Lecturer: Klaus Kröncke

Trainer: Sari Ghanem

Partial Differential Equations
 Winter Semester 2017-2018

Worksheet 6

Tuesday, November 21, 2017

Problem 1

We say $v \in C_{1}^{2}\left(U_{T}\right)$ is a subsolution of the heat equation if

$$
v_{t}-\Delta v \leq 0 \quad \text { in } U_{T}
$$

(a) Prove for a subsolution v that

$$
v(x, t) \leq \frac{1}{4 r^{n}} \iint_{E(x, t ; r)} v(y, s) \frac{|x-y|}{(t-s)^{2}} d y d s
$$

for all $E(x, t ; r) \subset U_{T}$.
(b) Prove that therefore $\max _{\bar{U}_{T}} v=\max _{\Gamma_{T}} v$.

Problem 2

(a) Show the general solution of the PDE $u_{x y}=0$ is

$$
u(x, y)=F(x)+G(y)
$$

for arbitrary functions F, G.
(b) Using the change of variables $\xi=x+t, \nu=x-t$, show $u_{t t}-u_{x x}=0$ if and only if $u_{\xi \nu}=0$.
(c) Use (a) and (b) to rederive d'Alembert's formula.

Problem 3

Tychonov's counterexample: Consider the holomorphic function $g(z)=\exp ^{-\frac{1}{z^{2}}}$ for $z \in \mathbb{C} \backslash 0$ and denoting by $g^{(k)}$ its k-th derivative, define the function

$$
\left\{\begin{array}{l}
u(x, t)=\sum_{k=0}^{+\infty} \frac{g^{(k)}(t)}{(2 k)!} x^{2 k} \quad \text { if } t>0, x \in \mathbb{R} \\
u(x, t)=0 \quad \text { if } t=0, x \in \mathbb{R}
\end{array}\right.
$$

Rigorously justify that this is a solution of the heat equation with 0 Cauchy data by showing uniform convergence of the series (and of the series of its time and space derivatives involved in the equation) on any semi-strip of the type

$$
(x, t) \in[-a, a] \times[\delta,+\infty)
$$

with $a, \delta>0$.

Hint: apply Cauchy's formula for the derivatives of holomorphic functions in this form

$$
g^{(k)}(t)=\frac{k!}{2 \pi i} \int_{\partial B\left(t, \frac{t}{2}\right)} \frac{g(z)}{(z-t)^{k+1}} d z
$$

to estimate $g^{(k)}(t)$. Obviously, if you find a method not using complex analysis, it is also valid!

Problem 4

Derive a representation formula for a solution of the initial/boundary-value problem

$$
\begin{cases}u_{t t}-u_{x x}=0 & \text { in } \mathbb{R}_{+} \times(0, \infty) \\ u=g, u_{t}=h & \text { on } \mathbb{R}_{+} \times\{t=0\} \\ u=0 & \text { on }\{x=0\} \times(0, \infty)\end{cases}
$$

where g, h are given, with $g(0)=h(0)=0$.
(Hint: construct a new function by odd reflection)

