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Abstract

On any smooth compact and connected manifold of dimension 2 admitting a smooth non-
trivial circle action we construct C*°-diffeomorphisms of topological entropy zero whose dif-
ferential is ergodic with respect to a smooth measure in the projectivization of the tangent
bundle. The proof is based on a version of the “approximation by conjugation”-method.
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Introduction

Let M be a smooth compact and connected manifold of dimension m > 2 with a non-trivial cir-
cle action S = {Si},cp, St41 = S¢, preserving a smooth volume p. In their influential paper
[AK70] D. V. Anosov and A. Katok introduced the so-called “approximation by conjugation”-
method which enables the construction of smooth diffeomorphisms with specific ergodic properties
(e.g. weakly mixing ones in [AKT0] section 5]) and spectral properties ([Kul@]) or non-standard
smooth realizations of measure-preserving systems (e.g. [AKT70l section 6], [Bel3| and [FSWOT]).

These diffeomorphisms are constructed as limits of conjugates f, = H, o Sa,,, o H, !, where
Opy1 = Qp + ﬁ € Q, H, = H,_1 o h, and h, is a measure-preserving diffeomorphism
satisfying S1 o h, = h, 0 S1. In each step the conjugation map h, and the parameter k,

are chosen such that the diffecgmorphism fn imitates the desired property with a certain preci-
sion. Then the parameter [,, is chosen large enough to guarantee closeness of f, to f,_1 in the
C*°-topology and so the convergence of the sequence (fy),y to a limit diffeomorphism is pro-
vided. It is even possible to keep this limit diffeomorphism within any given C'*°-neighbourhood
of the initial element S,, or, by applying a fixed diffeomorphism g first, of g o S,, o g~!. So
the construction can be carried out in a neighbourhood of any diffeomorphism coﬂnriugate to an
element of the action. Thus, A(M) = {hoS;oh~1 : t €St h e Diff>™ (M,u)} is a natu-
ral space for the produced diffeomorphisms. ooMoreover, we will consider the restricted space

Ao (M) = {hoSyoh™1 : h e Diff> (M, /QL)}C for a € S'. See also the very interesting sur-
vey article [FK04] for more details and other results of this method.

As mentioned above Anosov and Katok proved that the set of weakly mixing diffeomorphisms is
generic (i.e. it is a dense Gs-set) in A (M) in the C°° (M)-topology. In extension of it R. Gunesch



and A. Katok constructed weakly mixing diffeomorphisms preserving a measurable Riemannian
metric in [GKa00]. Actually, it follows from the respective proofs that both results are true in
Ay (M) for a Gs-set of a € St. However, both proofs do not give a full description of the set
of @ € S for which the particular result holds in A, (M). Such an investigation is started in
[FS05]: B. Fayad and M. Saprykina showed that if a € S! is Liouville, the set of weakly mixing
diffeomorphisms is generic in the C* (M)-topology in A, (M) in case of dimension 2. Generalis-
ing these results Gunesch and the author proved in [GKulS] that if a € R is Liouville, the set of
volume-preserving diffeomorphisms, that are weakly mixing and preserve a measurable Riemannian
metric, is dense in the C*-topology in A, (M). Recently, it has been proven that for every p > 0
and m > 2 there exists a weakly mixing real-analytic diffeomorphism f € Diﬁ;’ (T™, 1) preserving
a measurable Riemannian metric ([Kul7]).

Such diffeomorphisms preserving an absolutely continuous probability measure and a measur-
able Riemannian metric are called IM-diffeomorphisms. In [GKa00| section 3] IM-diffeomorphisms
and IM-group actions are discussed comprehensively. In particular, the existence of a measurable
invariant metric for a diffeomorphism is equivalent to the existence of an invariant measure for the
projectivized derivative extension which is absolutely continuous in the fibers. Hence, it is a natu-
ral question to study the ergodic properties of the projectivized derivative extension with respect
to such a measure. Actually, the constructions in [GKa00] as well as [GKulS8] are as non-ergodic
as possible: Their projectivized derivative extensions are isomorphic to the direct product of the
diffeomorphism in the base with the trivial action in the fibers so that each ergodic component
intersects almost every fiber in a single point. In this paper we realise the other extreme possibility
by constructing IM-diffeomorphisms whose differential is ergodic with respect to such a smooth
measure in the projectivization of the tangent bundle:

Theorem 1. Let M be a smooth compact and connected manifold of dimension 2 with a non-
trivial circle action S = {St}te]R7 St11 = S, preserving a smooth volume . Then there exists
a volume-preserving diffeomorphism in A (M), whose projectivized derivative extension is ergodic
with respect to a measure in the projectivization of the tangent bundle which is absolutely continuous
in the fibers.

This construction provides the only known examples of volume-preserving diffeomorphisms
whose differential is ergodic with respect to a smooth measure in the projectivization of the tangent
bundle.

By the same approach as in [GKul§| it is possible to obtain a weakly mixing diffeomorphism
and to generalise this result to dimension m > 2. In order to alleviate notations and focus on the
new parts of the construction we present a proof in case of dimension 2. It will be subject of future
research to study further ergodic properties (e.g. weak mixing) of the projectivized derivative
extension with respect to such a measure and to obtain real-analytic counterparts of these results.

1 Preliminaries

1.1 Definitions and notations

We refer to [GKulS8, section 2.1.] for useful definitions and notations. Additionally, we want
to introduce the invariant measure for the projectivized derivative extension: Let f : M — M



be a smooth diffeomorphism. On the tangent bundle TM we consider the derivative extension
(f,df). Let p € M. We can naturally identify the tangent space T, M with R%. Next, we consider
its projective space PR? that is diffeomorphic to the circle and introduce the notation [a,b] C
PR? which describes the allowed values for the spherical coordinate ¢ € R/7Z. This yields the
projectivized tangent bundle which will be denoted by PT M. In particular, we will use the notation
¢ % [a,b] C PTM with ¢ C M for the set in PT'M with base points x € ¢ and spherical coordinates
¢ € [a,b]. On the projectivized tangent bundle we consider the projectivized derivative extension
of a diffeomorphism f : M — M. By misuse of notation we will denote it by (f, df) again.
Following the lines of [Ch97] chapter 5.1] we consider the cotangent bundle 7* M and the projection
maps 71 : TM — M as well as o : TM* — M. Then we define the canonical 1-form w on TM*
by w); = 737, where wy, denotes the 1-form w evaluated at 7 € TM*. Additionally we define
the canonical 2-form Q on TM* by Q = dw, which is symplectic. In the next step, let M be a
Riemannian manifold and V' : M — R be a function. Then we examine the Lagrangian L : TM — R
given by L(§) = @ —Vom (§), where || is computed with respect to the Riemannian metric. To this
Lagrangian we associate a bundle map FL : TM — TM* defined by FL(¢)(n) = & (L(§+ )0
forpe M, &,n € T,M. Hereby, we define © = FL*Q) and v = F'L*w.

In [CL97, chapter 5.1] the differential form v A © on the unit tangent bundle SM is considered. It
is proven that it is the local product, up to a constant multiple, of the Riemannian volume on M
with the Lebesgue 1-form on the unit tangent spheres of M with respect to the Riemannian metric.
In particular, for any v A ©-integrable function g on SM we have “integrations over the fibers”

/ gu/\@:c~/ dVol(p)/ gls,m dpp,
SM M SpM

where Vol is the volume form induced by the Riemannian metric and g, is the standard Borel
measure on the tangent sphere S, M with respect to the Riemannian metric.

By the same approach we can deduce the same formula for the constructed invariant measurable
Riemannian metric we, and for any integrable function on PT'M. The corresponding measure will
be denoted by . Moreover, we point out that in our constructions the measure induced by the
measurable Riemannian metric ws, coincides with the measure g on M. Since w is f-invariant,
we conclude that fi is (f, df)-invariant.

1.2 First steps of the proof

By the same arguments as in [GKulS8, section 2.2.] constructions on M = S! x [0, 1] equipped
with Lebesgue measure ;1 and standard circle action R = {Rq }, g1 comprising of diffeomorphisms
R, (0,7) = (60 + a,r) can be transferred to a general 2-dimensional compact connected smooth
manifold with a non-trivial circle action S = {S:},.g, St41 = St.

1.3 Outline of the proof

The constructions are based on the “approximation by conjugation”-method developed by D.V.
Anosov and A. Katok in [AK70]. As indicated in the introduction, the desired diffeomorphism
f with ergodic projectivized derivative extension is constructed as the limit of volume-preserving
smooth diffeomorphisms f,, defined by f,, = H,0oR oH, 1. Here, the rational numbers o, ;1 € S!

Q41



and the conjugation maps H,, € Diff*® (M, u) are constructed inductively:

1
Qp+1 :pn+l :an—'_ﬁ and Hn :th...Ohn7
dn+1 n “ln *Q4n

where the conjugation map h,, € Diff> (M, ) has to satisfy h, o R,, = Rq, © h, and ky,l, € N
are parameters that have to be chosen appropriately. In particular, we will show convergence of
the sequence (fy),cy in A (M) by choosing the parameter I, sufficiently large in section

In our construction h,, = i, o ¢, with two step-by-step defined smooth measure-preserving diffeo-
morphisms. As in [GKul§| ¢,, maps a strip of almost full vertical length to a set of small diameter
on the one hand in order to get ergodicity of the map itself. On the other hand, ¢, acts as an
isometry on large parts of the manifold. In comparison to [GKul8], an additional map i,, is intro-
duced in order to obtain ergodicity of the projectivized derivative extension. This map i,, acts as a
composition of a translation and rotation on large parts of the domain where the angle of rotation
is different from section to section.

Additionally, we will use a sequence of partial partitions (,, which converges to the decomposition
into points. On the partition elements of (,, the conjugation map h, will act as an isometry and
this will enable us to construct an f-invariant measurable Riemannian metric in sections [4 and
by the same approach as in [GKulg].

Finally, we will prove the ergodicity of the projectivized derivative extension. This proof bases upon
estimates of Birkhoff sums for Lipschitz continuous observables p : PT'M — R. For this purpose,
we introduce so-called “trapping regions” and “target sets” covering almost the whole space PT'M.
Except for initial values in a set of very small measure the vast majority of iterates of the orbit
under R, ., is captured by the trapping regions. Under (h,,dh,) these iterates are mapped into
the target sets almost uniformly distributed (see Lemma. At this juncture, we require the map
in to act as a rotation by a different angle on different trapping regions. Since the diameter of these
target sets is sufficiently small, we can approximate the value of the observable by the value of its
integral on the particular target set. Hereby, we obtain the desired estimate on the Birkoff sum in
Lemma [T.5

2 Construction of the conjugation map

We fix an arbitrary countable set Z = {p1, pa, ...} of Lipschitz continuous functions p; : PTM — R,
that is dense in C(PT'M;R). Since C(PT'M;R) is separable and Lipschitz continuous functions are
dense in C(PT'M;R), this is possible. For any Lipschitz continuous function p on PT'M we denote
its Lipschitz constant by |[pl|r;, and [plly = maxzepras [p(2)]-

We present step n in our inductive process of construction. We assume that we have already
defined the rational numbers a;,...,a, € S' and the conjugation map H,_; = hyo...0h,_1 €
Diff>* (M, ). First of all, we put

1
Pn+1 —y, f —
Qn—i-l kn : ln *dn

and choose the parameter k,, € N large enough such that the following conditions are fulfilled:

kn >n?- max pill;, - (A)
1=1,...,n



kn > 30 n? - max {lpil, . (B)

3
For every subset ¢ C PTM of diameter diam(c) < T we have
1 " (©)

diam ((Hp—1,dH,—1) (¢)) <
( W maxit, il

Moreover the sequence of parameters (ky),,cy should satisfy Zjoin 41 ki < ki
J n

2.1 The conjugation map ¢,

In [GKulS8, section 3.3] we constructed the smooth area-preserving diffeomorphism ¢ . .., on
St x [0, 1] satisfying the subsequent properties:

Proposition 2.1. Let €,e5 € (O7 i) and \,u € N. Then there is a smooth area-preserving %-
periodic diffeomorphism dx « e, : ST x [0,1] — St x [0,1] such that

1. Let ty € Z, [2eu] < to < p—[2eu] — 1, |ug| < &9, and u; € (25,%) be of the form % with
t1 € Z. Then we have

~ Ul ].—'Ltl t2+U2 tg+1—U2
¢)>\,57/.L7€2 77 A X L ) L

|:1 t2+1711,2 1 t2+U2

2. Pre e, 0Cts as an isometry on each cuboid

|:t1+252 t1+1—2€2:| « |:t2+252 t2+1—252:|
poA T A o I ’
where t; € Z, [2ep] <t; < p—[2eu] =1 fori=1,2.

The first property will enable us to prove in Lemma that ¢,, maps sets of almost full length
in the r-coordinate to sets of small diameter. By the second property ¢, acts as an isometry on
each partition element I,, € ¢, (see the proof of Lemma .

In the construction of the map é,\@%az one uses a map C) causing a stretch by A in the first
coordinate and a so-called “quasi-rotation” ¢, constructed with the aid of “Moser’s trick”, which is
the rotation by /2 about the point (%, %) on 2,1 — 25]2 and coincides with the identity outside
of [g,1— 5]2. With these maps one also defines a family of “inner rotations of type A” ¢, ., in
order to get the second property stated above: A map of the form C’/\_1 o e o Cy would cause an
expansion by A in one coordinate and by A~! in another, so far away from being an isometry. The
“inner rotations of type A” cause that C\ and Cy ! act on the same coordinate on the elements

I, € G

Proof of Proposition[2.1 As announced we will use the “quasi-rotations” introduced in [FS05] and
[GKul8| Lemma 3.7]:

Fact: For everye € (0, %) there exists a smooth area-preserving diffeomorphism p. on R? which

11

is the rotation by m/2 about the point (3, %) on [2e,1 — 2]? and coincides with the identity outside



of [e,1— €]

Furthermore, for A € N we define the maps C) (z1,22) = (A x1,22) and Dy (z1,22) =
(A1, A - z2). Moreover, let ;1 € N. We construct a diffeomorphism v, ., in the following way:

e Under the map D, any cube of the form [
[ll,ll + 1] X [lg,lg + 1].

L lﬁl] [Lz ly+1

W i ] with [; € N is mapped onto

e On [0, 1]2 we will use the diffeomorphism ¢_! from the above mentioned fact. Since this is

the identity outside of [eg,1 — 62]2, we can extend it to a diffeomorphism 95;21 on R? using
the instruction @;21 (1 + 1,20+ 1) = (I1,10) + 905_21 (21,x2), where I; € Z and z; € [0, 1].

e Now we define the smooth measure-preserving diffeomorphism
P =D 1logloD
H,€2 w ()052 e

This is a smooth map because v, ., is the identity in a neighbourhood of the boundary by
construction.

Using these maps we build the following smooth area-preserving diffeomorphism:

- 1 1 ~ _
d))\,s,u,sg : |:Ov )\:| X [07 1] — |:Oa )\:| X [07 1] ’ ¢)\,5,,u,€2 = C)\ ! © w/t,EQ O e O C)\

Afterwards, ¢~>>\’57#752 is extended to a diffeomorphism on S x [0, 1] by the description

~ 1 1 ~
d))\,e,,u,,sz <.’IJ1 + X; $2> = ()\70) + (b/\,s,u,ez (x17x2) .

This map satisfies the properties stated in Proposition 2.1 O

Using these maps we define the diffeomorphism ¢,, on [O, ﬁ} x [0,1]

¢n == ¢kn'qn 1 g2 1
v L 2 L
72k2 7T 2 k3 gy,

Since ¢,, coincides with the identity in a neighbourhood of the boundary of its domain, we can
extend ¢, to a diffeomorphism on S* x [0, 1] using the description ¢, o R_1 =R _1 o ¢,.

kn-an kn-an

2.2 The conjugation map 1,

In this subsection we define the so-called “inner rotations of type B” i,, which will allow us to prove
ergodicity of the projectivized derivative extension. In particular, we will exploit the different
rotation angles on the particular sections in the proof of a “trapping property” in Lemma This
trapping property will be crucial in the estimates on Birkhoff sums in Lemma

Proposition 2.2. Let a, = kS - q,,, ¢, = k2 and ¢, = 1%2 There is a smooth measure-preserving

diffeomorphism i, : S' x [0,1] — S* x [0,1] such that



1. Fach square of the form [ai H'l} X [i jH} with i,j € Z is mapped onto itself by i, and

7 an an’ an

in coincides with the identity on a S™-neighbourhood of its boundary.

2. On every square |:L+ siten 1oy Sﬁl*s"} X [iJrLJrs" ¥ 7521%75"} C {l —”1} X
. ™

Cp n ? Gp CnQn an Cn @n ’ Qp CnGn an’ an

[0,1], where 1,82 € Z, 1 < 81,82 < ¢y, — 2, iy, i a composition of a translation and a rotation

by B;, where B; = % in case of s =1 mod k.

3. ipoR1 =Ri1 o1y
an an
For the construction we need the subsequent Lemma:

Lemma 2.3. Let c € N, ¢ > 3, € € (0, é] and B € [0,7]. Then there is a smooth measure-
preserving diffeomorphism .. 5 : [0,1]% — [0,1]? satisfying the following properties:

e Yo.op coincides with the identity on [0,1]\ [¢,1 — €]*.

o On every square [%, %] X [k—‘:s, %J with 1 < j,k <c—2 the map Y. g s equal to

a composition of a translation and a rotation by arc B around a new center.

s P ~
P P P £
/ e [ - ! S -
/ 5 > ~ / o
/ A v oy
/ !
o ;= £ P /
e, ; e, ¢ - ¢ -.. S
e e . S e A
e M, e v
P Pl P ™
I - If e ;"’ . .
/ / 7 2/ 7
4 £ vy ; .rJr /
e, i . P P A
— o ~ e f .
_— ' s et ey
i~ e - o
. P A £
/ e S S S e S s
/ ~ y .y .
/ 7 7 1y ;
/! A by, A /!
3 5 .. / e f ~ ~
-. -. -
P P ~ iy
A i P e
. S . " ! "
/ ~ ~ -
! oy I Iy /.
d FL / . /
Ry N N
~ ., .y, e

Figure 1: The action of 9. . g on [0, 1]2.

Proof. There is a rearrangement of these squares [L£2, IHI=2] x [Ete hHl=c] yotated by 8 in

[2e,1 — 2¢]2. Corresponding to this, each center (# k"'%) of such a square is translated by
(@ %, bjk). We will need these translations later. Moreover, we will use a smooth diffeomorphism
2 : R? — R?, which coincides with the identity on R?\ [¢,1 — €]? and with a dilation by  in each

)



coordinate about the center on each of the translated and rotated squares.
Now, let 1; : R? — R? be a smooth diffeomorphism satisfying

(z,y) onR?\ [e,1 —¢]?
VLI (102 4 (o - £202) 1105 1 4 (y - £02)) on aacn [ 13,21 [12, k1

c 5 c c

Additionally, we choose a smooth diffeomorphism 71 that is the identity on R? \ [¢,1 — ¢]? and a

- 2
rotation by 3 on each disc {(w — 05 4 (y - k+760-5)2 < ﬁ} Furthermore, let 73 be a smooth

diffeomorphism with the following properties

(z,y) on R%\ [¢,1 —¢]?
T2 (‘rvy) = i4+0.5\2 2
(x4 ajk,y+bjr) on each {(w — )T 4 (y — BED3)T < ﬁ}

We define ¢ = 1 Yo 15 071 04y. Then the diffeomorphism 1 coincides with the identity on R?\
[e,1—¢]? and with a composition of a rotation by 8 and a translation on every square [%, @] X
[k—je, %] with 1 < j,k < ¢ — 2. In particular, 1 is measure-preserving on the union of these
sets. Hence, we can construct the desired measure-preserving diffeomorphism . . 3 with the aid of

Moser’s trick similarly to [GKul8| Lemma 3.4.]. O

Proof of Proposition[2.3 Using the dilation D, : [0, %]2 —[0,1]%, Dq (z1,22) = (a-21,a- x3) for
a € Z we define the map g cc g : [0, 5]2 — |0, %]2, Yacep =Dyt 0thec o Dg. Since it coincides
with the identity in a neighbourhood of the boundary, we can extend it to a smooth diffeomorphism
on S! x [0, 1] equivariantly by the description

ap a2

o %)= (22)
"/}a,c,a,ﬁ (-Tl + a , L2 + a a ) a + ¢a,c,5,ﬁ (.’Ehl'g)

for ay,as € 7Z.
On [ i L } x [0,1] we define:

kS -qn’ kS -qn

s-m . .
Bi = 3 in case of s=¢ mod k,
n

as well as

In = Uk g k3, B

Since each map coincides with the identity in a neighbourhood of the boundary, we can piece them
together in order to get a smooth diffeomorphism on S! x [0, 1]. O

2.3 The conjugation map h,

With the aid of the previous constructions we define the conjugation map h,, = i, o ¢,,. By the
observations in the previous subsections we have h,, o R1 = R1 o h,.

an an



3 Convergence of the sequence (f,), . in Diff* (M, ;1)

In the following we show that the sequence of constructed measure-preserving smooth diffeomor-
phisms f, = H, 0 R,,,,, © H, ! converges. For this purpose, the next result, that can be found in
[FSWO07, Lemma 4] is very useful.

Lemma 3.1. Let k € Ny and h be a C*-diffeomorphism on M. Then we get for every a, 3 € R:
i (ho Ra o b~ ho Ry o h™t) < i [IBIIEE - o — 61,
where the constant Cy depends solely on k. In particular Cy = 1.

Under some conditions on the proximity of a,, and «,,41 we can prove convergence:

Lemma 3.2. There exists a sequence o, = % of rational numbers such that our sequence of
constructed diffeomorphisms f,, converges in the Diff>°(M)-topology to a diffeomorphism f € A(M).

Additionally, we have for every p € {p1,...,pn} CE
m m m m 1
sup |p ((f™,df™) (x)) —p ((fi",df3") (@) < —
T€PTM n
for every natural number m < qp41 and n € N.

Proof. First of all, we recall the relations a1 — o, =
we observe for any m € N

Fo ln o and hyp o Rq,, = Rq,, © hy. Hereby

fi* = HyoRD  oH, ' = H, 10h,oR} oR™ , oh,'oH, ' = H, 10R} oh,oR™ , oh,'oH "

n Qp+1 n

kn-ln-an kn-ln-qn

Since the construction of the conjugation map h,, does not involve [,,, we can obtain

1
sup d((fn',dfy") (@), (fori, dfin <
swp ((Frdfy?) (@), (frer, dfity) (@) .
for every natural number m < ¢, as well as
1
a1 — anl < 1 (3.1)

2n annqn : H|H7l|| n+1

by choosing [,, € N large enough.

We can apply Lemma [3.1] for every k,n € N:
di; (fr, fn—1) = dy (Hn °oRq,,,0oH, " HyoR,, OHgl) < Ck- H‘Hnmﬁii Janr — anl.

7l7

By assumption (3.1]) it follows for every k < n:

! < i. (3.2)

di (fn, fno1) <d s fne1) < Cy - ||| Hy||2EE -
k(fn fn 1)_ n(fn fn 1)_ n |H n||n+1 2”‘On'Qn'H|Hn||ZI% on

In the next step we show that for arbitrary k& € N (f,), oy is a Cauchy sequence in Diff* (M), i.e.
limy, 1 —00 di (fn, fm) = 0. For this purpose, we calculate:

hm dk (fnafm S hm Z dk fzafz 1 Z dk fufz 1 (33)

1 m+1 1=m-+1



We consider the limit process m — oo, i.e. we can assume k < m and obtain from equations (3.2

and :

=1
. < i 5 U
o e o) 2, 2 =0

Since Diff* (M) is complete, the sequence (fy), ey converges consequently in Diff* (M) for every
k € N. Thus, the sequence converges in Diff*® (M) by definition.

Moreover, we estimate for every m < q,41

m:;%)Md(( o dfn) (@), (7, df™) (2)) SF;IIES;TPMd(( 7 dff) (@), (£ dfty) (2))
B S
4 Q-kj - k}n
j=n+1

By requirement on the number k,, we obtain for every p € {p1,...,pn} CE

m m m m 1
sup |p ((f™, df™)(z)) — p((f", df7") ()| < —
z€PTM n
for every number m < g,4+1 and n € N. O

4 Criterion for the existence of a f-invariant measurable
Riemannian metric

Let wy denote the standard Riemannian metric on M = S x [0,1]. By the same approach as in
[GKa00, section 4.8] we prove the subsequent criterion for the existence of a f-invariant measurable
Riemannian metric:

Proposition 4.1 (Criterion for the existence of a f-invariant measurable Riemannian metric). Let
(Cn)nen be a sequence of partial partitions whose elements cover a set of measure at least 1 — %
for every n € N. Suppose that for every n € N the conjugation map h, acts as an isometry on
every element of the partition (,. Then the limit diffeomorphism f = lim,,_, o fn of the sequence

fon=HyoRq, , oH;' admits an invariant measurable Riemannian metric.

Proof. The assumption implies that for every I, € ¢, Rt ho (1) is an isometry as well. In

the following we construct the f-invariant measurable Riemannian metric. For it we put w, =
(Hn_ 1)* wp. Each w, is a smooth Riemannian metric because it is the pullback of a smooth metric

via a C* (M)-diffeomorphism. Since Ry, . wo = wo the metric wy, is f,-invariant:

frwn = (HpoRa,,, o H,Y)" (H, ') wo = (H, ") R, Hy (H,') wo = (H,") R, w0

n Qpt1t N n
—1\*
= (Hn ) Wo = Wy,

With the succeeding Lemmas we show that the limit wy, = lim,,_, w;, exists u-almost everywhere
and is the desired f-invariant Riemannian metric.

10



Lemma 4.2. The sequence (wn),,cy converges p-a.e. to a limit wee

Proof. For every N € N we have for every k > 0:

WN+k = (Hg,i_k)*wo = (hg,ﬂ_k 0...0 h&ﬂ_l o H&l)*wo = (H;,l)* (hx,i_k 0..0 h;,ﬂ_l)*wo.

Since the elements of the partition (,, cover M except a set of measure at most # and h!| o (Fn)
is an isometry for every I, e Cn, WN+k coincides with wy = (Hg,l)* wp on a set of measure at least
1= x 41 % As this measure approaches 1 for N — oo, the sequence (wy), .y converges on a

set of full measure. O
Lemma 4.3. The limit ws, is a measurable Riemannian metric.

Proof. The limit w, is a measurable map because it is the pointwise limit of the smooth metrics
Wy, which in particular are measurable. By the same reasoning weo|, is symmetric for p-almost
every p € M. Furthermore, w, is positive definite because w,, is positive definite for every n € N
and we, coincides with wy on T1 M ® T1 M minus a set of measure at most ZZOZ N4l % Since this
is true for every N € N, wq, is positive definite on a set of full measure. O

Lemma 4.4. wy, is f-invariant, i.e. f*weo = Weo [i-G.E..

Proof. By Lemma the sequence (wn ),y converges in the C*°-topology pointwise almost ev-
erywhere. Hence, we obtain using Egoroff’s theorem: For every § > 0 there is a set C5 C M such
that p (M \ Cs) < 6 and the convergence w,, — wso is uniform on Cj.

The function f was constructed as the limit of the sequence (f,),y in the C*-topology. Thus,
fr = f 1o f—idin the C*-topology. Since M is compact, this convergence is uniform too.
Furthermore, the smoothness of f implies f*a;;oo = f*limy oo wp = limy, oo f*w,. Therewith,
we compute on Cs: f*wee = limy oo ((fnfn) wn) = lim,,_, (f;f;wn) = lim, f;wn = Woo,
where we used the uniform convergence on Cys in the last step. As this holds on every set Cs with

d > 0, it also holds on the set |J;.,Cs. This is a set of full measure and therefore the claim
follows. 0

Hence, the desired f-invariant measurable Riemannian metric wo, is constructed and thus Propo-
sition [4.1] is proven. 0

5 Proof of existence of the f-invariant measurable Rieman-
nian metric

In order to apply our criterion [£.1] for the existence of a f-invariant measurable Riemannian metric
we define a partial partition (,, and check that the conjugation map h,, acts as an isometry on it.

11



5.1 Partial partition (,

The partial partition ¢, will be defined in such a way that it covers large parts of M = S! x [0, 1]
and h, acts as an isometry on it. For this purpose, the partition elements will be of the form

Uten titloen | o |taden fatl—eq
Cpn@p ' Cptan Cn@p ' Cptan

} (with the parameters a,, ¢, and €, in the construction of the

conjugation map i,) positioned in the domain, where ¢,, acts as an isometry. To be precise the
partial partition (, consists of all multidimensional intervals of the following form:

Iuo,ul,uz,ug,u4;v1,vg,vg,v4 -

Ug + U1 + u2 + us + Uy + 1
kn - qn k%'Qn k%'Qn kg'Qn k%'Qn k}LO'Qn7
U u U U ug + 1 1
— 3 — + 5 o+ 6 ° g 110
kn-an k'n “qn k'n *qn k'n “qn k'n “qn kn *qn
VU1 Vg V3 V4 1 U1 Vg V3 vy +1 1
X | o5 + + + + , 2 + + -
|:k'72L kz “Qn kg “qn k% “qn k}LO “qn k% k?l “Gn kﬁ “qn k?), “qn kyllo “qn

where ug € Z and uy,uz,ug,v1,v4 € {1,...,k2 —2} and us,vs € {0,1,...,k, —1} and vy €
{kn(buknqn + 17 . ’kiqn - ann - 1}

Remark 5.1. For every n € N the partial partition (, consists of disjoint sets, covers a set of

8
measure at least (1 — k%) >1-— ,1—? and the sequence ((y),, oy converges to the decomposition into
points.

5.2 Application of the criterion

The following Lemma shows that the conjugation map h,, = i, o ¢, constructed in section [2|is an
isometry with respect to wy on the elements of the partial partition (,.

Lemma 5.2. Let I, € Cn- Then hn|in is an tsometry with respect to wy.

Proof. The proof is similar to the proof of [GKuIS, Lemma 7.1.]. Let I, := L u; ug.us.uaivr 00,0505 €
Cn be a partition element. By Proposition and our choice of parameters this element I,, is po-
sitioned in such a way that ¢,, acts as an isometry on it. In fact, ¢, (1,) is equal to

Ug + 1 U1 + 1 U us Uyg 1
k ] 5 T %0 x T %10 ’
ndn kyqn Ky an ky - an ky - an k) - gn

u+1 v +1 Uo us ug +1 1
T 13 5 + 75 8 10
kngn kn “qn kn *qn kn *qn kn *qn kn *Gn

) V3 Uy 1 uq Vo V3 vg +1 1

1
X |- + + + + — + + -
|:k72L kg “qn kg “qn kTSL “Gn k;rlLO : Qn7 k% k% “qn k‘f’; “Qqn k% “Qqn k;TlLO *qn

- Iuoykﬁ—vl—1,u2-,usyu4;u17vzyv3,v4

On this set i, = Yy g2 18 is equal to the composition of a translation and the respective
8 -qn k2,25,

rotations by the second statement in Proposition 22 O
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Remark 5.3. As observed in Lemma the map h, = i, o ¢, acts as the composition of the
respective rotations and translations on every I, € (,. In the following G,, := U fnecn I,, will be
called the “good domain” of h,,. Its corresponding parts on the §-axis are called the “good horizontal
length” of h,, and are denoted by G,, ,. Analogously, its corresponding parts on the r-axis are called

the “good vertical length” and are denoted by G, ,. By the same arguments as in Remark
4

observe that for an interval [ L H—l} on the #-axis the length (1 — k%) > (1 - k%) —
4

kngn’ kngn knqn knqn

is part of the “good horizontal length”. Similarly, the length (1 l) >1- k% is part of the

— 1=

“good vertical length” on the r-axis.

Since the elements of the partial partition (, cover a set of M of measure at least 1 — ;—2 (see
Remark , we are able to apply the criterion in Proposition and conclude the existence of a

measurable f-invariant Riemannian metric.
6 Criterion for ergodicity of the derivative extension

A continuous transformation f : X — X on a compact metric space X preserving a Borel probability
measure v is ergodic with respect to v if

N-1
. i —
ngnoo N Z% o (fi(z) = /X ¢ dv for v-almost every z € X

for every ¢ € C(X;R) ([Wa00]). Since C(X;R) is a separable metric space and Lipschitz contin-
uous functions are dense in C(X;R), we can choose a countable set = = {¢y : X - R | k € N} of
Lipschitz continuous functions that is dense in C(X;R). With the aid of the following Lemma one
can prove ergodicity in the general setup of the Approximation by Conjugation-method.

Lemma 6.1. Consider a compact metric space (X,d), a Borel probability measure v on X and a
countable dense set = = {pr : X = R |k € N} C C(X;R) of continuous functions. Let (qn), ey be
an increasing sequence of natural numbers and (fy), oy be a sequence of continuous transformations,
which converges uniformly to a map f. Moreover, let (¢,), oy a decreasing sequence of numbers
converging to 0 and (Dy,), oy @ sequence of subsets of X with Y ", v (X \ D,) < co. Suppose that
foreachk=1,...n

(gn+1) — % _ % 1
) (o fono f) =max | max  on (fy (@) = o (/' (2))] < (6.1)
and
1 qnt+1—1 _
. Ok (f,{ (1‘)) — /<pk dv| < &, for every x € D,. (6.2)
n+1 -
7=0

Then f is ergodic with respect to v.

Since every continuous function on the compact metric space is uniformly continuous, we can

fulfill requirement (6.1)) if f and f,, are sufficiently close to each other.
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Proof. By our assumption 1) we get: H 1 2330171 ppo fi— 23:6171 wrofi

Qn+1 Qn+1 < e for

0
qn1+1 Z?;Bﬁl o (f7(2) — [ o dI/H < 2e, for every x € D,, by assumption
(6.2). By the Borel-Cantelli lemma v (2, Ur—,, X \ Dx) = 0. Thus we get

k=1,...,n. Hence,

N-1
o1 i _
I\}gnoo N Z o (fi(z) = /X o dv for v-almost every © € X

i—
for every ¢ € 2. By an approximation argument this equality holds true for every ¢ € C (X;R). O

Hereby, we deduce the following criterion for the ergodicity of the projectivized derivative ex-
tension.

Proposition 6.2 (Criterion for ergodicity of the projectivized derivative extension). We consider
a sequence of diffemorphisms (fn),cn constructed as above converging to f = lim, .o fn in the
C>-topology and its projectivized derivative extension (f,df) on PTM with invariant measure fi.
Let E={pr : PTM - R | k € N} C C (PTM;R) be a countable dense set of continuous functions,
(€n)nen be a decreasing sequence of numbers converging to 0 and (Dy), oy be a sequence of subsets
of PTM with Y, | i (PTM \ D,,) < co. Suppose that for each k =1,...,n

oo (LA ) e (P @) < 69

and
1 dn+41 -1

o ((f2,d4f)) (z)) — /gpk diz| < e, for every x € D,. (6.4)

QnJrl =0

Then the projectivized derivative extension (f,df) is ergodic with respect to [i.

Proof. This Proposition is Lemma [6.1] stated in the setting of our constructions. O

7 Proof of ergodicity of the derivative extension

In order to apply our criterion for ergodicity of the projectivized derivative extension in Proposition

6.2 we have to estimate the Birkhoff sums 1+1 Z?’;Blfl ok ((f1,df%) (z)) for an increasing set of

x € PTM. For this purpose, we introduce the following “target sets” and “trapping regions”.

7.1 Collection of targets sets

The collection U, of “target sets” consists of all sets

t t1+1 » ti to +1 v tfgt3+1
kn : Qn7 kn *4n kn, kn ]fn7 kn

Athtz,ts = |:

in PI’'M fort; € Z, ts € {1,...,k, — 2} and t3 € {0,1,...,k, — 1}. We denote the union of target
sets by U, and note

p(PTM\U,) <

2
< (7.1)
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Remark 7.1. By condition we have
1

n2 cMaXxX;=1,....n ||pi||Lip

diam ((Hp—1,dHp—1) (A)) <

for every A € U,

7.2 Collection of trapping regions

In the next step, we introduce the family 7, of trapping regions

T, 7T o |Jatl
Up,U1,U2,U3,U4;V1,V2,VU3,V4;] Upg,U1,U2,U3,U4;V1,V2,V3,V4 k ? k
n n

UO+U1+U2+U3+U4+1
kn - qn k‘% *Qqn kfz *Qqn kg “qn k'»% “qn k'»,llo : Qn’

Ug + Uy + Uo + U3 + ug +1 1
ky, - dn k% *dn k% *Qn kg *dn k% *dn k}LO *Qn
U1 (5 V3 on 1 v Vo VU3 vg+1 1
— + + + + y 7o T + -
|:k72L k?L “dn k?L *n k'ng “dn k'vlLO “Q4n k% k?y “qn kg “dn kg “dn k}LO “4n

j oj+1

in PTM, where ug € Z and uy, us, Uq, V1,04 € {1,...,]@% - 2} and ug,vs € {0,1,...,k, — 1} and
Vg € {knqn, kngn+1,..., kiqn — kngn — 1}. We note that the M-factor Iy, uy us,us,ua;ve,v0,05,04
belongs to the “good domain” of the conjugation map hy for any Tig u; us.us uaivr,ve,0s,04:5 € Tne
Hence, we can describe the mapping behaviour of the projectivized derivative extension (h,,,dh,)
on the “trapping regions” explicitly.

Lemma 7.2. For any Tug,uy uz,us,us;01,00,08,055 € Tn we have
(hmdh ) ( uo,ul7u2,u37u4701,vzw37v4d) C Auo,L;:leJ,(j+u3) mod k, *

In particular, a strip J,,, ,, vs 04 L1011 uz us w01 ,05,0s,04 Of almost full vertical length is mapped
to a set of small diameter under h,,.

Proof. In the proof of Lemmal5.2]we computed the mapping behaviour of ¢, on Tug,u; us,us,ussvr, 00,050 -
In addition to this we note that d,¢, = id for base points p € I, uy us,us,us;v1,00,05- Altogether we
get

(¢7L7 dQSn) ( u(hul7“27“37“41“17'“27”31“47]) Tuo»*’fﬁ—Ul—Luz,u37u4;u171}27v3,v4;j'

By the second statement in Proposition in is a composition of a translation and a rotation by
“,2’—” ON Loy k2 — vy 1 us,us,uasu,va,03,00 - Moreover the first statement of Proposmon . yields that

the image of Ty k2 —v; —1,us,us,usius,v0,0s,0, UNAET iy, stays contained in

ug+ 1 v +1 U2 n U3 ug + 1 v +1 U2 ug + 1
kngn k3 -qn K3 -an  KS-Gn kngn k3 - an  kpan kS - an
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U1 V2 V3

4 V2 U3
2
kTL

(7
=+ +

X —+ s
Ky -qn kS -qn k2 kD -qn RS -qn

Hence, we conclude for h,, =i, o ¢y:

(hmdhn) (Tuo,ul,uz,uz,u4;v1,v2,v3,v4;j) - Auo,L}:—TIL ,(j+uz) mod ky-

O

With the aid of this understanding of the mapping behaviour under (h,,, dh,) we can prove the
following “trapping property”.
Lemma 7.3. Let (0,r,v) € PTM with r € G, and Ay, 4,1, € Uy, be arbitrary. Then at least
3 , ,
(1 - %) . ggz and at most 1397:4:1; many of the iterates (hn oRg, ...d (hn o Rfmrl)) 0,r,v),

0 S 1< dn+1, lie in Atl-,tz,t.’;'

vl Vo v3 Vg 1 v Vo U3 va+1 1
Proof. Let r € [ka T g Ta T Ea T 2 T B T B T R k;ﬂqn} and v €

[kin,%), where j € Z, 0 < j < k,,. We choose u € {0,...,k, — 1} such that j +u =t3 mod k,.

By Lemma only the trapping regions T, u; us,uussvr,vs,vs,00:5 With tokn < up < (t2 + 1)k, (for
all allowed values uz,ugq € {1,...,k2 —2}) are mapped into Ay, ¢, ¢, under (hy,dh,). Since the

orbit {6 +i - an+1}i:07“_7q"+1_1 is equidistributed on S', there are at least L(l - é) . kiﬁ Q1]
and at most \_,:";’%;j many points of the orbit {fo +1(6‘,T)} contained in a set of the
non " 1=0,...,qnt+1—1

. 2 2 2 1
form Iy, uy us,uussvr,va,0s,0- Hence, there are at least ky, - (k2 —2)” - L(l - 173) e @n+1] and

at most ki, - (k2 — 2)2 . LQ"Z;J many iterates (hn oR! d (hn oR! )) 0,7,v), 0 <i< @ny1,

23 Qp41)? Q41

in Atl,tz’t?,'
Remark 7.4. For any point z = (0,r) € M with r € G,, , there are at most k%'anr] many iterates

fonﬂ (x), 0 < i < gny1, that are not contained in the “good domain” of h,, i.e. in one one of the

trapping regions, by Remark
7.3 Estimates on Birkoff sums

Using the notation from section [6] we introduce the sets
D, =S! x Gp, x [0,1)

in PTM. By Remark |5.3| we have (D) > 1 — k%. With the aid of the previous “trapping
properties” we obtain the following estimate on Birkhoff sums for points in D,, and observables in
our chosen family = of Lipschitz continuous functions.

Lemma 7.5. Let z = (0,r,v) € D,, and p € {p1,...,pn} C E. Then we have

Gn4+1—1

! Z p ((fnadfn)j (Z)) _/

EUR i — PTM

2
pdi| < 3
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Proof. Since p € {p1,...,pn} C E is a Lipschitz continuous function on PT M, we have

o (Hn—1, dHp 1) (21)) = p (Hn—1, dHp 1) (22))] < [[pl i, - diam ((Hp—1, A1) (At 15.15)) < %

for any 21,22 € Ay, 4,45 € Uy, by Remark Averaging over all zo € Ay, 4, 1, yields

1
p(Hp—1,dHp—1) (21)) — = /
(B B ) = o 1) Barenen)) St sttt (8 )

Let ¢ € D,, be arbitrary. In the subsequent estimate we denote the set of iterates j € {0,1,...,¢n+1 — 1}
such that (hy, o R/, od (h oRJ )) (x) is contained in A € U, by Ia:

< 1 (7.2)

pdn o

Qn 41

qn+1—1
S (e st ) ) o

j=
Gn+1— 1/)(( H, 10h, OR%“’d( 10hn°Ran+1> Z/ pdﬂ

gn+1 =0 Acu, J (Hno1,dHp 1)

pdp

B /(Hn_l,dHn_l)(PTM\Un)

1
< p((Hnloh oRI | (Hnloh oRJ ))(w))—/ pdpi
A;ﬂ In+1 ng:A “ . (Hn-1,dHp—1)(A)
9
B 72’ : QnJrl
+20(PTM A\ Un) - llpllo + ollo
n+1

where the last summand follows from Remark [7.4l In order to estimate the first summand we
exploit Lemma and equation ([7.2) to get

L5 (e (b)) )

qn+1 JEIA

1 1 / 1
< | = pdi+ —
kS an <M (Hp—1, dHn1) (Bty 0.02)) S0 dH 1) (Bey 9.05) n2>
on the one hand and

L3 (oo (o)) )

qn+1 JEIA

3 3
>(1 - %) 1 / ]
| = pdi—— |-
kS an fi((Hy 1, dHp1) (At t0.63)) J (1, dH ) (A 10s) n?

on the other hand. These both estimates yield

1 Zp(( n—10 hn oRa +1,d( n—10hn osznH)) (x))_/(Hnl,dHn1)(A)pdlu

qn+1 JEIA
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< 10 / dii + 1
- pdi L
b J(r, 1 dH, 2 )A) k3 - g, n2

We also recall @ (PTM \ U,) < % from equation 1) Altogether we conclude

1 gn+1—1 4 | 7
qn+1 7:20 p((HnilohnoR]aTHrpd(anl OhnOR‘én+1)> (m)) _/pd/l
10 1 4 9 9
o Wello+ 25+ llello + 57 - llello < 22

using requirement on the number k, in the last step. With z = (H,,dH,) " (z) we obtain the
statement of the Lemma. O

7.4 Application of the criterion

In order to check the requirements of Proposition we counsider the family 2 = {p1,p2, ...}
of Lipschitz continuous functions p; : PTM — R chosen at the beginning and the sets D, =
S! X G x [0,1) € PTM. Since i(D,) > 1 — ;% we have > o i(PTM \ D,) < oco. In our
successive construction the requirement is fulfilled by Lemmaand condition is satisfied
by Lemma Hence, we can apply Proposition and obtain the ergodicity of the projectivized
derivative extension (f,df) with respect to the invariant measure .

Acknowledgement: The author would like to thank the referee for very interesting remarks
and comments. In particular, these simplified the criterion for ergodicity and helped to improve
the presentation of the paper greatly.
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