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Abstract
On any smooth compact connected manifold of dimension m ≥ 2 admitting a smooth

non-trivial circle action S = {St}t∈R, St+1 = St, preserving a smooth volume µ we construct

weakly mixing C∞-diffeomorphisms in Aα (M) = {h ◦ Sα ◦ h−1 : h ∈ Diff∞ (M,µ)}
C∞

for
every Liouvillean number α ∈ S1 whose differential is ergodic with respect to a smooth
measure in the projectivization of the tangent bundle. The proof is based on a quantitative
version of the “approximation by conjugation”-method with explicitly defined conjugation
maps, partial partitions and tower elements.
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Introduction

LetM be a smooth compact and connected manifold of dimensionm ≥ 2 with a non-trivial circle
action S = {St}t∈R, St+1 = St preserving a smooth volume µ. In their influential paper [AK70] D.
V. Anosov and A. Katok introduced the so-called “approximation by conjugation”-method which
enables the construction of smooth diffeomorphisms with specific ergodic properties (e. g. weakly
mixing ones in [AK70], section 5, and weakly mixing diffeomorphisms that are uniformly rigid
with respect to a prescribed sequence satisfying a growth condition ([Ku15])) or non-standard
smooth realizations of measure-preserving systems (e. g. [AK70], section 6, [Be13] and [FSW07]).
These diffeomorphisms are constructed as limits of conjugates fn = Hn ◦ Sαn+1 ◦ H−1

n , where
αn+1 = αn + 1

kn·ln·q2n
∈ Q, Hn = Hn−1 ◦ hn and hn is a measure-preserving diffeomorphism

satisfying S 1
qn
◦ hn = hn ◦ S 1

qn
. In each step the conjugation map hn and the parameter kn

are chosen such that the diffeomorphism fn imitates the desired property with a certain preci-
sion. Then the parameter ln is chosen large enough to guarantee closeness of fn to fn−1 in the
C∞-topology and so the convergence of the sequence (fn)n∈N to a limit diffeomorphism is pro-
vided. It is even possible to keep this limit diffeomorphism within any given C∞-neighbourhood
of the initial element Sα1 or, by applying a fixed diffeomorphism g first, of g ◦ Sα1 ◦ g−1. So
the construction can be carried out in a neighbourhood of any diffeomorphism conjugate to an
element of the action. Thus, A (M) = {h ◦ St ◦ h−1 : t ∈ S1, h ∈ Diff∞ (M,µ)}

C∞

is a nat-
ural space for the produced diffeomorphisms. Moreover, we will consider the restricted space
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Aα (M) = {h ◦ Sα ◦ h−1 : h ∈ Diff∞ (M,µ)}
C∞

for α ∈ S1.
As mentioned above Anosov and Katok proved that the set of weakly mixing diffeomorphisms
is generic (i. e. it is a dense Gδ-set) in A (M) in the C∞ (M)-topology. In extension of it R.
Gunesch and A. Katok constructed weakly mixing diffeomorphisms preserving a measurable Rie-
mannian metric in [GKa00]. Actually, it follows from the respective proofs that both results are
true in Aα (M) for a Gδ-set of α ∈ S1. However, both proofs do not give a full description
of the set of α ∈ S1 for which the particular result holds in Aα (M). Such an investigation is
started in [FS05]: B. Fayad and M. Saprykina showed that if α ∈ S1 is Liouville, the set of
weakly mixing diffeomorphisms is generic in the C∞ (M)-topology in Aα (M) in case of dimen-
sion 2. Generalising these results Gunesch and the author proved in [GKu15] that if α ∈ R is
Liouville, the set of volume-preserving diffeomorphisms, that are weakly mixing and preserve a
measurable Riemannian metric, is dense in the C∞-topology in Aα (M). Recently, it has been
proven that for every ρ > 0 and m ≥ 2 there exists a weakly mixing real-analytic diffeomorphism
f ∈ Diffωρ (Tm, µ) preserving a measurable Riemannian metric ([K1]).
Such diffeomorphisms preserving a measurable Riemannian metric are called IM-diffeomorphisms.
In [GKa00], section 3, IM-diffeomorphisms and IM-group actions are discussed comprehensively.
In particular, the existence of a measurable invariant metric for a diffeomorphism is equivalent
to the existence of an invariant measure for the projectivized derivative extension which is ab-
solutely continuous in the fibers. Hence, it is a natural question to study the ergodic properties
of the projectivized derivative extension with respect to such a measure. Actually, the construc-
tions in [GKa00] as well as [GKu15] are as non-ergodic as possible: Their projectivized derivative
extensions are isomorphic to the direct product of the diffeomorphism in the base with the triv-
ial action in the fibers so that each ergodic component intersects almost every fiber in a single
point. In this paper we realise the other extreme possibility by constructing IM-diffeomorphisms
whose differential is ergodic with respect to such a smooth measure in the projectivization of the
tangent bundle:

Theorem 1. Let M be a smooth compact and connected manifold of dimension m ≥ 2 with
a non-trivial circle action S = {St}t∈R, St+1 = St, preserving a smooth volume µ. If α ∈ R
is Liouville, there exists a volume-preserving weakly mixing diffeomorphism in Aα (M), whose
projectivized derivative extension is ergodic with respect to a measure in the projectivization of
the tangent bundle which is absolutely continuous in the fibers.
Moreover, for every Liouvillean number α ∈ R the set of such diffeomorphisms is dense in the
C∞-topology in Aα (M).

This construction provides the only known examples of measure-preserving diffeomorphisms
whose differential is ergodic with respect to a smooth measure in the projectivization of the
tangent bundle.

1 Preliminaries

1.1 Definitions and notations
We refer to [GKu15], section 2.1., for useful definitions and notations. In particular, we recall
the notion of a partial partition which is a pairwise disjoint countable collection of measurable
subsets of the manifold.
Additionally, we want to introduce the invariant measure for the projectivized derivative exten-
sion: Let f : M → M be a smooth diffeomorphism. On the tangent bundle TM we consider
the derivative extension (f, df). Let p ∈ M . We can naturally identify the tangent space TpM
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with Rm which can be equipped withm-dimensional spherical coordinates (r, θ1, ..., θm−1), where
r ∈ R+, θ1, ..., θm−2 ∈ [0, π] and θm−1 ∈ [0, 2π). If xi are the Cartesian coordinates, then

x1 = r · cos (θ1)

xi = r ·
i−1∏
j=1

sin (θj) · cos (θi) for i = 2, ...,m− 1

xm = r ·
m−1∏
j=1

sin (θj)

Next, we consider its projective space PRm and introduce the notation [a1, b1]×...×[am−1, bm−1] ⊂
PRm which describes the allowed values for the spherical coordinates θ1, ..., θm−1. This yields
the projectivized tangent bundle which will be denoted by PTM . In particular, we will use the
notation c×

[
0, 1

k

]m−1 ⊂ PTM with c ⊂M for the set in PTM with base points x ∈ c and spher-
ical coordinates θi ∈

[
0, 1

k

]
. On the projectivized tangent bundle we consider the projectivized

derivative extension of a diffeomorphism f : M → M . By misuse of notation we will denote it
by (f, df) again.
Following the lines of [Ch97], chapter 5.1, we consider the cotangent bundle T ∗M and the pro-
jection maps π1 : TM → M as well as π2 : TM∗ → M . Then we define the canonical 1-form
ω on TM∗ by ω|τ = π∗2τ , where ω|τ denotes the 1-form ω evaluated at τ ∈ TM∗. Additionally
we define the canonical 2-form Ω on TM∗ by Ω = dω, which is symplectic. In the next step,
let M be a Riemannian manifold and V : M → R be a function. Then we examine the La-
grangian L : TM → R given by L(ξ) = |ξ|

2 −V ◦π1(ξ), where |ξ| is computed with respect to the
Riemannian metric. To this Lagrangian we associate a bundle map FL : TM → TM∗ defined
by FL(ξ)(η) = d

dt (L(ξ + tη))|t=0 for p ∈ M , ξ, η ∈ TpM . Hereby, we define Θ = FL∗Ω and
ν = FL∗ω.
In [Ch97], chapter 5.1, the differential form ν ∧ Θm−1 on the unit tangent bundle SM is con-
sidered. It is proven that it is the local product, up to a constant multiple, of the Riemannian
volume on M with the Lebesgue (m− 1)-form on the unit tangent spheres of M with respect to
the Riemannian metric. In particular, for any ν ∧ Θm−1-integrable function g on SM we have
“integrations over the fibers”∫

SM

g ν ∧Θm−1 = c(m) ·
∫
M

dVol(p)
∫
SpM

g|SpM dµp,

where Vol is the volume form induced by the Riemannian metric and µp is the Euclidean (m−1)-
measure on the tangent sphere SpM with respect to the Riemannian metric.
By the same approach we can deduce the same formula for the constructed invariant measurable
Riemannian metric ω∞ and for any integrable function on PTM . The corresponding measure
will be denoted by µ̄. Moreover, we point out that in our constructions the measure induced
by the measurable Riemannian metric ω∞ coincides with the measure µ on M . Since ω∞ is
f -invariant, we conclude that µ̄ is (f, df)-invariant.

1.2 First steps of the proof

By the same arguments as in [GKu15], section 2.2., constructions on S1 × [0, 1]m−1 equipped
with Lebesgue measure µ and standard circle action R = {Rα}α∈S1 comprising of diffeomor-
phisms Rα (θ, r1, ..., rm−1) = (θ + α, r1, ..., rm−1) can be transfered to a general compact con-
nected smooth manifold M with a non-trivial circle action S = {St}t∈R, St+1 = St. Moreover,
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the density of the constructed diffeomorphisms follows if for every ε > 0 the parameters in the
construction can be chosen in such a way that d∞ (f,Rα) < ε.

1.3 Outline of the proof
The constructions are based on the “approximation by conjugation”-method developed by D.V.
Anosov and A. Katok in [AK70]. As indicated in the introduction, one constructs successively a
sequence of measure-preserving diffeomorphisms fn = Hn ◦Rαn+1 ◦H−1

n , where the conjugation
maps Hn = Hn−1 ◦ hn and the rational numbers αn = pn

qn
are chosen in such a way that the

functions fn converge to a diffeomorphism f with the aimed properties.
Similar to the constructions in [GKu15] we will start by defining two sequences of partial par-
titions, which converge to the decomposition into points in each case. The first type of partial
partition, called ηn, will satisfy the requirements in the proof of the weak mixing-property. On
the partition elements of the even more detailed second type, called ζn, the conjugation map hn
will act as an isometry and this will enable us to construct an invariant measurable Riemannian
metric. Afterwards, these conjugating diffeomorphisms hn = gn ◦ in ◦ φn will be constructed.
In comparison to [GKu15], the construction of the map gn is modified and an additional map
in is introduced in order to prove the ergodicity of the projectivized derivative extension. On
the one hand, the map gn shall introduce shear in the θ-direction. On the other hand, the map
gn ◦ in has to be an isometry on the image under φn of any partition element Ǐn ∈ ζn. Likewise
the conjugation map φn will be built such that it acts on the elements of ζn as an isometry and
on the elements of ηn in such a way that it satisfies the requirements of the aimed criterion for
weak mixing. This criterion is established in section 4 and bases upon the notion of a (γ, δ, ε)-
distribution of the map Φn = φn ◦ Rmnαn+1

◦ φ−1
n with a specific sequence (mn)n∈N of natural

numbers (see section 3). It is similar to the criterion in [GKu15], section 5, but modified in some
places because of the new conjugation maps gn and in.
In section 5 we will show convergence of the sequence (fn)n∈N in Aα (M) for a given Liouville
number α by the same approach as in [FS05]. For this purpose, we have to estimate the norms
|||Hn|||k very carefully. Furthermore, we will see at the end of section 5 that the criterion for
weak mixing applies to the obtained diffeomorphism f = limn→∞ fn. By the same approach as
in [GKu15] we will construct the aimed f -invariant measurable Riemannian metric in section 6.
Finally, we will prove the ergodicity of the projectivized derivative extension. This proof bases
upon the general method of approximation of measure-preserving transformation in Ergodic The-
ory which is outlined in subsection 7.1. In order to apply this method, we have to show that
(f, df) admits a sufficiently fast approximation on PTM with respect to the measure µ̄. There-
fore, we define a tower explicitly and examine the speed of approximation in subsection 7.2. For
these examinations we use the same techniques as in [K2]. In particular, we require the map in
to act as a rotation by a different angle on different parts of the tower element.

2 Explicit constructions

We present step n in our inductive process of construction. We assume that we have already
defined the rational numbers α1, ..., αn ∈ S1 and the conjugation map Hn−1 = h1 ◦ ... ◦ hn−1 ∈
Diff∞ (M,µ).
First of all, we choose kn ∈ Z large enough such that for every subset c ⊂ M of diameter
diam(c) < 1

2n and every set d = {(r, θ1, ..., θm−1) : r ∈ R, θi ∈ [ai, bi]} with bi − ai ≤ 1
kn

we
have

{dpHn−1 (d) : p ∈ c} ⊂ R× [c1, d1]× ...× [cm−1, dm−1] ,
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where di − ci ≤ 1
2mn for every i ∈ {1, ...,m− 1}.

2.1 Sequences of partial partitions
In this subsection we define the two announced sequences of partial partitions (ηn)n∈N and
(ζn)n∈N of M = S1 × [0, 1]m−1.

2.1.1 Partial partition ηn

Remark 2.1. For convenience we will use the notation
∏m
i=2 [ai, bi] for [a2, b2]× ...× [am, bm].

Initially, ηn will be constructed on the fundamental sector
[
0, 1

qn

]
×[0, 1]m−1. For this purpose,

we divide the fundamental sector in n sections:

• In case of k ∈ N and 2 ≤ k ≤ n − 1 on
[
k−1
n·qn ,

k
n·qn

]
× [0, 1]m−1 the partial partition ηn

consists of all multidimensional intervals of the following form:

[
k − 1
n · qn

+
s

n2 · km−1
n · qn

+
j

(1)
1

n2 · km−1
n · q2

n

+ ...+
j
((m−1)· (k+1)·k

2 )
1

n2 · km−1
n · q1+(m−1)· (k+1)·k

2
n

+
1

10 · n6 · qn−1 · km−1
n · q1+(m−1)· (k+1)·k

2
n

,

k − 1
n · qn

+
s

n2 · km−1
n · qn

+
j

(1)
1

n2 · km−1
n · q2

n

+ ...+
j
((m−1)· (k+1)·k

2 )
1 + 1

n2 · km−1
n · q1+(m−1)· (k+1)·k

2
n

− 1

10 · n6 · qn−1 · km−1
n · q1+(m−1)· (k+1)·k

2
n

]

×
m∏
i=2

[
j

(1)
i

qn
+ ...+

j
(k+1)
i

qk+1
n

+
1

26n4 · qn−1 · qk+1
n

,
j

(1)
i

qn
+ ...+

j
(k+1)
i + 1
qk+1
n

− 1
26n4 · qn−1 · qk+1

n

]
,

where s ∈ Z and 0 ≤ s ≤ nkm−1
n − 1 as well as j(l)

1 ∈ Z and
⌈

qn
10n4qn−1

⌉
≤ j

(l)
1 ≤

qn−
⌈

qn
10n4qn−1

⌉
−1 for l = 1, ..., (m−1) · (k+1)·k

2 as well as j(l)
i ∈ Z and

⌈
qn

10n4qn−1

⌉
≤ j(l)

i ≤

qn −
⌈

qn
10n4qn−1

⌉
− 1 for i = 2, ...,m and l = 1, ..., k + 1.

• On
[
0, 1

n·qn

]
× [0, 1]m−1 as well as

[
n−1
n·qn ,

1
qn

]
× [0, 1]m−1 there are no elements of the partial

partition ηn.

As the image under Rl/qn with l ∈ Z this partial partition of
[
0, 1

qn

]
× [0, 1]m−1 is extended

to a partial partition of S1 × [0, 1]m−1.

Remark 2.2. By construction this sequence of partial partitions converges to the decomposition
into points.



Explicit constructions 6

2.1.2 Partial partition ζn

As in the previous case we will construct the partial partition ζn on the fundamental sector[
0, 1

qn

]
× [0, 1]m−1 initially and therefore divide this sector into n sections: In case of k ∈ N and

1 ≤ k ≤ n on
[
k−1
n·qn ,

k
n·qn

]
× [0, 1]m−1 the partial partition ζn consists of all multidimensional

intervals of the following form:

[
k − 1
n · qn

+
s1

n2 · km−1
n · qn

+
j

(1)
1

n2 · km−1
n · q2

n

+ ...+
j
((m−1)· (n+1)·n

2 )
1

n2 · km−1
n · q1+(m−1)· (n+1)·n

2
n

+
t1

n2 · qn−1 · km−1
n · q1+(m−1)·n·(n+1)

2
n

+
1

5n6 · q2
n−1 · k

m−1
n · q1+(m−1)·n·(n+1)

2
n

,

k − 1
n · qn

+
s1

n2 · km−1
n · qn

+
j

(1)
1

n2 · km−1
n · q2

n

+ ...+
j
((m−1)· (n+1)·n

2 )
1

n2 · km−1
n · q1+(m−1)· (n+1)·n

2
n

+
t1 + 1

n2 · qn−1 · km−1
n · q1+(m−1)·n·(n+1)

2
n

− 1

5n6 · q2
n−1 · k

m−1
n · q1+(m−1)·n·(n+1)

2
n

]

×
m∏
i=2

[
j

(1)
i

qn
+ ...+

j
(1+(m−1)·n·(n+1)

2 )
i

q
1+(m−1)·n·(n+1)

2
n

+
si

n2 · km−1
n · q1+(m−1)·n·(n+1)

2
n

+
ti

n2 · qn−1 · km−1
n · q1+(m−1)·n·(n+1)

2
n

+
1

5n6 · q2
n−1 · k

m−1
n · q1+(m−1)·n·(n+1)

2
n

,

j
(1)
i

qn
+ ...+

ti + 1

n2 · qn−1 · km−1
n · q1+(m−1)·n·(n+1)

2
n

− 1

5n6 · q2
n−1 · k

m−1
n · q1+(m−1)·n·(n+1)

2
n

]
,

where

• j(l)
1 ∈ Z,

⌈
qn

n4qn−1

⌉
≤ j(l)

1 ≤ qn −
⌈

qn
n4qn−1

⌉
− 1, for l = 1, ..., (m− 1) · n·(n+1)

2

• j(l)
i ∈ Z,

⌈
qn

n4qn−1

⌉
≤ j

(l)
i ≤ qn −

⌈
qn

n4qn−1

⌉
− 1, for l = 1, ..., (m − 1) · n·(n+1)

2 + 1 and
i = 2, ...,m

• s1 ∈ Z, 0 ≤ s1 ≤ nkm−1
n − 1

• si ∈ Z, 0 ≤ si ≤ n2km−1
n − 1, for i = 2, ...,m

• ti ∈ Z, 1 ≤ ti ≤ qn−1 − 2, for i = 1, ...,m.

Remark 2.3. For every n ≥ m the partial partition ζn consists of disjoint sets, covers a set of
measure at least 1− 3·m

qn−1
and the sequence (ζn)n∈N converges to the decomposition into points.

2.2 The conjugation map gn

Let 0.25 < σ < 0.5. On the one hand, the map gn shall introduce some kind of shear in the
θ-direction as the map g̃[nqσn](θ, r1, ..., rm−1) = (θ+ [nqσn] · r1, r1, ..., rm−1), which is helpful in the
proof of the weak mixing-property. On the other hand, gn must be an isometry on in◦φn

(
Ǐn
)
for
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all the partition elements Ǐn ∈ ζn in order to admit the construction of a f -invariant measurable
Riemannian metric.
Inspired by the constructions in [Be13], section 4.1, let a, b ∈ N, ε > 0 satisfying 1

ε ∈ Z and
ρ : R→ R be a smooth increasing function that equals 0 for x ≤ −1 and 1 for x ≥ 0. Moreover,
we consider δ > 0 such that 1

δ ∈ Z and a · δ = r ∈ N. Then we define the map ψ̃a,b,ε,δ : [0, 1]→ R
by

ψ̃a,b,ε,δ (x) =
b · r
a
· ρ
(x
ε
− r

a · ε

)
+
b

a
·
a−r−1∑
i=r+1

ρ

(
x

ε
− i

a · ε

)
+
b · (r + 1)

a
· ρ
(
x

ε
− a− r

a · ε

)
.

Note that ψ̃a,b,ε,δ|[0, δ2 ]∪[1− δ2 ,1] ≡ 0 mod 1 and for every r ≤ i ≤ a−r−1 we have ψ̃a,b,ε,δ|[ ia , i+1
a −ε] =

b · ia . Furthermore, we can estimate
∥∥∥Dlψ̃a,b,ε,δ

∥∥∥
0
≤ b

εl
·
∥∥Dlρ

∥∥
0
.

Besides this map ψ̃a,b,ε,δ we use a smooth map σδ : R → [0, 1] satisfying σδ (x) = 0 for x ≤ δ
2 ,

σδ (x) = 1 for δ ≤ x ≤ 1−δ and σδ (x) = 0 for x ≥ 1− δ
2 . Then we define the measure-preserving

diffeomorphism ga,b,ε,δ : S1 × [0, 1]m−1 → S1 × [0, 1]m−1 by

ga,b,ε,δ (θ, r1, ..., rm−1) =
(
θ + ψ̃a,b,ε,δ (r1) · σδ (r2) · ...σδ (rm−1) , r1, ..., rm−1

)
.

We emphasize that the maps σδ are introduced to guarantee that ga,b,ε,δ coincides with the
identity in a neigbourhood of the boundary.
In our concrete constructions we will use

gn = g
n2·km−1

n ·q
1+(m−1)·n·(n+1)

2
n ,[nqσn], 1

60n4qn−1
, 1
30n4qn−1

.

Since 30n4qn−1 divides qn due to Lemma 5.8, the condition aδ ∈ N is satisfied. Moreover, we
observe gn ◦ R 1

qn
= R 1

qn
◦ gn and |||gn|||l ≤ Cl,n,qn−1,kn · [nqσn], where the constant Cl,n,qn−1,kn

depends on l, n and qn−1.

2.3 The conjugation map in

In this subsection we define the so-called “inner rotations” in which will allow us to prove er-
godicity of the projectivized derivative extension. For the construction we need the subsequent
Lemma:

Lemma 2.4. Let c ∈ N, c ≥ 3, ε ∈
(
0, 1

5c

]
and β2, ..., βm ∈ [0, π]. Then there is a smooth

measure-preserving diffeomorphism ψc,ε,β2,...,βm : [0, 1]m → [0, 1]m satisfying the following prop-
erties:

• ψc,ε,β2,...,βm coincides with the identity on [0, 1]m \ [ε, 1− ε]m.

• On every cube
∏m
i=1

[
ji+ε
c , ji+1−ε

c

]
with 1 ≤ ji ≤ c − 2 the map ψc,ε,β2,...,βm is equal to

a composition of a translation and the rotations by arc βi around a new center in the
x1 − xi-coordinates.

Proof. Similar to [GKu15], Lemma 3.4., such a measure-preserving diffemorphism is constructed
with the aid of Moser’s trick.

Using the dilation Da :
[
0, 1

a

]m → [0, 1]m, Da (x1, ..., xm) = (a · x1, ..., a · xm) for a ∈ Z we
define the map ψa,c,ε,β2,...,βm :

[
0, 1

a

]m → [
0, 1

a

]m, ψa,c,ε,β2,...,βm = D−1
a ◦ψc,ε,β2,...,βm ◦Da. Since
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it coincides with the identity in a neighbourhood of the boundary, we can extend it to a smooth
diffeomorphism on S1 × [0, 1]m−1 equivariantly by the description

ψa,c,ε,β2,...,βm

(
x1 +

a1

a
, ..., xm +

am
a

)
=
(a1

a
, ...,

am
a

)
+ ψa,c,ε,β2,...,βm (x1, ..., xm)

for a1, ..., am ∈ Z.
For the sake of convenience, we introduce the notation

ψ̃n,β2,...,βm = ψ
n2·km−1

n ·q
1+(m−1)·n·(n+1)

2
n ,qn−1,

1
5n4qn−1

,β2,...,βm

.

On
[

i
n2·km−1

n ·qn
, i+1
n2·km−1

n ·qn

]
× [0, 1]m−1 we define for j ∈ {2, ...,m}:

β
(j)
i =

s · π
kn

in case of s ≡
⌈

i

kj−2
n

⌉
mod kn

as well as
in = ψ̃

n,β
(2)
i ,...,β

(m)
i
.

Since each map coincides with the identity in a neighbourhood of the boundary, we can piece
them together in order to get a smooth diffeomorphism on S1 × [0, 1]m−1.
On the elements of the partial partition ηn introduced in subsubsection 2.1.1 the diffeomorphism
in satisfies the subsequent property which will be useful in the proof of Lemma 4.2.

Lemma 2.5. For every element În ∈ ηn we have in
(
În

)
= În.

Proof. Since 260n4qn−1 divides qn by Lemma 5.8, there is u1 ∈ Z such that

1

10 · n6 · qn−1 · km−1
n · q1+(m−1)· (k+1)·k

2
n

= u1 ·
1

n2 · km−1
n · q1+(m−1)·n·(n+1)

2
n

and u2 ∈ Z such that
1

26n4qn−1q
k+1
n

= u2 ·
1

n2 · km−1
n · q1+(m−1)·n·(n+1)

2
n

.

Hence, În is a union of complete definition blocks of the map in. These blocks are mapped
onto itself under the map in because in coincides with the identity in the neighbourhood of the
boundary of each definition block.

2.4 The conjugation map φn

In [GKu15], section 3.3, we constructed the smooth measure-preserving diffeomorphism φ̃λ,ε,i,j,µ,δ,ε2
on S1 × [0, 1]m−1.
For the sake of convenience, we will use the notation φ

(j)
λ,µ = φ̃λ, 1

60n4qn−1
,1,j,µ, 1

10n4qn−1
, 1
22n4qn−1

.

With this we define the diffeomorphism φn on the fundamental sector: On
[
k−1
n·qn ,

k
n·qn

]
×[0, 1]m−1

in case of k ∈ N and 1 ≤ k ≤ n:

φn = φ̃
(m)

n2·km−1
n ·q

1+(m−1)· k·(k−1)
2 +(m−2)·k

n ,qkn

◦φ̃(m−1)

n2·km−1
n ·q

1+(m−1)· k·(k−1)
2 +(m−3)·k

n ,qkn

◦...◦φ̃(2)

n2·km−1
n ·q

1+(m−1)· k·(k−1)
2

n ,qkn

This is a smooth map because φn coincides with the identity in a neighbourhood of the different
sections.
Now we extend φn to a diffeomorphism on S1×[0, 1]m−1 using the description φn◦R 1

qn
= R 1

qn
◦φn.
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2.5 The conjugation map hn

With the aid of the previos constructions we define the conjugation map hn = gn ◦ in ◦ φn. By
the observations in the previous subsections we have hn ◦R 1

qn
= R 1

qn
◦ hn.

3 (γ, δ, ε)-distribution

We recall the notion of a (γ, δ, ε)-distribution, which was the central notion of the criterion for
weak mixing deduced in [GKu15] and will be important in our proof of the weak mixing-property
as well:

Definition 3.1. Let Φ : M →M be a diffeomorphism. We say Φ (γ, δ, ε)-distributes an element
Î of a partial partition if the following properties are satisfied:

• π~r
(

Φ
(
Î
))

is a (m− 1)-dimensional interval J , i.e. J = I1 × ... × Im−1 with intervals
Ik ⊆ [0, 1], and 1− δ ≤ λ (Ik) ≤ 1 for k = 1, ...,m− 1. Here, π~r denotes the projection on
the (r1, ..., rm−1)-coordinates.

• Φ
(
Î
)
is contained in a set of the form [c, c+ γ]× J for some c ∈ S1.

• For every (m− 1)-dimensional interval J̃ ⊆ J it holds:∣∣∣∣∣∣
µ
(
Î ∩ Φ−1

(
S1 × J̃

))
µ
(
Î
) −

µ(m−1)
(
J̃
)

µ(m−1) (J)

∣∣∣∣∣∣ ≤ ε ·
µ(m−1)

(
J̃
)

µ(m−1) (J)
,

where µ(m−1) is the Lebesgue measure on [0, 1]m−1.

Let A := 780n6 · (n+ 1)6 · q2
n−1 · km−1

n · q1+(m−1)·n·(n+1)
2

n . Analogous to [GKu15] we define the
sequence of natural numbers (mn)n∈N:

mn = min
{
m ≤ qn+1 : m ∈ N, inf

k∈Z

∣∣∣∣m · pn+1

qn+1
− 1
n · qn

+
k

qn

∣∣∣∣ ≤ A

qn+1

}
= min

{
m ≤ qn+1 : m ∈ N, inf

k∈Z

∣∣∣∣m · qn · pn+1

qn+1
− 1
n

+ k

∣∣∣∣ ≤ A · qn
qn+1

}
.

Lemma 3.2. The set
{
m ≤ qn+1 : m ∈ N, infk∈Z

∣∣∣m · qn·pn+1
qn+1

− 1
n + k

∣∣∣ ≤ A·qn
qn+1

}
is nonempty

for every n ∈ N, i.e. mn exists.

Proof. In Lemma 5.8 we will construct the sequence αn = pn
qn

in such a way, that

qn := 780n6 · (n− 1)6 · q2
n−2 · km−1

n−1 · q
1+(m−1)·n·(n−1)

2
n−1 · q̃n

and pn := 780n6 · (n− 1)6 · q2
n−2 · km−1

n−1 · q
1+(m−1)·n·(n−1)

2
n−1 · p̃n

with p̃n, q̃n relatively prime. Then the proof follows along the lines of [GKu15], Lemma 4.3..
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Remark 3.3. We define

an =
(
mn ·

pn+1

qn+1
− 1
n · qn

)
mod

1
qn

By the above construction of mn it holds that |an| ≤
780n6·(n+1)6·q2n−1·k

m−1
n ·q

1+(m−1)·n·(n+1)
2

n

qn+1
. In

Lemma 5.8 we will see that it is possible to choose qn+1 ≥ 30 · 780 · n14 · (n+ 1)6 · q3
n−1 · k3m−3

n ·
q

3+2·(m−1)·n·(n+1)
n . Thus, we get:

|an| ≤
1

30 · n8 · qn−1 · k2m−2
n · q2+(m−1)·n·(n+1)

n

.

Our constructions are done in such a way that the following property is satisfied:

Lemma 3.4. The map Φn := φn ◦Rmnαn+1
◦ φ−1

n with the conjugating maps φn defined in section

2.4
(

1
n·qmn

, 1
n4 ,

1
n

)
-distributes the elements of the partition ηn.

Proof. The proof follows by the same calculations as in the proof of [GKu15], Lemma 4.5.. In
this connection, we require the bound on an and that 260n4qn−1 divides qn. Then we obtain for
a partition element În,k ∈ ηn on

[
k−1
nqn

, k
nqn

]
× [0, 1]m−1 that Φn

(
În,k

)
is equal to:
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[
k

n · qn
+

s

n2 · km−1
n · qn

+
j

(1)
1

n2 · km−1
n · q2

n

+ ...+
j
((m−1)· (k−1)·k

2 )
1

n2 · km−1
n · q(m−1)· (k−1)·k

2 +1
n

+
j

(1)
2

n2 · km−1
n · q(m−1)· (k−1)·k

2 +2
n

+ ...+
j

(k)
2

n2 · km−1
n · q(m−1)· (k−1)·k

2 +k+1
n

+
j

(1)
3

n2 · km−1
n · q(m−1)· (k−1)·k

2 +k+2
n

+ ...+
j

(k)
m

n2 · km−1
n · q(m−1)· (k+1)·k

2 +1
n

+
j
((m−1)· (k−1)·k

2 +1)
1

n2 · km−1
n · q(m−1)· (k+1)·k

2 +2
n

+ ...+
j
((m−1)· (k−1)·k

2 +k)
1 + 1

n2 · km−1
n · q(m−1)· (k+1)·k

2 +k+1
n

− j
(k+1)
2 + 1

n2 · km−1
n · q(m−1)· (k+1)·k

2 +k+2
n

+
j
((m−1)· (k−1)·k

2 +k+1)
1

n2 · km−1
n · q(m−1)· (k+1)·k

2 +k+3
n

+ ...+
j
((m−1)· (k−1)·k

2 +2k)
1 + 1

n2 · km−1
n · q(m−1)· (k+1)·k

2 +2k+2
n

− j
(k+1)
3 + 1

n2 · km−1
n · q(m−1)· (k+1)·k

2 +2k+3
n

+ ...+
j
((m−1)· (k+1)·k

2 )
1 + 1

n2 · km−1
n · q(m−1)· (k+1)·(k+2)

2
n

− j
(k+1)
m + 1

n2 · km−1
n · q(m−1)· (k+1)·(k+2)

2 +1
n

+
1

26 · n6 · qn−1 · km−1
n · q(m−1)· (k+1)·(k+2)

2 +1
n

,

k

n · qn
+

s

n2 · km−1
n · qn

+
j

(1)
1

n2 · km−1
n · q2

n

+ ...− j
(k+1)
m

n2 · km−1
n · q(m−1)· (k+1)·(k+2)

2 +1
n

− 1

26 · n6 · qn−1 · km−1
n · q(m−1)· (k+1)·(k+2)

2 +1
n

]

×
[

1
10n4qn−1

+ n2 · km−1
n · q(m−1)· (k+1)·k

2 +1
n · an, 1−

1
10n4qn−1

+ n2 · km−1
n · q(m−1)· (k+1)·k

2 +1
n · an

]
×

m∏
i=3

[
1

26n4qn−1
, 1− 1

26n4qn−1

]
.

Thus, such a set Φn
(
În

)
with În ∈ ηn has a θ-width of at most 1

n2·km−1
n ·q3m+1

n
.

Moreover, we see that we can choose ε = 0 in the definition of a (γ, δ, ε)-distribution: With the
notation Aθ := πθ

(
Φn
(
În

))
we have Φn

(
În

)
= Aθ × J and so for every (m − 1)-dimensional

interval J̃ ⊆ J :

µ
(
În ∩ Φ−1

n

(
S1 × J̃

))
µ
(
În

) =
µ
(

Φn
(
În

)
∩ S1 × J̃

)
µ
(

Φn
(
În

)) =
λ̃ (Aθ) · µ(m−1)

(
J̃
)

λ̃ (Aθ) · µ(m−1) (J)
=
µ(m−1)

(
J̃
)

µ(m−1) (J)

because Φn is measure-preserving.

With the aid of the precedent calculations we prove the next property concerning the conju-
gation map in introduced in subsection 2.3:
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Lemma 3.5. For every În ∈ ηn we have: in
(

Φn
(
În

))
= Φn

(
În

)
.

Proof. In the proof of the precedent Lemma 3.4 we computed Φn
(
În,k

)
for a partition element

În,k. Now we have to examine the effect of in on it.
Since 260n4qn−1 divides qn by Lemma 5.8, there is u1 ∈ Z such that

1
10n4qn−1

= u1 ·
1

n2 · km−1
n · q1+(m−1)·n·(n+1)

2
n

and u2 ∈ Z such that

1
26n4qn−1

= u2 ·
1

n2 · km−1
n · q1+(m−1)·n·(n+1)

2
n

.

Considering the θ-coordinate we observe that in case of 2 ≤ k ≤ n− 2 there exists u3 ∈ Z such
that

1

26 · n6 · qn−1 · km−1
n · q(m−1)· (k+1)·(k+2)

2 +1
n

= u3 ·
1

n2 · km−1
n · q1+(m−1)·n·(n+1)

2
n

In case of k = n − 1 we use 1
26n4qn−1

< ε = 1
5n4qn−1

. By the bound on an the boundary of

Φn
(
În,k

)
lies in the domain where in coincides with the identity.

4 Criterion for weak mixing

We will prove a criterion for weak mixing on M = S1 × [0, 1]m−1. In [GKu15], Lemma 5.2.,
we deduced the subsequent characterisation of the weak mixing-property in the setting of the
beforehand constructions.

Lemma 4.1. Let f = limn→∞ fn be a diffeomorphism obtained by the constructions in the
preceding sections and (mn)n∈N be a sequence of natural numbers fulfilling d0 (fmn , fmnn ) < 1

2n .
Furthermore, let (νn)n∈N be a sequence of partial partitions, where νn → ε and for every n ∈ N νn
is the image of a partial partition ηn under a measure-preserving diffeomorphism Fn, satisfying
the following property: For every m-dimensional cube A ⊆ S1× (0, 1)m−1 and for every ε ∈ (0, 1]
there exists N ∈ N such that for every n ≥ N and for every Γn ∈ νn we have

(1)
∣∣µ (Γn ∩ f−mnn (A)

)
− µ (Γn) · µ (A)

∣∣ ≤ ε · µ (Γn) · µ (A) .

Then f is weakly mixing.

Concerning the partial partitions we concentrate on the setting of our explicit constructions:

Lemma 4.2. Consider the sequence of partial partitions (ηn)n∈N constructed in section 2.1.1 and
the diffeomorphisms gn from section 2.2 as well as in from section 2.3. Furthermore, let (Hn)n∈N

be a sequence of measure-preserving smooth diffeomorphisms satisfying ‖DHn−1‖ ≤ q0.25n

2n2·
√
m

for

every n ∈ N and we define the partial partitions νn =
{

Γn = Hn−1 ◦ gn ◦ in
(
În

)
: În ∈ ηn

}
.

Then we get νn → ε.
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Proof. By construction ηn =
{
Îin : i ∈ Λn

}
, where Λn is a countable set of indices. Because

of ηn → ε it holds limn→∞ µ
(⋃

i∈Λn
Îin

)
= 1. Since Hn−1 ◦ gn ◦ in is measure-preserving, we

conclude:

lim
n→∞

µ

( ⋃
i∈Λn

Γin

)
= lim
n→∞

µ

( ⋃
i∈Λn

Hn−1 ◦ gn ◦ in
(
Îin

))
= lim
n→∞

µ

(
Hn−1 ◦ gn ◦ in

( ⋃
i∈Λn

Îin

))
= 1.

In Lemma 2.5 we observed in
(
În

)
= În for every În ∈ ηn. Additionally, by the definitions of

an element În ∈ ηn and the map gn we observe that gn
(
În

)
is contained in a cuboid of θ-width

1
n2·km−1

n ·q3m−2
n

+[nqσn] · 1
q3n

and edge length 1
q3n

in the r1, ..., rm−1-coordinates. Hence, the diameter

of gn
(
În

)
is bounded by 2

√
m·[nqσn]
q3n

. Then we conclude for every Γn = Hn−1 ◦ gn ◦ in
(
În

)
:

diam (Γn) ≤ ‖DHn−1‖0 · diam
(
gn

(
În

))
≤ q0.25

n

2n2 ·
√
m
· 2
√
m · [nqσn]
q3
n

≤ 1
n · qn

using that σ < 1. Hence, we have limn→∞ diam (Γn)→ 0 and consequently νn → ε.

In the following the Lebesgue measures on S1, [0, 1]m−2, [0, 1]m−1 are denoted by λ̃, µ(m−2)

and µ̃ respectively. The next technical result is needed in the proof of Lemma 4.4. For the sake

of convenience, we introduce the notation a = n2 · km−1
n · q1+(m−1)·n·(n+1)

2
n .

Lemma 4.3. Given an interval K on the r1-axis and a (m − 2)-dimensional interval Z in the
(r2, ..., rm−1)-coordinates Kc,γ denotes the cuboid [c, c+ γ]×K×Z for some γ > 0. We consider
the diffeomorphism gn constructed in subsection 2.2 and an interval L = [l1, l2] of S1 satisfying
λ̃ (L) ≥ 3·[nqσn]

a .
If [nqσn] · λ(K) > 2, then for the set Q := π~r

(
Kc,γ ∩ g−1

n (L×K × Z)
)
we have:∣∣∣µ̃ (Q)− λ (K) · λ̃ (L) · µ(m−2) (Z)

∣∣∣
≤
(

2
[nqσn]

· λ̃ (L) +
2 · γ
[nqσn]

+ γ · λ (K) +
[nqσn] · λ(K)

a
+

2
a

)
· µ(m−2) (Z) .

Proof. We consider the diffeomorphism g̃b : M →M , (θ, r1, ..., rm−1) 7→ (θ + b · r1, r1, ..., rm−1)
and the set:

Qb := π~r
(
Kc,γ ∩ g̃−1

b (L×K × Z)
)

= {(r1, r2, ..., rm−1) ∈ K × Z : (θ + b · r1, ~r) ∈ L×K × Z, θ ∈ [c, c+ γ]}
= {(r1, r2, ..., rm−1) ∈ K × Z : b · r1 ∈ [l1 − c− γ, l2 − c] mod 1} .

The interval b ·K seen as an interval in R does not intersect more than b · λ(K) + 2 and not less
than b · λ (K)− 2 intervals of the form [i, i+ 1] with i ∈ Z.
Recall that gn is constructed as a stepwise approximation of g̃[nqσn]. Obviously, g̃[nqσn] (Kc,γ) may
hit (respectively leave) L×K × Z at most one 1

a -domain on the r1-axis later than g̃[nqσn] (Kc,γ)
(see figure 1). Thus, a resulting interval on the r1-axis of Kc,γ ∩ g̃−1

[nqσn] (L×K × Z) and the
corresponding r1-projection of Kc,γ ∩ g−1

n (L×K × Z) can differ by a length of at most 1
a .
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Figure 1: Qualitative shape of the action of gn as well as g̃[nqσn] on Kc,γ .

Therefore, we compute on the one side:

µ̃ (Q) ≤ ([nqσn] · λ (K) + 2) ·
(
l2 − (l1 − γ)

[nqσn]
+

1
a

)
· µ(m−2) (Z)

=

(
λ (K) · λ̃ (L) + 2 · λ̃ (L)

[nqσn]
+ λ (K) · γ +

2 · γ
[nqσn]

+
[nqσn] · λ(K)

a
+

2
a

)
· µ(m−2) (Z)

and on the other side

µ̃ (Q) ≥ ([nqσn] · λ (K)− 2) ·
(
l2 − (l1 − γ)

[nqσn]
− 1
a

)
· µ(m−2) (Z)

=

(
λ (K) · λ̃ (L)− 2 · λ̃ (L)

[nqσn]
+ λ (K) · γ − 2 · γ

[nqσn]
− [nqσn] · λ(K)

a
+

2
a

)
· µ(m−2) (Z) .

Both equations together yield:∣∣∣∣µ̃ (Q)− λ (K) · λ̃ (L) · µ(m−2) (Z)− γ · λ (K) · µ(m−2) (Z)− 2
a
· µ(m−2) (Z)

∣∣∣∣
≤
(

2
[nqσn]

· λ̃ (L) +
2 · γ
[nqσn]

+
[nqσn] · λ(K)

a

)
· µ(m−2) (Z) .

The claim follows because∣∣∣µ̃ (Q)− λ (K) · λ̃ (L) · µ(m−2) (Z)
∣∣∣− γ · λ (K) · µ(m−2) (Z)− 2

a
· µ(m−2) (Z)

≤
∣∣∣∣µ̃ (Q)− λ (K) · λ̃ (L) · µ(m−2) (Z)− γ · λ (K) · µ(m−2) (Z)− 2

a
· µ(m−2) (Z)

∣∣∣∣ .
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Lemma 4.4. Let n ≥ 5, gn as in section 2.2, in as in section 2.3 and În ∈ ηn, where ηn is the
partial partition constructed in section 2.1.1. For the diffeomorphism φn constructed in section
2.4 and mn as in chapter 3 we consider Φn = φn ◦Rmnαn+1

◦ φ−1
n and denote π~r

(
Φn
(
În

))
by J.

Then for every m-dimensional cube S of side length q−σn lying in S1 × J we get

(2)
∣∣∣µ(Î ∩ Φ−1

n ◦ i−1
n ◦ g−1

n (S)
)
· µ̃ (J)− µ

(
Î
)
· µ (S)

∣∣∣ ≤ 20
n
· µ
(
Î
)
· µ (S) .

In other words this Lemma tells us that a partition element is “almost uniformly distributed”
under gn ◦ in ◦ Φn on the whole manifold M = S1 × [0, 1]m−1.

Proof. Let S be a m-dimensional cube with sidelength q−σn lying in S1 × J . Furthermore, we
denote:

Sθ = πθ (S) Sr1 = πr1 (S) S~̃r = π(r2,...,rm−1) (S) Sr = Sr1 × S~̃r = π~r (S)

Obviously: λ̃ (Sθ) = λ (Sr1) = q−σn and λ̃ (Sθ) · λ (Sr1) · µ(m−2)
(
S~̃r
)

= µ (S) = q−mσn .

According to Lemma 3.4 Φn
(

1
n·qmn

, 1
n4 ,

1
n

)
-distributes the partition element În ∈ ηn, in particular

Φn
(
În

)
⊆ [c, c+ γ]× J for some c ∈ S1 and some γ ≤ 1

n·qmn
. In particular, 2γ ≤ 2

n·qmn
< q−σn for

n > 2. So we can define a cuboid S1 ⊆ S, where S1 := [s1 + γ, s2 − γ] × Sr using the notation
Sθ = [s1, s2].
Since gn preserves the ~r-coordinates, it holds: Φn

(
Î
)
∩ g−1

n (S) ⊆ [c, c+ γ] × Sr =: Kc,γ . We
examine the two sets

Q := π~r
(
Kc,γ ∩ g−1

n (Sθ × Sr)
)

Q1 := π~r
(
Kc,γ ∩ g−1

n ([s1 + γ, s2 − γ]× Sr)
)

As seen above Φn
(
Î
)
∩ g−1

n (S) ⊆ Kc,γ . Hence, Φn
(
Î
)
∩ g−1

n (S) ⊆ Φn
(
Î
)
∩ g−1

n (S) ∩ Kc,γ ,

which implies Φn
(
Î
)
∩ g−1

n (S) ⊆ Φn
(
Î
)
∩
(
S1 ×Q

)
.

Claim: On the other hand: Φn
(
Î
)
∩
(
S1 ×Q1

)
⊆ Φn

(
Î
)
∩ g−1

n (S).

Proof of the claim: For (θ, ~r) ∈ Φn
(
Î
)
∩
(
S1 ×Q1

)
arbitrary it holds (θ, ~r) ∈ Φn

(
Î
)
,

i. e. θ ∈ [c, c+ γ], and ~r ∈ π~r
(
Kc,γ ∩ g−1

n ([s1 + γ, s2 − γ]× Sr)
)
, i. e. in particular ~r ∈ Sr.

This implies the existence of θ̄ ∈ [c, c+ γ] satisfying
(
θ̄, ~r
)
∈ Kc,γ ∩ g−1

n (S1). Hence, there is
β ∈ [s1 + γ, s2 − γ] such that gn

(
θ̄, ~r
)

= (β,~r). Moreover, we observe that the map gn maps
sets of the form I × {~r} with I an interval in S1 onto sets of the form Ĩ × {~r} with Ĩ an interval
in S1 and the length of the interval is preserved. Since

∣∣θ − θ̄∣∣ ≤ γ there is β̄ ∈ [s1, s2] such that

gn (θ, ~r) =
(
β̄, ~r
)
. So (θ, ~r) ∈ Φn

(
Î
)
∩ g−1

n (S).
Altogether, the following inclusions are true:

Φn
(
Î
)
∩
(
S1 ×Q1

)
⊆ Φn

(
Î
)
∩ g−1

n (S) ⊆ Φn
(
Î
)
∩
(
S1 ×Q

)
Thus, we obtain: ∣∣∣µ(Î ∩ Φ−1

n

(
g−1
n (S)

))
· µ̃ (J)− µ

(
Î
)
· µ (S)

∣∣∣
≤ max

(∣∣∣µ(Î ∩ Φ−1
n

(
S1 ×Q

))
· µ̃ (J)− µ

(
Î
)
· µ (S)

∣∣∣ ,
∣∣∣µ(Î ∩ Φ−1

n

(
S1 ×Q1

))
· µ̃ (J)− µ

(
Î
)
· µ (S)

∣∣∣)
(3)
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We want to apply Lemma 4.3 for K = Sr1 , L = Sθ, Z = S~̃r and b = [n · qσn] (note that
3[n·qσn]

n2·km−1
n ·q

1+(m−1)·n·(n+1)
2

n

≤ 3
n·qmn

< 1
qσn

= λ̃ (L) and for n > 4: b · λ(K) ≥ 1
2nq

σ
n · q−σn > 2):

|µ̃ (Q)− µ (S)|

≤
(

2
[n · qσn]

· λ̃ (Sθ) +
2γ

[n · qσn]
+ γ · λ (Sr1) +

[nqσn] · λ (Sr1)
a

+
2
a

)
· µ(m−2)

(
S~̃r
)

≤

(
4

n · qσn
λ̃ (Sθ) +

4
n · qσn · qσn

+
1

n · qσn
λ (Sr1) +

[nqσn] · λ (Sr1)

n2 · km−1
n · q1+(m−1)·n·(n+1)

2
n

+
2

n · qmn

)
· µ(m−2)

(
S~̃r
)

≤ 14
n
· µ (S) .

In particular, we receive from this estimate: 14
n · µ (S) ≥ µ̃ (Q) − µ (S) ≥ µ̃ (Q) − µ (S), hence:

µ̃ (Q) ≤
(
1 + 14

n

)
· µ (S) ≤ 4 · µ (S).

Analogously we obtain: µ̃ (Q1) ≤ 4 · µ (S) as well as |µ̃ (Q1)− µ (S1)| ≤ 14
n · µ (S).

Since Q as well as Q1 are a finite union of disjoint (m− 1)-dimensional intervals contained in J
and Φn

(
1

n·qmn
, 1
n4 ,

1
n

)
-distributes the interval Î, we get:∣∣∣µ(Î ∩ Φ−1

n

(
S1 ×Q

))
· µ̃ (J)− µ

(
Î
)
· µ̃ (Q)

∣∣∣ ≤ 1
n
· µ
(
Î
)
· µ̃ (Q) ≤ 4

n
· µ
(
Î
)
· µ (S)

as well as∣∣∣µ(Î ∩ Φ−1
n

(
S1 ×Q1

))
· µ̃ (J)− µ

(
Î
)
· µ̃ (Q1)

∣∣∣ ≤ 1
n
· µ
(
Î
)
· µ̃ (Q1) ≤ 4

n
· µ
(
Î
)
· µ (S) .

Now we can proceed∣∣∣µ(Î ∩ Φ−1
n

(
S1 ×Q

))
· µ̃ (J)− µ

(
Î
)
· µ (S)

∣∣∣
≤
∣∣∣µ(Î ∩ Φ−1

n

(
S1 ×Q

))
· µ̃ (J)− µ

(
Î
)
· µ̃ (Q)

∣∣∣+ µ
(
Î
)
· |µ̃ (Q)− µ (S)|

≤ 4
n
· µ
(
Î
)
· µ (S) + µ

(
Î
)
· 14
n
· µ (S) =

18
n
· µ
(
Î
)
· µ (S) .

Noting that µ (S1) = µ (S) − 2γ · µ̃ (Sr) and so µ (S) − µ (S1) ≤ 2 · 1
n·qσn
· µ̃ (Sr) ≤ 2

n · µ (S) we
obtain in the same way as above:∣∣∣µ(Î ∩ Φ−1

n

(
S1 ×Q1

))
· µ̃ (J)− µ

(
Î
)
· µ (S)

∣∣∣ ≤ 20
n
· µ
(
Î
)
· µ (S) .

Using equation 3 this yields:∣∣∣µ(Î ∩ Φ−1
n

(
g−1
n (S)

))
· µ̃ (J)− µ

(
Î
)
· µ (S)

∣∣∣ ≤ 20
n
· µ
(
Î
)
· µ (S) .

Since in and Φn are measure-preserving and in
(

Φn
(
Î
))

= Φn
(
Î
)
by Lemma 3.5, we have

µ
(
Î ∩ Φ−1

n

(
g−1
n (S)

))
= µ

(
Φn
(
Î
)
∩ g−1

n (S)
)

= µ
(
in ◦ Φn

(
Î
)
∩ g−1

n (S)
)

= µ
(
Î ∩ Φ−1

n ◦ i−1
n

(
g−1
n (S)

))
and we conclude the statement of the Lemma.
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Now we are able to prove the aimed criterion for weak mixing.

Proposition 4.5 (Criterion for weak mixing). Let fn = Hn ◦ Rαn+1 ◦ H−1
n and the sequence

(mn)n∈N be constructed as in the previous sections. Suppose additionally that d0 (fmn , fmnn ) < 1
2n

for every n ∈ N, ‖DHn−1‖0 ≤
q0.25n

2n2·
√
m

and that the limit f = limn→∞ fn exists.
Then f is weakly mixing.

Proof. To apply Lemma 4.1 we consider the partial partitions νn := Hn−1 ◦ gn ◦ in (ηn). As
proven in Lemma 4.2 these partial partitions satisfy νn → ε. We have to establish equation 1.
For it let ε > 0 and a m-dimensional cube A ⊆ S1 × (0, 1)m−1 be given. There exists N ∈ N
such that A ⊆ S1 ×

[
1
n4 , 1− 1

n4

]m−1 for every n ≥ N . Because of Lemma 3.4 and the properties

of a
(

1
n·qmn

, 1
n4 ,

1
n

)
-distribution we obtain for every În ∈ ηn: π~r

(
Φn
(
În

))
⊇
[

1
n4 , 1− 1

n4

]m−1.

Furthermore, we note fmnn = Hn ◦Rmnαn+1
◦H−1

n = Hn−1 ◦ gn ◦ in ◦ Φn ◦ i−1
n ◦ g−1

n ◦H−1
n−1.

Let Sn be a m-dimensional cube of side length q−σn contained in S1 ×
[

1
n4 , 1− 1

n4

]m−1. We look
at Cn := Hn−1 (Sn), Γn ∈ νn, and compute (since in, gn and Hn−1 are measure-preserving):∣∣µ (Γn ∩ f−mnn (Cn)

)
− µ (Γn) · µ (Cn)

∣∣ =
∣∣∣µ(În ∩ Φ−1

n ◦ i−1
n ◦ g−1

n (Sn)
)
− µ

(
În

)
· µ (Sn)

∣∣∣
≤ 1
µ̃ (J)

·
∣∣∣µ(În ∩ Φ−1

n ◦ i−1
n ◦ g−1

n (Sn)
)
· µ̃ (J)− µ

(
În

)
· µ (Sn)

∣∣∣+
1− µ̃ (J)
µ̃ (J)

· µ
(
În

)
· µ (Sn)

Bernoulli’s inequality yields: µ̃(J) ≥
(
1− 1

n

)m−1 ≥ 1 + (m− 1) ·
(
− 1
n

)
= 1 − m−1

n . Hence, we
obtain for n > 2 · (m− 1): µ̃ (J) ≥ 1

2 and so: 1−µ̃(J)
µ̃(J) ≤ 2 · (1− µ̃ (J)) ≤ 2·(m−1)

n . We continue by
applying Lemma 4.4:∣∣µ (Γn ∩ f−mnn (Cn)

)
− µ (Γn) · µ (Cn)

∣∣ ≤ 2 · 20
n
· µ
(
În

)
· µ (Sn) +

2 · (m− 1)
n

· µ
(
În

)
· µ (Sn)

=
38 + 2 ·m

n
· µ
(
În

)
· µ (Sn)

Moreover, it holds diam(Cn) ≤ ‖DHn−1‖0 ·diam (Sn) ≤
√
m · q0.25n

2n2·
√
m·qσn

. Since 0.25 < σ < 0.5 we
conclude diam(Cn)→ 0 as n→∞. Thus, we can approximate A by a countable disjoint union
of sets Cn = Hn−1 (Sn) with Sn ⊆ S1 ×

[
1
n4 , 1− 1

n4

]m−1 a m-dimensional cube of sidelength
q−σn in given precision, when n is chosen big enough. Consequently for n sufficiently large there
are sets A1 =

⋃̇
i∈Σ1

n
Cin and A2 =

⋃̇
i∈Σ2

n
Cin with countable sets Σ1

n and Σ2
n of indices satisfying

A1 ⊆ A ⊆ A2 as well as |µ(A)− µ(Ai)| ≤ ε
3 · µ(A) for i = 1, 2.

Additionally we choose n such that 38+2·m
n < ε

3 holds. It follows:

µ
(
Γn ∩ f−mnn (A)

)
− µ (Γn) · µ (A)

≤ µ
(
Γn ∩ f−mnn (A2)

)
− µ (Γn) · µ (A2) + µ (Γn) · (µ (A2)− µ (A))

≤
∑
i∈Σ2

n

(
µ
(
Γn ∩ f−mnn

(
Cin
))
− µ (Γn) · µ

(
Cin
))

+
ε

3
· µ (Γn) · µ (A)

≤
∑
i∈Σ2

n

(
38 + 2 ·m

n
· µ
(
În

)
· µ
(
Sin
))

+
ε

3
· µ (Γn) · µ (A)

=
38 + 2 ·m

n
· µ (Γn) · µ

 ⋃
i∈Σ2

n

Cin

+
ε

3
· µ (Γn) · µ (A) ≤ ε

3
· µ (Γn) · µ (A2) +

ε

3
· µ (Γn) · µ (A)
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=
ε

3
· µ (Γn) · µ (A) +

ε

3
· µ (Γn) · (µ (A2)− µ (A)) +

ε

3
· µ (Γn) · µ (A) ≤ ε · µ (Γn) · µ (A) .

Analogously we estimate: µ (Γn ∩ f−mnn (A)) − µ (Γn) · µ (A) ≥ −ε · µ (Γn) · µ (A). Both
estimates enable us to conclude: |µ (Γn ∩ f−mnn (A))− µ (Γn) · µ (A)| ≤ ε · µ (Γn) · µ (A).

5 Convergence

In the following we show that the sequence of constructed measure-preserving smooth diffeomor-
phisms fn = Hn ◦Rαn+1 ◦H−1

n converges. For this purpose, we need precise norm estimates on
the conjugation maps.

5.1 Properties of the conjugation maps
First of all, we examine the conjugation map in introduced in subsection 2.3:

Lemma 5.1. For every l ∈ N it holds

|||in|||l ≤ Cl,n,qn−1,kn · q
(l−1)·(1+(m−1)·n·(n+1)

2 )
n

with a constant Cl,n,qn−1,kn depending on l, n, qn−1 and kn but independent of qn.

Proof. The map in was defined by in = D−1
a ◦ ψqn−1,

1
5n4qn−1

,β2,...,βm ◦Da. Hence, we have

|||in|||l ≤ al−1 · |||ψqn−1,
1

5n4qn−1
,β2,...,βm |||l.

Since a = n2 ·km−1
n ·q1+(m−1)·n·(n+1)

2
n and the rotation arcs depend on the number kn, we conclude:

|||in|||l ≤ Cl,n,qn−1,kn · q
(l−1)·(1+(m−1)·n·(n+1)

2 )
n ,

where the constant Cl,n,qn−1,kn depends on l, n, qn−1 and kn but is independent of qn.

In the next step, we consider the composition gn ◦ in:

Lemma 5.2. For every l ∈ N we have

|||gn ◦ in|||l ≤ Cl,n,qn−1,kn · q
l·(2+(m−1)·n·(n+1)

2 )
n

with a constant Cl,n,qn−1,kn depending on l, n, qn−1 and kn but independent of qn.

Proof. At the end of section 2.2 we saw |||gn|||l ≤ Cl,n,qn−1,kn · [nqσn]. Using Lemma 5.1 and the
formula of Faà di Bruno as in [GKu15], Remark 6.3., we can estimate

|||gn ◦ in|||l ≤ Čl,n,qn−1,kn · [nqσn]l · q(l−1)·(1+(m−1)·n·(n+1)
2 )

n

By the same approach as in [GKu15], Lemma 6.4., we deduce the subsequent norm estimate
of the map φn:
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Lemma 5.3. For every l ∈ N it holds

|||φn|||l ≤ Cl,n,qn−1,kn · q(m−1)2·l·n·(n+1)
n ,

where the constant Cl,n,qn−1,kn is depending on l, n, qn−1 and kn but is independent of qn.

Proof. Compared to the proof of [GKu15], Lemma 6.4., we have ε1 = 1
60n4·qn−1

, ε2 = 1
22n4·qn−1

,

λmax = n2 · km−1
n · q1+(m−1)·n·(n−1)

2 +(m−2)·n
n and µmax = qnn . Thus:

|||φn|||l ≤ C̃ ·
(
n2 · km−1

n · q1+(m−1)·n·(n−1)
2 +(m−2)·n

n

)(m−1)·l

· (qnn)(m−1)·l

≤ Cl,n,qn−1,kn · q(m−1)2·l·n·(n+1)
n ,

where Cl,n,qn−1,kn is a constant independent of qn.

Using the formula of Faà di Bruno again we prove for the conjugation map hn = gn ◦ in ◦φn:

Lemma 5.4. For every l ∈ N it holds

|||hn|||l ≤ Cl,n,qn−1,kn · q2·m2·l·n·(n+1)
n ,

where the constant Cl,n,qn−1,kn is depending on l, n, qn−1 and kn but is independent of qn.

Finally, we are able to prove an estimate on the norms of the map Hn as in [GKu15], Lemma
6.6.:

Lemma 5.5. For every l ∈ N we get:

|||Hn|||l ≤ C̆ · q2·m2·l·n·(n+1)
n ,

where C̆ is a constant depending solely on l, n, qn−1, kn and Hn−1. Since Hn−1 and kn are
independent of qn in particular, the same is true for C̆.

5.2 Proof of convergence
For the proof of the convergence of the sequence (fn)n∈N in the Diff∞ (M)-topology the next
result, that can be found in [FSW07], Lemma 4, is very useful.

Lemma 5.6. Let k ∈ N0 and h be a C∞-diffeomorphism on M . Then we get for every α, β ∈ R:

dk
(
h ◦Rα ◦ h−1, h ◦Rβ ◦ h−1

)
≤ Ck · |||h|||k+1

k+1 · |α− β| ,

where the constant Ck depends solely on k and m. In particular C0 = 1.

The subsequent Lemma ([GKu15], Lemma 6.8.) shows that under some assumptions on the
sequence (αn)n∈N the sequence (fn)n∈N converges to f ∈ Aα (M) in the Diff∞ (M)-topology.

Lemma 5.7. Let ε > 0 be arbitrary and (ln)n∈N be a strictly increasing sequence of natural
numbers satisfying

∑∞
n=1

1
ln
< ε. Furthermore, we assume that in our constructions the following

conditions are fulfilled:

|α− α1| < ε and |α− αn| ≤ 1

2·ln·Cln ·|||Hn|||
ln+1
ln+1

for every n ∈ N,
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where Cln are the constants from Lemma 5.6.

1. Then the sequence of diffeomorphisms fn = Hn ◦Rαn+1 ◦H−1
n converges in the Diff∞(M)-

topology to a measure-preserving smooth diffeomorphism f , for which d∞ (f,Rα) < 3 · ε
holds.

2. Also the sequence of diffeomorphisms f̂n = Hn ◦Rα ◦H−1
n ∈ Aα (M) converges to f in the

Diff∞(M)-topology. Hence, f ∈ Aα (M).

We show that we can satisfy the conditions from this Lemma in our constructions:

Lemma 5.8. Let (ln)n∈N be a strictly increasing sequence of natural numbers with
∑∞
n=1

1
ln
<∞

and Cln be the constants from Lemma 5.6. For any Liouvillean number α there exists a sequence
αn = pn

qn
of rational numbers with

(A) 780n6 · (n− 1)6 · q2
n−2 · km−1

n−1 · q
1+(m−1)·n·(n−1)

2
n−1 divides qn

(B) (αn)n∈N converges to α monotonically

such that our conjugation maps Hn constructed in section 2 fulfil the following conditions:

1. For every n ∈ N:

|α− αn| <
1

2 · ln · Cln · |||Hn|||ln+1
ln+1

.

2. For every n ∈ N:
n2m · km·(m−1)

n · qmn−1 < qn

3. For every n ∈ N:

30 · 780n6 · (n− 1)14 · q3
n−2 · k3m−3

n−1 · q3+2·(m−1)·n·(n−1)
n−1 < qn

4. For every n ∈ N:

‖DHn−1‖0 <
q0.25
n

2
√
m · n2

.

Proof. The sequence of rational numbers αn = pn
qn

will be created out of α̃n = p̃n
q̃n
, at which

p̃n ≤ pn and q̃n ≤ qn are relatively prime.
In Lemma 5.5 we saw |||Hn|||ln+1 ≤ C̆n · q2·m2·(ln+1)·n·(n+1)

n , where the constant C̆n was inde-
pendent of qn. Thus, we can require q̃n ≥ C̆n for every n ∈ N. Hereby, we get the estimate
|||Hn|||ln+1 ≤ q3·m2·(ln+1)·n·(n+1)

n . Furthermore, we can demand

q̃n > 30 · (n− 1)8 · qn−2 · k2m−2
n−1 · q2+(m−1)·n·(n−1)

n−1 ,

q̃n > n2m · km·(m−1)
n · qmn−1

and ‖DHn−1‖0 <
q0.25n

2
√
m·n2 because Hn−1 is independent of qn.

Since α is a Liouvillean number, we find a sequence of rational numbers α̃n = p̃n
q̃n
, p̃n, q̃n relatively

prime, under the above restrictions satisfying:

|α− α̃n| =
∣∣∣∣α− p̃n

q̃n

∣∣∣∣
<

|α− αn−1|

2 · ln · Cln ·
(

780n6 · (n− 1)6 · q2
n−2 · k

m−1
n−1 · q

1+(m−1)·n·(n−1)
2

n−1

)3·m2·(ln+1)2·n·(n+1)

· q̃3·m2·(ln+1)2·n·(n+1)
n

.
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Put

qn := 780n6 · (n− 1)6 · q2
n−2 · km−1

n−1 · q
1+(m−1)·n·(n−1)

2
n−1 · q̃n

and pn := 780n6 · (n− 1)6 · q2
n−2 · km−1

n−1 · q
1+(m−1)·n·(n−1)

2
n−1 · p̃n.

Then we obtain:
|α− αn| <

|α− αn−1|
2 · ln · Cln · q

3·m2·(ln+1)2·n·(n+1)
n

.

Thus, we have |α− αn| → 0 monotonically as n→∞.
Because of |||Hn|||ln+1

ln+1 ≤ q
3·m2·(ln+1)2·n·(n+1)
n this yields: |α− αn| < 1

2·ln·Cln ·|||Hn|||
ln+1
ln+1

. Thus,

the first property of this Lemma is fulfilled.

Remark 5.9. Lemma 5.8 shows that the conditions of Lemma 5.7 are satisfied. Therefore, our
sequence of constructed diffeomorphisms fn converges in the Diff∞(M)-topology to a diffeomor-
phism f ∈ Aα.

In particular, we have

(4) |αn+1 − αn| ≤ 2 · |α− αn| ≤
1

ln · Cln · q
3·m2·(ln+1)2·n·(n+1)
n

.

Remark 5.10. Analogous to [GKu15], Lemma 6.11., we prove d0 (fmn , fmnn ) < 1
2n for every

n ∈ N, where (mn)n∈N is the sequence of natural numbers defined in chapter 3.
Concluding we have checked that all the assumptions of Proposition 4.5 are satisfied. Thus,
this criterion guarantees that the constructed diffeomorphism f ∈ Aα(M) is weakly mixing.
In addition, for every ε > 0 we can choose the parameters by Lemma 5.7 in such a way, that
d∞ (f,Rα) < ε holds.

6 Construction of the f-invariant measurable Riemannian
metric

Let ω0 denote the standard Riemannian metric on M = S1 × [0, 1]m−1. The following Lemma
shows that the conjugation map hn = gn ◦ in ◦ φn constructed in section 2 is an isometry with
respect to ω0 on the elements of the partial partition ζn.

Lemma 6.1. Let Ǐn ∈ ζn. Then hn|Ǐn is an isometry with respect to ω0.

Proof. The proof is similar to the proof of [GKu15], Lemma 7.1.
Let Ǐn,k ∈ ζn be a partition element on

[
k−1
n·qn ,

k
n·qn

]
× [0, 1]m−1. This element Ǐn,k is positioned

in such a way that all the occurring maps ϕε,1,j and ϕ−1
ε2,1,j

act as rotations on it. Thus, φn|Ǐn,k
is an isometry and φn

(
Ǐn,k

)
is equal to
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[
k − 1
nqn

+
s1

n2 · km−1
n · qn

+
j

(1)
1

n2 · km−1
n · q2

n

+ ...+
j
((m−1)· k·(k−1)

2 )
1 + 1

n2 · km−1
n · q(m−1)· k·(k−1)

2 +1
n

− j
(1)
2

n2 · km−1
n · q(m−1)· k·(k−1)

2 +2
n

− ...− j
(k)
2

n2 · km−1
n · q(m−1)· k·(k−1)

2 +k+1
n

− j
(1)
3

n2 · km−1
n · q(m−1)· k·(k−1)

2 +k+2
n

− ...− j
(k)
m + 1

n2 · km−1
n · q(m−1)· k·(k+1)

2 +1
n

+
j
((m−1)· k·(k+1)

2 +1)
1

n2 · km−1
n · q(m−1)· k·(k+1)

2 +2
n

+ ...+
j
((m−1)· (n+1)·n

2 )
1

n2 · km−1
n · q1+(m−1)· (n+1)·n

2
n

+
t1

n2 · qn−1 · km−1
n · q1+(m−1)·n·(n+1)

2
n

+
1

5n6 · q2
n−1 · k

m−1
n · q1+(m−1)·n·(n+1)

2
n

,

k − 1
n · qn

+
s1

n2 · km−1
n qn

+
j

(1)
1

n2 · km−1
n · q2

n

+ ...− j
(k)
m + 1

n2 · km−1
n · q(m−1)· k·(k+1)

2 +1
n

+ ...+
t1 + 1

n2 · qn−1 · km−1
n · q1+(m−1)·n·(n+1)

2
n

− 1

5n6 · q2
n−1 · k

m−1
n · q1+(m−1)·n·(n+1)

2
n

]

×
m∏
i=2

[
j
((m−1)· k·(k−1)

2 +(i−2)·k+1)
1

qn
+ ...+

j
((m−1)· k·(k−1)

2 +(i−1)·k)
1

qkn
+
j

(k+1)
i

qk+1
n

+ ...+
j
(1+(m−1)·n·(n+1)

2 )
i

q
1+(m−1)·n·(n+1)

2
n

+
si

n2km−1
n q

1+(m−1)·n·(n+1)
2

n

+
ti

n2qn−1k
m−1
n · q1+(m−1)·n(n+1)

2
n

+
1

5n6q2
n−1 · k

m−1
n · q1+(m−1)·n(n+1)

2
n

,

j
((m−1)· k·(k−1)

2 +(i−2)·k+1)
1

qn
+ ...+

j
((m−1)· k·(k−1)

2 +(i−1)·k)
1

qkn
+
j

(k+1)
i

qk+1
n

+ ...+
j
(1+(m−1)·n·(n+1)

2 )
i

q
1+(m−1)·n·(n+1)

2
n

+
si

n2km−1
n · q1+(m−1)·n(n+1)

2
n

+
ti + 1

n2qn−1k
m−1
n · q1+(m−1)·n(n+1)

2
n

− 1

5n6q2
n−1k

m−1
n · q1+(m−1)·n·(n+1)

2
n

]
.

On this set in = ψ
n2·km−1

n ·q
1+(m−1)·n·(n+1)

2
n ,qn−1,

1
5n4qn−1

,β
(2)
k ,...,β

(m)
k

is equal to the composition of a

translation and the respective rotations. Additionally, in ◦ φn
(
Ǐn,k

)
is contained in the domain

where gn = g
n2·km−1

n ·q
1+(m−1)·n·(n+1)

2
n ,[nqσn], 1

60n4qn−1
, 1
30n4qn−1

acts as a translation.

Remark 6.2. As observed in Lemma 6.1 the map hn = gn ◦ in ◦ φn acts as the composition
of the respective rotations and translations on every Ǐn ∈ ζn. Hence, h−1

n is a composition of
rotations and translations on hn

(
Ǐn
)
. In the following Gn :=

⋃
Ǐn∈ζn hn

(
Ǐn
)
will be called the

“good domain” of h−1
n . Similarly,

⋃
Ǐn∈ζn Ǐn is the “good domain” of hn and its corresponding

parts on the θ-axis are called the “good length” of hn. By the same arguments as in Remark
2.3 observe that for an interval

[
l
qn
, l+1
qn

]
on the θ-axis the length

(
1− 3m

qn−1

)
· 1
qn

is part of the
“good length”.

Since the elements of the partial partition ζn cover a set of M of measure at least 1 − 3m
qn−1

(see Remark 2.3), we are able to apply the same approach as in [GKu15], section 7, and construct
the aimed measurable f -invariant Riemannian metric as the limit of the smooth metrics ωn =(
H−1
n

)∗
ω0.
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7 Ergodicity of the derivative extension

7.1 General informations on Approximation in Ergodic Theory
This section provides a short introduction to the method of approximation of measure-preserving
transformations in Ergodic Theory. A more comprehensive presentation can be found in [Ka03].
In [KS67] Katok and Stepin introduced the concept of periodic approximation: Let (X,µ) be
a Lebesgue space. A tower t of height h(t) = h is an ordered sequence of disjoint measurable
sets t = {c0, ..., ch−1} of X having equal measure, which is denoted by m (t). The sets ci are
called the levels of the tower, especially c0 is the base. Associated with a tower there is a cyclic
permutation σ sending c0 to c1, c1 to c2,... and ch−1 to c0.

Definition 7.1. A periodic process is a collection of disjoint towers covering the spaceX together
with an equivalence relation among these towers identifying their bases.

There are two partial partitions associated with a periodic process: The partition ξ into all
sets of all towers and the partition η consisting of the union of bases of towers in each equivalence
class and their images under the iterates of σ, where when we go beyond the height of a certain
tower in the class we drop this tower and continue until the highest tower in the equivalence class
has been exhausted. Obviously, we have η ≤ ξ. A sequence (ξn, ηn, σn) of periodic processes is
called exhaustive if ηn → ε.

Definition 7.2. Let T : (X,µ)→ (X,µ) be a measure-preserving transformation. An exhaustive
sequence of periodic processes (ξn, ηn, σn) forms a periodic approximation of T if

d (ξn, T, σn) =
∑
c∈ξn

µ (T (c)4σn (c))→ 0 as n→∞.

Given a sequence g (n) of positive numbers we will say that the transformation T admits a
periodic approximation with speed g (n) if for a certain subsequence (nk)k∈N there exists an
exhaustive sequence of periodic processes (ξk, ηk, σk) such that d (ξk, T, σk) < g (nk).

This notion was generalised by Schwartzbauer in [S70], Definition 3.1 and the adjacent re-
marks:

Definition 7.3. Let ϕ(n) be a monotonic sequence of positive numbers such that limn→∞ ϕ(n) =
0. We say that the automorphism T : (X,µ)→ (X,µ) admits an approximation with speed ϕ(n)
if for each n ∈ N there exists a partial partition ξn =

{
c
(n)
i : i = 0, ..., qn − 1

}
such that

1. ξn → ε as n→∞,

2. limn→∞
∑qn−1
i=0

∣∣∣µ(c(n)
i

)
− 1

qn

∣∣∣ = 0,

3.
∑qn−1
i=0 µ

(
Tc

(n)
i ∆c(n)

i+1

)
< ϕ (qn), where c(n)

qn is understood to be c(n)
0 .

In particular, the tower levels are not required to have equal measure anymore. Since in our
constructions the maps (fn, dfn) are not necessarily measure-preserving with respect to µ̄ and
the tower sets will be defined with the aid of these maps, we require this more general concept.
From the different types of approximations various ergodic properties can be derived. For exam-
ple in [S70], Corollary 4.1., the subsequent Lemma is proven.

Lemma 7.4. Let T : (X,µ) → (X,µ) be a measure-preserving transformation. If T admits an
approximation with speed ϕ(n) = θ

n with θ < 4, then T is ergodic.

We will use this Lemma as a criterion for the ergodicity of the projectivized derivative ex-
tension.



Ergodicity of the derivative extension 24

7.2 Application of the criterion
We prove the ergodicity of the projectivized derivative extension with the aid of Lemma 7.4. In
order to apply it, we have to prove that (f, df) admits a sufficiently fast approximation on PTM
with respect to the measure µ̄ introduced in section 1.1. For this purpose, we define a tower
explicitly and examine the speed of approximation.

7.2.1 Tower for good cyclic approximation

Using the “good domains” Gn introduced in Remark 6.2 we define

Ḡn := Gn+1 ∩
∞⋂
j=1

hn+1 ◦ ... ◦ hn+j (Gn+j+1) .

In particular, for every s ∈ N the map h−1
n+s ◦ ... ◦ h−1

n+1 is a composition of rotations and trans-
lations on Ḡn.

Furthermore, let c̆(n)
0 ⊂ S1 × [0, 1]m−1 = M be the set

⋃[ s
(1)
1

n2 · km−1
n · qn

+
j

(1)
1

n2 · km−1
n · q2

n

+ ...+
j

(m−1)
1

n2 · km−1
n · qmn

+
1

n6 · qn−1 · km−1
n · qmn

+ ...

+
1

n6 · qn−1 · km−1
n · q(m−1)· (n+1)·n

2
n

+
1

n2 · qn−1 · km−1
n · q1+(m−1)·n·(n+1)

2
n

+
1

5n6 · q2
n−1 · k

m−1
n · q1+(m−1)·n·(n+1)

2
n

+
s

(2)
1

qn+1
,

s
(1)
1

n2 · km−1
n · qn

+
j

(1)
1

n2 · km−1
n · q2

n

+ ...+
j

(m−1)
1

n2 · km−1
n · qmn

+
1

n6 · qn−1 · km−1
n · qm+1

n

+ ...

+
1

n6 · qn−1 · km−1
n · q(m−1)· (n+1)·n

2
n

+
1

n2 · qn−1 · km−1
n · q1+(m−1)·n·(n+1)

2
n

+
1

5n6 · q2
n−1 · k

m−1
n · q1+(m−1)·n·(n+1)

2
n

+
s

(2)
1 + 1
qn+1

]

×
m∏
i=2

[
1

n4 · qn−1
+
j

(2)
i

q2
n

+ ...+
j
(1+(m−1)·n·(n+1)

2 )
i

q
1+(m−1)·n·(n+1)

2
n

+
si

n2 · km−1
n · q1+(m−1)·n·(n+1)

2
n

+
ui

n2 · qn−1 · km−1
n · q1+(m−1)·n·(n+1)

2
n

+
1

5n6 · q2
n−1 · k

m−1
n · q1+(m−1)·n·(n+1)

2
n

+
ti

qn+1
,

1
n4 · qn−1

+
j

(2)
i

q2
n

+ ...+
j
(1+(m−1)·n·(n+1)

2 )
i

q
1+(m−1)·n·(n+1)

2
n

+
si

n2 · km−1
n · q1+(m−1)·n·(n+1)

2
n

+
ui

n2 · qn−1 · km−1
n · q1+(m−1)·n·(n+1)

2
n

+
1

5n6 · q2
n−1 · k

m−1
n · q1+(m−1)·n·(n+1)

2
n

+
ti + 1
qn+1

]
,

where the union is taken over
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• s(1)
1 ∈ Z, 0 ≤ s(1)

1 ≤ km−1
n − 1

• s(2)
1 ∈ Z, 0 ≤ s(2)

1 ≤ A−1 using the notation A := 780n6·(n+1)6·q2
n−1·km−1

n ·q1+(m−1)·n·(n+1)
2

n

• si ∈ Z, 0 ≤ si ≤ n2km−1
n − 1, for i = 2, ...,m

• j(t)
1 ∈ Z,

⌈
qn

n4qn−1

⌉
≤ j(t)

1 ≤ qn −
⌈

qn
n4qn−1

⌉
− 1, for t = 1, ...,m− 1

• j(s)
i ∈ Z,

⌈
qn

n4qn−1

⌉
≤ j

(s)
i ≤ qn −

⌈
qn

n4qn−1

⌉
− 1, for s = 2, ..., 1 + (m − 1) · n·(n+1)

2 and
i = 2, ...,m

• ui ∈ Z, 1 ≤ ui ≤ qn−1 − 2, for i = 2, ...,m

• ti ∈ Z, 0 ≤ ti ≤ qn+1

n2·qn−1·km−1
n ·q

1+(m−1)·n·(n+1)
2

n

− 2 ·

⌈
qn+1

5n6·q2n−1·k
m−1
n ·q

1+(m−1)·n·(n+1)
2

n

⌉
− 1 for

i = 2, ...,m.

Remark 7.5. Note that all the parts of c̆(n)
0 are positioned in the domain, where in acts as

a translation and rotation as well as gn is a translation on in

(
c̆
(n)
0

)
. At this juncture, the

requirement that 5n6 · q2
n−1 · km−1

n · q1+(m−1)·n·(n+1)
2

n divides qn+1 (see Lemma 5.8) is important.
In particular, the rotation arcs of in are different for all the occurring s(1)

1 .

Remark 7.6. We compute that φ−1
n

(
c̆
(n)
0

)
contains at least A · qm−1

n+1 · km−1
n ·

(
1− 3m

qn−1

)
many∏m

i=1

[
ji

qn+1
, ji+1
qn+1

]
-domains, where

⌈
qn+1

(n+1)4qn

⌉
≤ ji ≤ qn+1 −

⌈
qn+1

(n+1)4qn

⌉
− 1 for j = 2, ...,m. On

each of these cubes there are at most (n + 1)2m · km·(m−1)
n+1 · qmn · q

m·(m−1)· (n+1)·(n+2)
2

n+1 elements

hn+1

(
Ǐn+1

)
with Ǐn+1 ∈ ζn+1 and a measure of at least

1− 3m
qn

qmn+1
is covered by sets of Gn+1 (in case

of n ≥ m). Similarly, we observe that for any hn+1

(
Ǐn+1

)
⊂ Gn+1 we have

µ
(
hn+1

(
Ǐn+1

)
∩ hn+1 (Gn+2)

)
= µ

Ǐn+1 ∩
⋃

Ǐn+2∈ζn+2

hn+2

(
Ǐn+2

)
≥
(

1− 3m
qn+1

)
· µ
(
hn+1

(
Ǐn+1

))
.

In the next step, we define c̃(n)
0 := c̆

(n)
0 ∩ φn (Gn+1) and č(n)

0 := c̆
(n)
0 ∩ φn

(
Ḡn
)
. With the aid

of Remark 7.6 we estimate

km−1
n

q̃n+1
≥ µ

(
c̃
(n)
0

)
≥ A · qm−1

n+1 · km−1
n ·

(
1− 3m

qn−1

)
·

1− 3m
qn

qmn+1

≥ km−1
n

q̃n+1
·
(

1− 4m
qn−1

)
.

Then we define c̄(n)
0 := gn◦in

(
c̃
(n)
0

)
and we consider c̄(n)

0 ×
[
0, 1

kn

]m−1

⊂ PTM with respect to

ω0. The base element of the tower in PTM is c(n)
0 = (Hn−1, dHn−1)

(
c̄
(n)
0 ×

[
0, 1

kn

]m−1
)
⊂ PTM

with respect to ω∞. Finally, the tower elements are

c
(n)
i =

(
f in, df

i
n

) (
c
(n)
0

)
for i = 0, ..., q̃n+1 − 1.
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Lemma 7.7. We have

q̃n+1−1∑
i=0

∣∣∣∣µ̄(c(n)
i

)
− 1
q̃n+1

∣∣∣∣ ≤ 4m ·
(
km−1
n − 1

)
q̃n+1

,

which converges to 0 as n → ∞ by Lemma 5.8. Thus, the second requirement in the definition
7.3 of an approximation is fulfilled.

Proof. For (y, v) =
(
f in (x) , dxf in (ṽ)

)
=
(
f in (Hn−1 ◦ gn ◦ in (z)) , dxf in

(
dgn◦in(z)Hn−1 (v̄)

))
and

(y, w) =
(
f in (x) , dxf in (w̃)

)
=
(
f in (Hn−1 ◦ gn ◦ in (z)) , dxf in

(
dgn◦in(z)Hn−1 (w̄)

))
with z ∈ č(n)

0

as well as v̄, w̄ ∈
[
0, 1

kn

]m−1

we calculate with the aid of the construction of the f -invariant
Riemannian metric ω∞

ω∞|y (v, w) = lim
k→∞

(
H−1
k

)∗
ω0|y (v, w)

= lim
k→∞

ω0|H−1
k (y)

(
dyH

−1
k (v) , dyH−1

k (w)
)

= lim
k→∞

ω0|h−1
k ◦...◦h

−1
n+1◦Riαn+1

◦φ−1
n (z)

(
dRiαn+1

◦H−1
n (x)

(
h−1
k ◦ ... ◦ h

−1
n+1

)
· dH−1

n−1(x)h
−1
n (v̄) ,

dRiαn+1
◦H−1

n (x)

(
h−1
k ◦ ... ◦ h

−1
n+1

)
· dH−1

n−1(x)h
−1
n (w̄)

)
=ω0|φ−1

n (z)

(
dH−1

n−1(x)h
−1
n (v̄) , dH−1

n−1(x)h
−1
n (w̄)

)
.

In the last step we exploited that h−1
k ◦ ... ◦ h

−1
n+1 is an isometry with respect to ω0 on Ḡn.

Additionally, h−1
n is an isometry on gn ◦ φn

(
c̆
(n)
0

)
and ω0 is independent from the base point.

Hence, we conclude ω∞|y (v, w) = ω0|gn◦in(z) (v̄, w̄) and then ω∞|y (v, w) = ω∞|x (ṽ, w̃).

Thus, (fn, dfn) ist µ̄-preserving on sets with base points in Hn−1◦gn◦φn
(
č
(n)
0

)
. Since µ

(
c̃
(n)
0

)
≥

µ
(
č
(n)
0

)
≥
(

1− 4m
qn+1

)
· µ
(
c̃
(n)
0

)
we have

(5)
(

1− 4m
qn+1

)
· 1
q̃n+1

·
(

1− 4m
qn−1

)
≤ µ̄

(
c
(n)
i

)
≤

(
1 +

4m ·
(
km−1
n − 1

)
qn+1

)
· 1
q̃n+1

·
(

1− 4m
qn−1

)
.

In particular, this yields

q̃n+1−1∑
i=0

∣∣∣∣µ̄(c(n)
i

)
− 1
q̃n+1

∣∣∣∣ ≤ 4m ·
(
km−1
n − 1

)
q̃n+1

.

Furthermore, we observe that these tower elements are disjoint sets in PTM by construction.
Hence, we are able to define a partial partition

ξn :=
{
c
(n)
i : i = 0, 1, ..., q̃n+1 − 1

}
(using the notation from section 7.1) and have to show ξn → ε as n→∞.
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Lemma 7.8. We have
ξn → ε as n→∞.

Proof. This property is fulfilled if we show that the partial partitions ξ̃n :=
{
c ∈ ξn : diam (c) < 1

n

}
satisfy µ̄

(⋃
c∈ξ̃n c

)
→ 1 as n → ∞. For this purpose, we examine which tower elements satisfy

the condition on their diameter. Due to the requirement on the number kn (see the begin-
ning of section 2) it is satisfied if diam

(
hn ◦Riαn+1

◦H−1
n

(
c
(n)
0

))
< 1

2n . Since the map hn is
1
qn
-equivariant and

hn ◦Riαn+1
◦H−1

n

(
Hn−1

(
c̄
(n)
0

))
= hn ◦Riαn+1

◦ φ−1
n ◦ i−1

n ◦ g−1
n ◦H−1

n−1

(
Hn−1 ◦ gn ◦ in

(
c̃
(n)
0

))
= hn ◦Riαn+1

◦ φ−1
n

(
c̃
(n)
0

)
,

we have to check for how many iterates i the set Riαn+1
◦ φ−1

n

(
c̃
(n)
0

)
is contained in the “good

domain” of hn and the deviation i · |αn+1 − αn| is not in
[
k
nqn

+ n−1
n2qn

, k+1
nqn

)
for any k ∈ Z,

0 ≤ k ≤ n−1 (otherwise the different definitions of φn on the abutting domains may cause some
problems). Under these assumptions we have

diam
(
hn ◦Riαn+1

◦ φ−1
n

(
c̃
(n)
0

))
≤ [nqσn] ·

√
m

qn
.

Because of 0.25 < σ < 0.5 and Lemma 5.8, 4., we deduce the aimed estimate

diam
(
Hn−1 ◦ hn ◦Riαn+1

◦ φ−1
n

(
c̃
(n)
0

))
≤ ‖DHn−1‖0 · [nq

σ
n] ·
√
m

qn
≤ q0.25

n

2n2 ·
√
m
· [nqσn] ·

√
m

qn
<

1
2n

Note that the base of the tower is positioned in this “good domain”. Since Riαn+1
= Rip̃n+1

q̃n+1

is

equidistributed on S1 and a length of at least
(

1− 4m
qn−1

)
·
(
1− 1

n

)
corresponds to the “good

domain” by Remark 6.2, we can estimate the number of allowed iterates i ∈ {0, 1, ..., q̃n+1 − 1}
by
(

1− 4m
qn−1

)
·
(
1− 1

n

)
· q̃n+1. This corresponds to a measure

µ̄

 ⋃
c∈ξ̃n

c

 ≥ (1− 4m
qn−1

)
·
(

1− 1
n

)
· q̃n+1 · µ̄

(
c
(n)
i

)

≥
(

1− 4m
qn−1

)2

·
(

1− 1
n

)
·
(

1− 4m
qn+1

)
,

which converges to 1 as n→∞.

7.2.2 Speed of approximation

For the speed of approximation it holds:∑
c∈ξn

µ̄ ((f, df) (c)4 (fn, dfn) (c))

≤
∑
c∈ξn

(µ̄ ((f, df) (c)4 (fn+1, dfn+1) (c)) + µ̄ ((fn+1, dfn+1) (c)4 (fn, dfn) (c))) .
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Lemma 7.9. We have

(6)
∑
c∈ξn

µ̄ ((fn, dfn) (c)4 (fn+1, dfn+1) (c)) ≤ qn+1

A
·

q
m·(m−1)·(n+2)·(n+1)
n+1

ln+1 · Cln+1 · q
3·m2·(ln+1+1)2·(n+1)·(n+2)
n+1

.

Proof. First of all, we aim for estimating µ̄
(

(fn+1, dfn+1)
(
f in, df

i
n

) (
c
(n)
0

)
4
(
f i+1
n , df i+1

n

) (
c
(n)
0

))
.

For this purpose, we consider

µ
(
fn+1 ◦ f in

(
Hn−1

(
c̄
(n)
0

))
4f i+1

n

(
Hn−1

(
c̄
(n)
0

)))
=µ
(
Hn+1 ◦Rαn+2 ◦Riαn+1

◦ h−1
n+1 ◦ φ−1

n

(
c̃
(n)
0

)
4Hn+1 ◦Ri+1

αn+1
◦ h−1

n+1 ◦ φ−1
n

(
c̃
(n)
0

))
=µ
(
Rαn+2 ◦Riαn+1

◦ h−1
n+1 ◦ φ−1

n

(
c̃
(n)
0

)
4Ri+1

αn+1
◦ h−1

n+1 ◦ φ−1
n

(
c̃
(n)
0

))
.

Since h−1
n+1 ◦ φ−1

n

(
c̃
(n)
0

)
consists of at most

A · qm−1
n+1 · km−1

n ·
(

1− 3m
qn−1

)
· (n+ 1)2m · km·(m−1)

n+1 · qmn · q
m·(m−1)· (n+2)·(n+1)

2
n+1

elements Ǐn+1 ∈ ζn+1 by Remark 7.6 and the measure difference is at most |αn+2 − αn+1| for
any such element, we estimate with the aid of Lemma 5.8 and equation 4

µ
(
Rαn+2 ◦Riαn+1

◦ h−1
n+1 ◦ φ−1

n

(
c̃
(n)
0

)
4Ri+1

αn+1
◦ h−1

n+1 ◦ φ−1
n

(
c̃
(n)
0

))
≤A · qm−1

n+1 · km−1
n ·

(
1− 3m

qn−1

)
· (n+ 1)2m · km·(m−1)

n+1 · qmn · q
m·(m−1)· (n+2)·(n+1)

2
n+1 · |αn+2 − αn+1|

≤qm+2
n+1 · q

m·(m−1)· (n+2)·(n+1)
2

n+1 · 1

ln+1 · Cln+1 · q
3·m2·(ln+1+1)2·(n+1)·(n+2)
n+1

≤qm·(m−1)·(n+2)·(n+1)
n+1 · 1

ln+1 · Cln+1 · q
3·m2·(ln+1+1)2·(n+1)·(n+2)
n+1

.

For y ∈ Rαn+2 ◦ Riαn+1
◦ h−1

n+1 ◦ φ−1
n

(
c̃
(n)
0

)
∩ Ri+1

αn+1
◦ h−1

n+1 ◦ φ−1
n

(
c̃
(n)
0

)
there are x1, x2 ∈ c̃(n)

0

such that y = Rαn+2 ◦Riαn+1
◦ h−1

n+1 ◦ φ−1
n (x1), y = Ri+1

αn+1
◦ h−1

n+1 ◦ φ−1
n (x2) and

dgn◦in(x1)

(
h−1
n+1 ◦ φ−1

n ◦ i−1
n ◦ g−1

n

)([
0,

1
kn

]m−1
)

=dgn◦in(x2)

(
h−1
n+1 ◦ φ−1

n ◦ i−1
n ◦ g−1

n

)([
0,

1
kn

]m−1
)

(because they are close to each other and are positioned in the domain where the maps act as
the respective rotations and translations). Hence, we conclude

µ̄
(

(fn+1, dfn+1)
(
f in, df

i
n

) (
c
(n)
0

)
4
(
f i+1
n , df i+1

n

) (
c
(n)
0

))
=µ
(
fn+1 ◦ f in

(
Hn−1

(
c̄
(n)
0

))
4f i+1

n

(
Hn−1

(
c̄
(n)
0

)))
≤qm·(m−1)·(n+2)·(n+1)

n+1 · 1

ln+1 · Cln+1 · q
3·m2·(ln+1+1)2·(n+1)·(n+2)
n+1

.
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This difference occours for every i ∈ {0, ..., q̃n+1 − 1} and thus we can estimate

∑
c∈ξn

µ̄ ((fn, dfn) (c)4 (fn+1, dfn+1) (c)) ≤ qn+1

A
·

q
m·(m−1)·(n+2)·(n+1)
n+1

ln+1 · Cln+1 · q
3·m2·(ln+1+1)2·(n+1)·(n+2)
n+1

.

In the next step we consider
∑
c∈ξn µ̄ ((f, df) (c)4 (fn+1, dfn+1) (c)):

Lemma 7.10. We have∑
c∈ξn

µ̄ ((f, df) (c)4 (fn+1, dfn+1) (c)) ≤ 5m · km−1
n

qn+1
.

Proof. We compute for every c =
(
f in, df

i
n

) (
c
(n)
0

)
∈ ξn:

µ
(
fn+2

(
f in

(
Hn−1c̄

(n)
0

))
4fn+1

(
f in

(
Hn−1c̄

(n)
0

)))
=µ
(
Hn+2 ◦Rαn+3 ◦ h−1

n+2 ◦ h
−1
n+1

(
Riαn+1

◦ φ−1
n

(
c̃
(n)
0

))
4Hn+1 ◦Rαn+2 ◦ h−1

n+1

(
Riαn+1

◦ φ−1
n

(
c̃
(n)
0

)))
=µ
(
Rαn+3 ◦ h−1

n+2

(
Riαn+1

◦ h−1
n+1 ◦ φ−1

n

(
c̃
(n)
0

))
4Rαn+2 ◦ h−1

n+2

(
Riαn+1

◦ h−1
n+1 ◦ φ−1

n

(
c̃
(n)
0

)))
=µ
(
Rαn+3 ◦Riαn+1

(
h−1
n+2 ◦ h

−1
n+1 ◦ φ−1

n

(
c̃
(n)
0

))
4Rαn+2 ◦Riαn+1

(
h−1
n+2 ◦ h

−1
n+1 ◦ φ−1

n

(
c̃
(n)
0

)))
,

where we exploited that hn+2 comutes with R 1
qn+2

and qn+2 is a multiple of qn+1.

Since we have no controll on h−1
n+2 ◦ h

−1
n+1 ◦ φ−1

n

(
c̃
(n)
0

)
for these areas of d := h−1

n+1 ◦ φ−1
n

(
c̃
(n)
0

)
,

that do not belong to the “good domain” of the map h−1
n+2, they will be part of the measure

difference in our estimates. Using Remark 7.6 the “good domain” of the map h−1
n+2 on an element

Ǐn+1 ∈ ζn+1 has measure at least
(

1− 3m
qn+1

)
· µ
(
hn+1

(
Ǐn+1

))
. On the other hand, for every

hn+2

(
Ǐn+2

)
belonging to d the difference is caused by the deviation |αn+3 − αn+2|. We observe

that there are at most 1− 2
5(n+1)4qn

(n+ 1)2 · qn · km−1
n+1 · q

(m−1)· (n+1)·(n+2)
2

n+1

m

· (n+ 2)2m · km·(m−1)
n+2 · qm·(1+(m−1)· (n+2)·(n+3)

2 )
n+2

elements hn+2

(
Ǐn+2

)
contained in Ǐn+1 ∈ ζn+1. Altogether, the measure difference caused by

Rαn+3 ◦Riαn+1
◦ h−1

n+2 and Rαn+2 ◦Riαn+1
◦ h−1

n+2 on an element Ǐn+1 ∈ ζn+1 contained in d is at
most

3m
qn+1

·

 1

(n+ 1)2 · qn · km−1
n+1 · q

1+(m−1)· (n+1)·(n+2)
2

n+1

m

+

 1− 2
5(n+1)4qn

(n+ 1)2qnk
m−1
n+1 q

(m−1)
(n+1)·(n+2)

2
n+1

m

· (n+ 2)2m · km(m−1)
n+2 · qm(1+(m−1)

(n+2)·(n+3)
2 )

n+2 · |αn+3 − αn+2| .

Moreover, we recall that d consists of at most

A · qm−1
n+1 · km−1

n ·
(

1− 3m
qn−1

)
· (n+ 1)2m · km·(m−1)

n+1 · qmn · q
m·(m−1)· (n+2)·(n+1)

2
n+1
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elements Ǐn+1 ∈ ζn+1. Hereby, we obtain

µ (fn+2 (c)4fn+1 (c))

≤3m ·A · km−1
n

q2
n+1

+A · qm−1
n+1 · km−1

n · (n+ 2)2m · km·(m−1)
n+2 · qm·(1+(m−1)· (n+2)·(n+3)

2 )
n+2 · |αn+3 − αn+2| .

We note that for

y ∈ Rαn+3 ◦Riαn+1

(
h−1
n+2 ◦ h

−1
n+1 ◦ φ−1

n

(
c̃
(n)
0

))
∩Rαn+2 ◦Riαn+1

(
h−1
n+2 ◦ h

−1
n+1 ◦ φ−1

n

(
c̃
(n)
0

))
,

where y = Rαn+3◦Riαn+1

(
h−1
n+2 ◦ h

−1
n+1 ◦ φ−1

n (x1)
)
and y = Rαn+2◦Riαn+1

(
h−1
n+2 ◦ h

−1
n+1 ◦ φ−1

n (x2)
)

with x1, x2 ∈ c̃(n)
0 close to each other contained in the “good domain” of h−1

n+2 ◦ h
−1
n+1 ◦ φ−1

n we
have

dgn◦in(x1)

(
h−1
n+2 ◦ h

−1
n+1 ◦ φ−1

n ◦ i−1
n ◦ g−1

n

)([
0,

1
kn

]m−1
)

=dgn◦in(x2)

(
h−1
n+2 ◦ h

−1
n+1 ◦ φ−1

n ◦ i−1
n ◦ g−1

n

)([
0,

1
kn

]m−1
)

Thus, we conclude

µ̄ ((fn+2, dfn+2) (c)4 (fn+1, dfn+1) (c))

≤µ
(
fn+2

(
f in

(
Hn−1c̄

(n)
0

))
4fn+1

(
f in

(
Hn−1c̄

(n)
0

)))
≤3m ·A · km−1

n

q2
n+1

+A · qm−1
n+1 · km−1

n · (n+ 2)2m · km·(m−1)
n+2 · qm·(1+(m−1)· (n+2)·(n+3)

2 )
n+2 · |αn+3 − αn+2| .

Every of the q̃n+1 = qn+1
A elements c ∈ ξn contributes and so we obtain∑

c∈ξn

µ̄ ((fn+1, dfn+1) (c)4 (fn+2, dfn+2) (c))

≤3m · km−1
n

qn+1
+ qmn+1 · km−1

n · (n+ 2)2m · km·(m−1)
n+2 · qm·(1+(m−1)· (n+2)·(n+3)

2 )
n+2 · |αn+3 − αn+2|

≤4m · km−1
n

qn+1
.

using Lemma 5.8 in the last step.
Analogously estimating the other summands we get∑

c∈ξn

µ̄ ((f, df) (c)4 (fn+1, dfn+1) (c))

≤
∞∑
k=1

q̃n+1−1∑
i=0

µ

(
fn+k+1

f in
Hn−1

c̄(n)
0 ∩

k−1⋂
j=1

hn ◦ ... ◦ hn+j (Gn+j+1)


4fn+k

f in
Hn−1

c̄(n)
0 ∩

k−1⋂
j=1

hn ◦ ... ◦ hn+j (Gn+j+1)

)

≤
∞∑

j=n+1

4m · km−1
j−1

qj
≤ 5m · km−1

n

qn+1
.
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Using this estimate and equation 6 we conclude∑
c∈ξn

µ̄ ((f, df) (c)4 (fn, dfn) (c)) ≤ 1

ln+1 · Cln+1 · q
2·m2·(ln+1+1)2·(n+1)·(n+2)
n+1

+
5m · km−1

n

qn+1
≤ 6m · km−1

n

qn+1
.

In order to prove that this speed of approximation is of order o
(

1
q̃n+1

)
we compute

6m·km−1
n

qn+1

1
q̃n+1

=
qn+1

A
· 6m · km−1

n

qn+1
≤ m

n6 · (n+ 1)6 · q2
n−1 · q

1+(m−1)·n·(n+1)
2

n

.

Since this converges to 0 as n → ∞, the third requirement of definition 7.3 is satisfied. Hence,
we can apply Lemma 7.4 and obtain the ergodicity of (f, df) with respect to µ̄.

References

[AK70] D. V. Anosov and A. Katok: New examples in smooth ergodic theory. Ergodic
diffeomorphisms. Trudy Moskov. Mat. Obsc., 23: 3 - 36, 1970.

[Be13] M. Benhenda: Non-standard Smooth Realization of Shifts on the Torus. Jour-
nal of Modern Dynamics, 7 (3): 329 - 367, 2013.

[Ch97] I. Chavel: Riemannian geometry: a modern introduction. Cambridge Univer-
sity Press, Cambridge, 1997.

[FK04] B. Fayad and A. Katok: Constructions in elliptic dynamics. Ergodic Theory
Dynam. Systems, 24 (5): 1477 - 1520, 2004.

[FS05] B. Fayad and M. Saprykina: Weak mixing disc and annulus diffeomorphisms
with arbitrary Liouville rotation number on the boundary. Ann. Scient. École.
Norm. Sup.(4), 38(3): 339 - 364, 2005.

[FSW07] B. Fayad, M. Saprykina and A. Windsor: Nonstandard smooth realizations of
Liouville rotations. Ergodic Theory Dynam. Systems, 27: 1803 - 1818, 2007.

[GKa00] R. Gunesch and A. Katok: Construction of weakly mixing diffeomorphisms
preserving measurable Riemannian metric and smooth measure. Discrete Con-
tin. Dynam. Systems, 6: 61- 88, 2000.

[GKu15] R. Gunesch and P. Kunde: Weakly mixing diffeomorphisms preserving a mea-
surable Riemannian metric in Aα (M) for arbitrary Liouvillean number α.
Preprint, arXiv:1512.00075.

[Ka03] A. Katok: Combinatorical Constructions in Ergodic Theory and Dynamics.
American Mathematical Society, Providence, 2003.

[Ku15] P. Kunde: Uniform rigidity sequences for weak mixing diffeomorphisms on D2,
A and T2. Journal of Mathematical Analysis and Applications, 429: 111-130,
2015.

[K1] P. Kunde: Real-analytic weak mixing diffeomorphism preserving a measurable
Riemannian metric. To appear in Ergodic Theory Dynamical Systems.



REFERENCES 32

[K2] P. Kunde: Smooth diffeomorphisms with homogeneous spectrum and disjoint-
ness of convolutions. Submitted to Journal of Modern Dynamics.

[KS67] A. Katok and A. Stepin: Approximations in ergodic theory. Russ. Math. Sur-
veys, 22: 77 - 102, 1967.

[S70] T. Schwartzbauer: A general method for approximating measure-preserving
transformations. Proc. Amer. Math. Soc., 24: 643 - 648, 1970.


	Preliminaries
	Definitions and notations
	First steps of the proof
	Outline of the proof

	Explicit constructions
	Sequences of partial partitions
	Partial partition n
	Partial partition n

	The conjugation map gn
	The conjugation map in
	The conjugation map n
	The conjugation map hn

	(, , )-distribution
	Criterion for weak mixing
	Convergence
	Properties of the conjugation maps
	Proof of convergence

	Construction of the f-invariant measurable Riemannian metric
	Ergodicity of the derivative extension
	General informations on Approximation in Ergodic Theory
	Application of the criterion
	Tower for good cyclic approximation
	Speed of approximation


	References

