Partial Differential Equations

Winter Semester 2017-2018

Worksheet 8

Tuesday, December 05, 2017

We assume all the functions to be smooth, unless stated otherwise.

Problem 1

Let u solve the initial-value problem for the wave equation:

$$
\left\{\begin{array}{lll}
u_{t t}-\Delta_{x} u & =0 & \text { in } \mathbb{R}^{n} \times(0, \infty) \\
u=g, u_{t} & =h & \text { on } \mathbb{R}^{n} \times\{t=0\}
\end{array}\right.
$$

Suppose g, h have compact support. Let

$$
E_{k}(t):=\frac{1}{2} \int_{\mathbb{R}^{n}} \sum_{|\alpha| \leq k}\left|D^{\alpha} u_{t}(x, t)\right|^{2}+\left|D^{\alpha} D_{x} u(x, t)\right|^{2} d x
$$

where D^{α} is a multi-index derivative in (x, t) of order $|\alpha|$. Prove that $E_{k}(t)$ is constant in t.

Problem 2

(Equipartition of energy). Let u solve the initial-value problem for the wave equation in one dimension:

$$
\left\{\begin{array}{lll}
u_{t t}-u_{x x} & =0 & \text { in } \mathbb{R} \times(0, \infty) \\
u=g, u_{t} & =h & \text { on } \mathbb{R} \times\{t=0\}
\end{array}\right.
$$

Suppose g, h have compact support. Let the k-th order kinetic energy be

$$
V_{k}(t):=\sum_{|\alpha| \leq k} \frac{1}{2} \int_{-\infty}^{\infty}\left|D^{\alpha} u_{t}(x, t)\right|^{2} d x
$$

and the k-th order potential energy is

$$
P_{k}(t):=\sum_{|\alpha| \leq k} \frac{1}{2} \int_{-\infty}^{\infty}\left|D^{\alpha} u_{x}(x, t)\right|^{2} d x
$$

where D^{α} is a multi-index derivative in (x, t) of order $|\alpha|$. Prove that $V_{k}(t)=P_{k}(t)$ for all large enough times t.

Problem 3

Let L be a partial differential operator of second order. Let F be a diffeomorphism on \mathbb{R}^{n} and $y=F(x)$. Let \tilde{L} be the differential operator that one gets by transforming L from the coordinates $\left(x_{1}, \ldots, x_{n}\right)$ to the coordinates $\left(y_{1}, \ldots, y_{n}\right)=F\left(x_{1}, \ldots, x_{n}\right)$. Show then that L is elliptic/hyperbolic/parabolic operator in x, if and only if \tilde{L} is of the same nature in $y=F(x)$.

Problem 4

Let T be the $(n+1) \times(n+1)$ matrix defined by

$$
T=\left[\begin{array}{cccccc}
-1 & 0 & 0 & 0 & \ldots & 0 \\
0 & 1 & 0 & 0 & \ldots & 0 \\
0 & 0 & 1 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 0 & \ldots & 1
\end{array}\right]
$$

Let A be an $(n+1) \times(n+1)$ matrix such that $A \cdot T \cdot A^{t}=T$, where A^{t} is the transpose of A.

Prove that if u satisfies the wave equation for $(t, x) \in \mathbb{R}^{1+n}$ then u satisfies the wave equation in $\left(t^{\prime}, x^{\prime}\right) \in \mathbb{R}^{1+n}$ where

$$
\left[\begin{array}{c}
t^{\prime} \\
x^{\prime}
\end{array}\right]=A \cdot\left[\begin{array}{l}
t \\
x
\end{array}\right]
$$

