Lecturer: Klaus Kröncke
Trainer: Sari Ghanem

Partial Differential Equations
 Winter Semester 2017-2018

Worksheet 9

Tuesday, December 12, 2017

We assume all the functions to be smooth, unless stated otherwise.

Problem 1

Consider the polar coordinates $\Psi:(r, \varphi, \theta) \mapsto(r \cos (\varphi) \sin (\theta), r \sin (\varphi) \sin (\theta), r \cos (\theta))$ on \mathbb{R}^{3}, where $r>0, \varphi \in(-\pi, \pi)$ and $\theta \in(0, \pi)$. Transform the Laplacian in polar coordinates, i.e. find a differential operator L of second order such that $\Delta u=L(u \circ \Psi)$ for all $u \in C^{2}\left(\mathbb{R}^{3}\right)$.

Problem 2

(a) Write down the characteristic equations for the PDE

$$
\begin{equation*}
u_{t}+b \cdot \mathcal{D} u=f \quad \text { in } \mathbb{R}^{n} \times(0, \infty) \tag{1}
\end{equation*}
$$

where $b \in \mathbb{R}^{n}, f=f(x, t)$.
(b) Use the characteristic ODE to solve (1) subject to the initial condition

$$
u=g \quad \text { on } \mathbb{R}^{n} \times\{t=0\} .
$$

Makes sure that your answer agrees with the formula in the lecture.

Problem 3

Solve using characteristics:
(a)

$$
x_{1} u_{x_{1}}+x_{2} u_{x_{2}}=2 u, \quad u\left(x_{1}, 1\right)=g\left(x_{1}\right) .
$$

(b)

$$
u \cdot u_{x_{1}}+u_{x_{2}}=1, \quad u\left(x_{1}, x_{1}\right)=\frac{1}{2} x_{1} .
$$

(c)

$$
x_{1} \cdot u_{x_{1}}+2 x_{2} \cdot u_{x_{2}}=3 u, \quad u\left(x_{1}, x_{2}, 0\right)=g\left(x_{1}, x_{2}\right) .
$$

Problem 4

Show that the solution provided by Theorem 3.12 is unique, if there is only one p_{0} such that ($p^{0}, g\left(x^{0}\right), x^{0}$) admissible. Construct an example where uniqueness fails, if there exists more than one p^{0} such that ($p^{0}, g\left(x^{0}\right), x^{0}$) is admissible.

