is d-Hélder for any d € (0, 1), but is not bi-Lipschitz.



e For k € N Gy: Hy is a C*-diffeomorphism, but is not a C**1-diffeomorphism.

Then Matsumoto proved that Goging is C°°-dense in F, in [Mal3|. In [Mai2], Theorem 1,
the C'°°-denseness of all the other spaces is shown. In this paper we examine the subsequent
subspaces of Gg:

Theorem 1. For any Liouwville number o and for any 8 € (0,1) the subspaces

o Gg sing: Hy is singular, bi-B-Hélder, but is not d-Hélder for any d € (5,1)

o Ggac: Hy is absolutely continuous, bi-G-Holder, but is not d-Hélder for any d € (5,1)
are C*°-dense in F,.

This statement was conjectured in [Mal2], Remark 1.6, but not pursued.

In the second part of this paper we study odometers of product type.

Definition 1. Let (dg)xen be a sequence of positive integers. We consider the compact metris-
able space X = [],.y1{0,...,dx — 1} with Borel algebra B on it. For z = (zx)ren € X we set
r(x) = inf {k : xpx < dp — 1}. Hereby, we define the transformation T': X — X, Tz = (y&)zens
where

0 for k < r(x)
Y=zt +1 fork=r(z)
Tk for k> r(x)

e Let p be a continuous measure on (X, B) which is ergodic and quasi-invariant with respect to
T. Then (X, B, u, T) is called a measured odometer and we will denote it by O ((di) e > 1t)-

e Let O ((dg)yey) be a measured odometer and assume that for every k € N v, is a probability
measure on {0,1,...,dr — 1} such that the probability of every digit is positive and the
product measure v = [, o ¥ is non-atomic on O ((di),cy)- Then v is ergodic and quasi-
invariant under 7. We call O ((dj),cy »v) an odometer of product type and denote it also

by O ((di)en > {vr})- We also use the notation v = vy ({i — 1}).

Moreover, we recall the notion of orbit equivalence (also referred to as “weak-equivalence”
or “Dye-equivalence”): The non-singular systems (X7, B1, pu1,71) and (Xo, Ba, pe, To) are orbit-

equivalent if there is an isomorphism ¢ of (X1, By, 1) onto (X, Ba, yi2) such that 1) ({fo}iez) =

{Tﬁw(x)}l z almost everywhere. Y. Katznelson proved that for every odometer of product type
the set of C'*°-diffeomorphisms of the circle, which are orbit equivalent to this odometer, is C'*>°-
dense in the set of all C*°-diffeomorphisms with irrational rotation number ([Ka79], Theorem
2.7). We obtain such a statement in the restricted space F, for any Liouville number «:

Theorem 2. Let o € S' be a Liouville number. For every odometer of product type O =
O ((di)pen > {vr}) the set of C*°-diffeomorphisms of the circle which are orbit-equivalent to O is
C>®-dense in F,.

We point out that it is still an open problem to find a smooth realization of an odometer (cf.
[FK04], Problem 7.10).
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1 Proof of Theorem

The proof bases upon the “approximation by conjugation”method developed by D. Anosov and
A. Katok (JAK70]): We construct the desired diffeomorphisms as limits of conjugates f, =
Hy, o R, , oH;*', where = Z:ﬁ € Q, (pbn+1,Gn+1) = 1 and H, = H,_1 o h,, with an
orientation-preserving circle diffeomorphism h,, satisfying h,, o R% = R% o hy,.

1.1 Denseness of G ging

Fix 8 € (0,1). We use a C*°-function ¢ : R — [0, 1] satisfying ¢ ((—o0,0]) = 0, ¢ ([%, x)) =1
and v is strictly monotone increasing on [O, i] For any ¢t € (0,1) we define the orientation-
preserving diffeomorphism hy of the circle as follows

(1 — (t’lm)) tr + (til:zr) t 1z if x € [O, ﬁ]

) 1y ifx € £V%th:|

i -

t(ﬂf) <1—w(t—1x—H%))t—lx—i—lﬁ(t—lx—p%)-(t(x—l)—l—l) if v € %H,%H—f—i}
to(x—1)+1 ifae l%rt+ﬁ,1}

See figure |1| for a visualisation of such a map. In particular, hy is a smooth joining of the two
affine functions = — t~'z and = ~ ¢ - (z — 1) + 1, which coincide at z = 15. Moreover, we
observe for any r € N

(1) Aelllr < C - t7™0

with some constant C(r) > 0 and an integer m(r) > r — 1 which are independent of ¢. The
notation ||| - |||, is the same as in [Mal2].

We present step n of the inductive process of our construction. Hence, we have already defined
the orientation-preserving diffeomorphism H, 1 = hyo...oh,_1 as well as the numbers «,, 1 =
5:—: €Q, tp1= 7= €Qand Q1 € N. We put

(2) Qn =12 dn—l : (dn—l + Cn—l) . Qn—l *Qn
and
(3) ty = QL%

where the numbers ¢,, and 3,, € [8, 5,—1] will be determined later (see Lemma. In particular,
part 4 of Lemma [1.5]shows t,, € Q. Note that

(4) Q7 = (@)™

Let h, be the lift of &, by the cyclic Q,-fold covering map ¢, such that Fix(h,) # 0. In
particular, we have h, o R 1 = RQL o hy. Since Q,, is a multiple of ¢,, this yields h,, o R1 =

R oh, as well as
an

n—

1 = H g = (e —id) o HZ [ = [ —id]], < @4

Then we obtain

k k
i = H 2 < ST = ol <D Qnk
=0 =0
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Figure 1: Qualitative shape of the function hy.

e

Since Y7, Q! < oo by Lemma (Hn’l)nEN is a Cauchy sequence. This shows the uniform

convergence of (H, ') _. to a continuous map H~":S" — S'. Additionally, H~' is monotone
as a uniform limit of homeomorphisms. Due to Lemma[I.6] the sequence of C*°-diffeomorphisms
fn=HpoR4, , o H; ! converges to a difftomorphism f in the Diff**-topology. Hereby, we
conclude H' o f = R, o H!. Hence, H~' is a homeomorphism.

Moreover, we introduce the intervals

~ 1 t2 A tn tn ~ tn tn,
Itn|: +n71:|7<]tn|: +4,1:| anthn{ 7 :|

1+t, 4 1+t, 4712

By construction Btn| j, 1s an affine transformation with slope t,. Due to ¢, < 1 we have

I, c J,,. Additionally, we observe h; (jt) =1, and K; C {%, = }
Finally, we define I,, = wéi (ftn), Jp = 7@}1 (jtn) as well as K,, = wéi (f(tn). By direct

computation, m (J,,) = ﬁ - >1-2t,, m(I,) = li’; - % < t,, (where m stands for the
Lebesgue measure) and every component of K,, has length 3‘23”

Now we are able to prove the singularity of H by an approach similar to [Mal2|, section 3:

Lemma 1.1. H is singular.
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Proof. Let C,, =(._, J; and C =(;2, J;. By construction of the number @,, any component
of Jo—1is a (Q,'Z) /Z-interval. Then

m(cn) > ﬁ(l - Qti)'

Note that [[°2,(1—ay), a, > 0, converges to a positive number if and only if 7 | a,, converges
(IKn64], section 28, Theorem 4). Since

1 -1

] o0 oS
Yt=Y o <Y Q" <
n=1 n=1 n=1

by part 3 of Lemma [1.5] we obtain m(C) > 0. This yields
py(H(C)) = (Hom)(H(C)) = m(C) > 0.

By construction of h; with the aid of the @);-fold covering map (Q;}AZ) /Z is pointwise fixed
under hj, j > n. Since any component of J, is a (Q;JlrlZ) /Z-interval, we get h;(J,) = J, for
j > n. Then we obtain for any j > n:

HJ(JTL) = Hn(‘]n) = Hn—lhn(Jn) = Hn—l(In)7

which yields J,, = Hj_lHn_l(In), where Hy = id. This shows that the uniform limit H~! of
H ! satisfies .J,, = H~' (H,_1(I,,)) for any n € N. Hereby, we observe

H(Cy) =H <m Ji) = ﬂ H(J;) = ﬂ H;_1 ().
i=1 i=1

=1

In order to have H; 1 (A) C H; o (I;_1) a set A C S! has to satisfy h;_1 (4) C I;_; which
implies the condition A C J;_;. Since m(I;) < t; and the slope of h;_1],_, is equal to ¢;_1, this
yields m (H (Cy)) < H?;ll t; which converges to 0 as n — oo. Therefore, m(H(C)) = 0.

Finally, we note that ¢ is not equivalent to m because pr(H(C)) > 0 and m(H(C')) = 0. Hence,

H is a singular map. O
In the next steps, we examine the Holder continuity of H:
Lemma 1.2. H is not d-Hélder for any d € (5,1).

Proof. For any component K; of K; there is a component f(Hl of K1 such that [~(i+1 c K;.
This proves the existence of a component K,, which is contained in (;_, K;. By construction,
H,| . is an affine transformation of slope trte t-1. In the following, we denote K, = [z/,3/].
In particular, we have |y’ — 2| = 37,Q; .

Moreover, we define z,y € S' by H"+D(z) = 2/ as well as H"*1(y) = 4/ using the notation
HO+) = H-UH. Tts inverse (H®+) ™" is the uniform limit of s L, o---ohl, o hil) as
m — oo. Since 7 . Q; ' < 37',Q,! for any n € N by Lemma and the maps h; are
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-1 .
Q; “-cyclic, we have

() @) = (m00) )

|z —y| =
—1 -1
< ‘(H(”“)) (@) —a'| + |2 =y | + |y — (H("“)) (¥
<D Q!+ —y+ D ot
i=n+1 i=n+1
<37',Q + | — |+ 37,0,
=3z —|.

With the aid of |y — 2'| = 371¢,Q,,! we estimate
[H(w) = H(y)| = [Hn(a') = Ha(y)| = 70t =y =ttt 371007
=37t Q!
as well as
=3 (37 Q) = e,

Using equationboth estimates together yield in case of 3,, < d (which is fulfilled for sufficiently
large n € N due to 8, — 8 < d):

|H(z) ~ H{y)|

lz—y|" <32 —y

—1,-1 -1 d—1 ,—d
5 >3 et T QT
|z =y
_q,— _ _ “ld—d
:31t11.....tn£1.Qi1.Q5"
—1,-1 —1 B, ld—1
:3 t] '...'tn—l'Qn
—1,-1 -1
>3t

Since this expression can be arbitrarily large, we conclude that H cannot be d-Hoélder for any
de(B,1). O

Lemma 1.3. H~! is 3-Hélder.

Proof. For any pair of z,y € S!, x # y, there is n € N such that tn+1Q;i1 <lr—vy| <t,Q;, .
Since the Lipschitz constant of h;l is t;l, we have

_ _ _ _ — — 1—
|H Y o) - H )| < t7t ot e—yl =67t e =y eyl
<l (4, Q) T e — )
_ _ 1—p7t -8 _
:tll""'tnil'(Qn ﬁn) -Qﬁ 1.‘x_y|ﬁ
_ _ —14881
=ttt Qn BB, -|;E—y\5

By Lemma [I.5] this shows
(5) |H, @) — Hy ' ()| < e =yl

n n

There are two possible cases
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o Case 1: |H;'(z) — H7'(y)| > Qs
Since h;}rl is Q;}rl—cyclic, we get in this case ‘ngl(x) — ngl(y)‘ <2 |Hgl(x) — H,jl(y)|.
With the aid of Lemma [I.5] we see that the numbers Q;, i > n + 1, grow fast enough such
that
(B () — H™ ()] < 3[H () — H ()] <3~y

n

using equation (5)) in the last step.
o Case 2: |H'(z) — H, ' (y)| < Qi1

n
Once again, we exploit the fact that h;j_l is Q;}_l—cyclic. In the case under consideration,

this yields |H,} (z) — H,},(y)| < Q,,1,. With the aid of equation |4 we get
- - - —1\8
[H (@) = H(y)] < 2Q,1, <2 (ba1Qpty)” <202 — 9l

Hence, H~! is B-Holder. O
Lemma 1.4. H is §-Hélder.

Proof. As above, for any pair of x,y € S', x # y, there is n € N such that thQ;}rl <
|z —y| < t,Qpt Let 2’ = H™?(z) and y' = H" 2 (y). Recall H"*? = H ! H. Since
H is the uniform limit of H,, and the maps h; are Q;l—cyclic and the numbers Q;, i > n + 1,
are sufficiently large due to Lemma we have |2/ — y/| < 2|z —y|. Once again, we have to
examine two cases:

e Case I: |2/ —y'| > Q1
Since hyn1 is Q)1 ,-cyclic, we get in this case |2 — y”| < 2|2’ — y/| for 2" = hp41(2’) and
y" = hni1(y'). Since the Lipschitz constant of h; is ¢; ', we obtain by the same calculations

as in the first case of the previous Lemma

|H(z) = H(y)| = [Ha(2") = Ha(y")] <70t " =y

<t11 ..... th2)a — |
<t;1 ..... t;1~4|x—y|
<dlz—yl°

e Case 2: |2/ —y'| < Q1
Since hp41 is Q;}rl—cyclic, we have

_ —1 \Bn n
[ =" = |1 (@) = hns1 (8)] < Qs = (ban1Qubr) " <l =y
Hereby, we conclude

[H(x) — H(y)| = [Hn(2") = Hn(y")]

< tl—l L -t;l . |33” . y//|1—ﬁ5;i1 . |.13" _ y//‘ﬁﬁ;il

_gp-1 —1
< tl_l L 'tr_Ll ) (Q;-sl-l)l BBri1 |1‘” - y//|ﬁﬁn+1
<z -yl

using Lemma [1.5] part 4, in the last step.
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Hence, H is S-Holder. O

Finally, we want to prove convergence of the sequence (f,),, o in Diff> (S'). For this purpose,
we deduce the subsequent statement.

Lemma 1.5. Let (I),, oy e a strictly increasing sequence of natural numbers with Y~ li <
and Cj, be the constants from [Mal2], Lemma 2.4. For any Liouvillean number « there are
sequences o, = 22 of rational numbers and (5,,)nen of real numbers, such that 5, \, § and the
following conditions are satisfied:

1. For everyn € N:

1
o — | < .
2014, - Gy, || Halll2
2. For everyn € N:
o0
> Qi <37hQ,!
i=n—+1
3. For every n € N:
_ -1 1-8-1 1
tl_l e t;il . in-‘rﬁﬁn <1 and Qn "' < =

n?’
4. tn, € Q for every n € N.

Proof. Since the numbers t;, i < n, are independent of ¢, and 1 > 3,,_1 > 3, we can demand
the number ¢, to be sufficiently large such that

1 17571.71
(6) tfl-----tzil-%i( ’ >§1
as well as ) )
1_B; 1
< -

Additionally, we can satisfy the second property of the Lemma by choosing the numbers ¢;
sufficiently large in each step.
By equations (1)) and (3) we have

—1_ m(r) _
kallly < Co- @70 (@) < €@l )

-1 —
=Cp (12 dy_y - (dp—1 + €n1) - Quor)” i a, i)
<Crpor-gy ™0

for any r € N due to the condition 8, > . Using [Mal2], Lemma 2.3, we obtain
~ ~ -1 .
N Hnlllr = [[|Hn—10 hnlllr < Cr - [[[Hp-1lll5 - [I[Bnll]; < Crna 'QS mr) "
where CA’nn_l is a constant independent of ¢,. In particular, we can demand ¢, > CA’ln+17n_1.

Then we get
—1 .
1Hallli1 < g ™D EntDAL < gl
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using the notation A, = [~ m(l,, +1)- (I, +1) + 1].
Since « is a Liouvillean number, we find a rational number «, = Iqi, DPn,qn relatively prime,
satisfying the above restrictions and

Pn
n

o —

o — | = -

Ap-(ln+1 <
L0, - Gy, gD T 200 O I

After the number ¢, is determined with respect to these restrictions we can choose a number
_p-1
Bn € [B + M, Bn_1) such that ¢, = :L A ¢ Q. Then we have

—1+6ﬁ;1=ﬁ;1-(—6n+ﬁ)§6‘1~( <5+ﬂ 5 6)4‘5)

B =B 1 Brn-1
=p 2—2( 3 )<0.

By condition [6] this yields

Bn—1
_ _ -1 -1 _ _ -1 _ _ 31—
tll""'tnil'Qn +BBn <t11 ) tll In +885" Stll ..... tnil-qﬁ( s )Sl-

The previous Lemma shows that the requirements of the following convergence result deduced
in [Kul6], Lemma 5.8, are fulfilled.

Lemma 1.6. Let ¢ > 0 be arbitrary and (l,),cy be a strictly increasing sequence of natural
numbers satisfying Zn 1 l < €. Furthermore, we assume that in our constructions the following
conditions are fulfilled:

— for every n € N,
In+1

oo —ay| < e and la — a,| < P IIIHnIII

where C, are the constants from [Mal2], Lemma 2.4. Then the sequence of diffeomorphisms
fan=HpoRq,,, o H, ! converges in the Diff>*-topology to a smooth diffeomorphism f, for which
deo (f, Ra) < 3 - holds.

Hence, the rotation R, is contained in the C*°-closure of G'g sing- Since this closure is invariant
under conjugation by any h € F and O, is C*°-dense in F, ([Y093]), we obtain the C'*°-denseness
of G sing in F,, by the same reasoning as in [Mal2], section 2.1.

1.2 Denseness of Ggac

Fix g € (0,1). We slightly modify the construction of the map hy from the previous chapter.
Once again, we use a C*-map ¢ : R — [0, 1] satisfying ¢ ((—00,0]) = 0, ¢ ([$,00)) = 1 and
1) is strictly monotone increasing on [0, 4} Then, for any t € (0 1) we define the orientation-

preserving diffeomorphism A, : [0,1] — [0,1] as follows
(1 — (t‘lm)) T+ (t‘lac) t~ 1z if x € [0, i]
tlx ifr € i’%—kt}

hy (z) = (1—1/)<t 1x—t+—1>>t 1m+z/1( —ﬁ)-(t(x—l)-i—l) fre |ty v+
t-(x—1)+1 ifre|fh+41
(I—p @t (z=14%) -+ +o(t " (z-1+%))z fzel-41]
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Note that h; coincides with the identity in a neighbourhood of the boundary. Using the maps C), :
[0, 77| = [0,1], Cp(x) = 2"z, we construct the orientation-preserving circle diffeomorphism
h:, as follows:

)

he. (z) = CgloiuztnoC’n(x) ifxe[(),p%]
AN P if x € [2%,1]

where we define the numbers Q,, = 2" -12-d,_1 - (dp—1 + ¢n_1) - Qn_1 - g, and t,, as in the
previous section. This time, we demand the additional requirement

(7) ty < 9—(n+2)

which can be satisfied by choosing g, sufficiently large in the proof of Lemma [T.5]
Let h,, be the lift of h;, by the cyclic Q,-fold covering map m¢, such that Fix(h,) # 0. By the

same reasoning as above, the sequence (H; 1)n oy converges to a homeomorphism H~!.

First of all, we prove the absolute continuity of H by the same method as in [Mal2], section 4:
Lemma 1.7. H s absolutely continuous.

Proof. We introduce the sets

L, = [2*(’”1), 1] and L, = ﬂél (ﬁn) .

According to our construction h,, is the identity on L,. Let X = ﬂzozl L,,. Then we have
e’} 00 1
mX)>1=Y m(S'\L,) =1-) 270+ — _
(X) = Ezj (8"\ Ly) 223 5

Since H is the identity on the positive measure set X, we have for any Borel set B uy(BNX) =
m(BNX) and pr(X) =m(X) > 0.

Assume that g is not equivalent to m. Then yuy is singular to m and there is a Borel set B C S!
such that m(B) = 1 and ps(B) = 0. But then we obtain the contradiction m(BNX) = m(X) >0
but (BN X) < pp(B) = 0.

Hence, H is absolutely continuous. O

We start to examine the Holder-continuity of H.
Lemma 1.8. H is not d-Holder for any d € (5,1).

Proof. Let
_ tn Tty q .
Ky, = 4.9n+1' 19 . on+l and K, = TQn (K,) -

For any component K; of K; there is a component [N(Hl of K;4+1 such that I~(,»+1 C K;. This
proves the existence of a component K,, which is contained in ﬂ?zl K;. By construction, H,| i,
is an affine transformation of slope t;* - --- -, '. In the following, we denote K, = [2/,3/]. In
particular, we have |y’ —2/| = 37'¢,Q;* - 2= ("+1),

According to this we modify the second requirement of Lemma as follows > >° 41 Q;l
37 1,Q; -2~ (D, Then we get for z,y € S' defined by H"*V (z) = 2’ as well as H"t1)(y) =
y': |z —y| < 3|2’ —y'|. With the aid of |y — /| = 37',Q;1 - 2= ("+1) we estimate

IN

|H(x) = H(y)| = [Hn(a") = Ha(y)| = 7" - e =y =t L 3T 2m
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as well as
ool <3l = g1 =3 (370 2 ) g o,

Using equationboth estimates together yield in case of 3,, < d (which is fulfilled for sufficiently
large n € N due to 8, — 8 < d):

|H(z) — H(y)|

—1,— - d—1 4—d o(d—1)-
- >3 ltll"“'tnil'Qn Lot . 9(d=1)-(n+1)
|z =yl
>3 1t11 ..... 1 .an d=1 9—(n+1)
—1,-1 -1
>3 1t1 ..... tl,

(where we used the additional requirement ¢, < 2~ (+1) from equation [7| in the last step).
Since this expression can be arbitrarily large, we conclude that H cannot be d-Hoélder for any
de(B,1). O

Lemma 1.9. H and H™' are S-Hélder.

Proof. Since the Lipschitz constants of h; and hi_1 are equal to ti_l, we can copy the proofs of
Lemma [[.3] and Lemma [T.4l O

Then we conclude the C°°-denseness of G5 5. by the same reasoning as in the previous section.

2 Proof of Theorem

For any n € N we use a C*°-map 1, : R — [0, 1] satisfying ¢, ((—00,0]) = 0, ¢y, ([;57,0)) =1

We define the orientation-preserving diffeo-

and 1 is strictly monotone increasing on [0, 57|

morphism £, of the circle as follows

o Ifz € [O,ﬁ}

hi () = (1 — ¢y, (dy)) ngT(Ld")x + ¢y, (dpx) dnur(f)x

e Fori=0,...,d,—1land z € [di—kﬁfj—l}:

o (z) = dpv(itD) (x _ ;) + Z V)
" k=0

e Fori=1,....,d,—1land z € [di,di+442i,d }:

= o ) (o - £)- )
o)) (oo (- £) -5
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R
N A

Figure 2: Qualitative shape of the function B

=
3

using the notation l/r(LO) = 0. See figure for a visualisation of such a map.

We present step n of the inductive process of our construction. Hence, we have already

defined the orientation-preserving diffeomorphism H, 1 = h; o--- o h,_1 and the numbers
an—1= 2= € Q.

Let h,, be the lift of h, by the cyclic g,-fold covering map g, such that Fix(h,) # 0 where the
number ¢,, will be determined later (see Lemma 2.1). In particular, we have h,oR1 = R1 oh,

an an

and for any [ € N
(8) lhallli < Cri - a7t

where the constant C),; is independent of g,. Then we can prove a statement analogous to
Lemma [[.5}

Lemma 2.1. Let (I,,),,cy be a strictly increasing sequence of natural numbers with > li < 00
and Cy, be the constants from [Mal2, Lemma 2.4. For any Liouvillean number « there are

sequences o, = % of rational numbers, such that the following conditions are satisfied:
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1. For every n € N:
1

2ntl g, Cln : ||‘Hn|||§:i%

a—ap| <

2. For every n € N:
1

o= anl < T

As in the previous chapter we prove the denseness of constructed C'*°-diffeomorphisms and
observe that the sequence (H, ') _. converges uniformly to a homeomorphism H~':S' — S'.
In the following, we will consider systems induced on a set A:

Definition 2. Let (X, B, 1, T) be a non-singular system and A € B be a set of positive measure.
Then T induces a mapping T4 on A by T4 (z) = T™®)(z) where n(z) is the smallest positive
integer n for which 7" (z) € A. Then (A, B4, u4, T4) is called the induced system where B4 is
the algebra of B-subsets of A and pu* is the normalized restriction of y to B4.

; (&) _ | _i 1 i+1 1 1,
On each interval A}’ = o T 33dig e — Tadigr | © S*, i =0,...,diqg1 — 1, we choose

(1-3 .
L%J intervals of type {qiz, %1] contained in A{” completely. In case a < ay the right-

most of these contained in Aﬁ‘” is labelled by B; = {;—;, th—;“l} (in case ay > ap the leftmost

of these contained in Ago) is labelled by B; analogously). The union of these chosen intervals

[q%, t(‘;—;] will be denoted by F; and they will be numbered serially by the dynamical order

determined by the induced map flhl(Fl), the first one being hy(B1). We note that there are
(1-2
Ny = L%J - d1q, numbers on the first level.

We proceed by an inductive process describing the constructions on the level n > 2 under

the induction assumptions that B, _1 = {t:‘z—’l, t";ilﬂ}

is the base level of level n — 1 and that

there are X
T G (- 55)
Np_1 = q1 - ELTJ 'di
l
chosen intervals (ffj‘l’l(F"’l)) (Hp—1 (Bp—1)) in Hyp_q(Fp_q)-

We consider f, = H, o R,, ., o H,! with a,,;1 > «a, (the proof in the case a,11 < a,

n+41
o i (tn—1,8) _ [tn=1 i 1 tno1 | it 1 s
18 Slmllar)' Let An - dn + dnqn + 2:2"dngn’ qn + dnqn 4-2™-dpqn C Bn_l for t=
q . 1—% . o . . .
0,...,d, — 1. In each of these we choose L%J intervals {q —, ;':11} contained in it

and denote their union by FT(LM). The collective union of these chosen ﬁ—intervals is called

Fr(Ll) and the leftmost of all of these is labelled by B,, = [ tn t"“].

qn+1’ qn+1

On each of the other chosen intervals [qi, t;—l] C F,,—1\ By,—1 we consider the intervals Agf’i) =

»=19 and on each of these we

[q% + dniqn + 4_2”1(1”% , qin + ;:‘qln] of size slightly bigger than Al

s s+1
qn+1’ qn+1

chose all possible intervals ] contained in it. Let F,SQ) denote their union. Moreover,
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we put F, = Fy(bl) U F,(Lz). Then we consider the iterates of H,(B,) under f"(F"). Put

l() = 0, lm = min {l Z lm,1 + Nn,1

(ff"(ﬁ") (Hn(Bn)))l Cc H, (F,Sl))} for m > 1.

All the iterates (ff””(ﬁ")) (Hn (Br)), @ = by -y lm + Np—1 — 1 are numbered with “m” on
the n-th level and their union is denoted by Br(,?). Note that R! (Bp) C A,(f"‘_l’i) implies

Qp41
R (By) € B N Uyep AV for every k=1,...,N,_; — 1 because
1

anl : |O{n+1_an‘ Sqn2|0[_an| < m

nr1-(1—gw)

due to Lemma Hence, there are [ =—;—

we can choose

| - d,, different numbers of the form I, and

o (- )
L dngn |- dn- N

iterates of B, from the family F,,. The complete union of chosen ﬁ intervals is called F,,.
More precisely, we introduce the clusters
Al = {Rl () ‘ TeFM) =0, Ny — 1} and A™ = H, (215’”)

Q41

fori =0,...,d,—1. Furthermore, let AE”) denote the set of the corresponding numberings in F,.

Lemma 2.2. We have

(int1) 7m 3
(n) Un di+1 - (1 - 4.21:)
m(Ai ):q~7~||—-di.

Proof. In order to compute m (Agn)) we point out that

t ) 1 t 141 1 t t+1
hp, — + + ~ ,— + - - C|—,
dn dngn 2-2" - dngn qn dnqn 4-2"-duq, dn dn

because h,, is a g¢,-cyclic covering. For every i = 0,...,d; — 1 there are ¢; intervals of type

3
4o ity il i [ it e Crer )
[ql +aa Tt dlql] and each domain |:Qk taaont quk} C Fy_1 contains | dran |

s s+1

, . Everyone of these contains one domain of type
dk+1 " dk+1

many chosen intervals

{s N i s i+1 ]
Ger1 det1Qh+1 Qo1 dep1 Qe

N
for each i = 0,...,dg41 — 1. Since for any fixed 7 the iterates ( f"(F”)) (H, (), & =

by ooyl + Npo1 — 1 of T € F,gl’i) meet every occurring domain Agf’i) exactly once, we get
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for B{"” in the situation of Rl |z (Bn) C F{).

.
m (B57)
dq do 3 dp—1 3
a2 (1- %) G (L= g51) | ), (i) (int1) 1
— [ S TN P _— == dl/ d ..... 1/1" dn.i
ilz=:1 o 122::} diq1 J iﬂ;} dn—1Gn-1 J ! b 2 " dn+1
(in+1)
@ (1-73), (¢ (- g5) v
- dy-do---- d. -
ail diq1 J dp—1qn—1 lds - dz " Gnat
Then we have
3 3 (in+1) 3
(n)) _ 92 - (1 — E) an - (1 B 4~2"*1) Un Qn+1 - (1 - W)
m (A - di-do----- d, - )
( tn CIIL diq1 dp—1Gn—1 J L dn+1 dnqn J
(18
recalling that LWJ numbers belong to this cluster. O
By this Lemma we get for the set E,, = H,,(F,)
m(E,) = Z m (Af?)
in=0
:qquQ'(l_‘*%) ”.an-(l— 4'22_1)Jd1-d2~~--dn- L q7z+1-(1—%%)J
dlql dnfl(Infl gn+1 dnqn

In particular, we observe

By Dye’s Theorem (E,LF mE fF) is orbit equivalent to (S',L,m, f) ([Ka79], Theorem
1.5), where L is the o-algebra of the Lebesgue measurable subsets of S'. Hence, it is sufficient
to examine the induced system:

Lemma 2.3. The induced system (E,LE mF  f¥) is orbit equivalent to the odometer of product

(1-_3_ _
type O ((Mydi)en > {v}), where M, = LWJ and vi(t) = M, 'v(i) for t € Al(-k),
i=0,....dy—1.

Proof. The element (tx)ren € [[en {0, ..., Mrdyr — 1} corresponds to

{er ve ﬂHk(Bt(f)>}.

keN
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The domains were introduced and labelled by numbers in such a way that f, imitates the
behaviour of the odometer up to level n and for the first ¢, iterates. By the same calculations

as above we get for B in the situation of Rl |z (Bn) C ol

Qn41
(n) .

m (H, (B) 0 E) s

m(E) g (=gdr)

dngn
and

m (AZ(") N E) - _
—— = =t =, ({in}) -

m(E)

. . . l7n 3
Moreover, we have for By(,lf,z in the situation of Ra,%, |z (Bk) C F,gl’““):

m (ﬂszl Hy, (B;&)) N E) N I/l(cik+1)
m(E)

Qk+1'(1*ﬁ)J '

k=1 L drqxk

O

Finally, we use the subsequent result on orbit equivalence of odometers stated in [Ka79],
Theorem 1.8:

Lemma 2.4. Let O ((dk)kGN’{Vk}kEN) be an odometer of product type. For every k € N let
Mj, be a positive integer and v; be a probability measure on A = {0,1,..., Mydy — 1} such that
there exists a partition A = |J; A; where #A; = My and vi(n) = M v (4) for n € Aj,
j=0,....dx —1. Then O ((Mpdi),cn,{Vi}ren) s orbit equivalent to O ((di)en > {Vk}pen)

Hereby, we conclude that (S, £, m, f) is orbit equivalent to O ((dy)en» {¥k})-
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