Lecturer: Klaus Kröncke
Trainer: Sari Ghanem

Partial Differential Equations

Winter Semester 2017-2018

Worksheet 7

Tuesday, November 28, 2017

We assume all the functions to be smooth, unless stated otherwise.

Problem 1

Assume $E=\left(E^{1}, E^{2}, E^{3}\right)$ and $B=\left(B^{1}, B^{2}, B^{3}\right)$ solve the Maxwell equations:

$$
\begin{cases}E_{t} & =\operatorname{curl} B \\ B_{t} & =-\operatorname{curl} E \\ \operatorname{div} B & =\operatorname{div} E=0\end{cases}
$$

Show that $u_{t t}-\Delta u=0$ where $u=B^{i}$ or E^{i} for $i=1,2,3$.

Problem 2

Let $\phi: \mathbb{R} \rightarrow \mathbb{R}$ be C^{k+1}. Then for $k=1,2, \ldots$, prove that
(i) $\left(\frac{d^{2}}{d r^{2}}\right)\left(\frac{1}{r} \frac{d}{d r}\right)^{k-1}\left(r^{2 k-1} \phi(r)\right)=\left(\frac{1}{r} \frac{d}{d r}\right)^{k}\left(r^{2 k} \frac{d \phi}{d r}(r)\right)$,
(ii) $\left(\frac{1}{r} \frac{d}{d r}\right)^{k-1}\left(r^{2 k-1} \phi(r)\right)=\sum_{j=0}^{k-1} \beta_{j}^{k} r^{j+1} \frac{d^{j} \phi}{d r^{j}}(r)$, where the constants $\beta_{j}^{k}(j=0, \ldots, k-1)$ are independent of ϕ.
(iii) $\beta_{0}^{k}=1.3 .5 \ldots . .(2 k-1)$.

Problem 3

Let u solve

$$
\left\{\begin{array}{ll}
u_{t t}-\Delta u & =0
\end{array} \quad \text { in } \mathbb{R}^{3} \times(0,1), ~\left(\mathbb{R}^{3} \times t=0, ~ l o u_{t}=h \quad\right. \text { on }\right.
$$

where g, h are smooth and have compact support. Show that there exists a constant C such that

$$
\sup _{x \in \mathbb{R}^{3}}|u(x, t)| \leq \frac{C}{t} \quad\left(x \in \mathbb{R}^{3}, t>0\right) .
$$

Problem 4

Let $u(t, x): \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ be a solution of the wave equation $u_{t t}-u_{x x}=0$. Show that

$$
v(t, x):=\int_{-\infty}^{+\infty} \frac{\exp ^{-\frac{s^{2}}{4 t}}}{\sqrt{t}} u(s, x) d s
$$

satisfies the heat equation $u_{t}-u_{x x}=0$ for every $t>0$ and $x \in \mathbb{R}$.

