Lecturer: Klaus Kröncke<br>Trainer: Sari Ghanem

## Partial Differential Equations <br> Winter Semester 2017-2018

## Worksheet 5

Tuesday, November 14, 2017

## Problem 1

Suppose $u$ is smooth and solves $u_{t}-\Delta u=0$ in $\mathbb{R}^{n} \times(0, \infty)$.
(i) Show that $u_{\lambda}(x, t)=u\left(\lambda x, \lambda^{2} t\right)$ solves the heat equation for each $\lambda \in \mathbb{R}$.
(ii) Use (i) to show that $v(x, t)=x \cdot \mathcal{D} u(x, t)+2 t u_{t}(x, t)$ solves the heat equation as well.

## Problem 2

Assume $n=1$ and $u(x, t)=v\left(\frac{x^{2}}{t}\right)$.
(a) Show

$$
u_{t}=u_{x x}
$$

if and only if

$$
\begin{equation*}
4 z v^{\prime \prime}(z)+(2+z) v^{\prime}(z)=0 \quad(z>0) . \tag{1}
\end{equation*}
$$

(b) Show that the general solution of (1) is

$$
v(z)=c \int_{0}^{z} \mathrm{e}^{-\frac{s}{4}} s^{-\frac{1}{2}} d s+d
$$

(c) Differentiate $v\left(\frac{x^{2}}{t}\right)$ with respect to $x$ and select the constant $c$ properly, so as to obtain the fundamental solution $\Phi$ for $n=1$.

## Problem 3

Write down an explicit formula for a solution of

$$
\begin{cases}u_{t}-\Delta u+c u=f & \text { in } \mathbb{R}^{n} \times(0, \infty) \\ u=g & \text { on } \mathbb{R}^{n} \times(t=0),\end{cases}
$$

where $c \in \mathbb{R}$.

## Problem 4

Given $g:[0, \infty) \rightarrow \mathbb{R}$ with $g(0)=0$, derive the formula

$$
u(t, x)=\frac{x}{\sqrt{4 \pi}} \int_{0}^{t} \frac{1}{(t-s)^{\frac{3}{2}}} \mathrm{e}^{\frac{-x^{2}}{4(t-s)}} g(s) d s
$$

for a solution of the initial/boundary-value problem

$$
\begin{cases}u_{t}-u_{x x}=0 & \text { in } \mathbb{R}_{+} \times(0, \infty) \\ u=0 & \text { on } \mathbb{R}_{+} \times\{t=0\} \\ u=g & \text { on }\{x=0\} \times[0, \infty)\end{cases}
$$

(Hint: Let $v(x, t)=u(x, t)-g(t)$ and extend $v$ to $\{x<0\}$ by odd reflection $v(x, t)=$ $-v(-x, t)$ for $x<0)$

